1 /*
2  * (c) Copyright 1990-1996 OPEN SOFTWARE FOUNDATION, INC.
3  * (c) Copyright 1990-1996 HEWLETT-PACKARD COMPANY
4  * (c) Copyright 1990-1996 DIGITAL EQUIPMENT CORPORATION
5  * (c) Copyright 1991, 1992 Siemens-Nixdorf Information Systems
6  * To anyone who acknowledges that this file is provided "AS IS" without
7  * any express or implied warranty: permission to use, copy, modify, and
8  * distribute this file for any purpose is hereby granted without fee,
9  * provided that the above copyright notices and this notice appears in
10  * all source code copies, and that none of the names listed above be used
11  * in advertising or publicity pertaining to distribution of the software
12  * without specific, written prior permission.  None of these organizations
13  * makes any representations about the suitability of this software for
14  * any purpose.
15  */
16 /*
17  *	Header file for thread synchrounous I/O
18  */
19 
20 #ifndef CMA_THREAD_IO
21 #define CMA_THREAD_IO
22 
23 /*
24  *  INCLUDE FILES
25  */
26 
27 #include <cma_config.h>
28 #include <sys/file.h>
29 #include <cma.h>
30 #include <sys/types.h>
31 #include <sys/time.h>
32 #include <cma_init.h>
33 #include <cma_errors.h>
34 
35 /*
36  * CONSTANTS
37  */
38 
39 /*
40  * Define symbols which indicate whether to compile code for obsolete
41  * "non-blocking mode" flags:  FNDELAY and FNBLOCK.  If the obsolete
42  * symbols are defined, and if their replacement symbols are defined
43  * and are different or if they are undefined, then define a symbol
44  * that says to compile the code in; otherwise no code will be compiled
45  * for these obsolete symbols.
46  */
47 #ifdef FNDELAY
48 # ifdef O_NDELAY
49 #  if O_NDELAY != FNDELAY
50 #   define _CMA_FNDELAY_
51 #  endif
52 # else
53 #  define _CMA_FNDELAY_
54 # endif
55 #endif
56 
57 #ifdef FNBLOCK
58 # ifdef O_NONBLOCK
59 #  if O_NONBLOCK != FNBLOCK
60 #   define _CMA_FNBLOCK_
61 #  endif
62 # else
63 #  define _CMA_FNBLOCK_
64 # endif
65 #endif
66 
67 
68 extern cma_t_boolean cma_is_open(int);
69 /*
70  * Maximum number of files (ie, max_fd+1)
71  */
72 #define cma__c_mx_file	FD_SETSIZE
73 
74 /*
75  * Number of bits per file descriptor bit mask (ie number of bytes * bits/byte)
76  */
77 #define cma__c_nbpm	NFDBITS
78 
79 /*
80  * TYPE DEFINITIONS
81  */
82 
83 typedef enum CMA__T_IO_TYPE {
84     cma__c_io_read   = 0,
85     cma__c_io_write  = 1,
86     cma__c_io_except = 2
87     } cma__t_io_type;
88 #define cma__c_max_io_type	2
89 
90 /*
91  * From our local <sys/types.h>:
92  *
93  *  typedef long    fd_mask;
94  *
95  *  typedef struct fd_set {
96  *          fd_mask fds_bits[howmany(FD_SETSIZE, NFDBITS)];
97  *  } fd_set;
98  *
99  */
100 typedef fd_mask cma__t_mask;
101 typedef fd_set  cma__t_file_mask;
102 
103 
104 /*
105  *  GLOBAL DATA
106  */
107 
108 /*
109  * Maximum number of files (ie, max_fd+1) as determined by getdtablesize().
110  */
111 extern int	cma__g_mx_file;
112 
113 /*
114  * Number of submasks (ie "int" sized chunks) per file descriptor mask as
115  * determined by getdtablesize().
116  */
117 extern int	cma__g_nspm;
118 
119 /*
120  * MACROS
121  */
122 
123 /*
124  * Define a constant for the errno value which indicates that the requested
125  * operation was not performed because it would block the process.
126  */
127 # define cma__is_blocking(s) \
128     ((s == EAGAIN) || (s == EWOULDBLOCK) || (s == EINPROGRESS) || \
129      (s == EALREADY) || (s == EDEADLK))
130 
131 /*
132 *	It is necessary to issue an I/O function, before calling cma__io_wait()
133 *	in the following cases:
134 *
135 *		*	This file descriptor has been set non-blocking by CMA
136 *		*	This file descriptor has been set non-blocking by the user.
