1 //===-- AMDGPULowerModuleLDSPass.cpp ------------------------------*- C++ -*-=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass eliminates local data store, LDS, uses from non-kernel functions.
10 // LDS is contiguous memory allocated per kernel execution.
11 //
12 // Background.
13 //
14 // The programming model is global variables, or equivalently function local
15 // static variables, accessible from kernels or other functions. For uses from
16 // kernels this is straightforward - assign an integer to the kernel for the
17 // memory required by all the variables combined, allocate them within that.
18 // For uses from functions there are performance tradeoffs to choose between.
19 //
20 // This model means the GPU runtime can specify the amount of memory allocated.
21 // If this is more than the kernel assumed, the excess can be made available
22 // using a language specific feature, which IR represents as a variable with
23 // no initializer. This feature is not yet implemented for non-kernel functions.
24 // This lowering could be extended to handle that use case, but would probably
25 // require closer integration with promoteAllocaToLDS.
26 //
27 // Consequences of this GPU feature:
28 // - memory is limited and exceeding it halts compilation
29 // - a global accessed by one kernel exists independent of other kernels
30 // - a global exists independent of simultaneous execution of the same kernel
31 // - the address of the global may be different from different kernels as they
32 // do not alias, which permits only allocating variables they use
33 // - if the address is allowed to differ, functions need help to find it
34 //
35 // Uses from kernels are implemented here by grouping them in a per-kernel
36 // struct instance. This duplicates the variables, accurately modelling their
37 // aliasing properties relative to a single global representation. It also
38 // permits control over alignment via padding.
39 //
40 // Uses from functions are more complicated and the primary purpose of this
41 // IR pass. Several different lowering are chosen between to meet requirements
42 // to avoid allocating any LDS where it is not necessary, as that impacts
43 // occupancy and may fail the compilation, while not imposing overhead on a
44 // feature whose primary advantage over global memory is performance. The basic
45 // design goal is to avoid one kernel imposing overhead on another.
46 //
47 // Implementation.
48 //
49 // LDS variables with constant annotation or non-undef initializer are passed
50 // through unchanged for simplification or error diagnostics in later passes.
51 // Non-undef initializers are not yet implemented for LDS.
52 //
53 // LDS variables that are always allocated at the same address can be found
54 // by lookup at that address. Otherwise runtime information/cost is required.
55 //
56 // The simplest strategy possible is to group all LDS variables in a single
57 // struct and allocate that struct in every kernel such that the original
58 // variables are always at the same address. LDS is however a limited resource
59 // so this strategy is unusable in practice. It is not implemented here.
60 //
61 // Strategy | Precise allocation | Zero runtime cost | General purpose |
62 // --------+--------------------+-------------------+-----------------+
63 // Module | No | Yes | Yes |
64 // Table | Yes | No | Yes |
65 // Kernel | Yes | Yes | No |
66 // Hybrid | Yes | Partial | Yes |
67 //
68 // Module spends LDS memory to save cycles. Table spends cycles and global
69 // memory to save LDS. Kernel is as fast as kernel allocation but only works
70 // for variables that are known reachable from a single kernel. Hybrid picks
71 // between all three. When forced to choose between LDS and cycles it minimises
72 // LDS use.
73
74 // The "module" lowering implemented here finds LDS variables which are used by
75 // non-kernel functions and creates a new struct with a field for each of those
76 // LDS variables. Variables that are only used from kernels are excluded.
77 // Kernels that do not use this struct are annoteated with the attribute
78 // amdgpu-elide-module-lds which allows the back end to elide the allocation.
79 //
80 // The "table" lowering implemented here has three components.
81 // First kernels are assigned a unique integer identifier which is available in
82 // functions it calls through the intrinsic amdgcn_lds_kernel_id. The integer
83 // is passed through a specific SGPR, thus works with indirect calls.
84 // Second, each kernel allocates LDS variables independent of other kernels and
85 // writes the addresses it chose for each variable into an array in consistent
86 // order. If the kernel does not allocate a given variable, it writes undef to
87 // the corresponding array location. These arrays are written to a constant
88 // table in the order matching the kernel unique integer identifier.
89 // Third, uses from non-kernel functions are replaced with a table lookup using
90 // the intrinsic function to find the address of the variable.
91 //
92 // "Kernel" lowering is only applicable for variables that are unambiguously
93 // reachable from exactly one kernel. For those cases, accesses to the variable
94 // can be lowered to ConstantExpr address of a struct instance specific to that
95 // one kernel. This is zero cost in space and in compute. It will raise a fatal
96 // error on any variable that might be reachable from multiple kernels and is
97 // thus most easily used as part of the hybrid lowering strategy.
98 //
99 // Hybrid lowering is a mixture of the above. It uses the zero cost kernel
100 // lowering where it can. It lowers the variable accessed by the greatest
101 // number of kernels using the module strategy as that is free for the first
102 // variable. Any futher variables that can be lowered with the module strategy
103 // without incurring LDS memory overhead are. The remaining ones are lowered
104 // via table.
105 //
106 // Consequences
107 // - No heuristics or user controlled magic numbers, hybrid is the right choice
108 // - Kernels that don't use functions (or have had them all inlined) are not
109 // affected by any lowering for kernels that do.
110 // - Kernels that don't make indirect function calls are not affected by those
111 // that do.
