1 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
2 #include "llvm/ADT/DenseMapInfo.h"
3 #include "llvm/ADT/IntervalMap.h"
4 #include "llvm/ADT/PostOrderIterator.h"
5 #include "llvm/ADT/STLExtras.h"
6 #include "llvm/ADT/SmallSet.h"
7 #include "llvm/ADT/Statistic.h"
8 #include "llvm/ADT/UniqueVector.h"
9 #include "llvm/Analysis/Interval.h"
10 #include "llvm/BinaryFormat/Dwarf.h"
11 #include "llvm/IR/BasicBlock.h"
12 #include "llvm/IR/DataLayout.h"
13 #include "llvm/IR/DebugInfo.h"
14 #include "llvm/IR/Function.h"
15 #include "llvm/IR/Instruction.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/IR/PassManager.h"
18 #include "llvm/IR/PrintPasses.h"
19 #include "llvm/InitializePasses.h"
20 #include "llvm/Support/CommandLine.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
24 #include <assert.h>
25 #include <cstdint>
26 #include <optional>
27 #include <sstream>
28 #include <unordered_map>
29
30 using namespace llvm;
31 #define DEBUG_TYPE "debug-ata"
32
33 STATISTIC(NumDefsScanned, "Number of dbg locs that get scanned for removal");
34 STATISTIC(NumDefsRemoved, "Number of dbg locs removed");
35 STATISTIC(NumWedgesScanned, "Number of dbg wedges scanned");
36 STATISTIC(NumWedgesChanged, "Number of dbg wedges changed");
37
38 static cl::opt<unsigned>
39 MaxNumBlocks("debug-ata-max-blocks", cl::init(10000),
40 cl::desc("Maximum num basic blocks before debug info dropped"),
41 cl::Hidden);
42 /// Option for debugging the pass, determines if the memory location fragment
43 /// filling happens after generating the variable locations.
44 static cl::opt<bool> EnableMemLocFragFill("mem-loc-frag-fill", cl::init(true),
45 cl::Hidden);
46 /// Print the results of the analysis. Respects -filter-print-funcs.
47 static cl::opt<bool> PrintResults("print-debug-ata", cl::init(false),
48 cl::Hidden);
49
50 // Implicit conversions are disabled for enum class types, so unfortunately we
51 // need to create a DenseMapInfo wrapper around the specified underlying type.
52 template <> struct llvm::DenseMapInfo<VariableID> {
53 using Wrapped = DenseMapInfo<unsigned>;
getEmptyKeyllvm::DenseMapInfo54 static inline VariableID getEmptyKey() {
55 return static_cast<VariableID>(Wrapped::getEmptyKey());
56 }
getTombstoneKeyllvm::DenseMapInfo57 static inline VariableID getTombstoneKey() {
58 return static_cast<VariableID>(Wrapped::getTombstoneKey());
59 }
getHashValuellvm::DenseMapInfo60 static unsigned getHashValue(const VariableID &Val) {
61 return Wrapped::getHashValue(static_cast<unsigned>(Val));
62 }
isEqualllvm::DenseMapInfo63 static bool isEqual(const VariableID &LHS, const VariableID &RHS) {
64 return LHS == RHS;
65 }
66 };
67
68 /// Helper class to build FunctionVarLocs, since that class isn't easy to
69 /// modify. TODO: There's not a great deal of value in the split, it could be
70 /// worth merging the two classes.
71 class FunctionVarLocsBuilder {
72 friend FunctionVarLocs;
73 UniqueVector<DebugVariable> Variables;
74 // Use an unordered_map so we don't invalidate iterators after
75 // insert/modifications.
76 std::unordered_map<const Instruction *, SmallVector<VarLocInfo>>
77 VarLocsBeforeInst;
78
79 SmallVector<VarLocInfo> SingleLocVars;
80
81 public:
82 /// Find or insert \p V and return the ID.
insertVariable(DebugVariable V)83 VariableID insertVariable(DebugVariable V) {
84 return static_cast<VariableID>(Variables.insert(V));
85 }
86
87 /// Get a variable from its \p ID.
getVariable(VariableID ID) const88 const DebugVariable &getVariable(VariableID ID) const {
89 return Variables[static_cast<unsigned>(ID)];
90 }
91
92 /// Return ptr to wedge of defs or nullptr if no defs come just before /p
93 /// Before.
getWedge(const Instruction * Before) const94 const SmallVectorImpl<VarLocInfo> *getWedge(const Instruction *Before) const {
95 auto R = VarLocsBeforeInst.find(Before);
96 if (R == VarLocsBeforeInst.end())
97 return nullptr;
98 return &R->second;
99 }
100
101 /// Replace the defs that come just before /p Before with /p Wedge.
setWedge(const Instruction * Before,SmallVector<VarLocInfo> && Wedge)102 void setWedge(const Instruction *Before, SmallVector<VarLocInfo> &&Wedge) {
103 VarLocsBeforeInst[Before] = std::move(Wedge);
104 }
105
106 /// Add a def for a variable that is valid for its lifetime.
addSingleLocVar(DebugVariable Var,DIExpression * Expr,DebugLoc DL,Value * V)107 void addSingleLocVar(DebugVariable Var, DIExpression *Expr, DebugLoc DL,
108 Value *V) {
109 VarLocInfo VarLoc;
110 VarLoc.VariableID = insertVariable(Var);
111 VarLoc.Expr = Expr;
112 VarLoc.DL = DL;
113 VarLoc.V = V;
114 SingleLocVars.emplace_back(VarLoc);
115 }
116
117 /// Add a def to the wedge of defs just before /p Before.
addVarLoc(Instruction * Before,DebugVariable Var,DIExpression * Expr,DebugLoc DL,Value * V)118 void addVarLoc(Instruction *Before, DebugVariable Var, DIExpression *Expr,
119 DebugLoc DL, Value *V) {
120 VarLocInfo VarLoc;
121 VarLoc.VariableID = insertVariable(Var);
122 VarLoc.Expr = Expr;
123 VarLoc.DL = DL;
124 VarLoc.V = V;
125 VarLocsBeforeInst[Before].emplace_back(VarLoc);
126 }
127 };
128
print(raw_ostream & OS,const Function & Fn) const129 void FunctionVarLocs::print(raw_ostream &OS, const Function &Fn) const {
130 // Print the variable table first. TODO: Sorting by variable could make the
131 // output more stable?
132 unsigned Counter = -1;
133 OS << "=== Variables ===\n";
134 for (const DebugVariable &V : Variables) {
135 ++Counter;
136 // Skip first entry because it is a dummy entry.
137 if (Counter == 0) {
138 continue;
139 }
140 OS << "[" << Counter << "] " << V.getVariable()->getName();
141 if (auto F = V.getFragment())
142 OS << " bits [" << F->OffsetInBits << ", "
143 << F->OffsetInBits + F->SizeInBits << ")";
144 if (const auto *IA = V.getInlinedAt())
145 OS << " inlined-at " << *IA;
146 OS << "\n";
147 }
148
149 auto PrintLoc = [&OS](const VarLocInfo &Loc) {
150 OS << "DEF Var=[" << (unsigned)Loc.VariableID << "]"
151 << " Expr=" << *Loc.Expr << " V=" << *Loc.V << "\n";
152 };
153
154 // Print the single location variables.
155 OS << "=== Single location vars ===\n";
156 for (auto It = single_locs_begin(), End = single_locs_end(); It != End;
157 ++It) {
158 PrintLoc(*It);
159 }
160
161 // Print the non-single-location defs in line with IR.
162 OS << "=== In-line variable defs ===";
163 for (const BasicBlock &BB : Fn) {
164 OS << "\n" << BB.getName() << ":\n";
165 for (const Instruction &I : BB) {
166 for (auto It = locs_begin(&I), End = locs_end(&I); It != End; ++It) {
167 PrintLoc(*It);
168 }
169 OS << I << "\n";
170 }
171 }
172 }
173
init(FunctionVarLocsBuilder & Builder)174 void FunctionVarLocs::init(FunctionVarLocsBuilder &Builder) {
175 // Add the single-location variables first.
176 for (const auto &VarLoc : Builder.SingleLocVars)
177 VarLocRecords.emplace_back(VarLoc);
178 // Mark the end of the section.
179 SingleVarLocEnd = VarLocRecords.size();
180
181 // Insert a contiguous block of VarLocInfos for each instruction, mapping it
182 // to the start and end position in the vector with VarLocsBeforeInst.
183 for (auto &P : Builder.VarLocsBeforeInst) {
184 unsigned BlockStart = VarLocRecords.size();
185 for (const VarLocInfo &VarLoc : P.second)
186 VarLocRecords.emplace_back(VarLoc);
187 unsigned BlockEnd = VarLocRecords.size();
188 // Record the start and end indices.
189 if (BlockEnd != BlockStart)
190 VarLocsBeforeInst[P.first] = {BlockStart, BlockEnd};
191 }
192
193 // Copy the Variables vector from the builder's UniqueVector.
194 assert(Variables.empty() && "Expect clear before init");
195 // UniqueVectors IDs are one-based (which means the VarLocInfo VarID values
196 // are one-based) so reserve an extra and insert a dummy.
197 Variables.reserve(Builder.Variables.size() + 1);
198 Variables.push_back(DebugVariable(nullptr, std::nullopt, nullptr));
199 Variables.append(Builder.Variables.begin(), Builder.Variables.end());
200 }
201
clear()202 void FunctionVarLocs::clear() {
203 Variables.clear();
204 VarLocRecords.clear();
205 VarLocsBeforeInst.clear();
206 SingleVarLocEnd = 0;
207 }
208
209 /// Walk backwards along constant GEPs and bitcasts to the base storage from \p
210 /// Start as far as possible. Prepend \Expression with the offset and append it
211 /// with a DW_OP_deref that haes been implicit until now. Returns the walked-to
212 /// value and modified expression.
213 static std::pair<Value *, DIExpression *>
walkToAllocaAndPrependOffsetDeref(const DataLayout & DL,Value * Start,DIExpression * Expression)214 walkToAllocaAndPrependOffsetDeref(const DataLayout &DL, Value *Start,
215 DIExpression *Expression) {
216 APInt OffsetInBytes(DL.getTypeSizeInBits(Start->getType()), false);
217 Value *End =
218 Start->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetInBytes);
219 SmallVector<uint64_t, 3> Ops;
220 if (OffsetInBytes.getBoolValue()) {
221 Ops = {dwarf::DW_OP_plus_uconst, OffsetInBytes.getZExtValue()};
222 Expression = DIExpression::prependOpcodes(
223 Expression, Ops, /*StackValue=*/false, /*EntryValue=*/false);
224 }
225 Expression = DIExpression::append(Expression, {dwarf::DW_OP_deref});
226 return {End, Expression};
227 }
228
229 /// Extract the offset used in \p DIExpr. Returns std::nullopt if the expression
230 /// doesn't explicitly describe a memory location with DW_OP_deref or if the
231 /// expression is too complex to interpret.
232 static std::optional<int64_t>
getDerefOffsetInBytes(const DIExpression * DIExpr)233 getDerefOffsetInBytes(const DIExpression *DIExpr) {
234 int64_t Offset = 0;
235 const unsigned NumElements = DIExpr->getNumElements();
236 const auto Elements = DIExpr->getElements();
237 unsigned NextElement = 0;
238 // Extract the offset.
239 if (NumElements > 2 && Elements[0] == dwarf::DW_OP_plus_uconst) {
240 Offset = Elements[1];
241 NextElement = 2;
242 } else if (NumElements > 3 && Elements[0] == dwarf::DW_OP_constu) {
243 NextElement = 3;
244 if (Elements[2] == dwarf::DW_OP_plus)
245 Offset = Elements[1];
246 else if (Elements[2] == dwarf::DW_OP_minus)
247 Offset = -Elements[1];
248 else
249 return std::nullopt;
250 }
251
252 // If that's all there is it means there's no deref.
253 if (NextElement >= NumElements)
254 return std::nullopt;
255
256 // Check the next element is DW_OP_deref - otherwise this is too complex or
257 // isn't a deref expression.
258 if (Elements[NextElement] != dwarf::DW_OP_deref)
259 return std::nullopt;
260
261 // Check the final operation is either the DW_OP_deref or is a fragment.
262 if (NumElements == NextElement + 1)
263 return Offset; // Ends with deref.
264 else if (NumElements == NextElement + 3 &&
265 Elements[NextElement] == dwarf::DW_OP_LLVM_fragment)
266 return Offset; // Ends with deref + fragment.
267
268 // Don't bother trying to interpret anything more complex.
269 return std::nullopt;
270 }
271
272 /// A whole (unfragmented) source variable.
273 using DebugAggregate = std::pair<const DILocalVariable *, const DILocation *>;
getAggregate(const DbgVariableIntrinsic * DII)274 static DebugAggregate getAggregate(const DbgVariableIntrinsic *DII) {
275 return DebugAggregate(DII->getVariable(), DII->getDebugLoc().getInlinedAt());
276 }
getAggregate(const DebugVariable & Var)277 static DebugAggregate getAggregate(const DebugVariable &Var) {
278 return DebugAggregate(Var.getVariable(), Var.getInlinedAt());
279 }
280
281 namespace {
282 /// In dwarf emission, the following sequence
283 /// 1. dbg.value ... Fragment(0, 64)
284 /// 2. dbg.value ... Fragment(0, 32)
285 /// effectively sets Fragment(32, 32) to undef (each def sets all bits not in
286 /// the intersection of the fragments to having "no location"). This makes
287 /// sense for implicit location values because splitting the computed values
288 /// could be troublesome, and is probably quite uncommon. When we convert
289 /// dbg.assigns to dbg.value+deref this kind of thing is common, and describing
290 /// a location (memory) rather than a value means we don't need to worry about
291 /// splitting any values, so we try to recover the rest of the fragment
292 /// location here.
293 /// This class performs a(nother) dataflow analysis over the function, adding
294 /// variable locations so that any bits of a variable with a memory location
295 /// have that location explicitly reinstated at each subsequent variable
296 /// location definition that that doesn't overwrite those bits. i.e. after a
297 /// variable location def, insert new defs for the memory location with
298 /// fragments for the difference of "all bits currently in memory" and "the
299 /// fragment of the second def".
300 class MemLocFragmentFill {
301 Function &Fn;
302 FunctionVarLocsBuilder *FnVarLocs;
303 const DenseSet<DebugAggregate> *VarsWithStackSlot;
304
305 // 0 = no memory location.
