1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Builtin calls as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCUDARuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGObjCRuntime.h"
16 #include "CGOpenCLRuntime.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "PatternInit.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/OSLog.h"
27 #include "clang/Basic/TargetBuiltins.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/CodeGen/CGFunctionInfo.h"
30 #include "llvm/ADT/APFloat.h"
31 #include "llvm/ADT/APInt.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/InlineAsm.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/IntrinsicsAArch64.h"
39 #include "llvm/IR/IntrinsicsAMDGPU.h"
40 #include "llvm/IR/IntrinsicsARM.h"
41 #include "llvm/IR/IntrinsicsBPF.h"
42 #include "llvm/IR/IntrinsicsHexagon.h"
43 #include "llvm/IR/IntrinsicsNVPTX.h"
44 #include "llvm/IR/IntrinsicsPowerPC.h"
45 #include "llvm/IR/IntrinsicsR600.h"
46 #include "llvm/IR/IntrinsicsRISCV.h"
47 #include "llvm/IR/IntrinsicsS390.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/MatrixBuilder.h"
52 #include "llvm/Support/ConvertUTF.h"
53 #include "llvm/Support/ScopedPrinter.h"
54 #include "llvm/Support/X86TargetParser.h"
55 #include <sstream>
56 
57 using namespace clang;
58 using namespace CodeGen;
59 using namespace llvm;
60 
61 static
clamp(int64_t Value,int64_t Low,int64_t High)62 int64_t clamp(int64_t Value, int64_t Low, int64_t High) {
63   return std::min(High, std::max(Low, Value));
64 }
65 
initializeAlloca(CodeGenFunction & CGF,AllocaInst * AI,Value * Size,Align AlignmentInBytes)66 static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size,
67                              Align AlignmentInBytes) {
68   ConstantInt *Byte;
69   switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
70   case LangOptions::TrivialAutoVarInitKind::Uninitialized:
71     // Nothing to initialize.
72     return;
73   case LangOptions::TrivialAutoVarInitKind::Zero:
74     Byte = CGF.Builder.getInt8(0x00);
75     break;
76   case LangOptions::TrivialAutoVarInitKind::Pattern: {
77     llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
78     Byte = llvm::dyn_cast<llvm::ConstantInt>(
79         initializationPatternFor(CGF.CGM, Int8));
80     break;
81   }
82   }
83   if (CGF.CGM.stopAutoInit())
84     return;
85   auto *I = CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
86   I->addAnnotationMetadata("auto-init");
87 }
88 
89 /// getBuiltinLibFunction - Given a builtin id for a function like
90 /// "__builtin_fabsf", return a Function* for "fabsf".
getBuiltinLibFunction(const FunctionDecl * FD,unsigned BuiltinID)91 llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
92                                                      unsigned BuiltinID) {
93   assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
94 
95   // Get the name, skip over the __builtin_ prefix (if necessary).
96   StringRef Name;
97   GlobalDecl D(FD);
98 
99   // If the builtin has been declared explicitly with an assembler label,
100   // use the mangled name. This differs from the plain label on platforms
101   // that prefix labels.
102   if (FD->hasAttr<AsmLabelAttr>())
103     Name = getMangledName(D);
104   else
105     Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
106 
107   llvm::FunctionType *Ty =
108     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
109 
110   return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
111 }
112 
113 /// Emit the conversions required to turn the given value into an
114 /// integer of the given size.