112 // - Variables which are used by lots of kernels, e.g. those injected by a
113 // language runtime in most kernels, are expected to have no overhead
114 // - Implementations that instantiate templates per-kernel where those templates
115 // use LDS are expected to hit the "Kernel" lowering strategy
116 // - The runtime properties impose a cost in compiler implementation complexity
117 //
118 //===----------------------------------------------------------------------===//
119
120 #include "AMDGPU.h"
121 #include "Utils/AMDGPUBaseInfo.h"
122 #include "Utils/AMDGPUMemoryUtils.h"
123 #include "llvm/ADT/BitVector.h"
124 #include "llvm/ADT/DenseMap.h"
125 #include "llvm/ADT/DenseSet.h"
126 #include "llvm/ADT/STLExtras.h"
127 #include "llvm/ADT/SetOperations.h"
128 #include "llvm/ADT/SetVector.h"
129 #include "llvm/Analysis/CallGraph.h"
130 #include "llvm/IR/Constants.h"
131 #include "llvm/IR/DerivedTypes.h"
132 #include "llvm/IR/IRBuilder.h"
133 #include "llvm/IR/InlineAsm.h"
134 #include "llvm/IR/Instructions.h"
135 #include "llvm/IR/IntrinsicsAMDGPU.h"
136 #include "llvm/IR/MDBuilder.h"
137 #include "llvm/InitializePasses.h"
138 #include "llvm/Pass.h"
139 #include "llvm/Support/CommandLine.h"
140 #include "llvm/Support/Debug.h"
141 #include "llvm/Support/OptimizedStructLayout.h"
142 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
143 #include "llvm/Transforms/Utils/ModuleUtils.h"
144
145 #include <tuple>
146 #include <vector>
147
148 #include <cstdio>
149
150 #define DEBUG_TYPE "amdgpu-lower-module-lds"
151
152 using namespace llvm;
153
154 namespace {
155
156 cl::opt<bool> SuperAlignLDSGlobals(
157 "amdgpu-super-align-lds-globals",
158 cl::desc("Increase alignment of LDS if it is not on align boundary"),
159 cl::init(true), cl::Hidden);
160
161 enum class LoweringKind { module, table, kernel, hybrid };
162 cl::opt<LoweringKind> LoweringKindLoc(
163 "amdgpu-lower-module-lds-strategy",
164 cl::desc("Specify lowering strategy for function LDS access:"), cl::Hidden,
165 cl::init(LoweringKind::module),
166 cl::values(
167 clEnumValN(LoweringKind::table, "table", "Lower via table lookup"),
168 clEnumValN(LoweringKind::module, "module", "Lower via module struct"),
169 clEnumValN(
170 LoweringKind::kernel, "kernel",
171 "Lower variables reachable from one kernel, otherwise abort"),
172 clEnumValN(LoweringKind::hybrid, "hybrid",
173 "Lower via mixture of above strategies")));
174
isKernelLDS(const Function * F)175 bool isKernelLDS(const Function *F) {
176 // Some weirdness here. AMDGPU::isKernelCC does not call into
177 // AMDGPU::isKernel with the calling conv, it instead calls into
178 // isModuleEntryFunction which returns true for more calling conventions
179 // than AMDGPU::isKernel does. There's a FIXME on AMDGPU::isKernel.
180 // There's also a test that checks that the LDS lowering does not hit on
181 // a graphics shader, denoted amdgpu_ps, so stay with the limited case.
182 // Putting LDS in the name of the function to draw attention to this.
183 return AMDGPU::isKernel(F->getCallingConv());
184 }
185
186 class AMDGPULowerModuleLDS : public ModulePass {
187
188 static void
removeLocalVarsFromUsedLists(Module & M,const DenseSet<GlobalVariable * > & LocalVars)189 removeLocalVarsFromUsedLists(Module &M,
190 const DenseSet<GlobalVariable *> &LocalVars) {
191 // The verifier rejects used lists containing an inttoptr of a constant
192 // so remove the variables from these lists before replaceAllUsesWith
193 SmallPtrSet<Constant *, 8> LocalVarsSet;
194 for (GlobalVariable *LocalVar : LocalVars)
195 LocalVarsSet.insert(cast<Constant>(LocalVar->stripPointerCasts()));
196
197 removeFromUsedLists(
198 M, [&LocalVarsSet](Constant *C) { return LocalVarsSet.count(C); });
199
200 for (GlobalVariable *LocalVar : LocalVars)
201 LocalVar->removeDeadConstantUsers();
202 }
203
markUsedByKernel(IRBuilder<> & Builder,Function * Func,GlobalVariable * SGV)204 static void markUsedByKernel(IRBuilder<> &Builder, Function *Func,
205 GlobalVariable *SGV) {
206 // The llvm.amdgcn.module.lds instance is implicitly used by all kernels
207 // that might call a function which accesses a field within it. This is
208 // presently approximated to 'all kernels' if there are any such functions
209 // in the module. This implicit use is redefined as an explicit use here so
210 // that later passes, specifically PromoteAlloca, account for the required
211 // memory without any knowledge of this transform.
212
213 // An operand bundle on llvm.donothing works because the call instruction
214 // survives until after the last pass that needs to account for LDS. It is
215 // better than inline asm as the latter survives until the end of codegen. A
216 // totally robust solution would be a function with the same semantics as
217 // llvm.donothing that takes a pointer to the instance and is lowered to a
218 // no-op after LDS is allocated, but that is not presently necessary.
219
220 LLVMContext &Ctx = Func->getContext();
221
222 Builder.SetInsertPoint(Func->getEntryBlock().getFirstNonPHI());
223
224 FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx), {});
225
226 Function *Decl =
227 Intrinsic::getDeclaration(Func->getParent(), Intrinsic::donothing, {});
228
229 Value *UseInstance[1] = {Builder.CreateInBoundsGEP(
230 SGV->getValueType(), SGV, ConstantInt::get(Type::getInt32Ty(Ctx), 0))};
231
232 Builder.CreateCall(FTy, Decl, {},
233 {OperandBundleDefT<Value *>("ExplicitUse", UseInstance)},
234 "");
235 }
236
eliminateConstantExprUsesOfLDSFromAllInstructions(Module & M)237 static bool eliminateConstantExprUsesOfLDSFromAllInstructions(Module &M) {
238 // Constants are uniqued within LLVM. A ConstantExpr referring to a LDS
239 // global may have uses from multiple different functions as a result.
240 // This pass specialises LDS variables with respect to the kernel that
241 // allocates them.