306 using BaseAddress = unsigned;
307 using OffsetInBitsTy = unsigned;
308 using FragTraits = IntervalMapHalfOpenInfo<OffsetInBitsTy>;
309 using FragsInMemMap = IntervalMap<
310 OffsetInBitsTy, BaseAddress,
311 IntervalMapImpl::NodeSizer<OffsetInBitsTy, BaseAddress>::LeafSize,
312 FragTraits>;
313 FragsInMemMap::Allocator IntervalMapAlloc;
314 using VarFragMap = DenseMap<unsigned, FragsInMemMap>;
315
316 /// IDs for memory location base addresses in maps. Use 0 to indicate that
317 /// there's no memory location.
318 UniqueVector<Value *> Bases;
319 UniqueVector<DebugAggregate> Aggregates;
320 DenseMap<const BasicBlock *, VarFragMap> LiveIn;
321 DenseMap<const BasicBlock *, VarFragMap> LiveOut;
322
323 struct FragMemLoc {
324 unsigned Var;
325 unsigned Base;
326 unsigned OffsetInBits;
327 unsigned SizeInBits;
328 DebugLoc DL;
329 };
330 using InsertMap = MapVector<Instruction *, SmallVector<FragMemLoc>>;
331
332 /// BBInsertBeforeMap holds a description for the set of location defs to be
333 /// inserted after the analysis is complete. It is updated during the dataflow
334 /// and the entry for a block is CLEARED each time it is (re-)visited. After
335 /// the dataflow is complete, each block entry will contain the set of defs
336 /// calculated during the final (fixed-point) iteration.
337 DenseMap<const BasicBlock *, InsertMap> BBInsertBeforeMap;
338
intervalMapsAreEqual(const FragsInMemMap & A,const FragsInMemMap & B)339 static bool intervalMapsAreEqual(const FragsInMemMap &A,
340 const FragsInMemMap &B) {
341 auto AIt = A.begin(), AEnd = A.end();
342 auto BIt = B.begin(), BEnd = B.end();
343 for (; AIt != AEnd; ++AIt, ++BIt) {
344 if (BIt == BEnd)
345 return false; // B has fewer elements than A.
346 if (AIt.start() != BIt.start() || AIt.stop() != BIt.stop())
347 return false; // Interval is different.
348 if (*AIt != *BIt)
349 return false; // Value at interval is different.
350 }
351 // AIt == AEnd. Check BIt is also now at end.
352 return BIt == BEnd;
353 }
354
varFragMapsAreEqual(const VarFragMap & A,const VarFragMap & B)355 static bool varFragMapsAreEqual(const VarFragMap &A, const VarFragMap &B) {
356 if (A.size() != B.size())
357 return false;
358 for (const auto &APair : A) {
359 auto BIt = B.find(APair.first);
360 if (BIt == B.end())
361 return false;
362 if (!intervalMapsAreEqual(APair.second, BIt->second))
363 return false;
364 }
365 return true;
366 }
367
368 /// Return a string for the value that \p BaseID represents.
toString(unsigned BaseID)369 std::string toString(unsigned BaseID) {
370 if (BaseID)
371 return Bases[BaseID]->getName().str();
372 else
373 return "None";
374 }
375
376 /// Format string describing an FragsInMemMap (IntervalMap) interval.
toString(FragsInMemMap::const_iterator It,bool Newline=true)377 std::string toString(FragsInMemMap::const_iterator It, bool Newline = true) {
378 std::string String;
379 std::stringstream S(String);
380 if (It.valid()) {
381 S << "[" << It.start() << ", " << It.stop()
382 << "): " << toString(It.value());
383 } else {
384 S << "invalid iterator (end)";
385 }
386 if (Newline)
387 S << "\n";
388 return S.str();
389 };
390
meetFragments(const FragsInMemMap & A,const FragsInMemMap & B)391 FragsInMemMap meetFragments(const FragsInMemMap &A, const FragsInMemMap &B) {
392 FragsInMemMap Result(IntervalMapAlloc);
393 for (auto AIt = A.begin(), AEnd = A.end(); AIt != AEnd; ++AIt) {
394 LLVM_DEBUG(dbgs() << "a " << toString(AIt));
395 // This is basically copied from process() and inverted (process is
396 // performing something like a union whereas this is more of an
397 // intersect).
398
399 // There's no work to do if interval `a` overlaps no fragments in map `B`.
400 if (!B.overlaps(AIt.start(), AIt.stop()))
401 continue;
402
403 // Does StartBit intersect an existing fragment?
404 auto FirstOverlap = B.find(AIt.start());
405 assert(FirstOverlap != B.end());
406 bool IntersectStart = FirstOverlap.start() < AIt.start();
407 LLVM_DEBUG(dbgs() << "- FirstOverlap " << toString(FirstOverlap, false)
408 << ", IntersectStart: " << IntersectStart << "\n");
409
410 // Does EndBit intersect an existing fragment?
411 auto LastOverlap = B.find(AIt.stop());
412 bool IntersectEnd =
413 LastOverlap != B.end() && LastOverlap.start() < AIt.stop();
414 LLVM_DEBUG(dbgs() << "- LastOverlap " << toString(LastOverlap, false)
415 << ", IntersectEnd: " << IntersectEnd << "\n");
416
417 // Check if both ends of `a` intersect the same interval `b`.
418 if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) {
419 // Insert `a` (`a` is contained in `b`) if the values match.
420 // [ a ]
421 // [ - b - ]
422 // -
423 // [ r ]
424 LLVM_DEBUG(dbgs() << "- a is contained within "
425 << toString(FirstOverlap));
426 if (*AIt && *AIt == *FirstOverlap)
427 Result.insert(AIt.start(), AIt.stop(), *AIt);
428 } else {
429 // There's an overlap but `a` is not fully contained within
430 // `b`. Shorten any end-point intersections.
431 // [ - a - ]
432 // [ - b - ]
433 // -
434 // [ r ]
435 auto Next = FirstOverlap;
436 if (IntersectStart) {
437 LLVM_DEBUG(dbgs() << "- insert intersection of a and "
438 << toString(FirstOverlap));
439 if (*AIt && *AIt == *FirstOverlap)
440 Result.insert(AIt.start(), FirstOverlap.stop(), *AIt);
441 ++Next;
442 }
443 // [ - a - ]
444 // [ - b - ]
445 // -
446 // [ r ]
447 if (IntersectEnd) {
448 LLVM_DEBUG(dbgs() << "- insert intersection of a and "
449 << toString(LastOverlap));
450 if (*AIt && *AIt == *LastOverlap)
451 Result.insert(LastOverlap.start(), AIt.stop(), *AIt);
452 }
453
454 // Insert all intervals in map `B` that are contained within interval
455 // `a` where the values match.
456 // [ - - a - - ]
457 // [ b1 ] [ b2 ]
458 // -
459 // [ r1 ] [ r2 ]
460 while (Next != B.end() && Next.start() < AIt.stop() &&
461 Next.stop() <= AIt.stop()) {
462 LLVM_DEBUG(dbgs()
463 << "- insert intersection of a and " << toString(Next));
464 if (*AIt && *AIt == *Next)
465 Result.insert(Next.start(), Next.stop(), *Next);
466 ++Next;
467 }
468 }
469 }
470 return Result;
471 }
472
473 /// Meet \p A and \p B, storing the result in \p A.
meetVars(VarFragMap & A,const VarFragMap & B)474 void meetVars(VarFragMap &A, const VarFragMap &B) {
475 // Meet A and B.
476 //
477 // Result = meet(a, b) for a in A, b in B where Var(a) == Var(b)
478 for (auto It = A.begin(), End = A.end(); It != End; ++It) {
479 unsigned AVar = It->first;
480 FragsInMemMap &AFrags = It->second;
481 auto BIt = B.find(AVar);
482 if (BIt == B.end()) {
483 A.erase(It);
484 continue; // Var has no bits defined in B.
485 }
486 LLVM_DEBUG(dbgs() << "meet fragment maps for "
487 << Aggregates[AVar].first->getName() << "\n");
488 AFrags = meetFragments(AFrags, BIt->second);
489 }
490 }
491
meet(const BasicBlock & BB,const SmallPtrSet<BasicBlock *,16> & Visited)492 bool meet(const BasicBlock &BB,
493 const SmallPtrSet<BasicBlock *, 16> &Visited) {
494 LLVM_DEBUG(dbgs() << "meet block info from preds of " << BB.getName()
495 << "\n");
496
497 VarFragMap BBLiveIn;
498 bool FirstMeet = true;
499 // LiveIn locs for BB is the meet of the already-processed preds' LiveOut
500 // locs.
501 for (auto I = pred_begin(&BB), E = pred_end(&BB); I != E; I++) {
502 // Ignore preds that haven't been processed yet. This is essentially the
503 // same as initialising all variables to implicit top value (⊤) which is
504 // the identity value for the meet operation.
505 const BasicBlock *Pred = *I;
506 if (!Visited.count(Pred))
507 continue;
508
509 auto PredLiveOut = LiveOut.find(Pred);
510 assert(PredLiveOut != LiveOut.end());
511
512 if (FirstMeet) {
513 LLVM_DEBUG(dbgs() << "BBLiveIn = " << Pred->getName() << "\n");
514 BBLiveIn = PredLiveOut->second;
515 FirstMeet = false;
516 } else {
517 LLVM_DEBUG(dbgs() << "BBLiveIn = meet BBLiveIn, " << Pred->getName()
518 << "\n");
519 meetVars(BBLiveIn, PredLiveOut->second);
520 }
521
522 // An empty set is ⊥ for the intersect-like meet operation. If we've
523 // already got ⊥ there's no need to run the code - we know the result is
524 // ⊥ since `meet(a, ⊥) = ⊥`.
525 if (BBLiveIn.size() == 0)
526 break;
527 }
528
529 auto CurrentLiveInEntry = LiveIn.find(&BB);
530 // If there's no LiveIn entry for the block yet, add it.
531 if (CurrentLiveInEntry == LiveIn.end()) {
532 LLVM_DEBUG(dbgs() << "change=true (first) on meet on " << BB.getName()
533 << "\n");
534 LiveIn[&BB] = std::move(BBLiveIn);
535 return /*Changed=*/true;
536 }
537
538 // If the LiveIn set has changed (expensive check) update it and return
539 // true.
540 if (!varFragMapsAreEqual(BBLiveIn, CurrentLiveInEntry->second)) {
541 LLVM_DEBUG(dbgs() << "change=true on meet on " << BB.getName() << "\n");
542 CurrentLiveInEntry->second = std::move(BBLiveIn);
543 return /*Changed=*/true;
544 }
545
546 LLVM_DEBUG(dbgs() << "change=false on meet on " << BB.getName() << "\n");
547 return /*Changed=*/false;
548 }
549
insertMemLoc(BasicBlock & BB,Instruction & Before,unsigned Var,unsigned StartBit,unsigned EndBit,unsigned Base,DebugLoc DL)550 void insertMemLoc(BasicBlock &BB, Instruction &Before, unsigned Var,
551 unsigned StartBit, unsigned EndBit, unsigned Base,
552 DebugLoc DL) {
553 assert(StartBit < EndBit && "Cannot create fragment of size <= 0");
554 if (!Base)
555 return;
556 FragMemLoc Loc;
557 Loc.Var = Var;
558 Loc.OffsetInBits = StartBit;
559 Loc.SizeInBits = EndBit - StartBit;
560 assert(Base && "Expected a non-zero ID for Base address");
561 Loc.Base = Base;
562 Loc.DL = DL;
563 BBInsertBeforeMap[&BB][&Before].push_back(Loc);
564 LLVM_DEBUG(dbgs() << "Add mem def for " << Aggregates[Var].first->getName()
565 << " bits [" << StartBit << ", " << EndBit << ")\n");
566 }
567
addDef(const VarLocInfo & VarLoc,Instruction & Before,BasicBlock & BB,VarFragMap & LiveSet)568 void addDef(const VarLocInfo &VarLoc, Instruction &Before, BasicBlock &BB,
569 VarFragMap &LiveSet) {
570 DebugVariable DbgVar = FnVarLocs->getVariable(VarLoc.VariableID);
571 if (skipVariable(DbgVar.getVariable()))
572 return;
573 // Don't bother doing anything for this variables if we know it's fully
574 // promoted. We're only interested in variables that (sometimes) live on
575 // the stack here.
576 if (!VarsWithStackSlot->count(getAggregate(DbgVar)))
577 return;
578 unsigned Var = Aggregates.insert(
579 DebugAggregate(DbgVar.getVariable(), VarLoc.DL.getInlinedAt()));
580
581 // [StartBit: EndBit) are the bits affected by this def.
582 const DIExpression *DIExpr = VarLoc.Expr;
583 unsigned StartBit;
584 unsigned EndBit;
585 if (auto Frag = DIExpr->getFragmentInfo()) {
586 StartBit = Frag->OffsetInBits;
587 EndBit = StartBit + Frag->SizeInBits;
588 } else {
589 assert(static_cast<bool>(DbgVar.getVariable()->getSizeInBits()));
590 StartBit = 0;
591 EndBit = *DbgVar.getVariable()->getSizeInBits();
592 }
593
594 // We will only fill fragments for simple memory-describing dbg.value
595 // intrinsics. If the fragment offset is the same as the offset from the
596 // base pointer, do The Thing, otherwise fall back to normal dbg.value
597 // behaviour. AssignmentTrackingLowering has generated DIExpressions
598 // written in terms of the base pointer.
599 // TODO: Remove this condition since the fragment offset doesn't always
600 // equal the offset from base pointer (e.g. for a SROA-split variable).
601 const auto DerefOffsetInBytes = getDerefOffsetInBytes(DIExpr);
602 const unsigned Base =
603 DerefOffsetInBytes && *DerefOffsetInBytes * 8 == StartBit
604 ? Bases.insert(VarLoc.V)
605 : 0;
606 LLVM_DEBUG(dbgs() << "DEF " << DbgVar.getVariable()->getName() << " ["
607 << StartBit << ", " << EndBit << "): " << toString(Base)
608 << "\n");
609
610 // First of all, any locs that use mem that are disrupted need reinstating.
611 // Unfortunately, IntervalMap doesn't let us insert intervals that overlap
612 // with existing intervals so this code involves a lot of fiddling around
613 // with intervals to do that manually.
614 auto FragIt = LiveSet.find(Var);
615
616 // Check if the variable does not exist in the map.