137 */
138 
139 #define cma__issue_io_call(fd)					\
140 	( (cma__g_file[fd]->non_blocking) || \
141 	  (cma__g_file[fd]->user_fl.user_non_blocking) )
142 
143 
144 #define cma__set_user_nonblocking(flags) \
145 
146 /*
147  * Determine if the file is open
148  */
149 /*
150  * If the file gets closed while waiting for the mutex cma__g_file[rfd]
151  * gets set to null. This results in a crash if NDEBUG is set to 0
152  * since cma__int_lock tries to dereference it to set the mutex ownership
153  * after it gets the mutex. The following will still set the ownership
154  * in cma__int_lock so we'll set it back to noone if cma__g_file is null
155  * when we come back just in case it matters. It shouldn't since its no
156  * longer in use but.....
157  * Callers of this should recheck cma__g_file after the reservation to
158  * make sure continueing makes sense.
159  */
160 #define cma__fd_reserve(rfd) 	\
161 		{ \
162 		cma__t_int_mutex *__mutex__; \
163 		__mutex__ = cma__g_file[rfd]->mutex; \
164 		cma__int_lock (__mutex__); \
165 		if(cma__g_file[rfd] == (cma__t_file_obj *)cma_c_null_ptr) \
166 			cma__int_unlock(__mutex__); \
167 		}
168 
169 
170 /*
171  * Unreserve a file descriptor
172  */
173 #define cma__fd_unreserve(ufd)	cma__int_unlock (cma__g_file[ufd]->mutex)
174 
175 /*
176  * AND together two select file descriptor masks
177  */
178 #define cma__fdm_and(target,a,b)					\
179 	{								\
180 	int __i__ = cma__g_nspm;					\
181 	while (__i__--)							\
182 	    (target)->fds_bits[__i__] =					\
183 		(a)->fds_bits[__i__] & (b)->fds_bits[__i__];		\
184 	}
185 
186 /*
187  * Clear a bit in a select file descriptor mask
188  *
189  * FD_CLR(n, p)  :=  ((p)->fds_bits[(n)/NFDBITS] &= ~(1 << ((n) % NFDBITS)))
190  */
191 #define cma__fdm_clr_bit(n,p)	FD_CLR (n, p)
192 
193 /*
194  * Copy the contents of one file descriptor mask into another.  If the
195  * destination operand is null, do nothing; if the source operand is null,
196  * simply zero the destination.
197  */
198 #define cma__fdm_copy(src,dst,nfds) {					\
199 	if (dst)							\
200 	    if (src) {							\
201 		cma__t_mask *__s__ = (cma__t_mask *)(src);		\
202 		cma__t_mask *__d__ = (cma__t_mask *)(dst);		\
203 		int __i__;						\
204 		for (__i__ = 0; __i__ < (nfds); __i__ += cma__c_nbpm)	\
205 		    *__d__++ = *__s__++;				\
206 		}							\
207 	    else							\
208 		cma__fdm_zero (dst);					\
209 	    }
210 
211 /*
212  * To increment count for each bit set in fd - mask
213  */
214 #define cma__fdm_count_bits(map,count)					\
215 	{								\
216 	int	__i__ = cma__g_nspm;					\
217 	while (__i__--) {						\
218 	    cma__t_mask    __tm__;				        \
219 	    __tm__ = (map)->fds_bits[__i__];				\
220 	    while(__tm__) {						\
221 		(count)++;						\
222 		__tm__ &= ~(__tm__ & (-__tm__)); /* Assumes 2's comp */	\
223 		}							\
224 	    }								\
225 	}
226 
227 /*
228  * Test if a bit is set in a select file descriptor mask
229  *
230  * FD_ISSET(n,p)  :=  ((p)->fds_bits[(n)/NFDBITS] & (1 << ((n) % NFDBITS)))
231  */
232 #define cma__fdm_is_set(n,p)	FD_ISSET (n, p)
233 
234 /*
235  * OR together two select file descriptor masks
236  */
237 #define cma__fdm_or(target,a,b)						\
238 	{								\
239 	int __i__ = cma__g_nspm;					\
240 	while (__i__--)							\
241 	    (target)->fds_bits[__i__] =					\
242 		(a)->fds_bits[__i__] | (b)->fds_bits[__i__];		\
243 	}
244 
245 /*
246  * Set a bit in a select file descriptor mask
247  *
248  * FD_SET(n,p)  :=  ((p)->fds_bits[(n)/NFDBITS] |= (1 << ((n) % NFDBITS)))
249  */
250 #define cma__fdm_set_bit(n,p)	FD_SET (n, p)
251 
252 /*
253  * Clear a select file descriptor mask.