242
243 // This is semantically equivalent to:
244 // for (auto &F : M.functions())
245 // for (auto &BB : F)
246 // for (auto &I : BB)
247 // for (Use &Op : I.operands())
248 // if (constantExprUsesLDS(Op))
249 // replaceConstantExprInFunction(I, Op);
250
251 bool Changed = false;
252
253 // Find all ConstantExpr that are direct users of an LDS global
254 SmallVector<ConstantExpr *> Stack;
255 for (auto &GV : M.globals())
256 if (AMDGPU::isLDSVariableToLower(GV))
257 for (User *U : GV.users())
258 if (ConstantExpr *C = dyn_cast<ConstantExpr>(U))
259 Stack.push_back(C);
260
261 // Expand to include constexpr users of direct users
262 SetVector<ConstantExpr *> ConstExprUsersOfLDS;
263 while (!Stack.empty()) {
264 ConstantExpr *V = Stack.pop_back_val();
265 if (ConstExprUsersOfLDS.contains(V))
266 continue;
267
268 ConstExprUsersOfLDS.insert(V);
269
270 for (auto *Nested : V->users())
271 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Nested))
272 Stack.push_back(CE);
273 }
274
275 // Find all instructions that use any of the ConstExpr users of LDS
276 SetVector<Instruction *> InstructionWorklist;
277 for (ConstantExpr *CE : ConstExprUsersOfLDS)
278 for (User *U : CE->users())
279 if (auto *I = dyn_cast<Instruction>(U))
280 InstructionWorklist.insert(I);
281
282 // Replace those ConstExpr operands with instructions
283 while (!InstructionWorklist.empty()) {
284 Instruction *I = InstructionWorklist.pop_back_val();
285 for (Use &U : I->operands()) {
286
287 auto *BI = I;
288 if (auto *Phi = dyn_cast<PHINode>(I)) {
289 BasicBlock *BB = Phi->getIncomingBlock(U);
290 BasicBlock::iterator It = BB->getFirstInsertionPt();
291 assert(It != BB->end() && "Unexpected empty basic block");
292 BI = &(*(It));
293 }
294
295 if (ConstantExpr *C = dyn_cast<ConstantExpr>(U.get())) {
296 if (ConstExprUsersOfLDS.contains(C)) {
297 Changed = true;
298 Instruction *NI = C->getAsInstruction(BI);
299 InstructionWorklist.insert(NI);
300 U.set(NI);
301 C->removeDeadConstantUsers();
302 }
303 }
304 }
305 }
306
307 return Changed;
308 }
309
310 public:
311 static char ID;
312
AMDGPULowerModuleLDS()313 AMDGPULowerModuleLDS() : ModulePass(ID) {
314 initializeAMDGPULowerModuleLDSPass(*PassRegistry::getPassRegistry());
315 }
316
317 using FunctionVariableMap = DenseMap<Function *, DenseSet<GlobalVariable *>>;
318
319 using VariableFunctionMap = DenseMap<GlobalVariable *, DenseSet<Function *>>;
320
getUsesOfLDSByFunction(CallGraph const & CG,Module & M,FunctionVariableMap & kernels,FunctionVariableMap & functions)321 static void getUsesOfLDSByFunction(CallGraph const &CG, Module &M,
322 FunctionVariableMap &kernels,
323 FunctionVariableMap &functions) {
324
325 // Get uses from the current function, excluding uses by called functions
326 // Two output variables to avoid walking the globals list twice
327 for (auto &GV : M.globals()) {
328 if (!AMDGPU::isLDSVariableToLower(GV)) {
329 continue;
330 }
331
332 SmallVector<User *, 16> Stack(GV.users());
333 for (User *V : GV.users()) {
334 if (auto *I = dyn_cast<Instruction>(V)) {
335 Function *F = I->getFunction();
336 if (isKernelLDS(F)) {
337 kernels[F].insert(&GV);
338 } else {
339 functions[F].insert(&GV);
340 }
341 }
342 }
343 }
344 }
345
346 struct LDSUsesInfoTy {
347 FunctionVariableMap direct_access;
348 FunctionVariableMap indirect_access;
349 };
350
getTransitiveUsesOfLDS(CallGraph const & CG,Module & M)351 static LDSUsesInfoTy getTransitiveUsesOfLDS(CallGraph const &CG, Module &M) {
352
353 FunctionVariableMap direct_map_kernel;
354 FunctionVariableMap direct_map_function;
355 getUsesOfLDSByFunction(CG, M, direct_map_kernel, direct_map_function);
356
357 // Collect variables that are used by functions whose address has escaped
358 DenseSet<GlobalVariable *> VariablesReachableThroughFunctionPointer;
359 for (Function &F : M.functions()) {
360 if (!isKernelLDS(&F))
361 if (F.hasAddressTaken(nullptr,
362 /* IgnoreCallbackUses */ false,
363 /* IgnoreAssumeLikeCalls */ false,
364 /* IgnoreLLVMUsed */ true,
365 /* IgnoreArcAttachedCall */ false)) {
366 set_union(VariablesReachableThroughFunctionPointer,
367 direct_map_function[&F]);
368 }
369 }
370
371 auto functionMakesUnknownCall = [&](const Function *F) -> bool {
372 assert(!F->isDeclaration());
373 for (CallGraphNode::CallRecord R : *CG[F]) {
374 if (!R.second->getFunction()) {
375 return true;
376 }
377 }
378 return false;
379 };
380
381 // Work out which variables are reachable through function calls
382 FunctionVariableMap transitive_map_function = direct_map_function;
383
384 // If the function makes any unknown call, assume the worst case that it can
385 // access all variables accessed by functions whose address escaped
386 for (Function &F : M.functions()) {
387 if (!F.isDeclaration() && functionMakesUnknownCall(&F)) {
388 if (!isKernelLDS(&F)) {
389 set_union(transitive_map_function[&F],
390 VariablesReachableThroughFunctionPointer);
391 }
392 }
393 }
394
395 // Direct implementation of collecting all variables reachable from each
396 // function
397 for (Function &Func : M.functions()) {
398 if (Func.isDeclaration() || isKernelLDS(&Func))
399 continue;
400
401 DenseSet<Function *> seen; // catches cycles
402 SmallVector<Function *, 4> wip{&Func};
403
404 while (!wip.empty()) {
405 Function *F = wip.pop_back_val();
406
407 // Can accelerate this by referring to transitive map for functions that
408 // have already been computed, with more care than this
409 set_union(transitive_map_function[&Func], direct_map_function[F]);
410
411 for (CallGraphNode::CallRecord R : *CG[F]) {
412 Function *ith = R.second->getFunction();
413 if (ith) {
414 if (!seen.contains(ith)) {
415 seen.insert(ith);
416 wip.push_back(ith);
417 }
418 }
419 }
420 }
421 }
422
423 // direct_map_kernel lists which variables are used by the kernel
424 // find the variables which are used through a function call
425 FunctionVariableMap indirect_map_kernel;
426
427 for (Function &Func : M.functions()) {
428 if (Func.isDeclaration() || !isKernelLDS(&Func))
429 continue;
430
431 for (CallGraphNode::CallRecord R : *CG[&Func]) {
432 Function *ith = R.second->getFunction();
433 if (ith) {
434 set_union(indirect_map_kernel[&Func], transitive_map_function[ith]);
435 } else {
436 set_union(indirect_map_kernel[&Func],
437 VariablesReachableThroughFunctionPointer);
438 }
439 }
440 }
441
442 return {std::move(direct_map_kernel), std::move(indirect_map_kernel)};
443 }
444
445 struct LDSVariableReplacement {
446 GlobalVariable *SGV = nullptr;