617 if (FragIt == LiveSet.end()) {
618 // Add this variable to the BB map.
619 auto P = LiveSet.try_emplace(Var, FragsInMemMap(IntervalMapAlloc));
620 assert(P.second && "Var already in map?");
621 // Add the interval to the fragment map.
622 P.first->second.insert(StartBit, EndBit, Base);
623 return;
624 }
625 // The variable has an entry in the map.
626
627 FragsInMemMap &FragMap = FragIt->second;
628 // First check the easy case: the new fragment `f` doesn't overlap with any
629 // intervals.
630 if (!FragMap.overlaps(StartBit, EndBit)) {
631 LLVM_DEBUG(dbgs() << "- No overlaps\n");
632 FragMap.insert(StartBit, EndBit, Base);
633 return;
634 }
635 // There is at least one overlap.
636
637 // Does StartBit intersect an existing fragment?
638 auto FirstOverlap = FragMap.find(StartBit);
639 assert(FirstOverlap != FragMap.end());
640 bool IntersectStart = FirstOverlap.start() < StartBit;
641
642 // Does EndBit intersect an existing fragment?
643 auto LastOverlap = FragMap.find(EndBit);
644 bool IntersectEnd = LastOverlap.valid() && LastOverlap.start() < EndBit;
645
646 // Check if both ends of `f` intersect the same interval `i`.
647 if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) {
648 LLVM_DEBUG(dbgs() << "- Intersect single interval @ both ends\n");
649 // Shorten `i` so that there's space to insert `f`.
650 // [ f ]
651 // [ - i - ]
652 // +
653 // [ i ][ f ][ i ]
654
655 // Save values for use after inserting a new interval.
656 auto EndBitOfOverlap = FirstOverlap.stop();
657 unsigned OverlapValue = FirstOverlap.value();
658
659 // Shorten the overlapping interval.
660 FirstOverlap.setStop(StartBit);
661 insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit,
662 OverlapValue, VarLoc.DL);
663
664 // Insert a new interval to represent the end part.
665 FragMap.insert(EndBit, EndBitOfOverlap, OverlapValue);
666 insertMemLoc(BB, Before, Var, EndBit, EndBitOfOverlap, OverlapValue,
667 VarLoc.DL);
668
669 // Insert the new (middle) fragment now there is space.
670 FragMap.insert(StartBit, EndBit, Base);
671 } else {
672 // There's an overlap but `f` may not be fully contained within
673 // `i`. Shorten any end-point intersections so that we can then
674 // insert `f`.
675 // [ - f - ]
676 // [ - i - ]
677 // | |
678 // [ i ]
679 // Shorten any end-point intersections.
680 if (IntersectStart) {
681 LLVM_DEBUG(dbgs() << "- Intersect interval at start\n");
682 // Split off at the intersection.
683 FirstOverlap.setStop(StartBit);
684 insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit,
685 *FirstOverlap, VarLoc.DL);
686 }
687 // [ - f - ]
688 // [ - i - ]
689 // | |
690 // [ i ]
691 if (IntersectEnd) {
692 LLVM_DEBUG(dbgs() << "- Intersect interval at end\n");
693 // Split off at the intersection.
694 LastOverlap.setStart(EndBit);
695 insertMemLoc(BB, Before, Var, EndBit, LastOverlap.stop(), *LastOverlap,
696 VarLoc.DL);
697 }
698
699 LLVM_DEBUG(dbgs() << "- Erase intervals contained within\n");
700 // FirstOverlap and LastOverlap have been shortened such that they're
701 // no longer overlapping with [StartBit, EndBit). Delete any overlaps
702 // that remain (these will be fully contained within `f`).
703 // [ - f - ] }
704 // [ - i - ] } Intersection shortening that has happened above.
705 // | | }
706 // [ i ] }
707 // -----------------
708 // [i2 ] } Intervals fully contained within `f` get erased.
709 // -----------------
710 // [ - f - ][ i ] } Completed insertion.
711 auto It = FirstOverlap;
712 if (IntersectStart)
713 ++It; // IntersectStart: first overlap has been shortened.
714 while (It.valid() && It.start() >= StartBit && It.stop() <= EndBit) {
715 LLVM_DEBUG(dbgs() << "- Erase " << toString(It));
716 It.erase(); // This increments It after removing the interval.
717 }
718 // We've dealt with all the overlaps now!
719 assert(!FragMap.overlaps(StartBit, EndBit));
720 LLVM_DEBUG(dbgs() << "- Insert DEF into now-empty space\n");
721 FragMap.insert(StartBit, EndBit, Base);
722 }
723 }
724
skipVariable(const DILocalVariable * V)725 bool skipVariable(const DILocalVariable *V) { return !V->getSizeInBits(); }
726
process(BasicBlock & BB,VarFragMap & LiveSet)727 void process(BasicBlock &BB, VarFragMap &LiveSet) {
728 BBInsertBeforeMap[&BB].clear();
729 for (auto &I : BB) {
730 if (const auto *Locs = FnVarLocs->getWedge(&I)) {
731 for (const VarLocInfo &Loc : *Locs) {
732 addDef(Loc, I, *I.getParent(), LiveSet);
733 }
734 }
735 }
736 }
737
738 public:
MemLocFragmentFill(Function & Fn,const DenseSet<DebugAggregate> * VarsWithStackSlot)739 MemLocFragmentFill(Function &Fn,
740 const DenseSet<DebugAggregate> *VarsWithStackSlot)
741 : Fn(Fn), VarsWithStackSlot(VarsWithStackSlot) {}
742
743 /// Add variable locations to \p FnVarLocs so that any bits of a variable
744 /// with a memory location have that location explicitly reinstated at each
745 /// subsequent variable location definition that that doesn't overwrite those
746 /// bits. i.e. after a variable location def, insert new defs for the memory
747 /// location with fragments for the difference of "all bits currently in
748 /// memory" and "the fragment of the second def". e.g.
749 ///
750 /// Before:
751 ///
752 /// var x bits 0 to 63: value in memory
753 /// more instructions
754 /// var x bits 0 to 31: value is %0
755 ///
756 /// After:
757 ///
758 /// var x bits 0 to 63: value in memory
759 /// more instructions
760 /// var x bits 0 to 31: value is %0
761 /// var x bits 32 to 61: value in memory ; <-- new loc def
762 ///
run(FunctionVarLocsBuilder * FnVarLocs)763 void run(FunctionVarLocsBuilder *FnVarLocs) {
764 if (!EnableMemLocFragFill)
765 return;
766
767 this->FnVarLocs = FnVarLocs;
768
769 // Prepare for traversal.
770 //
771 ReversePostOrderTraversal<Function *> RPOT(&Fn);
772 std::priority_queue<unsigned int, std::vector<unsigned int>,
773 std::greater<unsigned int>>
774 Worklist;
775 std::priority_queue<unsigned int, std::vector<unsigned int>,
776 std::greater<unsigned int>>
777 Pending;
778 DenseMap<unsigned int, BasicBlock *> OrderToBB;
779 DenseMap<BasicBlock *, unsigned int> BBToOrder;
780 { // Init OrderToBB and BBToOrder.
781 unsigned int RPONumber = 0;
782 for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
783 OrderToBB[RPONumber] = *RI;
784 BBToOrder[*RI] = RPONumber;
785 Worklist.push(RPONumber);
786 ++RPONumber;
787 }
788 LiveIn.init(RPONumber);
789 LiveOut.init(RPONumber);
790 }
791
792 // Perform the traversal.
793 //
794 // This is a standard "intersect of predecessor outs" dataflow problem. To
795 // solve it, we perform meet() and process() using the two worklist method
796 // until the LiveIn data for each block becomes unchanging.
797 //
798 // This dataflow is essentially working on maps of sets and at each meet we
799 // intersect the maps and the mapped sets. So, initialized live-in maps
800 // monotonically decrease in value throughout the dataflow.
801 SmallPtrSet<BasicBlock *, 16> Visited;
802 while (!Worklist.empty() || !Pending.empty()) {
803 // We track what is on the pending worklist to avoid inserting the same
804 // thing twice. We could avoid this with a custom priority queue, but
805 // this is probably not worth it.
806 SmallPtrSet<BasicBlock *, 16> OnPending;
807 LLVM_DEBUG(dbgs() << "Processing Worklist\n");
808 while (!Worklist.empty()) {
809 BasicBlock *BB = OrderToBB[Worklist.top()];
810 LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n");
811 Worklist.pop();
812 bool InChanged = meet(*BB, Visited);
813 // Always consider LiveIn changed on the first visit.
814 InChanged |= Visited.insert(BB).second;
815 if (InChanged) {
816 LLVM_DEBUG(dbgs()
817 << BB->getName() << " has new InLocs, process it\n");
818 // Mutate a copy of LiveIn while processing BB. Once we've processed
819 // the terminator LiveSet is the LiveOut set for BB.
820 // This is an expensive copy!
821 VarFragMap LiveSet = LiveIn[BB];
822
823 // Process the instructions in the block.
824 process(*BB, LiveSet);
825
826 // Relatively expensive check: has anything changed in LiveOut for BB?
827 if (!varFragMapsAreEqual(LiveOut[BB], LiveSet)) {
828 LLVM_DEBUG(dbgs() << BB->getName()
829 << " has new OutLocs, add succs to worklist: [ ");
830 LiveOut[BB] = std::move(LiveSet);
831 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) {
832 if (OnPending.insert(*I).second) {
833 LLVM_DEBUG(dbgs() << I->getName() << " ");
834 Pending.push(BBToOrder[*I]);
835 }
836 }
837 LLVM_DEBUG(dbgs() << "]\n");
838 }
839 }
840 }
841 Worklist.swap(Pending);
842 // At this point, pending must be empty, since it was just the empty
843 // worklist
844 assert(Pending.empty() && "Pending should be empty");
845 }
846
847 // Insert new location defs.
848 for (auto Pair : BBInsertBeforeMap) {
849 InsertMap &Map = Pair.second;
850 for (auto Pair : Map) {
851 Instruction *InsertBefore = Pair.first;
852 assert(InsertBefore && "should never be null");
853 auto FragMemLocs = Pair.second;
854 auto &Ctx = Fn.getContext();
855
856 for (auto FragMemLoc : FragMemLocs) {
857 DIExpression *Expr = DIExpression::get(Ctx, std::nullopt);
858 Expr = *DIExpression::createFragmentExpression(
859 Expr, FragMemLoc.OffsetInBits, FragMemLoc.SizeInBits);
860 Expr = DIExpression::prepend(Expr, DIExpression::DerefAfter,
861 FragMemLoc.OffsetInBits / 8);
862 DebugVariable Var(Aggregates[FragMemLoc.Var].first, Expr,
863 FragMemLoc.DL.getInlinedAt());
864 FnVarLocs->addVarLoc(InsertBefore, Var, Expr, FragMemLoc.DL,
865 Bases[FragMemLoc.Base]);
866 }
867 }
868 }
869 }
870 };
871
872 /// AssignmentTrackingLowering encapsulates a dataflow analysis over a function
873 /// that interprets assignment tracking debug info metadata and stores in IR to
874 /// create a map of variable locations.
875 class AssignmentTrackingLowering {
876 public:
877 /// The kind of location in use for a variable, where Mem is the stack home,
878 /// Val is an SSA value or const, and None means that there is not one single
879 /// kind (either because there are multiple or because there is none; it may
880 /// prove useful to split this into two values in the future).
881 ///
882 /// LocKind is a join-semilattice with the partial order:
883 /// None > Mem, Val
884 ///
885 /// i.e.
886 /// join(Mem, Mem) = Mem
887 /// join(Val, Val) = Val
888 /// join(Mem, Val) = None
889 /// join(None, Mem) = None
890 /// join(None, Val) = None
891 /// join(None, None) = None
892 ///
893 /// Note: the order is not `None > Val > Mem` because we're using DIAssignID
894 /// to name assignments and are not tracking the actual stored values.
895 /// Therefore currently there's no way to ensure that Mem values and Val
896 /// values are the same. This could be a future extension, though it's not
897 /// clear that many additional locations would be recovered that way in
898 /// practice as the likelihood of this sitation arising naturally seems
899 /// incredibly low.
900 enum class LocKind { Mem, Val, None };
901
902 /// An abstraction of the assignment of a value to a variable or memory
903 /// location.
904 ///
905 /// An Assignment is Known or NoneOrPhi. A Known Assignment means we have a
906 /// DIAssignID ptr that represents it. NoneOrPhi means that we don't (or
907 /// can't) know the ID of the last assignment that took place.
908 ///
909 /// The Status of the Assignment (Known or NoneOrPhi) is another
910 /// join-semilattice. The partial order is:
911 /// NoneOrPhi > Known {id_0, id_1, ...id_N}
912 ///
913 /// i.e. for all values x and y where x != y:
914 /// join(x, x) = x
915 /// join(x, y) = NoneOrPhi
916 struct Assignment {
917 enum S { Known, NoneOrPhi } Status;
918 /// ID of the assignment. nullptr if Status is not Known.
919 DIAssignID *ID;
920 /// The dbg.assign that marks this dbg-def. Mem-defs don't use this field.
921 /// May be nullptr.
922 DbgAssignIntrinsic *Source;
923
isSameSourceAssignment__anon7ddb1d110211::AssignmentTrackingLowering::Assignment924 bool isSameSourceAssignment(const Assignment &Other) const {
925 // Don't include Source in the equality check. Assignments are
926 // defined by their ID, not debug intrinsic(s).
927 return std::tie(Status, ID) == std::tie(Other.Status, Other.ID);
928 }
dump__anon7ddb1d110211::AssignmentTrackingLowering::Assignment929 void dump(raw_ostream &OS) {
930 static const char *LUT[] = {"Known", "NoneOrPhi"};
931 OS << LUT[Status] << "(id=";
932 if (ID)
933 OS << ID;
934 else
935 OS << "null";
936 OS << ", s=";
937 if (Source)
938 OS << *Source;
939 else
940 OS << "null";
941 OS << ")";
942 }
943
make__anon7ddb1d110211::AssignmentTrackingLowering::Assignment944 static Assignment make(DIAssignID *ID, DbgAssignIntrinsic *Source) {
945 return Assignment(Known, ID, Source);
946 }
makeFromMemDef__anon7ddb1d110211::AssignmentTrackingLowering::Assignment947 static Assignment makeFromMemDef(DIAssignID *ID) {
948 return Assignment(Known, ID, nullptr);
949 }
makeNoneOrPhi__anon7ddb1d110211::AssignmentTrackingLowering::Assignment950 static Assignment makeNoneOrPhi() {
951 return Assignment(NoneOrPhi, nullptr, nullptr);
952 }
953 // Again, need a Top value?