254  */
255 #define cma__fdm_zero(n)						\
256 	cma__memset ((char *) n, 0, cma__g_nspm * sizeof(cma__t_mask))
257 
258 
259 
260 /*
261  * CMA "thread-synchronous" I/O read/write operations
262  */
263 
264     /*
265      * Since all CMA "thread-synchronous" I/O (read or write) operations on
266      * U*ix follow the exact same structure, the wrapper routines have been
267      * condensed into a macro.
268      *
269      * The steps performed are as follows:
270      *	1. Check that the file descriptor is a legitimate value.
271      *	2. Check that the entry in the CMA file "database" which corresponds to
272      *	    the file descriptor indicates that the "file" was "opened" by CMA.
273      *  3. Reserve the file, to serialized access to files.  This not only
274      *	    simplifies things, but also defends against non-reentrancy.
275      *  4. If the "file" is "set" for non-blocking I/O, check if we
276      *      have actually set the file non-blocking yet, and if not do so.
277      *	    Then, issue the I/O operantion.
278      *	    Success or failure is returned immediately, after unreserving the
279      *	    file.  If the error indicates that the operation would have caused
280      *	    the process to block, continue to the next step.
281      *	5. The I/O prolog adds this "file" to the global bit mask, which
282      *	    represents all "files" which have threads waiting to perform I/O on
283      *	    them, and causes the thread to block on the condition variable for
284      *	    this "file".  Periodically, a select is done on this global bit
285      *	    mask, and the condition variables corresponding to "files" which
286      *	    are ready for I/O are signaled, releasing those waiting threads to
287      *	    perform their I/O.
288      *  6. When the thread returns from the I/O prolog, it can (hopefully)
289      *	    perform its operation without blocking the process.
290      *	7. The I/O epilog clears the bit in the global mask and/or signals the
291      *	    the next thread waiting for this "file", as appropriate.
292      *  8. If the I/O failed, continue to loop.
293      *	9. Finally, the "file" is unreserved, as we're done with it, and the
294      *	    result of the operation is returned.
295      *
296      *
297      * Note:  currently, we believe that timeslicing which is based on the
298      *	    virtual-time timer does not cause system calls to return EINTR.
299      *	    Threfore, any EINTR returns are relayed directly to the caller.
300      *	    On platforms which do not support a virtual-time timer, the code
301      *	    should probably catch EINTR returns and restart the system call.
302      */
303 
304 /*
305  * This macro is used for both read-type and write-type functions.
306  *
307  * Note:  the second call to "func" may require being bracketed in a
308  *	  cma__interrupt_disable/cma__interrupt_enable pair, but we'll
309  *	  wait and see if this is necessary.
310  */
311 #define cma__ts_func(func,fd,arglist,type,post_process)	{ \
312     cma_t_integer   __res__; \
313     cma_t_boolean   __done__ = cma_c_false; \
314     if ((fd < 0) || (fd >= cma__g_mx_file)) return (cma__set_errno (EBADF), -1); \
315     if (!cma__is_open(fd)) return (cma__set_errno (EBADF), -1); \
316     cma__fd_reserve (fd); \
317     if (!cma__is_open(fd)) return (cma__set_errno (EBADF), -1); \
318     if (cma__issue_io_call(fd)) {\
319 	if ((!cma__g_file[fd]->set_non_blocking) && \
320 		(cma__g_file[fd]->non_blocking == cma_c_true)) \
321 	    cma__set_nonblocking(fd); \
322         cma__interrupt_disable (0); \
323 	TRY { \
324 	    __res__ = func arglist; \
325 	    } \
326 	CATCH_ALL { \
327 	    cma__interrupt_enable (0); \
328 	    cma__fd_unreserve (fd); \
329 	    RERAISE; \
330 	    } \
331 	ENDTRY \
332         cma__interrupt_enable (0); \
333 	if ((__res__ != -1) \
334 		|| (!cma__is_blocking (errno)) \
335 		|| (cma__g_file[fd]->user_fl.user_non_blocking)) \
336 	    __done__ = cma_c_true; \
337 	} \
338     if (__done__) { \
339 	cma__fd_unreserve (fd); \
340 	} \
341     else { \
342 	TRY { \
343 	    cma__io_prolog (type, fd); \
344 	    while (!__done__) { \
345 		cma__io_wait (type, fd); \
346 		__res__ = func arglist; \
347 		if ((__res__ != -1) \
348 			|| (!cma__is_blocking (errno)) \
349 			|| (cma__g_file[fd]->user_fl.user_non_blocking)) \
350 		    __done__ = cma_c_true; \
351 		} \
352 	    } \
353 	FINALLY { \
354 	    cma__io_epilog (type, fd); \
355 	    cma__fd_unreserve (fd); \
356 	    } \
357 	ENDTRY \
358 	} \
359     if (__res__ != -1)  post_process; \
360     return __res__;  \
361     }
362 
363     /*
364      * Since most CMA "thread-synchronous" I/O ("open"-type) operations on
365      * U*ix follow the exact same structure, the wrapper routines have been
366      * condensed into a macro.