447 DenseMap<GlobalVariable *, Constant *> LDSVarsToConstantGEP;
448 };
449
450 // remap from lds global to a constantexpr gep to where it has been moved to
451 // for each kernel
452 // an array with an element for each kernel containing where the corresponding
453 // variable was remapped to
454
getAddressesOfVariablesInKernel(LLVMContext & Ctx,ArrayRef<GlobalVariable * > Variables,DenseMap<GlobalVariable *,Constant * > & LDSVarsToConstantGEP)455 static Constant *getAddressesOfVariablesInKernel(
456 LLVMContext &Ctx, ArrayRef<GlobalVariable *> Variables,
457 DenseMap<GlobalVariable *, Constant *> &LDSVarsToConstantGEP) {
458 // Create a ConstantArray containing the address of each Variable within the
459 // kernel corresponding to LDSVarsToConstantGEP, or poison if that kernel
460 // does not allocate it
461 // TODO: Drop the ptrtoint conversion
462
463 Type *I32 = Type::getInt32Ty(Ctx);
464
465 ArrayType *KernelOffsetsType = ArrayType::get(I32, Variables.size());
466
467 SmallVector<Constant *> Elements;
468 for (size_t i = 0; i < Variables.size(); i++) {
469 GlobalVariable *GV = Variables[i];
470 if (LDSVarsToConstantGEP.count(GV) != 0) {
471 auto elt = ConstantExpr::getPtrToInt(LDSVarsToConstantGEP[GV], I32);
472 Elements.push_back(elt);
473 } else {
474 Elements.push_back(PoisonValue::get(I32));
475 }
476 }
477 return ConstantArray::get(KernelOffsetsType, Elements);
478 }
479
buildLookupTable(Module & M,ArrayRef<GlobalVariable * > Variables,ArrayRef<Function * > kernels,DenseMap<Function *,LDSVariableReplacement> & KernelToReplacement)480 static GlobalVariable *buildLookupTable(
481 Module &M, ArrayRef<GlobalVariable *> Variables,
482 ArrayRef<Function *> kernels,
483 DenseMap<Function *, LDSVariableReplacement> &KernelToReplacement) {
484 if (Variables.empty()) {
485 return nullptr;
486 }
487 LLVMContext &Ctx = M.getContext();
488
489 const size_t NumberVariables = Variables.size();
490 const size_t NumberKernels = kernels.size();
491
492 ArrayType *KernelOffsetsType =
493 ArrayType::get(Type::getInt32Ty(Ctx), NumberVariables);
494
495 ArrayType *AllKernelsOffsetsType =
496 ArrayType::get(KernelOffsetsType, NumberKernels);
497
498 std::vector<Constant *> overallConstantExprElts(NumberKernels);
499 for (size_t i = 0; i < NumberKernels; i++) {
500 LDSVariableReplacement Replacement = KernelToReplacement[kernels[i]];
501 overallConstantExprElts[i] = getAddressesOfVariablesInKernel(
502 Ctx, Variables, Replacement.LDSVarsToConstantGEP);
503 }
504
505 Constant *init =
506 ConstantArray::get(AllKernelsOffsetsType, overallConstantExprElts);
507
508 return new GlobalVariable(
509 M, AllKernelsOffsetsType, true, GlobalValue::InternalLinkage, init,
510 "llvm.amdgcn.lds.offset.table", nullptr, GlobalValue::NotThreadLocal,
511 AMDGPUAS::CONSTANT_ADDRESS);
512 }
513
replaceUsesInInstructionsWithTableLookup(Module & M,ArrayRef<GlobalVariable * > ModuleScopeVariables,GlobalVariable * LookupTable)514 void replaceUsesInInstructionsWithTableLookup(
515 Module &M, ArrayRef<GlobalVariable *> ModuleScopeVariables,
516 GlobalVariable *LookupTable) {
517
518 LLVMContext &Ctx = M.getContext();
519 IRBuilder<> Builder(Ctx);
520 Type *I32 = Type::getInt32Ty(Ctx);
521
522 // Accesses from a function use the amdgcn_lds_kernel_id intrinsic which
523 // lowers to a read from a live in register. Emit it once in the entry
524 // block to spare deduplicating it later.
525
526 DenseMap<Function *, Value *> tableKernelIndexCache;
527 auto getTableKernelIndex = [&](Function *F) -> Value * {
528 if (tableKernelIndexCache.count(F) == 0) {
529 LLVMContext &Ctx = M.getContext();
530 FunctionType *FTy = FunctionType::get(Type::getInt32Ty(Ctx), {});
531 Function *Decl =
532 Intrinsic::getDeclaration(&M, Intrinsic::amdgcn_lds_kernel_id, {});
533
534 BasicBlock::iterator it =
535 F->getEntryBlock().getFirstNonPHIOrDbgOrAlloca();
536 Instruction &i = *it;
537 Builder.SetInsertPoint(&i);
538
539 tableKernelIndexCache[F] = Builder.CreateCall(FTy, Decl, {});
540 }
541
542 return tableKernelIndexCache[F];
543 };
544
545 for (size_t Index = 0; Index < ModuleScopeVariables.size(); Index++) {
546 auto *GV = ModuleScopeVariables[Index];
547
548 for (Use &U : make_early_inc_range(GV->uses())) {
549 auto *I = dyn_cast<Instruction>(U.getUser());
550 if (!I)
551 continue;
552
553 Value *tableKernelIndex = getTableKernelIndex(I->getFunction());
554
555 // So if the phi uses this value multiple times, what does this look
556 // like?
557 if (auto *Phi = dyn_cast<PHINode>(I)) {
558 BasicBlock *BB = Phi->getIncomingBlock(U);
559 Builder.SetInsertPoint(&(*(BB->getFirstInsertionPt())));
560 } else {
561 Builder.SetInsertPoint(I);
562 }
563
564 Value *GEPIdx[3] = {
565 ConstantInt::get(I32, 0),
566 tableKernelIndex,
567 ConstantInt::get(I32, Index),
568 };
569
570 Value *Address = Builder.CreateInBoundsGEP(
571 LookupTable->getValueType(), LookupTable, GEPIdx, GV->getName());
572
573 Value *loaded = Builder.CreateLoad(I32, Address);
574
575 Value *replacement =
576 Builder.CreateIntToPtr(loaded, GV->getType(), GV->getName());
577
578 U.set(replacement);
579 }
580 }
581 }
582
kernelsThatIndirectlyAccessAnyOfPassedVariables(Module & M,LDSUsesInfoTy & LDSUsesInfo,DenseSet<GlobalVariable * > const & VariableSet)583 static DenseSet<Function *> kernelsThatIndirectlyAccessAnyOfPassedVariables(
584 Module &M, LDSUsesInfoTy &LDSUsesInfo,
585 DenseSet<GlobalVariable *> const &VariableSet) {
586
587 DenseSet<Function *> KernelSet;
588
589 if (VariableSet.empty()) return KernelSet;
590
591 for (Function &Func : M.functions()) {
592 if (Func.isDeclaration() || !isKernelLDS(&Func))
593 continue;
594 for (GlobalVariable *GV : LDSUsesInfo.indirect_access[&Func]) {
595 if (VariableSet.contains(GV)) {
596 KernelSet.insert(&Func);
597 break;
598 }
599 }
600 }
601
602 return KernelSet;
603 }
604
605 static GlobalVariable *
chooseBestVariableForModuleStrategy(const DataLayout & DL,VariableFunctionMap & LDSVars)606 chooseBestVariableForModuleStrategy(const DataLayout &DL,
607 VariableFunctionMap &LDSVars) {
608 // Find the global variable with the most indirect uses from kernels
609
610 struct CandidateTy {
611 GlobalVariable *GV = nullptr;
612 size_t UserCount = 0;
613 size_t Size = 0;
614
615 CandidateTy() = default;
616
617 CandidateTy(GlobalVariable *GV, uint64_t UserCount, uint64_t AllocSize)
618 : GV(GV), UserCount(UserCount), Size(AllocSize) {}
619
620 bool operator<(const CandidateTy &Other) const {
621 // Fewer users makes module scope variable less attractive