Assignment__anon7ddb1d110211::AssignmentTrackingLowering::Assignment954 Assignment()
955 : Status(NoneOrPhi), ID(nullptr), Source(nullptr) {
956 } // Can we delete this?
Assignment__anon7ddb1d110211::AssignmentTrackingLowering::Assignment957 Assignment(S Status, DIAssignID *ID, DbgAssignIntrinsic *Source)
958 : Status(Status), ID(ID), Source(Source) {
959 // If the Status is Known then we expect there to be an assignment ID.
960 assert(Status == NoneOrPhi || ID);
961 }
962 };
963
964 using AssignmentMap = DenseMap<VariableID, Assignment>;
965 using LocMap = DenseMap<VariableID, LocKind>;
966 using OverlapMap = DenseMap<VariableID, SmallVector<VariableID, 4>>;
967 using UntaggedStoreAssignmentMap =
968 DenseMap<const Instruction *,
969 SmallVector<std::pair<VariableID, at::AssignmentInfo>>>;
970
971 private:
972 /// Map a variable to the set of variables that it fully contains.
973 OverlapMap VarContains;
974 /// Map untagged stores to the variable fragments they assign to. Used by
975 /// processUntaggedInstruction.
976 UntaggedStoreAssignmentMap UntaggedStoreVars;
977
978 // Machinery to defer inserting dbg.values.
979 using InsertMap = MapVector<Instruction *, SmallVector<VarLocInfo>>;
980 InsertMap InsertBeforeMap;
981 /// Clear the location definitions currently cached for insertion after /p
982 /// After.
983 void resetInsertionPoint(Instruction &After);
984 void emitDbgValue(LocKind Kind, const DbgVariableIntrinsic *Source,
985 Instruction *After);
986
mapsAreEqual(const AssignmentMap & A,const AssignmentMap & B)987 static bool mapsAreEqual(const AssignmentMap &A, const AssignmentMap &B) {
988 if (A.size() != B.size())
989 return false;
990 for (const auto &Pair : A) {
991 VariableID Var = Pair.first;
992 const Assignment &AV = Pair.second;
993 auto R = B.find(Var);
994 // Check if this entry exists in B, otherwise ret false.
995 if (R == B.end())
996 return false;
997 // Check that the assignment value is the same.
998 if (!AV.isSameSourceAssignment(R->second))
999 return false;
1000 }
1001 return true;
1002 }
1003
1004 /// Represents the stack and debug assignments in a block. Used to describe
1005 /// the live-in and live-out values for blocks, as well as the "current"
1006 /// value as we process each instruction in a block.
1007 struct BlockInfo {
1008 /// Dominating assignment to memory for each variable.
1009 AssignmentMap StackHomeValue;
1010 /// Dominating assignemnt to each variable.
1011 AssignmentMap DebugValue;
1012 /// Location kind for each variable. LiveLoc indicates whether the
1013 /// dominating assignment in StackHomeValue (LocKind::Mem), DebugValue
1014 /// (LocKind::Val), or neither (LocKind::None) is valid, in that order of
1015 /// preference. This cannot be derived by inspecting DebugValue and
1016 /// StackHomeValue due to the fact that there's no distinction in
1017 /// Assignment (the class) between whether an assignment is unknown or a
1018 /// merge of multiple assignments (both are Status::NoneOrPhi). In other
1019 /// words, the memory location may well be valid while both DebugValue and
1020 /// StackHomeValue contain Assignments that have a Status of NoneOrPhi.
1021 LocMap LiveLoc;
1022
1023 /// Compare every element in each map to determine structural equality
1024 /// (slow).
operator ==__anon7ddb1d110211::AssignmentTrackingLowering::BlockInfo1025 bool operator==(const BlockInfo &Other) const {
1026 return LiveLoc == Other.LiveLoc &&
1027 mapsAreEqual(StackHomeValue, Other.StackHomeValue) &&
1028 mapsAreEqual(DebugValue, Other.DebugValue);
1029 }
operator !=__anon7ddb1d110211::AssignmentTrackingLowering::BlockInfo1030 bool operator!=(const BlockInfo &Other) const { return !(*this == Other); }
isValid__anon7ddb1d110211::AssignmentTrackingLowering::BlockInfo1031 bool isValid() {
1032 return LiveLoc.size() == DebugValue.size() &&
1033 LiveLoc.size() == StackHomeValue.size();
1034 }
1035 };
1036
1037 Function &Fn;
1038 const DataLayout &Layout;
1039 const DenseSet<DebugAggregate> *VarsWithStackSlot;
1040 FunctionVarLocsBuilder *FnVarLocs;
1041 DenseMap<const BasicBlock *, BlockInfo> LiveIn;
1042 DenseMap<const BasicBlock *, BlockInfo> LiveOut;
1043
1044 /// Helper for process methods to track variables touched each frame.
1045 DenseSet<VariableID> VarsTouchedThisFrame;
1046
1047 /// The set of variables that sometimes are not located in their stack home.
1048 DenseSet<DebugAggregate> NotAlwaysStackHomed;
1049
getVariableID(const DebugVariable & Var)1050 VariableID getVariableID(const DebugVariable &Var) {
1051 return static_cast<VariableID>(FnVarLocs->insertVariable(Var));
1052 }
1053
1054 /// Join the LiveOut values of preds that are contained in \p Visited into
1055 /// LiveIn[BB]. Return True if LiveIn[BB] has changed as a result. LiveIn[BB]
1056 /// values monotonically increase. See the @link joinMethods join methods
1057 /// @endlink documentation for more info.
1058 bool join(const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited);
1059 ///@name joinMethods
1060 /// Functions that implement `join` (the least upper bound) for the
1061 /// join-semilattice types used in the dataflow. There is an explicit bottom
1062 /// value (⊥) for some types and and explicit top value (⊤) for all types.
1063 /// By definition:
1064 ///
1065 /// Join(A, B) >= A && Join(A, B) >= B
1066 /// Join(A, ⊥) = A
1067 /// Join(A, ⊤) = ⊤
1068 ///
1069 /// These invariants are important for monotonicity.
1070 ///
1071 /// For the map-type functions, all unmapped keys in an empty map are
1072 /// associated with a bottom value (⊥). This represents their values being
1073 /// unknown. Unmapped keys in non-empty maps (joining two maps with a key
1074 /// only present in one) represents either a variable going out of scope or
1075 /// dropped debug info. It is assumed the key is associated with a top value
1076 /// (⊤) in this case (unknown location / assignment).
1077 ///@{
1078 static LocKind joinKind(LocKind A, LocKind B);
1079 static LocMap joinLocMap(const LocMap &A, const LocMap &B);
1080 static Assignment joinAssignment(const Assignment &A, const Assignment &B);
1081 static AssignmentMap joinAssignmentMap(const AssignmentMap &A,
1082 const AssignmentMap &B);
1083 static BlockInfo joinBlockInfo(const BlockInfo &A, const BlockInfo &B);
1084 ///@}
1085
1086 /// Process the instructions in \p BB updating \p LiveSet along the way. \p
1087 /// LiveSet must be initialized with the current live-in locations before
1088 /// calling this.
1089 void process(BasicBlock &BB, BlockInfo *LiveSet);
1090 ///@name processMethods
1091 /// Methods to process instructions in order to update the LiveSet (current
1092 /// location information).
1093 ///@{
1094 void processNonDbgInstruction(Instruction &I, BlockInfo *LiveSet);
1095 void processDbgInstruction(Instruction &I, BlockInfo *LiveSet);
1096 /// Update \p LiveSet after encountering an instruction with a DIAssignID
1097 /// attachment, \p I.
1098 void processTaggedInstruction(Instruction &I, BlockInfo *LiveSet);
1099 /// Update \p LiveSet after encountering an instruciton without a DIAssignID
1100 /// attachment, \p I.
1101 void processUntaggedInstruction(Instruction &I, BlockInfo *LiveSet);
1102 void processDbgAssign(DbgAssignIntrinsic &DAI, BlockInfo *LiveSet);
1103 void processDbgValue(DbgValueInst &DVI, BlockInfo *LiveSet);
1104 /// Add an assignment to memory for the variable /p Var.
1105 void addMemDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV);
1106 /// Add an assignment to the variable /p Var.
1107 void addDbgDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV);
1108 ///@}
1109
1110 /// Set the LocKind for \p Var.
1111 void setLocKind(BlockInfo *LiveSet, VariableID Var, LocKind K);
1112 /// Get the live LocKind for a \p Var. Requires addMemDef or addDbgDef to
1113 /// have been called for \p Var first.
1114 LocKind getLocKind(BlockInfo *LiveSet, VariableID Var);
1115 /// Return true if \p Var has an assignment in \p M matching \p AV.
1116 bool hasVarWithAssignment(VariableID Var, const Assignment &AV,
1117 const AssignmentMap &M);
1118
1119 /// Emit info for variables that are fully promoted.
1120 bool emitPromotedVarLocs(FunctionVarLocsBuilder *FnVarLocs);
1121
1122 public:
AssignmentTrackingLowering(Function & Fn,const DataLayout & Layout,const DenseSet<DebugAggregate> * VarsWithStackSlot)1123 AssignmentTrackingLowering(Function &Fn, const DataLayout &Layout,
1124 const DenseSet<DebugAggregate> *VarsWithStackSlot)
1125 : Fn(Fn), Layout(Layout), VarsWithStackSlot(VarsWithStackSlot) {}
1126 /// Run the analysis, adding variable location info to \p FnVarLocs. Returns
1127 /// true if any variable locations have been added to FnVarLocs.
1128 bool run(FunctionVarLocsBuilder *FnVarLocs);
1129 };
1130 } // namespace
1131
setLocKind(BlockInfo * LiveSet,VariableID Var,LocKind K)1132 void AssignmentTrackingLowering::setLocKind(BlockInfo *LiveSet, VariableID Var,
1133 LocKind K) {
1134 auto SetKind = [this](BlockInfo *LiveSet, VariableID Var, LocKind K) {
1135 VarsTouchedThisFrame.insert(Var);
1136 LiveSet->LiveLoc[Var] = K;
1137 };
1138 SetKind(LiveSet, Var, K);
1139
1140 // Update the LocKind for all fragments contained within Var.
1141 for (VariableID Frag : VarContains[Var])
1142 SetKind(LiveSet, Frag, K);
1143 }
1144
1145 AssignmentTrackingLowering::LocKind
getLocKind(BlockInfo * LiveSet,VariableID Var)1146 AssignmentTrackingLowering::getLocKind(BlockInfo *LiveSet, VariableID Var) {
1147 auto Pair = LiveSet->LiveLoc.find(Var);
1148 assert(Pair != LiveSet->LiveLoc.end());
1149 return Pair->second;
1150 }
1151
addMemDef(BlockInfo * LiveSet,VariableID Var,const Assignment & AV)1152 void AssignmentTrackingLowering::addMemDef(BlockInfo *LiveSet, VariableID Var,
1153 const Assignment &AV) {
1154 auto AddDef = [](BlockInfo *LiveSet, VariableID Var, Assignment AV) {
1155 LiveSet->StackHomeValue[Var] = AV;
1156 // Add default (Var -> ⊤) to DebugValue if Var isn't in DebugValue yet.
1157 LiveSet->DebugValue.insert({Var, Assignment::makeNoneOrPhi()});
1158 // Add default (Var -> ⊤) to LiveLocs if Var isn't in LiveLocs yet. Callers
1159 // of addMemDef will call setLocKind to override.
1160 LiveSet->LiveLoc.insert({Var, LocKind::None});
1161 };
1162 AddDef(LiveSet, Var, AV);
1163
1164 // Use this assigment for all fragments contained within Var, but do not
1165 // provide a Source because we cannot convert Var's value to a value for the
1166 // fragment.
1167 Assignment FragAV = AV;
1168 FragAV.Source = nullptr;
1169 for (VariableID Frag : VarContains[Var])
1170 AddDef(LiveSet, Frag, FragAV);
1171 }
1172
addDbgDef(BlockInfo * LiveSet,VariableID Var,const Assignment & AV)1173 void AssignmentTrackingLowering::addDbgDef(BlockInfo *LiveSet, VariableID Var,
1174 const Assignment &AV) {
1175 auto AddDef = [](BlockInfo *LiveSet, VariableID Var, Assignment AV) {
1176 LiveSet->DebugValue[Var] = AV;
1177 // Add default (Var -> ⊤) to StackHome if Var isn't in StackHome yet.
1178 LiveSet->StackHomeValue.insert({Var, Assignment::makeNoneOrPhi()});
1179 // Add default (Var -> ⊤) to LiveLocs if Var isn't in LiveLocs yet. Callers
1180 // of addDbgDef will call setLocKind to override.
1181 LiveSet->LiveLoc.insert({Var, LocKind::None});
1182 };
1183 AddDef(LiveSet, Var, AV);
1184
1185 // Use this assigment for all fragments contained within Var, but do not
1186 // provide a Source because we cannot convert Var's value to a value for the
1187 // fragment.
1188 Assignment FragAV = AV;
1189 FragAV.Source = nullptr;
1190 for (VariableID Frag : VarContains[Var])
1191 AddDef(LiveSet, Frag, FragAV);
1192 }
1193
getIDFromInst(const Instruction & I)1194 static DIAssignID *getIDFromInst(const Instruction &I) {
1195 return cast<DIAssignID>(I.getMetadata(LLVMContext::MD_DIAssignID));
1196 }
1197
getIDFromMarker(const DbgAssignIntrinsic & DAI)1198 static DIAssignID *getIDFromMarker(const DbgAssignIntrinsic &DAI) {
1199 return cast<DIAssignID>(DAI.getAssignID());
1200 }
1201
1202 /// Return true if \p Var has an assignment in \p M matching \p AV.
hasVarWithAssignment(VariableID Var,const Assignment & AV,const AssignmentMap & M)1203 bool AssignmentTrackingLowering::hasVarWithAssignment(VariableID Var,
1204 const Assignment &AV,
1205 const AssignmentMap &M) {
1206 auto AssignmentIsMapped = [](VariableID Var, const Assignment &AV,
1207 const AssignmentMap &M) {
1208 auto R = M.find(Var);
1209 if (R == M.end())
1210 return false;
1211 return AV.isSameSourceAssignment(R->second);
1212 };
1213
1214 if (!AssignmentIsMapped(Var, AV, M))
1215 return false;
1216
1217 // Check all the frags contained within Var as these will have all been
1218 // mapped to AV at the last store to Var.