EmitToInt(CodeGenFunction & CGF,llvm::Value * V,QualType T,llvm::IntegerType * IntType)115 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
116                         QualType T, llvm::IntegerType *IntType) {
117   V = CGF.EmitToMemory(V, T);
118 
119   if (V->getType()->isPointerTy())
120     return CGF.Builder.CreatePtrToInt(V, IntType);
121 
122   assert(V->getType() == IntType);
123   return V;
124 }
125 
EmitFromInt(CodeGenFunction & CGF,llvm::Value * V,QualType T,llvm::Type * ResultType)126 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
127                           QualType T, llvm::Type *ResultType) {
128   V = CGF.EmitFromMemory(V, T);
129 
130   if (ResultType->isPointerTy())
131     return CGF.Builder.CreateIntToPtr(V, ResultType);
132 
133   assert(V->getType() == ResultType);
134   return V;
135 }
136 
137 /// Utility to insert an atomic instruction based on Intrinsic::ID
138 /// and the expression node.
MakeBinaryAtomicValue(CodeGenFunction & CGF,llvm::AtomicRMWInst::BinOp Kind,const CallExpr * E,AtomicOrdering Ordering=AtomicOrdering::SequentiallyConsistent)139 static Value *MakeBinaryAtomicValue(
140     CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
141     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
142   QualType T = E->getType();
143   assert(E->getArg(0)->getType()->isPointerType());
144   assert(CGF.getContext().hasSameUnqualifiedType(T,
145                                   E->getArg(0)->getType()->getPointeeType()));
146   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
147 
148   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
149   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
150 
151   llvm::IntegerType *IntType =
152     llvm::IntegerType::get(CGF.getLLVMContext(),
153                            CGF.getContext().getTypeSize(T));
154   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
155 
156   llvm::Value *Args[2];
157   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
158   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
159   llvm::Type *ValueType = Args[1]->getType();
160   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
161 
162   llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
163       Kind, Args[0], Args[1], Ordering);
164   return EmitFromInt(CGF, Result, T, ValueType);
165 }
166 
EmitNontemporalStore(CodeGenFunction & CGF,const CallExpr * E)167 static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
168   Value *Val = CGF.EmitScalarExpr(E->getArg(0));
169   Value *Address = CGF.EmitScalarExpr(E->getArg(1));
170 
171   // Convert the type of the pointer to a pointer to the stored type.
172   Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
173   Value *BC = CGF.Builder.CreateBitCast(
174       Address, llvm::PointerType::getUnqual(Val->getType()), "cast");
175   LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
176   LV.setNontemporal(true);
177   CGF.EmitStoreOfScalar(Val, LV, false);
178   return nullptr;
179 }
180 
EmitNontemporalLoad(CodeGenFunction & CGF,const CallExpr * E)181 static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
182   Value *Address = CGF.EmitScalarExpr(E->getArg(0));
183 
184   LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
185   LV.setNontemporal(true);
186   return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
187 }
188 
EmitBinaryAtomic(CodeGenFunction & CGF,llvm::AtomicRMWInst::BinOp Kind,const CallExpr * E)189 static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
190                                llvm::AtomicRMWInst::BinOp Kind,
191                                const CallExpr *E) {
192   return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
193 }
194 
195 /// Utility to insert an atomic instruction based Intrinsic::ID and
196 /// the expression node, where the return value is the result of the
197 /// operation.
EmitBinaryAtomicPost(CodeGenFunction & CGF,llvm::AtomicRMWInst::BinOp Kind,const CallExpr * E,Instruction::BinaryOps Op,bool Invert=false)198 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
199                                    llvm::AtomicRMWInst::BinOp Kind,
200                                    const CallExpr *E,
201                                    Instruction::BinaryOps Op,
202                                    bool Invert = false) {
203   QualType T = E->getType();
204   assert(E->getArg(0)->getType()->isPointerType());
205   assert(CGF.getContext().hasSameUnqualifiedType(T,
206                                   E->getArg(0)->getType()->getPointeeType()));
207   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
208 
209   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
210   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
211 
212   llvm::IntegerType *IntType =
213     llvm::IntegerType::get(CGF.getLLVMContext(),
214                            CGF.getContext().getTypeSize(T));
215   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
216 
217   llvm::Value *Args[2];
218   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
219   llvm::Type *ValueType = Args[1]->getType();
220   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
221   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
222 
223   llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
224       Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
225   Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
226   if (Invert)
227     Result =
228         CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
229                                 llvm::ConstantInt::getAllOnesValue(IntType));
230   Result = EmitFromInt(CGF, Result, T, ValueType);
231   return RValue::get(Result);
232 }
233 
234 /// Utility to insert an atomic cmpxchg instruction.