622 if (UserCount < Other.UserCount) {
623 return true;
624 }
625 if (UserCount > Other.UserCount) {
626 return false;
627 }
628
629 // Bigger makes module scope variable less attractive
630 if (Size < Other.Size) {
631 return false;
632 }
633
634 if (Size > Other.Size) {
635 return true;
636 }
637
638 // Arbitrary but consistent
639 return GV->getName() < Other.GV->getName();
640 }
641 };
642
643 CandidateTy MostUsed;
644
645 for (auto &K : LDSVars) {
646 GlobalVariable *GV = K.first;
647 if (K.second.size() <= 1) {
648 // A variable reachable by only one kernel is best lowered with kernel
649 // strategy
650 continue;
651 }
652 CandidateTy Candidate(GV, K.second.size(),
653 DL.getTypeAllocSize(GV->getValueType()).getFixedValue());
654 if (MostUsed < Candidate)
655 MostUsed = Candidate;
656 }
657
658 return MostUsed.GV;
659 }
660
runOnModule(Module & M)661 bool runOnModule(Module &M) override {
662 LLVMContext &Ctx = M.getContext();
663 CallGraph CG = CallGraph(M);
664 bool Changed = superAlignLDSGlobals(M);
665
666 Changed |= eliminateConstantExprUsesOfLDSFromAllInstructions(M);
667
668 Changed = true; // todo: narrow this down
669
670 // For each kernel, what variables does it access directly or through
671 // callees
672 LDSUsesInfoTy LDSUsesInfo = getTransitiveUsesOfLDS(CG, M);
673
674 // For each variable accessed through callees, which kernels access it
675 VariableFunctionMap LDSToKernelsThatNeedToAccessItIndirectly;
676 for (auto &K : LDSUsesInfo.indirect_access) {
677 Function *F = K.first;
678 assert(isKernelLDS(F));
679 for (GlobalVariable *GV : K.second) {
680 LDSToKernelsThatNeedToAccessItIndirectly[GV].insert(F);
681 }
682 }
683
684 // Partition variables into the different strategies
685 DenseSet<GlobalVariable *> ModuleScopeVariables;
686 DenseSet<GlobalVariable *> TableLookupVariables;
687 DenseSet<GlobalVariable *> KernelAccessVariables;
688
689 {
690 GlobalVariable *HybridModuleRoot =
691 LoweringKindLoc != LoweringKind::hybrid
692 ? nullptr
693 : chooseBestVariableForModuleStrategy(
694 M.getDataLayout(),
695 LDSToKernelsThatNeedToAccessItIndirectly);
696
697 DenseSet<Function *> const EmptySet;
698 DenseSet<Function *> const &HybridModuleRootKernels =
699 HybridModuleRoot
700 ? LDSToKernelsThatNeedToAccessItIndirectly[HybridModuleRoot]
701 : EmptySet;
702
703 for (auto &K : LDSToKernelsThatNeedToAccessItIndirectly) {
704 // Each iteration of this loop assigns exactly one global variable to
705 // exactly one of the implementation strategies.
706
707 GlobalVariable *GV = K.first;
708 assert(AMDGPU::isLDSVariableToLower(*GV));
709 assert(K.second.size() != 0);
710
711 switch (LoweringKindLoc) {
712 case LoweringKind::module:
713 ModuleScopeVariables.insert(GV);
714 break;
715
716 case LoweringKind::table:
717 TableLookupVariables.insert(GV);
718 break;
719
720 case LoweringKind::kernel:
721 if (K.second.size() == 1) {
722 KernelAccessVariables.insert(GV);
723 } else {
724 report_fatal_error(
725 "cannot lower LDS '" + GV->getName() +
726 "' to kernel access as it is reachable from multiple kernels");
727 }
728 break;
729
730 case LoweringKind::hybrid: {
731 if (GV == HybridModuleRoot) {
732 assert(K.second.size() != 1);
733 ModuleScopeVariables.insert(GV);
734 } else if (K.second.size() == 1) {
735 KernelAccessVariables.insert(GV);
736 } else if (set_is_subset(K.second, HybridModuleRootKernels)) {
737 ModuleScopeVariables.insert(GV);
738 } else {
739 TableLookupVariables.insert(GV);
740 }
741 break;
742 }
743 }
744 }
745
746 assert(ModuleScopeVariables.size() + TableLookupVariables.size() +
747 KernelAccessVariables.size() ==
748 LDSToKernelsThatNeedToAccessItIndirectly.size());
749 } // Variables have now been partitioned into the three lowering strategies.
750
751 // If the kernel accesses a variable that is going to be stored in the
752 // module instance through a call then that kernel needs to allocate the
753 // module instance
754 DenseSet<Function *> KernelsThatAllocateModuleLDS =
755 kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
756 ModuleScopeVariables);
757 DenseSet<Function *> KernelsThatAllocateTableLDS =
758 kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
759 TableLookupVariables);
760
761 if (!ModuleScopeVariables.empty()) {
762 LDSVariableReplacement ModuleScopeReplacement =
763 createLDSVariableReplacement(M, "llvm.amdgcn.module.lds",
764 ModuleScopeVariables);
765
766 appendToCompilerUsed(M,
767 {static_cast<GlobalValue *>(
768 ConstantExpr::getPointerBitCastOrAddrSpaceCast(
769 cast<Constant>(ModuleScopeReplacement.SGV),
770 Type::getInt8PtrTy(Ctx)))});
771
772 // historic
773 removeLocalVarsFromUsedLists(M, ModuleScopeVariables);
774
775 // Replace all uses of module scope variable from non-kernel functions
776 replaceLDSVariablesWithStruct(
777 M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) {
778 Instruction *I = dyn_cast<Instruction>(U.getUser());
779 if (!I) {
780 return false;
781 }
782 Function *F = I->getFunction();
783 return !isKernelLDS(F);
784 });
785
786 // Replace uses of module scope variable from kernel functions that
787 // allocate the module scope variable, otherwise leave them unchanged
788 // Record on each kernel whether the module scope global is used by it
789
790 LLVMContext &Ctx = M.getContext();
791 IRBuilder<> Builder(Ctx);
792
793 for (Function &Func : M.functions()) {
794 if (Func.isDeclaration() || !isKernelLDS(&Func))
795 continue;
796
797 if (KernelsThatAllocateModuleLDS.contains(&Func)) {
798 replaceLDSVariablesWithStruct(
799 M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) {
800 Instruction *I = dyn_cast<Instruction>(U.getUser());
801 if (!I) {
802 return false;
803 }
804 Function *F = I->getFunction();
805 return F == &Func;
806 });
807
808 markUsedByKernel(Builder, &Func, ModuleScopeReplacement.SGV);
809
810 } else {
811 Func.addFnAttr("amdgpu-elide-module-lds");
812 }
813 }
814 }
815
816 // Create a struct for each kernel for the non-module-scope variables
817 DenseMap<Function *, LDSVariableReplacement> KernelToReplacement;
818 for (Function &Func : M.functions()) {
819 if (Func.isDeclaration() || !isKernelLDS(&Func))
820 continue;
821
822 DenseSet<GlobalVariable *> KernelUsedVariables;
823 for (auto &v : LDSUsesInfo.direct_access[&Func]) {
824 KernelUsedVariables.insert(v);
825 }
826 for (auto &v : LDSUsesInfo.indirect_access[&Func]) {
827 KernelUsedVariables.insert(v);
828 }
829
830 // Variables allocated in module lds must all resolve to that struct,
831 // not to the per-kernel instance.