1219 for (VariableID Frag : VarContains[Var])
1220 if (!AssignmentIsMapped(Frag, AV, M))
1221 return false;
1222 return true;
1223 }
1224
1225 #ifndef NDEBUG
locStr(AssignmentTrackingLowering::LocKind Loc)1226 const char *locStr(AssignmentTrackingLowering::LocKind Loc) {
1227 using LocKind = AssignmentTrackingLowering::LocKind;
1228 switch (Loc) {
1229 case LocKind::Val:
1230 return "Val";
1231 case LocKind::Mem:
1232 return "Mem";
1233 case LocKind::None:
1234 return "None";
1235 };
1236 llvm_unreachable("unknown LocKind");
1237 }
1238 #endif
1239
emitDbgValue(AssignmentTrackingLowering::LocKind Kind,const DbgVariableIntrinsic * Source,Instruction * After)1240 void AssignmentTrackingLowering::emitDbgValue(
1241 AssignmentTrackingLowering::LocKind Kind,
1242 const DbgVariableIntrinsic *Source, Instruction *After) {
1243
1244 DILocation *DL = Source->getDebugLoc();
1245 auto Emit = [this, Source, After, DL](Value *Val, DIExpression *Expr) {
1246 assert(Expr);
1247 if (!Val)
1248 Val = PoisonValue::get(Type::getInt1Ty(Source->getContext()));
1249
1250 // Find a suitable insert point.
1251 Instruction *InsertBefore = After->getNextNode();
1252 assert(InsertBefore && "Shouldn't be inserting after a terminator");
1253
1254 VariableID Var = getVariableID(DebugVariable(Source));
1255 VarLocInfo VarLoc;
1256 VarLoc.VariableID = static_cast<VariableID>(Var);
1257 VarLoc.Expr = Expr;
1258 VarLoc.V = Val;
1259 VarLoc.DL = DL;
1260 // Insert it into the map for later.
1261 InsertBeforeMap[InsertBefore].push_back(VarLoc);
1262 };
1263
1264 // NOTE: This block can mutate Kind.
1265 if (Kind == LocKind::Mem) {
1266 const auto *DAI = cast<DbgAssignIntrinsic>(Source);
1267 // Check the address hasn't been dropped (e.g. the debug uses may not have
1268 // been replaced before deleting a Value).
1269 if (DAI->isKillAddress()) {
1270 // The address isn't valid so treat this as a non-memory def.
1271 Kind = LocKind::Val;
1272 } else {
1273 Value *Val = DAI->getAddress();
1274 DIExpression *Expr = DAI->getAddressExpression();
1275 assert(!Expr->getFragmentInfo() &&
1276 "fragment info should be stored in value-expression only");
1277 // Copy the fragment info over from the value-expression to the new
1278 // DIExpression.
1279 if (auto OptFragInfo = Source->getExpression()->getFragmentInfo()) {
1280 auto FragInfo = *OptFragInfo;
1281 Expr = *DIExpression::createFragmentExpression(
1282 Expr, FragInfo.OffsetInBits, FragInfo.SizeInBits);
1283 }
1284 // The address-expression has an implicit deref, add it now.
1285 std::tie(Val, Expr) =
1286 walkToAllocaAndPrependOffsetDeref(Layout, Val, Expr);
1287 Emit(Val, Expr);
1288 return;
1289 }
1290 }
1291
1292 if (Kind == LocKind::Val) {
1293 /// Get the value component, converting to Undef if it is variadic.
1294 Value *Val =
1295 Source->hasArgList() ? nullptr : Source->getVariableLocationOp(0);
1296 Emit(Val, Source->getExpression());
1297 return;
1298 }
1299
1300 if (Kind == LocKind::None) {
1301 Emit(nullptr, Source->getExpression());
1302 return;
1303 }
1304 }
1305
processNonDbgInstruction(Instruction & I,AssignmentTrackingLowering::BlockInfo * LiveSet)1306 void AssignmentTrackingLowering::processNonDbgInstruction(
1307 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1308 if (I.hasMetadata(LLVMContext::MD_DIAssignID))
1309 processTaggedInstruction(I, LiveSet);
1310 else
1311 processUntaggedInstruction(I, LiveSet);
1312 }
1313
processUntaggedInstruction(Instruction & I,AssignmentTrackingLowering::BlockInfo * LiveSet)1314 void AssignmentTrackingLowering::processUntaggedInstruction(
1315 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1316 // Interpret stack stores that are not tagged as an assignment in memory for
1317 // the variables associated with that address. These stores may not be tagged
1318 // because a) the store cannot be represented using dbg.assigns (non-const
1319 // length or offset) or b) the tag was accidentally dropped during
1320 // optimisations. For these stores we fall back to assuming that the stack
1321 // home is a valid location for the variables. The benefit is that this
1322 // prevents us missing an assignment and therefore incorrectly maintaining
1323 // earlier location definitions, and in many cases it should be a reasonable
1324 // assumption. However, this will occasionally lead to slight
1325 // inaccuracies. The value of a hoisted untagged store will be visible
1326 // "early", for example.
1327 assert(!I.hasMetadata(LLVMContext::MD_DIAssignID));
1328 auto It = UntaggedStoreVars.find(&I);
1329 if (It == UntaggedStoreVars.end())
1330 return; // No variables associated with the store destination.
1331
1332 LLVM_DEBUG(dbgs() << "processUntaggedInstruction on UNTAGGED INST " << I
1333 << "\n");
1334 // Iterate over the variables that this store affects, add a NoneOrPhi dbg
1335 // and mem def, set lockind to Mem, and emit a location def for each.
1336 for (auto [Var, Info] : It->second) {
1337 // This instruction is treated as both a debug and memory assignment,
1338 // meaning the memory location should be used. We don't have an assignment
1339 // ID though so use Assignment::makeNoneOrPhi() to create an imaginary one.
1340 addMemDef(LiveSet, Var, Assignment::makeNoneOrPhi());
1341 addDbgDef(LiveSet, Var, Assignment::makeNoneOrPhi());
1342 setLocKind(LiveSet, Var, LocKind::Mem);
1343 LLVM_DEBUG(dbgs() << " setting Stack LocKind to: " << locStr(LocKind::Mem)
1344 << "\n");
1345 // Build the dbg location def to insert.
1346 //
1347 // DIExpression: Add fragment and offset.
1348 DebugVariable V = FnVarLocs->getVariable(Var);
1349 DIExpression *DIE = DIExpression::get(I.getContext(), std::nullopt);
1350 if (auto Frag = V.getFragment()) {
1351 auto R = DIExpression::createFragmentExpression(DIE, Frag->OffsetInBits,
1352 Frag->SizeInBits);
1353 assert(R && "unexpected createFragmentExpression failure");
1354 DIE = *R;
1355 }
1356 SmallVector<uint64_t, 3> Ops;
1357 if (Info.OffsetInBits)
1358 Ops = {dwarf::DW_OP_plus_uconst, Info.OffsetInBits / 8};
1359 Ops.push_back(dwarf::DW_OP_deref);
1360 DIE = DIExpression::prependOpcodes(DIE, Ops, /*StackValue=*/false,
1361 /*EntryValue=*/false);
1362 // Find a suitable insert point.
1363 Instruction *InsertBefore = I.getNextNode();
1364 assert(InsertBefore && "Shouldn't be inserting after a terminator");
1365
1366 // Get DILocation for this unrecorded assignment.
1367 DILocation *InlinedAt = const_cast<DILocation *>(V.getInlinedAt());
1368 const DILocation *DILoc = DILocation::get(
1369 Fn.getContext(), 0, 0, V.getVariable()->getScope(), InlinedAt);
1370
1371 VarLocInfo VarLoc;
1372 VarLoc.VariableID = static_cast<VariableID>(Var);
1373 VarLoc.Expr = DIE;
1374 VarLoc.V = const_cast<AllocaInst *>(Info.Base);
1375 VarLoc.DL = DILoc;
1376 // 3. Insert it into the map for later.
1377 InsertBeforeMap[InsertBefore].push_back(VarLoc);
1378 }
1379 }
1380
processTaggedInstruction(Instruction & I,AssignmentTrackingLowering::BlockInfo * LiveSet)1381 void AssignmentTrackingLowering::processTaggedInstruction(
1382 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1383 auto Linked = at::getAssignmentMarkers(&I);
1384 // No dbg.assign intrinsics linked.
1385 // FIXME: All vars that have a stack slot this store modifies that don't have
1386 // a dbg.assign linked to it should probably treat this like an untagged
1387 // store.
1388 if (Linked.empty())
1389 return;
1390
1391 LLVM_DEBUG(dbgs() << "processTaggedInstruction on " << I << "\n");
1392 for (DbgAssignIntrinsic *DAI : Linked) {
1393 VariableID Var = getVariableID(DebugVariable(DAI));
1394 // Something has gone wrong if VarsWithStackSlot doesn't contain a variable
1395 // that is linked to a store.
1396 assert(VarsWithStackSlot->count(getAggregate(DAI)) &&
1397 "expected DAI's variable to have stack slot");
1398
1399 Assignment AV = Assignment::makeFromMemDef(getIDFromInst(I));
1400 addMemDef(LiveSet, Var, AV);
1401
1402 LLVM_DEBUG(dbgs() << " linked to " << *DAI << "\n");
1403 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var))
1404 << " -> ");
1405
1406 // The last assignment to the stack is now AV. Check if the last debug
1407 // assignment has a matching Assignment.
1408 if (hasVarWithAssignment(Var, AV, LiveSet->DebugValue)) {
1409 // The StackHomeValue and DebugValue for this variable match so we can
1410 // emit a stack home location here.
1411 LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
1412 LLVM_DEBUG(dbgs() << " Stack val: "; AV.dump(dbgs()); dbgs() << "\n");
1413 LLVM_DEBUG(dbgs() << " Debug val: ";
1414 LiveSet->DebugValue[Var].dump(dbgs()); dbgs() << "\n");
1415 setLocKind(LiveSet, Var, LocKind::Mem);
1416 emitDbgValue(LocKind::Mem, DAI, &I);
1417 continue;
1418 }
1419
1420 // The StackHomeValue and DebugValue for this variable do not match. I.e.
1421 // The value currently stored in the stack is not what we'd expect to
1422 // see, so we cannot use emit a stack home location here. Now we will
1423 // look at the live LocKind for the variable and determine an appropriate
1424 // dbg.value to emit.
1425 LocKind PrevLoc = getLocKind(LiveSet, Var);
1426 switch (PrevLoc) {
1427 case LocKind::Val: {
1428 // The value in memory in memory has changed but we're not currently
1429 // using the memory location. Do nothing.
1430 LLVM_DEBUG(dbgs() << "Val, (unchanged)\n";);
1431 setLocKind(LiveSet, Var, LocKind::Val);
1432 } break;
1433 case LocKind::Mem: {
1434 // There's been an assignment to memory that we were using as a
1435 // location for this variable, and the Assignment doesn't match what
1436 // we'd expect to see in memory.
1437 if (LiveSet->DebugValue[Var].Status == Assignment::NoneOrPhi) {
1438 // We need to terminate any previously open location now.
1439 LLVM_DEBUG(dbgs() << "None, No Debug value available\n";);
1440 setLocKind(LiveSet, Var, LocKind::None);
1441 emitDbgValue(LocKind::None, DAI, &I);
1442 } else {
1443 // The previous DebugValue Value can be used here.
1444 LLVM_DEBUG(dbgs() << "Val, Debug value is Known\n";);
1445 setLocKind(LiveSet, Var, LocKind::Val);
1446 Assignment PrevAV = LiveSet->DebugValue.lookup(Var);
1447 if (PrevAV.Source) {
1448 emitDbgValue(LocKind::Val, PrevAV.Source, &I);
1449 } else {
1450 // PrevAV.Source is nullptr so we must emit undef here.
1451 emitDbgValue(LocKind::None, DAI, &I);
1452 }
1453 }
1454 } break;
1455 case LocKind::None: {
1456 // There's been an assignment to memory and we currently are
1457 // not tracking a location for the variable. Do not emit anything.
1458 LLVM_DEBUG(dbgs() << "None, (unchanged)\n";);
1459 setLocKind(LiveSet, Var, LocKind::None);
1460 } break;
1461 }
1462 }
1463 }
1464
processDbgAssign(DbgAssignIntrinsic & DAI,BlockInfo * LiveSet)1465 void AssignmentTrackingLowering::processDbgAssign(DbgAssignIntrinsic &DAI,
1466 BlockInfo *LiveSet) {
1467 // Only bother tracking variables that are at some point stack homed. Other
1468 // variables can be dealt with trivially later.
1469 if (!VarsWithStackSlot->count(getAggregate(&DAI)))
1470 return;
1471
1472 VariableID Var = getVariableID(DebugVariable(&DAI));
1473 Assignment AV = Assignment::make(getIDFromMarker(DAI), &DAI);
1474 addDbgDef(LiveSet, Var, AV);
1475
1476 LLVM_DEBUG(dbgs() << "processDbgAssign on " << DAI << "\n";);
1477 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var))
1478 << " -> ");
1479
1480 // Check if the DebugValue and StackHomeValue both hold the same
1481 // Assignment.
1482 if (hasVarWithAssignment(Var, AV, LiveSet->StackHomeValue)) {
1483 // They match. We can use the stack home because the debug intrinsics state
1484 // that an assignment happened here, and we know that specific assignment
1485 // was the last one to take place in memory for this variable.
1486 LocKind Kind;
1487 if (DAI.isKillAddress()) {
1488 LLVM_DEBUG(
1489 dbgs()
1490 << "Val, Stack matches Debug program but address is killed\n";);
1491 Kind = LocKind::Val;
1492 } else {
1493 LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
1494 Kind = LocKind::Mem;
1495 };
1496 setLocKind(LiveSet, Var, Kind);
1497 emitDbgValue(Kind, &DAI, &DAI);
1498 } else {
1499 // The last assignment to the memory location isn't the one that we want to
1500 // show to the user so emit a dbg.value(Value). Value may be undef.