235 ///
236 /// @param CGF The current codegen function.
237 /// @param E   Builtin call expression to convert to cmpxchg.
238 ///            arg0 - address to operate on
239 ///            arg1 - value to compare with
240 ///            arg2 - new value
241 /// @param ReturnBool Specifies whether to return success flag of
242 ///                   cmpxchg result or the old value.
243 ///
244 /// @returns result of cmpxchg, according to ReturnBool
245 ///
246 /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
247 /// invoke the function EmitAtomicCmpXchgForMSIntrin.
MakeAtomicCmpXchgValue(CodeGenFunction & CGF,const CallExpr * E,bool ReturnBool)248 static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
249                                      bool ReturnBool) {
250   QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
251   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
252   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
253 
254   llvm::IntegerType *IntType = llvm::IntegerType::get(
255       CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
256   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
257 
258   Value *Args[3];
259   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
260   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
261   llvm::Type *ValueType = Args[1]->getType();
262   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
263   Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
264 
265   Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
266       Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
267       llvm::AtomicOrdering::SequentiallyConsistent);
268   if (ReturnBool)
269     // Extract boolean success flag and zext it to int.
270     return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
271                                   CGF.ConvertType(E->getType()));
272   else
273     // Extract old value and emit it using the same type as compare value.
274     return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
275                        ValueType);
276 }
277 
278 /// This function should be invoked to emit atomic cmpxchg for Microsoft's
279 /// _InterlockedCompareExchange* intrinsics which have the following signature:
280 /// T _InterlockedCompareExchange(T volatile *Destination,
281 ///                               T Exchange,
282 ///                               T Comparand);
283 ///
284 /// Whereas the llvm 'cmpxchg' instruction has the following syntax:
285 /// cmpxchg *Destination, Comparand, Exchange.
286 /// So we need to swap Comparand and Exchange when invoking
287 /// CreateAtomicCmpXchg. That is the reason we could not use the above utility
288 /// function MakeAtomicCmpXchgValue since it expects the arguments to be
289 /// already swapped.
290 
291 static
EmitAtomicCmpXchgForMSIntrin(CodeGenFunction & CGF,const CallExpr * E,AtomicOrdering SuccessOrdering=AtomicOrdering::SequentiallyConsistent)292 Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
293     AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
294   assert(E->getArg(0)->getType()->isPointerType());
295   assert(CGF.getContext().hasSameUnqualifiedType(
296       E->getType(), E->getArg(0)->getType()->getPointeeType()));
297   assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
298                                                  E->getArg(1)->getType()));
299   assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
300                                                  E->getArg(2)->getType()));
301 
302   auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
303   auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
304   auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
305 
306   // For Release ordering, the failure ordering should be Monotonic.
307   auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
308                          AtomicOrdering::Monotonic :
309                          SuccessOrdering;
310 
311   // The atomic instruction is marked volatile for consistency with MSVC. This
312   // blocks the few atomics optimizations that LLVM has. If we want to optimize
313   // _Interlocked* operations in the future, we will have to remove the volatile
314   // marker.