832 if (KernelsThatAllocateModuleLDS.contains(&Func)) {
833 for (GlobalVariable *v : ModuleScopeVariables) {
834 KernelUsedVariables.erase(v);
835 }
836 }
837
838 if (KernelUsedVariables.empty()) {
839 // Either used no LDS, or all the LDS it used was also in module
840 continue;
841 }
842
843 // The association between kernel function and LDS struct is done by
844 // symbol name, which only works if the function in question has a
845 // name This is not expected to be a problem in practice as kernels
846 // are called by name making anonymous ones (which are named by the
847 // backend) difficult to use. This does mean that llvm test cases need
848 // to name the kernels.
849 if (!Func.hasName()) {
850 report_fatal_error("Anonymous kernels cannot use LDS variables");
851 }
852
853 std::string VarName =
854 (Twine("llvm.amdgcn.kernel.") + Func.getName() + ".lds").str();
855
856 auto Replacement =
857 createLDSVariableReplacement(M, VarName, KernelUsedVariables);
858
859 // remove preserves existing codegen
860 removeLocalVarsFromUsedLists(M, KernelUsedVariables);
861 KernelToReplacement[&Func] = Replacement;
862
863 // Rewrite uses within kernel to the new struct
864 replaceLDSVariablesWithStruct(
865 M, KernelUsedVariables, Replacement, [&Func](Use &U) {
866 Instruction *I = dyn_cast<Instruction>(U.getUser());
867 return I && I->getFunction() == &Func;
868 });
869 }
870
871 // Lower zero cost accesses to the kernel instances just created
872 for (auto &GV : KernelAccessVariables) {
873 auto &funcs = LDSToKernelsThatNeedToAccessItIndirectly[GV];
874 assert(funcs.size() == 1); // Only one kernel can access it
875 LDSVariableReplacement Replacement =
876 KernelToReplacement[*(funcs.begin())];
877
878 DenseSet<GlobalVariable *> Vec;
879 Vec.insert(GV);
880
881 replaceLDSVariablesWithStruct(M, Vec, Replacement, [](Use &U) {
882 return isa<Instruction>(U.getUser());
883 });
884 }
885
886 if (!KernelsThatAllocateTableLDS.empty()) {
887 // Collect the kernels that allocate table lookup LDS
888 std::vector<Function *> OrderedKernels;
889 {
890 for (Function &Func : M.functions()) {
891 if (Func.isDeclaration())
892 continue;
893 if (!isKernelLDS(&Func))
894 continue;
895
896 if (KernelsThatAllocateTableLDS.contains(&Func)) {
897 assert(Func.hasName()); // else fatal error earlier
898 OrderedKernels.push_back(&Func);
899 }
900 }
901
902 // Put them in an arbitrary but reproducible order
903 llvm::sort(OrderedKernels.begin(), OrderedKernels.end(),
904 [](const Function *lhs, const Function *rhs) -> bool {
905 return lhs->getName() < rhs->getName();
906 });
907
908 // Annotate the kernels with their order in this vector
909 LLVMContext &Ctx = M.getContext();
910 IRBuilder<> Builder(Ctx);
911
912 if (OrderedKernels.size() > UINT32_MAX) {
913 // 32 bit keeps it in one SGPR. > 2**32 kernels won't fit on the GPU
914 report_fatal_error("Unimplemented LDS lowering for > 2**32 kernels");
915 }
916
917 for (size_t i = 0; i < OrderedKernels.size(); i++) {
918 Metadata *AttrMDArgs[1] = {
919 ConstantAsMetadata::get(Builder.getInt32(i)),
920 };
921 OrderedKernels[i]->setMetadata("llvm.amdgcn.lds.kernel.id",
922 MDNode::get(Ctx, AttrMDArgs));
923
924 markUsedByKernel(Builder, OrderedKernels[i],
925 KernelToReplacement[OrderedKernels[i]].SGV);
926 }
927 }
928
929 // The order must be consistent between lookup table and accesses to
930 // lookup table
931 std::vector<GlobalVariable *> TableLookupVariablesOrdered(
932 TableLookupVariables.begin(), TableLookupVariables.end());
933 llvm::sort(TableLookupVariablesOrdered.begin(),
934 TableLookupVariablesOrdered.end(),
935 [](const GlobalVariable *lhs, const GlobalVariable *rhs) {
936 return lhs->getName() < rhs->getName();
937 });
938
939 GlobalVariable *LookupTable = buildLookupTable(
940 M, TableLookupVariablesOrdered, OrderedKernels, KernelToReplacement);
941 replaceUsesInInstructionsWithTableLookup(M, TableLookupVariablesOrdered,
942 LookupTable);
943 }
944
945 for (auto &GV : make_early_inc_range(M.globals()))
946 if (AMDGPU::isLDSVariableToLower(GV)) {
947
948 // probably want to remove from used lists
949 GV.removeDeadConstantUsers();
950 if (GV.use_empty())
951 GV.eraseFromParent();
952 }
953
954 return Changed;
955 }
956
957 private:
958 // Increase the alignment of LDS globals if necessary to maximise the chance
959 // that we can use aligned LDS instructions to access them.