1501 LLVM_DEBUG(dbgs() << "Val, Stack contents is unknown\n";);
1502 setLocKind(LiveSet, Var, LocKind::Val);
1503 emitDbgValue(LocKind::Val, &DAI, &DAI);
1504 }
1505 }
1506
processDbgValue(DbgValueInst & DVI,BlockInfo * LiveSet)1507 void AssignmentTrackingLowering::processDbgValue(DbgValueInst &DVI,
1508 BlockInfo *LiveSet) {
1509 // Only other tracking variables that are at some point stack homed.
1510 // Other variables can be dealt with trivally later.
1511 if (!VarsWithStackSlot->count(getAggregate(&DVI)))
1512 return;
1513
1514 VariableID Var = getVariableID(DebugVariable(&DVI));
1515 // We have no ID to create an Assignment with so we mark this assignment as
1516 // NoneOrPhi. Note that the dbg.value still exists, we just cannot determine
1517 // the assignment responsible for setting this value.
1518 // This is fine; dbg.values are essentially interchangable with unlinked
1519 // dbg.assigns, and some passes such as mem2reg and instcombine add them to
1520 // PHIs for promoted variables.
1521 Assignment AV = Assignment::makeNoneOrPhi();
1522 addDbgDef(LiveSet, Var, AV);
1523
1524 LLVM_DEBUG(dbgs() << "processDbgValue on " << DVI << "\n";);
1525 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var))
1526 << " -> Val, dbg.value override");
1527
1528 setLocKind(LiveSet, Var, LocKind::Val);
1529 emitDbgValue(LocKind::Val, &DVI, &DVI);
1530 }
1531
processDbgInstruction(Instruction & I,AssignmentTrackingLowering::BlockInfo * LiveSet)1532 void AssignmentTrackingLowering::processDbgInstruction(
1533 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1534 assert(!isa<DbgAddrIntrinsic>(&I) && "unexpected dbg.addr");
1535 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&I))
1536 processDbgAssign(*DAI, LiveSet);
1537 else if (auto *DVI = dyn_cast<DbgValueInst>(&I))
1538 processDbgValue(*DVI, LiveSet);
1539 }
1540
resetInsertionPoint(Instruction & After)1541 void AssignmentTrackingLowering::resetInsertionPoint(Instruction &After) {
1542 assert(!After.isTerminator() && "Can't insert after a terminator");
1543 auto R = InsertBeforeMap.find(After.getNextNode());
1544 if (R == InsertBeforeMap.end())
1545 return;
1546 R->second.clear();
1547 }
1548
process(BasicBlock & BB,BlockInfo * LiveSet)1549 void AssignmentTrackingLowering::process(BasicBlock &BB, BlockInfo *LiveSet) {
1550 for (auto II = BB.begin(), EI = BB.end(); II != EI;) {
1551 assert(VarsTouchedThisFrame.empty());
1552 // Process the instructions in "frames". A "frame" includes a single
1553 // non-debug instruction followed any debug instructions before the
1554 // next non-debug instruction.
1555 if (!isa<DbgInfoIntrinsic>(&*II)) {
1556 if (II->isTerminator())
1557 break;
1558 resetInsertionPoint(*II);
1559 processNonDbgInstruction(*II, LiveSet);
1560 assert(LiveSet->isValid());
1561 ++II;
1562 }
1563 while (II != EI) {
1564 if (!isa<DbgInfoIntrinsic>(&*II))
1565 break;
1566 resetInsertionPoint(*II);
1567 processDbgInstruction(*II, LiveSet);
1568 assert(LiveSet->isValid());
1569 ++II;
1570 }
1571
1572 // We've processed everything in the "frame". Now determine which variables
1573 // cannot be represented by a dbg.declare.
1574 for (auto Var : VarsTouchedThisFrame) {
1575 LocKind Loc = getLocKind(LiveSet, Var);
1576 // If a variable's LocKind is anything other than LocKind::Mem then we
1577 // must note that it cannot be represented with a dbg.declare.
1578 // Note that this check is enough without having to check the result of
1579 // joins() because for join to produce anything other than Mem after
1580 // we've already seen a Mem we'd be joining None or Val with Mem. In that
1581 // case, we've already hit this codepath when we set the LocKind to Val
1582 // or None in that block.
1583 if (Loc != LocKind::Mem) {
1584 DebugVariable DbgVar = FnVarLocs->getVariable(Var);
1585 DebugAggregate Aggr{DbgVar.getVariable(), DbgVar.getInlinedAt()};
1586 NotAlwaysStackHomed.insert(Aggr);
1587 }
1588 }
1589 VarsTouchedThisFrame.clear();
1590 }
1591 }
1592
1593 AssignmentTrackingLowering::LocKind
joinKind(LocKind A,LocKind B)1594 AssignmentTrackingLowering::joinKind(LocKind A, LocKind B) {
1595 // Partial order:
1596 // None > Mem, Val
1597 return A == B ? A : LocKind::None;
1598 }
1599
1600 AssignmentTrackingLowering::LocMap
joinLocMap(const LocMap & A,const LocMap & B)1601 AssignmentTrackingLowering::joinLocMap(const LocMap &A, const LocMap &B) {
1602 // Join A and B.
1603 //
1604 // U = join(a, b) for a in A, b in B where Var(a) == Var(b)
1605 // D = join(x, ⊤) for x where Var(x) is in A xor B
1606 // Join = U ∪ D
1607 //
1608 // This is achieved by performing a join on elements from A and B with
1609 // variables common to both A and B (join elements indexed by var intersect),
1610 // then adding LocKind::None elements for vars in A xor B. The latter part is
1611 // equivalent to performing join on elements with variables in A xor B with
1612 // LocKind::None (⊤) since join(x, ⊤) = ⊤.
1613 LocMap Join;
1614 SmallVector<VariableID, 16> SymmetricDifference;
1615 // Insert the join of the elements with common vars into Join. Add the
1616 // remaining elements to into SymmetricDifference.
1617 for (const auto &[Var, Loc] : A) {
1618 // If this Var doesn't exist in B then add it to the symmetric difference
1619 // set.
1620 auto R = B.find(Var);
1621 if (R == B.end()) {
1622 SymmetricDifference.push_back(Var);
1623 continue;
1624 }
1625 // There is an entry for Var in both, join it.
1626 Join[Var] = joinKind(Loc, R->second);
1627 }
1628 unsigned IntersectSize = Join.size();
1629 (void)IntersectSize;
1630
1631 // Add the elements in B with variables that are not in A into
1632 // SymmetricDifference.
1633 for (const auto &Pair : B) {
1634 VariableID Var = Pair.first;
1635 if (A.count(Var) == 0)
1636 SymmetricDifference.push_back(Var);
1637 }
1638
1639 // Add SymmetricDifference elements to Join and return the result.
1640 for (const auto &Var : SymmetricDifference)
1641 Join.insert({Var, LocKind::None});
1642
1643 assert(Join.size() == (IntersectSize + SymmetricDifference.size()));
1644 assert(Join.size() >= A.size() && Join.size() >= B.size());
1645 return Join;
1646 }
1647
1648 AssignmentTrackingLowering::Assignment
joinAssignment(const Assignment & A,const Assignment & B)1649 AssignmentTrackingLowering::joinAssignment(const Assignment &A,
1650 const Assignment &B) {
1651 // Partial order:
1652 // NoneOrPhi(null, null) > Known(v, ?s)
1653
1654 // If either are NoneOrPhi the join is NoneOrPhi.
1655 // If either value is different then the result is
1656 // NoneOrPhi (joining two values is a Phi).
1657 if (!A.isSameSourceAssignment(B))
1658 return Assignment::makeNoneOrPhi();
1659 if (A.Status == Assignment::NoneOrPhi)
1660 return Assignment::makeNoneOrPhi();
1661
1662 // Source is used to lookup the value + expression in the debug program if
1663 // the stack slot gets assigned a value earlier than expected. Because
1664 // we're only tracking the one dbg.assign, we can't capture debug PHIs.
1665 // It's unlikely that we're losing out on much coverage by avoiding that
1666 // extra work.
1667 // The Source may differ in this situation:
1668 // Pred.1:
1669 // dbg.assign i32 0, ..., !1, ...
1670 // Pred.2:
1671 // dbg.assign i32 1, ..., !1, ...
1672 // Here the same assignment (!1) was performed in both preds in the source,
1673 // but we can't use either one unless they are identical (e.g. .we don't
1674 // want to arbitrarily pick between constant values).
1675 auto JoinSource = [&]() -> DbgAssignIntrinsic * {
1676 if (A.Source == B.Source)
1677 return A.Source;
1678 if (A.Source == nullptr || B.Source == nullptr)
1679 return nullptr;
1680 if (A.Source->isIdenticalTo(B.Source))
1681 return A.Source;
1682 return nullptr;
1683 };
1684 DbgAssignIntrinsic *Source = JoinSource();
1685 assert(A.Status == B.Status && A.Status == Assignment::Known);
1686 assert(A.ID == B.ID);
1687 return Assignment::make(A.ID, Source);
1688 }
1689
1690 AssignmentTrackingLowering::AssignmentMap
joinAssignmentMap(const AssignmentMap & A,const AssignmentMap & B)1691 AssignmentTrackingLowering::joinAssignmentMap(const AssignmentMap &A,
1692 const AssignmentMap &B) {
1693 // Join A and B.
1694 //
1695 // U = join(a, b) for a in A, b in B where Var(a) == Var(b)
1696 // D = join(x, ⊤) for x where Var(x) is in A xor B
1697 // Join = U ∪ D
1698 //
1699 // This is achieved by performing a join on elements from A and B with
1700 // variables common to both A and B (join elements indexed by var intersect),
1701 // then adding LocKind::None elements for vars in A xor B. The latter part is
1702 // equivalent to performing join on elements with variables in A xor B with
1703 // Status::NoneOrPhi (⊤) since join(x, ⊤) = ⊤.
1704 AssignmentMap Join;
1705 SmallVector<VariableID, 16> SymmetricDifference;
1706 // Insert the join of the elements with common vars into Join. Add the
1707 // remaining elements to into SymmetricDifference.
1708 for (const auto &[Var, AV] : A) {
1709 // If this Var doesn't exist in B then add it to the symmetric difference
1710 // set.
1711 auto R = B.find(Var);
1712 if (R == B.end()) {
1713 SymmetricDifference.push_back(Var);
1714 continue;
1715 }
1716 // There is an entry for Var in both, join it.
1717 Join[Var] = joinAssignment(AV, R->second);
1718 }
1719 unsigned IntersectSize = Join.size();
1720 (void)IntersectSize;
1721
1722 // Add the elements in B with variables that are not in A into
1723 // SymmetricDifference.
1724 for (const auto &Pair : B) {
1725 VariableID Var = Pair.first;
1726 if (A.count(Var) == 0)
1727 SymmetricDifference.push_back(Var);
1728 }
1729
1730 // Add SymmetricDifference elements to Join and return the result.
1731 for (auto Var : SymmetricDifference)
1732 Join.insert({Var, Assignment::makeNoneOrPhi()});
1733
1734 assert(Join.size() == (IntersectSize + SymmetricDifference.size()));
1735 assert(Join.size() >= A.size() && Join.size() >= B.size());
1736 return Join;
1737 }
1738
1739 AssignmentTrackingLowering::BlockInfo
joinBlockInfo(const BlockInfo & A,const BlockInfo & B)1740 AssignmentTrackingLowering::joinBlockInfo(const BlockInfo &A,
1741 const BlockInfo &B) {
1742 BlockInfo Join;
1743 Join.LiveLoc = joinLocMap(A.LiveLoc, B.LiveLoc);
1744 Join.StackHomeValue = joinAssignmentMap(A.StackHomeValue, B.StackHomeValue);
1745 Join.DebugValue = joinAssignmentMap(A.DebugValue, B.DebugValue);
1746 assert(Join.isValid());
1747 return Join;
1748 }
1749
join(const BasicBlock & BB,const SmallPtrSet<BasicBlock *,16> & Visited)1750 bool AssignmentTrackingLowering::join(
1751 const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited) {
1752 BlockInfo BBLiveIn;
1753 bool FirstJoin = true;
1754 // LiveIn locs for BB is the join of the already-processed preds' LiveOut
1755 // locs.
1756 for (auto I = pred_begin(&BB), E = pred_end(&BB); I != E; I++) {
1757 // Ignore backedges if we have not visited the predecessor yet. As the
1758 // predecessor hasn't yet had locations propagated into it, most locations
1759 // will not yet be valid, so treat them as all being uninitialized and
1760 // potentially valid. If a location guessed to be correct here is
1761 // invalidated later, we will remove it when we revisit this block. This
1762 // is essentially the same as initialising all LocKinds and Assignments to
1763 // an implicit ⊥ value which is the identity value for the join operation.
1764 const BasicBlock *Pred = *I;
1765 if (!Visited.count(Pred))
1766 continue;
1767
1768 auto PredLiveOut = LiveOut.find(Pred);
1769 // Pred must have been processed already. See comment at start of this loop.
1770 assert(PredLiveOut != LiveOut.end());
1771
1772 // Perform the join of BBLiveIn (current live-in info) and PrevLiveOut.
1773 if (FirstJoin)
1774 BBLiveIn = PredLiveOut->second;
1775 else
1776 BBLiveIn = joinBlockInfo(std::move(BBLiveIn), PredLiveOut->second);
1777 FirstJoin = false;
1778 }
1779
1780 auto CurrentLiveInEntry = LiveIn.find(&BB);
1781 // Check if there isn't an entry, or there is but the LiveIn set has changed
1782 // (expensive check).
1783 if (CurrentLiveInEntry == LiveIn.end() ||
1784 BBLiveIn != CurrentLiveInEntry->second) {
1785 LiveIn[&BB] = std::move(BBLiveIn);
1786 // A change has occured.
1787 return true;
1788 }
1789 // No change.
1790 return false;
1791 }
1792
1793 /// Return true if A fully contains B.
fullyContains(DIExpression::FragmentInfo A,DIExpression::FragmentInfo B)1794 static bool fullyContains(DIExpression::FragmentInfo A,
1795 DIExpression::FragmentInfo B) {
1796 auto ALeft = A.OffsetInBits;
1797 auto BLeft = B.OffsetInBits;
1798 if (BLeft < ALeft)
1799 return false;
1800
1801 auto ARight = ALeft + A.SizeInBits;
1802 auto BRight = BLeft + B.SizeInBits;
1803 if (BRight > ARight)
1804 return false;
1805 return true;
1806 }
1807
1808 static std::optional<at::AssignmentInfo>
getUntaggedStoreAssignmentInfo(const Instruction & I,const DataLayout & Layout)1809 getUntaggedStoreAssignmentInfo(const Instruction &I, const DataLayout &Layout) {
1810 // Don't bother checking if this is an AllocaInst. We know this
1811 // instruction has no tag which means there are no variables associated
1812 // with it.