315   auto *Result = CGF.Builder.CreateAtomicCmpXchg(
316                    Destination, Comparand, Exchange,
317                    SuccessOrdering, FailureOrdering);
318   Result->setVolatile(true);
319   return CGF.Builder.CreateExtractValue(Result, 0);
320 }
321 
322 // 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are
323 // prototyped like this:
324 //
325 // unsigned char _InterlockedCompareExchange128...(
326 //     __int64 volatile * _Destination,
327 //     __int64 _ExchangeHigh,
328 //     __int64 _ExchangeLow,
329 //     __int64 * _ComparandResult);
EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction & CGF,const CallExpr * E,AtomicOrdering SuccessOrdering)330 static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF,
331                                               const CallExpr *E,
332                                               AtomicOrdering SuccessOrdering) {
333   assert(E->getNumArgs() == 4);
334   llvm::Value *Destination = CGF.EmitScalarExpr(E->getArg(0));
335   llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1));
336   llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2));
337   llvm::Value *ComparandPtr = CGF.EmitScalarExpr(E->getArg(3));
338 
339   assert(Destination->getType()->isPointerTy());
340   assert(!ExchangeHigh->getType()->isPointerTy());
341   assert(!ExchangeLow->getType()->isPointerTy());
342   assert(ComparandPtr->getType()->isPointerTy());
343 
344   // For Release ordering, the failure ordering should be Monotonic.
345   auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release
346                              ? AtomicOrdering::Monotonic
347                              : SuccessOrdering;
348 
349   // Convert to i128 pointers and values.
350   llvm::Type *Int128Ty = llvm::IntegerType::get(CGF.getLLVMContext(), 128);
351   llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
352   Destination = CGF.Builder.CreateBitCast(Destination, Int128PtrTy);
353   Address ComparandResult(CGF.Builder.CreateBitCast(ComparandPtr, Int128PtrTy),
354                           CGF.getContext().toCharUnitsFromBits(128));
355 
356   // (((i128)hi) << 64) | ((i128)lo)
357   ExchangeHigh = CGF.Builder.CreateZExt(ExchangeHigh, Int128Ty);
358   ExchangeLow = CGF.Builder.CreateZExt(ExchangeLow, Int128Ty);
359   ExchangeHigh =
360       CGF.Builder.CreateShl(ExchangeHigh, llvm::ConstantInt::get(Int128Ty, 64));
361   llvm::Value *Exchange = CGF.Builder.CreateOr(ExchangeHigh, ExchangeLow);
362 
363   // Load the comparand for the instruction.
364   llvm::Value *Comparand = CGF.Builder.CreateLoad(ComparandResult);
365 
366   auto *CXI = CGF.Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
367                                               SuccessOrdering, FailureOrdering);
368 
369   // The atomic instruction is marked volatile for consistency with MSVC. This
370   // blocks the few atomics optimizations that LLVM has. If we want to optimize
371   // _Interlocked* operations in the future, we will have to remove the volatile
372   // marker.
373   CXI->setVolatile(true);
374 
375   // Store the result as an outparameter.
376   CGF.Builder.CreateStore(CGF.Builder.CreateExtractValue(CXI, 0),
377                           ComparandResult);
378 
379   // Get the success boolean and zero extend it to i8.
380   Value *Success = CGF.Builder.CreateExtractValue(CXI, 1);
381   return CGF.Builder.CreateZExt(Success, CGF.Int8Ty);
382 }
383 
EmitAtomicIncrementValue(CodeGenFunction & CGF,const CallExpr * E,AtomicOrdering Ordering=AtomicOrdering::SequentiallyConsistent)384 static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
385     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
386   assert(E->getArg(0)->getType()->isPointerType());
387 
388   auto *IntTy = CGF.ConvertType(E->getType());
389   auto *Result = CGF.Builder.CreateAtomicRMW(
390                    AtomicRMWInst::Add,
391                    CGF.EmitScalarExpr(E->getArg(0)),
392                    ConstantInt::get(IntTy, 1),
393                    Ordering);
394   return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
395 }
396 
EmitAtomicDecrementValue(CodeGenFunction & CGF,const CallExpr * E,AtomicOrdering Ordering=AtomicOrdering::SequentiallyConsistent)397 static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
398     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
399   assert(E->getArg(0)->getType()->isPointerType());
400 
401   auto *IntTy = CGF.ConvertType(E->getType());
402   auto *Result = CGF.Builder.CreateAtomicRMW(
403                    AtomicRMWInst::Sub,
404                    CGF.EmitScalarExpr(E->getArg(0)),
405                    ConstantInt::get(IntTy, 1),
406                    Ordering);
407   return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
408 }
409 
410 // Build a plain volatile load.