superAlignLDSGlobals(Module & M)960 static bool superAlignLDSGlobals(Module &M) {
961 const DataLayout &DL = M.getDataLayout();
962 bool Changed = false;
963 if (!SuperAlignLDSGlobals) {
964 return Changed;
965 }
966
967 for (auto &GV : M.globals()) {
968 if (GV.getType()->getPointerAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) {
969 // Only changing alignment of LDS variables
970 continue;
971 }
972 if (!GV.hasInitializer()) {
973 // cuda/hip extern __shared__ variable, leave alignment alone
974 continue;
975 }
976
977 Align Alignment = AMDGPU::getAlign(DL, &GV);
978 TypeSize GVSize = DL.getTypeAllocSize(GV.getValueType());
979
980 if (GVSize > 8) {
981 // We might want to use a b96 or b128 load/store
982 Alignment = std::max(Alignment, Align(16));
983 } else if (GVSize > 4) {
984 // We might want to use a b64 load/store
985 Alignment = std::max(Alignment, Align(8));
986 } else if (GVSize > 2) {
987 // We might want to use a b32 load/store
988 Alignment = std::max(Alignment, Align(4));
989 } else if (GVSize > 1) {
990 // We might want to use a b16 load/store
991 Alignment = std::max(Alignment, Align(2));
992 }
993
994 if (Alignment != AMDGPU::getAlign(DL, &GV)) {
995 Changed = true;
996 GV.setAlignment(Alignment);
997 }
998 }
999 return Changed;
1000 }
1001
createLDSVariableReplacement(Module & M,std::string VarName,DenseSet<GlobalVariable * > const & LDSVarsToTransform)1002 static LDSVariableReplacement createLDSVariableReplacement(
1003 Module &M, std::string VarName,
1004 DenseSet<GlobalVariable *> const &LDSVarsToTransform) {
1005 // Create a struct instance containing LDSVarsToTransform and map from those
1006 // variables to ConstantExprGEP
1007 // Variables may be introduced to meet alignment requirements. No aliasing
1008 // metadata is useful for these as they have no uses. Erased before return.
1009
1010 LLVMContext &Ctx = M.getContext();
1011 const DataLayout &DL = M.getDataLayout();
1012 assert(!LDSVarsToTransform.empty());
1013
1014 SmallVector<OptimizedStructLayoutField, 8> LayoutFields;
1015 LayoutFields.reserve(LDSVarsToTransform.size());
1016 {
1017 // The order of fields in this struct depends on the order of
1018 // varables in the argument which varies when changing how they
1019 // are identified, leading to spurious test breakage.
1020 std::vector<GlobalVariable *> Sorted(LDSVarsToTransform.begin(),
1021 LDSVarsToTransform.end());
1022 llvm::sort(Sorted.begin(), Sorted.end(),
1023 [](const GlobalVariable *lhs, const GlobalVariable *rhs) {
1024 return lhs->getName() < rhs->getName();
1025 });
1026 for (GlobalVariable *GV : Sorted) {
1027 OptimizedStructLayoutField F(GV,
1028 DL.getTypeAllocSize(GV->getValueType()),
1029 AMDGPU::getAlign(DL, GV));
1030 LayoutFields.emplace_back(F);
1031 }
1032 }
1033
1034 performOptimizedStructLayout(LayoutFields);
1035
1036 std::vector<GlobalVariable *> LocalVars;
1037 BitVector IsPaddingField;
1038 LocalVars.reserve(LDSVarsToTransform.size()); // will be at least this large
1039 IsPaddingField.reserve(LDSVarsToTransform.size());
1040 {
1041 uint64_t CurrentOffset = 0;
1042 for (size_t I = 0; I < LayoutFields.size(); I++) {
1043 GlobalVariable *FGV = static_cast<GlobalVariable *>(
1044 const_cast<void *>(LayoutFields[I].Id));
1045 Align DataAlign = LayoutFields[I].Alignment;
1046
1047 uint64_t DataAlignV = DataAlign.value();
1048 if (uint64_t Rem = CurrentOffset % DataAlignV) {
1049 uint64_t Padding = DataAlignV - Rem;
1050
1051 // Append an array of padding bytes to meet alignment requested
1052 // Note (o + (a - (o % a)) ) % a == 0
1053 // (offset + Padding ) % align == 0
1054
1055 Type *ATy = ArrayType::get(Type::getInt8Ty(Ctx), Padding);
1056 LocalVars.push_back(new GlobalVariable(
1057 M, ATy, false, GlobalValue::InternalLinkage, UndefValue::get(ATy),
1058 "", nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
1059 false));
1060 IsPaddingField.push_back(true);
1061 CurrentOffset += Padding;
1062 }
1063
1064 LocalVars.push_back(FGV);
1065 IsPaddingField.push_back(false);
1066 CurrentOffset += LayoutFields[I].Size;
1067 }
1068 }
1069
1070 std::vector<Type *> LocalVarTypes;
1071 LocalVarTypes.reserve(LocalVars.size());
1072 std::transform(
1073 LocalVars.cbegin(), LocalVars.cend(), std::back_inserter(LocalVarTypes),
1074 [](const GlobalVariable *V) -> Type * { return V->getValueType(); });
1075
1076 StructType *LDSTy = StructType::create(Ctx, LocalVarTypes, VarName + ".t");
1077
1078 Align StructAlign = AMDGPU::getAlign(DL, LocalVars[0]);
1079
1080 GlobalVariable *SGV = new GlobalVariable(
1081 M, LDSTy, false, GlobalValue::InternalLinkage, UndefValue::get(LDSTy),
1082 VarName, nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
1083 false);
1084 SGV->setAlignment(StructAlign);
1085
1086 DenseMap<GlobalVariable *, Constant *> Map;
1087 Type *I32 = Type::getInt32Ty(Ctx);
1088 for (size_t I = 0; I < LocalVars.size(); I++) {
1089 GlobalVariable *GV = LocalVars[I];
1090 Constant *GEPIdx[] = {ConstantInt::get(I32, 0), ConstantInt::get(I32, I)};
1091 Constant *GEP = ConstantExpr::getGetElementPtr(LDSTy, SGV, GEPIdx, true);
1092 if (IsPaddingField[I]) {
1093 assert(GV->use_empty());
1094 GV->eraseFromParent();
1095 } else {
1096 Map[GV] = GEP;
1097 }
1098 }
1099 assert(Map.size() == LDSVarsToTransform.size());
1100 return {SGV, std::move(Map)};
1101 }
1102
1103 template <typename PredicateTy>
replaceLDSVariablesWithStruct(Module & M,DenseSet<GlobalVariable * > const & LDSVarsToTransformArg,LDSVariableReplacement Replacement,PredicateTy Predicate)1104 void replaceLDSVariablesWithStruct(
1105 Module &M, DenseSet<GlobalVariable *> const &LDSVarsToTransformArg,
1106 LDSVariableReplacement Replacement, PredicateTy Predicate) {
1107 LLVMContext &Ctx = M.getContext();
1108 const DataLayout &DL = M.getDataLayout();
1109
1110 // A hack... we need to insert the aliasing info in a predictable order for
1111 // lit tests. Would like to have them in a stable order already, ideally the
1112 // same order they get allocated, which might mean an ordered set container
1113 std::vector<GlobalVariable *> LDSVarsToTransform(
1114 LDSVarsToTransformArg.begin(), LDSVarsToTransformArg.end());
1115 llvm::sort(LDSVarsToTransform.begin(), LDSVarsToTransform.end(),
1116 [](const GlobalVariable *lhs, const GlobalVariable *rhs) {
1117 return lhs->getName() < rhs->getName();
1118 });
1119
1120 // Create alias.scope and their lists. Each field in the new structure
1121 // does not alias with all other fields.