1813 if (const auto *SI = dyn_cast<StoreInst>(&I))
1814 return at::getAssignmentInfo(Layout, SI);
1815 if (const auto *MI = dyn_cast<MemIntrinsic>(&I))
1816 return at::getAssignmentInfo(Layout, MI);
1817 // Alloca or non-store-like inst.
1818 return std::nullopt;
1819 }
1820
1821 /// Build a map of {Variable x: Variables y} where all variable fragments
1822 /// contained within the variable fragment x are in set y. This means that
1823 /// y does not contain all overlaps because partial overlaps are excluded.
1824 ///
1825 /// While we're iterating over the function, add single location defs for
1826 /// dbg.declares to \p FnVarLocs
1827 ///
1828 /// Finally, populate UntaggedStoreVars with a mapping of untagged stores to
1829 /// the stored-to variable fragments.
1830 ///
1831 /// These tasks are bundled together to reduce the number of times we need
1832 /// to iterate over the function as they can be achieved together in one pass.
buildOverlapMapAndRecordDeclares(Function & Fn,FunctionVarLocsBuilder * FnVarLocs,AssignmentTrackingLowering::UntaggedStoreAssignmentMap & UntaggedStoreVars)1833 static AssignmentTrackingLowering::OverlapMap buildOverlapMapAndRecordDeclares(
1834 Function &Fn, FunctionVarLocsBuilder *FnVarLocs,
1835 AssignmentTrackingLowering::UntaggedStoreAssignmentMap &UntaggedStoreVars) {
1836 DenseSet<DebugVariable> Seen;
1837 // Map of Variable: [Fragments].
1838 DenseMap<DebugAggregate, SmallVector<DebugVariable, 8>> FragmentMap;
1839 // Iterate over all instructions:
1840 // - dbg.declare -> add single location variable record
1841 // - dbg.* -> Add fragments to FragmentMap
1842 // - untagged store -> Add fragments to FragmentMap and update
1843 // UntaggedStoreVars.
1844 // We need to add fragments for untagged stores too so that we can correctly
1845 // clobber overlapped fragment locations later.
1846 for (auto &BB : Fn) {
1847 for (auto &I : BB) {
1848 if (auto *DDI = dyn_cast<DbgDeclareInst>(&I)) {
1849 FnVarLocs->addSingleLocVar(DebugVariable(DDI), DDI->getExpression(),
1850 DDI->getDebugLoc(), DDI->getAddress());
1851 } else if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1852 DebugVariable DV = DebugVariable(DII);
1853 DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()};
1854 if (Seen.insert(DV).second)
1855 FragmentMap[DA].push_back(DV);
1856 } else if (auto Info = getUntaggedStoreAssignmentInfo(
1857 I, Fn.getParent()->getDataLayout())) {
1858 // Find markers linked to this alloca.
1859 for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(Info->Base)) {
1860 // Discard the fragment if it covers the entire variable.
1861 std::optional<DIExpression::FragmentInfo> FragInfo =
1862 [&Info, DAI]() -> std::optional<DIExpression::FragmentInfo> {
1863 DIExpression::FragmentInfo F;
1864 F.OffsetInBits = Info->OffsetInBits;
1865 F.SizeInBits = Info->SizeInBits;
1866 if (auto ExistingFrag = DAI->getExpression()->getFragmentInfo())
1867 F.OffsetInBits += ExistingFrag->OffsetInBits;
1868 if (auto Sz = DAI->getVariable()->getSizeInBits()) {
1869 if (F.OffsetInBits == 0 && F.SizeInBits == *Sz)
1870 return std::nullopt;
1871 }
1872 return F;
1873 }();
1874
1875 DebugVariable DV = DebugVariable(DAI->getVariable(), FragInfo,
1876 DAI->getDebugLoc().getInlinedAt());
1877 DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()};
1878
1879 // Cache this info for later.
1880 UntaggedStoreVars[&I].push_back(
1881 {FnVarLocs->insertVariable(DV), *Info});
1882
1883 if (Seen.insert(DV).second)
1884 FragmentMap[DA].push_back(DV);
1885 }
1886 }
1887 }
1888 }
1889
1890 // Sort the fragment map for each DebugAggregate in non-descending
1891 // order of fragment size. Assert no entries are duplicates.
1892 for (auto &Pair : FragmentMap) {
1893 SmallVector<DebugVariable, 8> &Frags = Pair.second;
1894 std::sort(
1895 Frags.begin(), Frags.end(), [](DebugVariable Next, DebugVariable Elmt) {
1896 assert(!(Elmt.getFragmentOrDefault() == Next.getFragmentOrDefault()));
1897 return Elmt.getFragmentOrDefault().SizeInBits >
1898 Next.getFragmentOrDefault().SizeInBits;
1899 });
1900 }
1901
1902 // Build the map.
1903 AssignmentTrackingLowering::OverlapMap Map;
1904 for (auto Pair : FragmentMap) {
1905 auto &Frags = Pair.second;
1906 for (auto It = Frags.begin(), IEnd = Frags.end(); It != IEnd; ++It) {
1907 DIExpression::FragmentInfo Frag = It->getFragmentOrDefault();
1908 // Find the frags that this is contained within.
1909 //
1910 // Because Frags is sorted by size and none have the same offset and
1911 // size, we know that this frag can only be contained by subsequent
1912 // elements.
1913 SmallVector<DebugVariable, 8>::iterator OtherIt = It;
1914 ++OtherIt;
1915 VariableID ThisVar = FnVarLocs->insertVariable(*It);
1916 for (; OtherIt != IEnd; ++OtherIt) {
1917 DIExpression::FragmentInfo OtherFrag = OtherIt->getFragmentOrDefault();
1918 VariableID OtherVar = FnVarLocs->insertVariable(*OtherIt);
1919 if (fullyContains(OtherFrag, Frag))
1920 Map[OtherVar].push_back(ThisVar);
1921 }
1922 }
1923 }
1924
1925 return Map;
1926 }
1927
run(FunctionVarLocsBuilder * FnVarLocsBuilder)1928 bool AssignmentTrackingLowering::run(FunctionVarLocsBuilder *FnVarLocsBuilder) {
1929 if (Fn.size() > MaxNumBlocks) {
1930 LLVM_DEBUG(dbgs() << "[AT] Dropping var locs in: " << Fn.getName()
1931 << ": too many blocks (" << Fn.size() << ")\n");
1932 at::deleteAll(&Fn);
1933 return false;
1934 }
1935
1936 FnVarLocs = FnVarLocsBuilder;
1937
1938 // The general structure here is inspired by VarLocBasedImpl.cpp
1939 // (LiveDebugValues).
1940
1941 // Build the variable fragment overlap map.
1942 // Note that this pass doesn't handle partial overlaps correctly (FWIW
1943 // neither does LiveDebugVariables) because that is difficult to do and
1944 // appears to be rare occurance.
1945 VarContains =
1946 buildOverlapMapAndRecordDeclares(Fn, FnVarLocs, UntaggedStoreVars);
1947
1948 // Prepare for traversal.
1949 ReversePostOrderTraversal<Function *> RPOT(&Fn);
1950 std::priority_queue<unsigned int, std::vector<unsigned int>,
1951 std::greater<unsigned int>>
1952 Worklist;
1953 std::priority_queue<unsigned int, std::vector<unsigned int>,
1954 std::greater<unsigned int>>
1955 Pending;
1956 DenseMap<unsigned int, BasicBlock *> OrderToBB;
1957 DenseMap<BasicBlock *, unsigned int> BBToOrder;
1958 { // Init OrderToBB and BBToOrder.
1959 unsigned int RPONumber = 0;
1960 for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
1961 OrderToBB[RPONumber] = *RI;
1962 BBToOrder[*RI] = RPONumber;
1963 Worklist.push(RPONumber);
1964 ++RPONumber;
1965 }
1966 LiveIn.init(RPONumber);
1967 LiveOut.init(RPONumber);
1968 }
1969
1970 // Perform the traversal.
1971 //
1972 // This is a standard "union of predecessor outs" dataflow problem. To solve
1973 // it, we perform join() and process() using the two worklist method until
1974 // the LiveIn data for each block becomes unchanging. The "proof" that this
1975 // terminates can be put together by looking at the comments around LocKind,
1976 // Assignment, and the various join methods, which show that all the elements
1977 // involved are made up of join-semilattices; LiveIn(n) can only
1978 // monotonically increase in value throughout the dataflow.
1979 //
1980 SmallPtrSet<BasicBlock *, 16> Visited;
1981 while (!Worklist.empty()) {
1982 // We track what is on the pending worklist to avoid inserting the same
1983 // thing twice.
1984 SmallPtrSet<BasicBlock *, 16> OnPending;
1985 LLVM_DEBUG(dbgs() << "Processing Worklist\n");
1986 while (!Worklist.empty()) {
1987 BasicBlock *BB = OrderToBB[Worklist.top()];
1988 LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n");
1989 Worklist.pop();
1990 bool InChanged = join(*BB, Visited);
1991 // Always consider LiveIn changed on the first visit.
1992 InChanged |= Visited.insert(BB).second;
1993 if (InChanged) {
1994 LLVM_DEBUG(dbgs() << BB->getName() << " has new InLocs, process it\n");
1995 // Mutate a copy of LiveIn while processing BB. After calling process
1996 // LiveSet is the LiveOut set for BB.
1997 BlockInfo LiveSet = LiveIn[BB];
1998
1999 // Process the instructions in the block.
2000 process(*BB, &LiveSet);
2001
2002 // Relatively expensive check: has anything changed in LiveOut for BB?
2003 if (LiveOut[BB] != LiveSet) {
2004 LLVM_DEBUG(dbgs() << BB->getName()
2005 << " has new OutLocs, add succs to worklist: [ ");
2006 LiveOut[BB] = std::move(LiveSet);
2007 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) {
2008 if (OnPending.insert(*I).second) {
2009 LLVM_DEBUG(dbgs() << I->getName() << " ");
2010 Pending.push(BBToOrder[*I]);
2011 }
2012 }
2013 LLVM_DEBUG(dbgs() << "]\n");
2014 }
2015 }
2016 }
2017 Worklist.swap(Pending);
2018 // At this point, pending must be empty, since it was just the empty
2019 // worklist
2020 assert(Pending.empty() && "Pending should be empty");
2021 }
2022
2023 // That's the hard part over. Now we just have some admin to do.
2024
2025 // Record whether we inserted any intrinsics.
2026 bool InsertedAnyIntrinsics = false;
2027
2028 // Identify and add defs for single location variables.
2029 //
2030 // Go through all of the defs that we plan to add. If the aggregate variable
2031 // it's a part of is not in the NotAlwaysStackHomed set we can emit a single
2032 // location def and omit the rest. Add an entry to AlwaysStackHomed so that
2033 // we can identify those uneeded defs later.
2034 DenseSet<DebugAggregate> AlwaysStackHomed;
2035 for (const auto &Pair : InsertBeforeMap) {
2036 const auto &Vec = Pair.second;
2037 for (VarLocInfo VarLoc : Vec) {
2038 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
2039 DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()};
2040
2041 // Skip this Var if it's not always stack homed.
2042 if (NotAlwaysStackHomed.contains(Aggr))
2043 continue;
2044
2045 // Skip complex cases such as when different fragments of a variable have
2046 // been split into different allocas. Skipping in this case means falling
2047 // back to using a list of defs (which could reduce coverage, but is no
2048 // less correct).
2049 bool Simple =
2050 VarLoc.Expr->getNumElements() == 1 && VarLoc.Expr->startsWithDeref();
2051 if (!Simple) {
2052 NotAlwaysStackHomed.insert(Aggr);
2053 continue;
2054 }
2055
2056 // All source assignments to this variable remain and all stores to any
2057 // part of the variable store to the same address (with varying
2058 // offsets). We can just emit a single location for the whole variable.
2059 //
2060 // Unless we've already done so, create the single location def now.
2061 if (AlwaysStackHomed.insert(Aggr).second) {
2062 assert(isa<AllocaInst>(VarLoc.V));
2063 // TODO: When more complex cases are handled VarLoc.Expr should be
2064 // built appropriately rather than always using an empty DIExpression.
2065 // The assert below is a reminder.
2066 assert(Simple);
2067 VarLoc.Expr = DIExpression::get(Fn.getContext(), std::nullopt);
2068 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
2069 FnVarLocs->addSingleLocVar(Var, VarLoc.Expr, VarLoc.DL, VarLoc.V);
2070 InsertedAnyIntrinsics = true;
2071 }
2072 }
2073 }
2074
2075 // Insert the other DEFs.
2076 for (const auto &[InsertBefore, Vec] : InsertBeforeMap) {
2077 SmallVector<VarLocInfo> NewDefs;
2078 for (const VarLocInfo &VarLoc : Vec) {
2079 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
2080 DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()};
2081 // If this variable is always stack homed then we have already inserted a
2082 // dbg.declare and deleted this dbg.value.
2083 if (AlwaysStackHomed.contains(Aggr))
2084 continue;
2085 NewDefs.push_back(VarLoc);
2086 InsertedAnyIntrinsics = true;
2087 }
2088
2089 FnVarLocs->setWedge(InsertBefore, std::move(NewDefs));
2090 }
2091
2092 InsertedAnyIntrinsics |= emitPromotedVarLocs(FnVarLocs);
2093
2094 return InsertedAnyIntrinsics;
2095 }
2096
emitPromotedVarLocs(FunctionVarLocsBuilder * FnVarLocs)2097 bool AssignmentTrackingLowering::emitPromotedVarLocs(
2098 FunctionVarLocsBuilder *FnVarLocs) {
2099 bool InsertedAnyIntrinsics = false;
2100 // Go through every block, translating debug intrinsics for fully promoted
2101 // variables into FnVarLocs location defs. No analysis required for these.
2102 for (auto &BB : Fn) {
2103 for (auto &I : BB) {
2104 // Skip instructions other than dbg.values and dbg.assigns.
2105 auto *DVI = dyn_cast<DbgValueInst>(&I);
2106 if (!DVI)
2107 continue;
2108 // Skip variables that haven't been promoted - we've dealt with those
2109 // already.