EmitISOVolatileLoad(CodeGenFunction & CGF,const CallExpr * E)411 static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
412   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
413   QualType ElTy = E->getArg(0)->getType()->getPointeeType();
414   CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
415   llvm::Type *ITy =
416       llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
417   Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
418   llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(ITy, Ptr, LoadSize);
419   Load->setVolatile(true);
420   return Load;
421 }
422 
423 // Build a plain volatile store.
EmitISOVolatileStore(CodeGenFunction & CGF,const CallExpr * E)424 static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
425   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
426   Value *Value = CGF.EmitScalarExpr(E->getArg(1));
427   QualType ElTy = E->getArg(0)->getType()->getPointeeType();
428   CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
429   llvm::Type *ITy =
430       llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
431   Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
432   llvm::StoreInst *Store =
433       CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
434   Store->setVolatile(true);
435   return Store;
436 }
437 
438 // Emit a simple mangled intrinsic that has 1 argument and a return type
439 // matching the argument type. Depending on mode, this may be a constrained
440 // floating-point intrinsic.
emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID,unsigned ConstrainedIntrinsicID)441 static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
442                                 const CallExpr *E, unsigned IntrinsicID,
443                                 unsigned ConstrainedIntrinsicID) {
444   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
445 
446   if (CGF.Builder.getIsFPConstrained()) {
447     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
448     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
449     return CGF.Builder.CreateConstrainedFPCall(F, { Src0 });
450   } else {
451     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
452     return CGF.Builder.CreateCall(F, Src0);
453   }
454 }
455 
456 // Emit an intrinsic that has 2 operands of the same type as its result.
457 // Depending on mode, this may be a constrained floating-point intrinsic.
emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID,unsigned ConstrainedIntrinsicID)458 static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
459                                 const CallExpr *E, unsigned IntrinsicID,
460                                 unsigned ConstrainedIntrinsicID) {
461   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
462   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
463 
464   if (CGF.Builder.getIsFPConstrained()) {
465     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
466     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
467     return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 });
468   } else {
469     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
470     return CGF.Builder.CreateCall(F, { Src0, Src1 });
471   }
472 }
473 
474 // Emit an intrinsic that has 3 operands of the same type as its result.
475 // Depending on mode, this may be a constrained floating-point intrinsic.
emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID,unsigned ConstrainedIntrinsicID)476 static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
477                                  const CallExpr *E, unsigned IntrinsicID,
478                                  unsigned ConstrainedIntrinsicID) {
479   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
480   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
481   llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
482 
483   if (CGF.Builder.getIsFPConstrained()) {
484     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
485     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
486     return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 });
487   } else {
488     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
489     return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
490   }
491 }
492 
493 // Emit an intrinsic where all operands are of the same type as the result.
494 // Depending on mode, this may be a constrained floating-point intrinsic.
emitCallMaybeConstrainedFPBuiltin(CodeGenFunction & CGF,unsigned IntrinsicID,unsigned ConstrainedIntrinsicID,llvm::Type * Ty,ArrayRef<Value * > Args)495 static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
496                                                 unsigned IntrinsicID,
497                                                 unsigned ConstrainedIntrinsicID,
498                                                 llvm::Type *Ty,
499                                                 ArrayRef<Value *> Args) {
500   Function *F;
501   if (CGF.Builder.getIsFPConstrained())
502     F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty);
503   else
504     F = CGF.CGM.getIntrinsic(IntrinsicID, Ty);
505 
506   if (CGF.Builder.getIsFPConstrained())
507     return CGF.Builder.CreateConstrainedFPCall(F, Args);
508   else
509     return CGF.Builder.CreateCall(F, Args);
510 }
511 
512 // Emit a simple mangled intrinsic that has 1 argument and a return type
513 // matching the argument type.
emitUnaryBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID)514 static Value *emitUnaryBuiltin(CodeGenFunction &CGF,
515                                const CallExpr *E,
516                                unsigned IntrinsicID) {
517   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
518 
519   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
520   return CGF.Builder.CreateCall(F, Src0);
521 }
522 
523 // Emit an intrinsic that has 2 operands of the same type as its result.
emitBinaryBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID)524 static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
525                                 const CallExpr *E,
526                                 unsigned IntrinsicID) {
527   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
528   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
529 
530   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
531   return CGF.Builder.CreateCall(F, { Src0, Src1 });
532 }
533 
534 // Emit an intrinsic that has 3 operands of the same type as its result.
emitTernaryBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID)535 static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
536                                  const CallExpr *E,
537                                  unsigned IntrinsicID) {
538   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
539   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
540   llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
541 
542   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
543   return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
544 }
545 
546 // Emit an intrinsic that has 1 float or double operand, and 1 integer.
emitFPIntBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID)547 static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
548                                const CallExpr *E,
549                                unsigned IntrinsicID) {
550   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
551   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
552 
553   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
554   return CGF.Builder.CreateCall(F, {Src0, Src1});
555 }
556 
557 // Emit an intrinsic that has overloaded integer result and fp operand.
558 static Value *
emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID,unsigned ConstrainedIntrinsicID)559 emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E,
560                                         unsigned IntrinsicID,
561                                         unsigned ConstrainedIntrinsicID) {
562   llvm::Type *ResultType = CGF.ConvertType(E->getType());
563   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
564 
565   if (CGF.Builder.getIsFPConstrained()) {
566     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
567     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
568                                        {ResultType, Src0->getType()});
569     return CGF.Builder.CreateConstrainedFPCall(F, {Src0});
570   } else {
571     Function *F =
572         CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()});
573     return CGF.Builder.CreateCall(F, Src0);
574   }
575 }
576 
577 /// EmitFAbs - Emit a call to @llvm.fabs().
EmitFAbs(CodeGenFunction & CGF,Value * V)578 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
579   Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
580   llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
581   Call->setDoesNotAccessMemory();
582   return Call;
583 }
584 
585 /// Emit the computation of the sign bit for a floating point value. Returns
586 /// the i1 sign bit value.
EmitSignBit(CodeGenFunction & CGF,Value * V)587 static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
588   LLVMContext &C = CGF.CGM.getLLVMContext();
589 
590   llvm::Type *Ty = V->getType();
591   int Width = Ty->getPrimitiveSizeInBits();
592   llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
593   V = CGF.Builder.CreateBitCast(V, IntTy);
594   if (Ty->isPPC_FP128Ty()) {
595     // We want the sign bit of the higher-order double. The bitcast we just
596     // did works as if the double-double was stored to memory and then
597     // read as an i128. The "store" will put the higher-order double in the
598     // lower address in both little- and big-Endian modes, but the "load"
599     // will treat those bits as a different part of the i128: the low bits in
600     // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
601     // we need to shift the high bits down to the low before truncating.
602     Width >>= 1;
603     if (CGF.getTarget().isBigEndian()) {
604       Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
605       V = CGF.Builder.CreateLShr(V, ShiftCst);
606     }
607     // We are truncating value in order to extract the higher-order
608     // double, which we will be using to extract the sign from.