1122 SmallVector<MDNode *> AliasScopes;
1123 SmallVector<Metadata *> NoAliasList;
1124 const size_t NumberVars = LDSVarsToTransform.size();
1125 if (NumberVars > 1) {
1126 MDBuilder MDB(Ctx);
1127 AliasScopes.reserve(NumberVars);
1128 MDNode *Domain = MDB.createAnonymousAliasScopeDomain();
1129 for (size_t I = 0; I < NumberVars; I++) {
1130 MDNode *Scope = MDB.createAnonymousAliasScope(Domain);
1131 AliasScopes.push_back(Scope);
1132 }
1133 NoAliasList.append(&AliasScopes[1], AliasScopes.end());
1134 }
1135
1136 // Replace uses of ith variable with a constantexpr to the corresponding
1137 // field of the instance that will be allocated by AMDGPUMachineFunction
1138 for (size_t I = 0; I < NumberVars; I++) {
1139 GlobalVariable *GV = LDSVarsToTransform[I];
1140 Constant *GEP = Replacement.LDSVarsToConstantGEP[GV];
1141
1142 GV->replaceUsesWithIf(GEP, Predicate);
1143
1144 APInt APOff(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
1145 GEP->stripAndAccumulateInBoundsConstantOffsets(DL, APOff);
1146 uint64_t Offset = APOff.getZExtValue();
1147
1148 Align A =
1149 commonAlignment(Replacement.SGV->getAlign().valueOrOne(), Offset);
1150
1151 if (I)
1152 NoAliasList[I - 1] = AliasScopes[I - 1];
1153 MDNode *NoAlias =
1154 NoAliasList.empty() ? nullptr : MDNode::get(Ctx, NoAliasList);
1155 MDNode *AliasScope =
1156 AliasScopes.empty() ? nullptr : MDNode::get(Ctx, {AliasScopes[I]});
1157
1158 refineUsesAlignmentAndAA(GEP, A, DL, AliasScope, NoAlias);
1159 }
1160 }
1161
refineUsesAlignmentAndAA(Value * Ptr,Align A,const DataLayout & DL,MDNode * AliasScope,MDNode * NoAlias,unsigned MaxDepth=5)1162 void refineUsesAlignmentAndAA(Value *Ptr, Align A, const DataLayout &DL,
1163 MDNode *AliasScope, MDNode *NoAlias,
1164 unsigned MaxDepth = 5) {
1165 if (!MaxDepth || (A == 1 && !AliasScope))
1166 return;
1167
1168 for (User *U : Ptr->users()) {
1169 if (auto *I = dyn_cast<Instruction>(U)) {
1170 if (AliasScope && I->mayReadOrWriteMemory()) {
1171 MDNode *AS = I->getMetadata(LLVMContext::MD_alias_scope);
1172 AS = (AS ? MDNode::getMostGenericAliasScope(AS, AliasScope)
1173 : AliasScope);
1174 I->setMetadata(LLVMContext::MD_alias_scope, AS);
1175
1176 MDNode *NA = I->getMetadata(LLVMContext::MD_noalias);
1177 NA = (NA ? MDNode::intersect(NA, NoAlias) : NoAlias);
1178 I->setMetadata(LLVMContext::MD_noalias, NA);
1179 }
1180 }
1181
1182 if (auto *LI = dyn_cast<LoadInst>(U)) {
1183 LI->setAlignment(std::max(A, LI->getAlign()));
1184 continue;
1185 }
1186 if (auto *SI = dyn_cast<StoreInst>(U)) {
1187 if (SI->getPointerOperand() == Ptr)
1188 SI->setAlignment(std::max(A, SI->getAlign()));
1189 continue;
1190 }
1191 if (auto *AI = dyn_cast<AtomicRMWInst>(U)) {
1192 // None of atomicrmw operations can work on pointers, but let's
1193 // check it anyway in case it will or we will process ConstantExpr.
1194 if (AI->getPointerOperand() == Ptr)
1195 AI->setAlignment(std::max(A, AI->getAlign()));
1196 continue;
1197 }
1198 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(U)) {
1199 if (AI->getPointerOperand() == Ptr)
1200 AI->setAlignment(std::max(A, AI->getAlign()));
1201 continue;
1202 }
1203 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
1204 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1205 APInt Off(BitWidth, 0);
1206 if (GEP->getPointerOperand() == Ptr) {
1207 Align GA;
1208 if (GEP->accumulateConstantOffset(DL, Off))
1209 GA = commonAlignment(A, Off.getLimitedValue());
1210 refineUsesAlignmentAndAA(GEP, GA, DL, AliasScope, NoAlias,
1211 MaxDepth - 1);
1212 }
1213 continue;
1214 }
1215 if (auto *I = dyn_cast<Instruction>(U)) {
1216 if (I->getOpcode() == Instruction::BitCast ||
1217 I->getOpcode() == Instruction::AddrSpaceCast)
1218 refineUsesAlignmentAndAA(I, A, DL, AliasScope, NoAlias, MaxDepth - 1);
1219 }
1220 }
1221 }
1222 };
1223
1224 } // namespace
1225 char AMDGPULowerModuleLDS::ID = 0;
1226
1227 char &llvm::AMDGPULowerModuleLDSID = AMDGPULowerModuleLDS::ID;
1228
1229 INITIALIZE_PASS(AMDGPULowerModuleLDS, DEBUG_TYPE,
1230 "Lower uses of LDS variables from non-kernel functions", false,
1231 false)
1232
createAMDGPULowerModuleLDSPass()1233 ModulePass *llvm::createAMDGPULowerModuleLDSPass() {
1234 return new AMDGPULowerModuleLDS();
1235 }
1236
run(Module & M,ModuleAnalysisManager &)1237 PreservedAnalyses AMDGPULowerModuleLDSPass::run(Module &M,
1238 ModuleAnalysisManager &) {
1239 return AMDGPULowerModuleLDS().runOnModule(M) ? PreservedAnalyses::none()
1240 : PreservedAnalyses::all();
1241 }
1242