2110 if (VarsWithStackSlot->contains(getAggregate(DVI)))
2111 continue;
2112 // Wrapper to get a single value (or undef) from DVI.
2113 auto GetValue = [DVI]() -> Value * {
2114 // We can't handle variadic DIExpressions yet so treat those as
2115 // kill locations.
2116 if (DVI->isKillLocation() || DVI->getValue() == nullptr ||
2117 DVI->hasArgList())
2118 return PoisonValue::get(Type::getInt32Ty(DVI->getContext()));
2119 return DVI->getValue();
2120 };
2121 Instruction *InsertBefore = I.getNextNode();
2122 assert(InsertBefore && "Unexpected: debug intrinsics after a terminator");
2123 FnVarLocs->addVarLoc(InsertBefore, DebugVariable(DVI),
2124 DVI->getExpression(), DVI->getDebugLoc(),
2125 GetValue());
2126 InsertedAnyIntrinsics = true;
2127 }
2128 }
2129 return InsertedAnyIntrinsics;
2130 }
2131
2132 /// Remove redundant definitions within sequences of consecutive location defs.
2133 /// This is done using a backward scan to keep the last def describing a
2134 /// specific variable/fragment.
2135 ///
2136 /// This implements removeRedundantDbgInstrsUsingBackwardScan from
2137 /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
2138 /// FunctionVarLocsBuilder instead of with intrinsics.
2139 static bool
removeRedundantDbgLocsUsingBackwardScan(const BasicBlock * BB,FunctionVarLocsBuilder & FnVarLocs)2140 removeRedundantDbgLocsUsingBackwardScan(const BasicBlock *BB,
2141 FunctionVarLocsBuilder &FnVarLocs) {
2142 bool Changed = false;
2143 SmallDenseSet<DebugVariable> VariableSet;
2144
2145 // Scan over the entire block, not just over the instructions mapped by
2146 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
2147 // instructions.
2148 for (const Instruction &I : reverse(*BB)) {
2149 if (!isa<DbgVariableIntrinsic>(I)) {
2150 // Sequence of consecutive defs ended. Clear map for the next one.
2151 VariableSet.clear();
2152 }
2153
2154 // Get the location defs that start just before this instruction.
2155 const auto *Locs = FnVarLocs.getWedge(&I);
2156 if (!Locs)
2157 continue;
2158
2159 NumWedgesScanned++;
2160 bool ChangedThisWedge = false;
2161 // The new pruned set of defs, reversed because we're scanning backwards.
2162 SmallVector<VarLocInfo> NewDefsReversed;
2163
2164 // Iterate over the existing defs in reverse.
2165 for (auto RIt = Locs->rbegin(), REnd = Locs->rend(); RIt != REnd; ++RIt) {
2166 NumDefsScanned++;
2167 const DebugVariable &Key = FnVarLocs.getVariable(RIt->VariableID);
2168 bool FirstDefOfFragment = VariableSet.insert(Key).second;
2169
2170 // If the same variable fragment is described more than once it is enough
2171 // to keep the last one (i.e. the first found in this reverse iteration).
2172 if (FirstDefOfFragment) {
2173 // New def found: keep it.
2174 NewDefsReversed.push_back(*RIt);
2175 } else {
2176 // Redundant def found: throw it away. Since the wedge of defs is being
2177 // rebuilt, doing nothing is the same as deleting an entry.
2178 ChangedThisWedge = true;
2179 NumDefsRemoved++;
2180 }
2181 continue;
2182 }
2183
2184 // Un-reverse the defs and replace the wedge with the pruned version.
2185 if (ChangedThisWedge) {
2186 std::reverse(NewDefsReversed.begin(), NewDefsReversed.end());
2187 FnVarLocs.setWedge(&I, std::move(NewDefsReversed));
2188 NumWedgesChanged++;
2189 Changed = true;
2190 }
2191 }
2192
2193 return Changed;
2194 }
2195
2196 /// Remove redundant location defs using a forward scan. This can remove a
2197 /// location definition that is redundant due to indicating that a variable has
2198 /// the same value as is already being indicated by an earlier def.
2199 ///
2200 /// This implements removeRedundantDbgInstrsUsingForwardScan from
2201 /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
2202 /// FunctionVarLocsBuilder instead of with intrinsics
2203 static bool
removeRedundantDbgLocsUsingForwardScan(const BasicBlock * BB,FunctionVarLocsBuilder & FnVarLocs)2204 removeRedundantDbgLocsUsingForwardScan(const BasicBlock *BB,
2205 FunctionVarLocsBuilder &FnVarLocs) {
2206 bool Changed = false;
2207 DenseMap<DebugVariable, std::pair<Value *, DIExpression *>> VariableMap;
2208
2209 // Scan over the entire block, not just over the instructions mapped by
2210 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
2211 // instructions.
2212 for (const Instruction &I : *BB) {
2213 // Get the defs that come just before this instruction.
2214 const auto *Locs = FnVarLocs.getWedge(&I);
2215 if (!Locs)
2216 continue;
2217
2218 NumWedgesScanned++;
2219 bool ChangedThisWedge = false;
2220 // The new pruned set of defs.
2221 SmallVector<VarLocInfo> NewDefs;
2222
2223 // Iterate over the existing defs.
2224 for (const VarLocInfo &Loc : *Locs) {
2225 NumDefsScanned++;
2226 DebugVariable Key(FnVarLocs.getVariable(Loc.VariableID).getVariable(),
2227 std::nullopt, Loc.DL.getInlinedAt());
2228 auto VMI = VariableMap.find(Key);
2229
2230 // Update the map if we found a new value/expression describing the
2231 // variable, or if the variable wasn't mapped already.
2232 if (VMI == VariableMap.end() || VMI->second.first != Loc.V ||
2233 VMI->second.second != Loc.Expr) {
2234 VariableMap[Key] = {Loc.V, Loc.Expr};
2235 NewDefs.push_back(Loc);
2236 continue;
2237 }
2238
2239 // Did not insert this Loc, which is the same as removing it.
2240 ChangedThisWedge = true;
2241 NumDefsRemoved++;
2242 }
2243
2244 // Replace the existing wedge with the pruned version.
2245 if (ChangedThisWedge) {
2246 FnVarLocs.setWedge(&I, std::move(NewDefs));
2247 NumWedgesChanged++;
2248 Changed = true;
2249 }
2250 }
2251
2252 return Changed;
2253 }
2254
2255 static bool
removeUndefDbgLocsFromEntryBlock(const BasicBlock * BB,FunctionVarLocsBuilder & FnVarLocs)2256 removeUndefDbgLocsFromEntryBlock(const BasicBlock *BB,
2257 FunctionVarLocsBuilder &FnVarLocs) {
2258 assert(BB->isEntryBlock());
2259 // Do extra work to ensure that we remove semantically unimportant undefs.
2260 //
2261 // This is to work around the fact that SelectionDAG will hoist dbg.values
2262 // using argument values to the top of the entry block. That can move arg
2263 // dbg.values before undef and constant dbg.values which they previously
2264 // followed. The easiest thing to do is to just try to feed SelectionDAG
2265 // input it's happy with.
2266 //
2267 // Map of {Variable x: Fragments y} where the fragments y of variable x have
2268 // have at least one non-undef location defined already. Don't use directly,
2269 // instead call DefineBits and HasDefinedBits.
2270 SmallDenseMap<DebugAggregate, SmallDenseSet<DIExpression::FragmentInfo>>
2271 VarsWithDef;
2272 // Specify that V (a fragment of A) has a non-undef location.
2273 auto DefineBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) {
2274 VarsWithDef[A].insert(V.getFragmentOrDefault());
2275 };
2276 // Return true if a non-undef location has been defined for V (a fragment of
2277 // A). Doesn't imply that the location is currently non-undef, just that a
2278 // non-undef location has been seen previously.
2279 auto HasDefinedBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) {
2280 auto FragsIt = VarsWithDef.find(A);
2281 if (FragsIt == VarsWithDef.end())
2282 return false;
2283 return llvm::any_of(FragsIt->second, [V](auto Frag) {
2284 return DIExpression::fragmentsOverlap(Frag, V.getFragmentOrDefault());
2285 });
2286 };
2287
2288 bool Changed = false;
2289 DenseMap<DebugVariable, std::pair<Value *, DIExpression *>> VariableMap;
2290
2291 // Scan over the entire block, not just over the instructions mapped by
2292 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
2293 // instructions.
2294 for (const Instruction &I : *BB) {
2295 // Get the defs that come just before this instruction.
2296 const auto *Locs = FnVarLocs.getWedge(&I);
2297 if (!Locs)
2298 continue;
2299
2300 NumWedgesScanned++;
2301 bool ChangedThisWedge = false;
2302 // The new pruned set of defs.
2303 SmallVector<VarLocInfo> NewDefs;
2304
2305 // Iterate over the existing defs.
2306 for (const VarLocInfo &Loc : *Locs) {
2307 NumDefsScanned++;
2308 DebugAggregate Aggr{FnVarLocs.getVariable(Loc.VariableID).getVariable(),
2309 Loc.DL.getInlinedAt()};
2310 DebugVariable Var = FnVarLocs.getVariable(Loc.VariableID);
2311
2312 // Remove undef entries that are encountered before any non-undef
2313 // intrinsics from the entry block.
2314 if (isa<UndefValue>(Loc.V) && !HasDefinedBits(Aggr, Var)) {
2315 // Did not insert this Loc, which is the same as removing it.
2316 NumDefsRemoved++;
2317 ChangedThisWedge = true;
2318 continue;
2319 }
2320
2321 DefineBits(Aggr, Var);
2322 NewDefs.push_back(Loc);
2323 }
2324
2325 // Replace the existing wedge with the pruned version.
2326 if (ChangedThisWedge) {
2327 FnVarLocs.setWedge(&I, std::move(NewDefs));
2328 NumWedgesChanged++;
2329 Changed = true;
2330 }
2331 }
2332
2333 return Changed;
2334 }
2335
removeRedundantDbgLocs(const BasicBlock * BB,FunctionVarLocsBuilder & FnVarLocs)2336 static bool removeRedundantDbgLocs(const BasicBlock *BB,
2337 FunctionVarLocsBuilder &FnVarLocs) {
2338 bool MadeChanges = false;
2339 MadeChanges |= removeRedundantDbgLocsUsingBackwardScan(BB, FnVarLocs);
2340 if (BB->isEntryBlock())
2341 MadeChanges |= removeUndefDbgLocsFromEntryBlock(BB, FnVarLocs);
2342 MadeChanges |= removeRedundantDbgLocsUsingForwardScan(BB, FnVarLocs);
2343
2344 if (MadeChanges)
2345 LLVM_DEBUG(dbgs() << "Removed redundant dbg locs from: " << BB->getName()
2346 << "\n");
2347 return MadeChanges;
2348 }
2349
findVarsWithStackSlot(Function & Fn)2350 static DenseSet<DebugAggregate> findVarsWithStackSlot(Function &Fn) {
2351 DenseSet<DebugAggregate> Result;
2352 for (auto &BB : Fn) {
2353 for (auto &I : BB) {
2354 // Any variable linked to an instruction is considered
2355 // interesting. Ideally we only need to check Allocas, however, a
2356 // DIAssignID might get dropped from an alloca but not stores. In that
2357 // case, we need to consider the variable interesting for NFC behaviour
2358 // with this change. TODO: Consider only looking at allocas.
2359 for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(&I)) {
2360 Result.insert({DAI->getVariable(), DAI->getDebugLoc().getInlinedAt()});
2361 }
2362 }
2363 }
2364 return Result;
2365 }
2366
analyzeFunction(Function & Fn,const DataLayout & Layout,FunctionVarLocsBuilder * FnVarLocs)2367 static void analyzeFunction(Function &Fn, const DataLayout &Layout,
2368 FunctionVarLocsBuilder *FnVarLocs) {
2369 // The analysis will generate location definitions for all variables, but we
2370 // only need to perform a dataflow on the set of variables which have a stack
2371 // slot. Find those now.
2372 DenseSet<DebugAggregate> VarsWithStackSlot = findVarsWithStackSlot(Fn);
2373
2374 bool Changed = false;
2375
2376 // Use a scope block to clean up AssignmentTrackingLowering before running
2377 // MemLocFragmentFill to reduce peak memory consumption.
2378 {
2379 AssignmentTrackingLowering Pass(Fn, Layout, &VarsWithStackSlot);
2380 Changed = Pass.run(FnVarLocs);
2381 }
2382
2383 if (Changed) {
2384 MemLocFragmentFill Pass(Fn, &VarsWithStackSlot);
2385 Pass.run(FnVarLocs);
2386
2387 // Remove redundant entries. As well as reducing memory consumption and
2388 // avoiding waiting cycles later by burning some now, this has another
2389 // important job. That is to work around some SelectionDAG quirks. See
2390 // removeRedundantDbgLocsUsingForwardScan comments for more info on that.
2391 for (auto &BB : Fn)
2392 removeRedundantDbgLocs(&BB, *FnVarLocs);
2393 }
2394 }
2395
runOnFunction(Function & F)2396 bool AssignmentTrackingAnalysis::runOnFunction(Function &F) {
2397 if (!isAssignmentTrackingEnabled(*F.getParent()))
2398 return false;
2399
2400 LLVM_DEBUG(dbgs() << "AssignmentTrackingAnalysis run on " << F.getName()
2401 << "\n");
2402 auto DL = std::make_unique<DataLayout>(F.getParent());
2403
2404 // Clear previous results.
2405 Results->clear();
2406
2407 FunctionVarLocsBuilder Builder;
2408 analyzeFunction(F, *DL.get(), &Builder);
2409
2410 // Save these results.
2411 Results->init(Builder);
2412
2413 if (PrintResults && isFunctionInPrintList(F.getName()))
2414 Results->print(errs(), F);
2415
2416 // Return false because this pass does not modify the function.
2417 return false;
2418 }
2419
AssignmentTrackingAnalysis()2420 AssignmentTrackingAnalysis::AssignmentTrackingAnalysis()
2421 : FunctionPass(ID), Results(std::make_unique<FunctionVarLocs>()) {}
2422
2423 char AssignmentTrackingAnalysis::ID = 0;
2424
2425 INITIALIZE_PASS(AssignmentTrackingAnalysis, DEBUG_TYPE,
2426 "Assignment Tracking Analysis", false, true)
2427