609     IntTy = llvm::IntegerType::get(C, Width);
610     V = CGF.Builder.CreateTrunc(V, IntTy);
611   }
612   Value *Zero = llvm::Constant::getNullValue(IntTy);
613   return CGF.Builder.CreateICmpSLT(V, Zero);
614 }
615 
emitLibraryCall(CodeGenFunction & CGF,const FunctionDecl * FD,const CallExpr * E,llvm::Constant * calleeValue)616 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
617                               const CallExpr *E, llvm::Constant *calleeValue) {
618   CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
619   return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
620 }
621 
622 /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
623 /// depending on IntrinsicID.
624 ///
625 /// \arg CGF The current codegen function.
626 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
627 /// \arg X The first argument to the llvm.*.with.overflow.*.
628 /// \arg Y The second argument to the llvm.*.with.overflow.*.
629 /// \arg Carry The carry returned by the llvm.*.with.overflow.*.
630 /// \returns The result (i.e. sum/product) returned by the intrinsic.
EmitOverflowIntrinsic(CodeGenFunction & CGF,const llvm::Intrinsic::ID IntrinsicID,llvm::Value * X,llvm::Value * Y,llvm::Value * & Carry)631 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
632                                           const llvm::Intrinsic::ID IntrinsicID,
633                                           llvm::Value *X, llvm::Value *Y,
634                                           llvm::Value *&Carry) {
635   // Make sure we have integers of the same width.
636   assert(X->getType() == Y->getType() &&
637          "Arguments must be the same type. (Did you forget to make sure both "
638          "arguments have the same integer width?)");
639 
640   Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
641   llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
642   Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
643   return CGF.Builder.CreateExtractValue(Tmp, 0);
644 }
645 
emitRangedBuiltin(CodeGenFunction & CGF,unsigned IntrinsicID,int low,int high)646 static Value *emitRangedBuiltin(CodeGenFunction &CGF,
647                                 unsigned IntrinsicID,
648                                 int low, int high) {
649     llvm::MDBuilder MDHelper(CGF.getLLVMContext());
650     llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
651     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
652     llvm::Instruction *Call = CGF.Builder.CreateCall(F);
653     Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
654     return Call;
655 }
656 
657 namespace {
658   struct WidthAndSignedness {
659     unsigned Width;
660     bool Signed;
661   };
662 }
663 
664 static WidthAndSignedness
getIntegerWidthAndSignedness(const clang::ASTContext & context,const clang::QualType Type)665 getIntegerWidthAndSignedness(const clang::ASTContext &context,
666                              const clang::QualType Type) {
667   assert(Type->isIntegerType() && "Given type is not an integer.");
668   unsigned Width = Type->isBooleanType()  ? 1
669                    : Type->isExtIntType() ? context.getIntWidth(Type)
670                                           : context.getTypeInfo(Type).Width;
671   bool Signed = Type->isSignedIntegerType();
672   return {Width, Signed};
673 }
674 
675 // Given one or more integer types, this function produces an integer type that
676 // encompasses them: any value in one of the given types could be expressed in
677 // the encompassing type.
678 static struct WidthAndSignedness
EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types)679 EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
680   assert(Types.size() > 0 && "Empty list of types.");
681 
682   // If any of the given types is signed, we must return a signed type.
683   bool Signed = false;
684   for (const auto &Type : Types) {
685     Signed |= Type.Signed;
686   }
687 
688   // The encompassing type must have a width greater than or equal to the width
689   // of the specified types.  Additionally, if the encompassing type is signed,
690   // its width must be strictly greater than the width of any unsigned types
691   // given.
692   unsigned Width = 0;
693   for (const auto &Type : Types) {
694     unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
695     if (Width < MinWidth) {
696       Width = MinWidth;
697     }
698   }
699 
700   return {Width, Signed};
701 }
702 
EmitVAStartEnd(Value * ArgValue,bool IsStart)703 Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
704   llvm::Type *DestType = Int8PtrTy;
705   if (ArgValue->getType() != DestType)
706     ArgValue =
707         Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
708 
709   Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
710   return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
711 }
712 
713 /// Checks if using the result of __builtin_object_size(p, @p From) in place of
714 /// __builtin_object_size(p, @p To) is correct
areBOSTypesCompatible(int From,int To)715 static bool areBOSTypesCompatible(int From, int To) {
716   // Note: Our __builtin_object_size implementation currently treats Type=0 and
717   // Type=2 identically. Encoding this implementation detail here may make
718   // improving __builtin_object_size difficult in the future, so it's omitted.