367      *
368      * The steps performed are as follows:
369      *	1. Issue the open function.
370      *	2. If the value returned indicates an error, return it to the caller.
371      *  3. If the file descriptor returned is larger than what we think is the
372      *	    maximum value (ie if it is too big for our database) then bugcheck.
373      *  4. "Open" the "file" in the CMA file database.
374      *	5. Return the file descriptor value to the caller.
375      *
376      * FIX-ME: for the time being, if the I/O operation returns EINTR, we
377      *	    simply return it to the caller; eventually, we should catch this
378      *	    and "do the right thing" (if we can figure out what that is).
379      */
380 
381 /*
382  * This macro is used for all "open"-type functions which return a single file
383  * desciptor by immediate value.
384  */
385 #define cma__ts_open(func,arglist,post_process)  {		\
386     int	__fd__;							\
387     TRY {							\
388 	cma__int_init ();					\
389 	cma__int_lock (cma__g_io_data_mutex);			\
390 	__fd__ = func arglist;					\
391 	cma__int_unlock (cma__g_io_data_mutex);			\
392 	if (__fd__ >= 0 && __fd__ < cma__g_mx_file)		\
393 	    post_process;					\
394 	}							\
395     CATCH_ALL							\
396 	{							\
397 	cma__set_errno (EBADF);					\
398 	__fd__ = -1;						\
399 	}							\
400     ENDTRY							\
401     if (__fd__ >= cma__g_mx_file)				\
402 	cma__bugcheck ("cma__ts_open:  fd is too large");	\
403     return __fd__;						\
404     }
405 /*
406  * This macro is used for all "open"-type functions which return a pair of file
407  * desciptors by reference parameter.
408  */
409 #define cma__ts_open2(func,fdpair,arglist,post_process)  {		\
410     int	    __res__;							\
411     TRY {								\
412 	cma__int_init ();						\
413 	cma__int_lock (cma__g_io_data_mutex);				\
414 	__res__ = func arglist;						\
415 	cma__int_unlock (cma__g_io_data_mutex);				\
416 	if (__res__ >= 0 && fdpair[0] < cma__g_mx_file			\
417 		&& fdpair[1] < cma__g_mx_file)				\
418 	    post_process;						\
419 	}								\
420     CATCH_ALL								\
421 	{								\
422 	cma__set_errno (EBADF);						\
423 	__res__ = -1;							\
424 	}								\
425     ENDTRY								\
426     if ((fdpair[0] >= cma__g_mx_file) || (fdpair[1] >= cma__g_mx_file)) \
427 	cma__bugcheck ("cma__ts_open2:  one of fd's is too large"); \
428     return __res__;							\
429     }
430 
431 /*
432  * INTERNAL INTERFACES
433  */
434 extern void cma__close_general (int);
435 
436 extern void cma__init_thread_io (void);
437 
438 extern cma_t_boolean cma__io_available (cma__t_io_type,int,struct timeval *);
439 
440 extern void cma__io_epilog (cma__t_io_type,int);
441 
442 extern void cma__io_prolog (cma__t_io_type,int);
443 
444 extern void cma__io_wait (cma__t_io_type,int);
445 
446 extern void cma__open_general (int);
447 
448 extern void cma__reinit_thread_io (int);
449 
450 extern void cma__set_nonblocking (int);
451 
452 extern void cma__set_user_nonblock_flags (int,int);
453 
454 extern cma_t_boolean cma__is_open (int);
455 
456 
457 #endif
458