719   return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
720 }
721 
722 static llvm::Value *
getDefaultBuiltinObjectSizeResult(unsigned Type,llvm::IntegerType * ResType)723 getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
724   return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
725 }
726 
727 llvm::Value *
evaluateOrEmitBuiltinObjectSize(const Expr * E,unsigned Type,llvm::IntegerType * ResType,llvm::Value * EmittedE,bool IsDynamic)728 CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
729                                                  llvm::IntegerType *ResType,
730                                                  llvm::Value *EmittedE,
731                                                  bool IsDynamic) {
732   uint64_t ObjectSize;
733   if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
734     return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
735   return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
736 }
737 
738 /// Returns a Value corresponding to the size of the given expression.
739 /// This Value may be either of the following:
740 ///   - A llvm::Argument (if E is a param with the pass_object_size attribute on
741 ///     it)
742 ///   - A call to the @llvm.objectsize intrinsic
743 ///
744 /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
745 /// and we wouldn't otherwise try to reference a pass_object_size parameter,
746 /// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
747 llvm::Value *
emitBuiltinObjectSize(const Expr * E,unsigned Type,llvm::IntegerType * ResType,llvm::Value * EmittedE,bool IsDynamic)748 CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
749                                        llvm::IntegerType *ResType,
750                                        llvm::Value *EmittedE, bool IsDynamic) {
751   // We need to reference an argument if the pointer is a parameter with the
752   // pass_object_size attribute.
753   if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
754     auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
755     auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
756     if (Param != nullptr && PS != nullptr &&
757         areBOSTypesCompatible(PS->getType(), Type)) {
758       auto Iter = SizeArguments.find(Param);
759       assert(Iter != SizeArguments.end());
760 
761       const ImplicitParamDecl *D = Iter->second;
762       auto DIter = LocalDeclMap.find(D);
763       assert(DIter != LocalDeclMap.end());
764 
765       return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
766                               getContext().getSizeType(), E->getBeginLoc());
767     }
768   }
769 
770   // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
771   // evaluate E for side-effects. In either case, we shouldn't lower to
772   // @llvm.objectsize.
773   if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
774     return getDefaultBuiltinObjectSizeResult(Type, ResType);
775 
776   Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
777   assert(Ptr->getType()->isPointerTy() &&
778          "Non-pointer passed to __builtin_object_size?");
779 
780   Function *F =
781       CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
782 
783   // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
784   Value *Min = Builder.getInt1((Type & 2) != 0);
785   // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
786   Value *NullIsUnknown = Builder.getTrue();
787   Value *Dynamic = Builder.getInt1(IsDynamic);
788   return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
789 }
790 
791 namespace {
792 /// A struct to generically describe a bit test intrinsic.
793 struct BitTest {
794   enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
795   enum InterlockingKind : uint8_t {
796     Unlocked,
797     Sequential,
798     Acquire,
799     Release,
800     NoFence
801   };
802 
803   ActionKind Action;
804   InterlockingKind Interlocking;
805   bool Is64Bit;
806 
807   static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
808 };
809 } // namespace
810 
decodeBitTestBuiltin(unsigned BuiltinID)811 BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
812   switch (BuiltinID) {
813     // Main portable variants.
814   case Builtin::BI_bittest:
815     return {TestOnly, Unlocked, false};
816   case Builtin::BI_bittestandcomplement:
817     return {Complement, Unlocked, false};
818   case Builtin::BI_bittestandreset:
819     return {Reset, Unlocked, false};
820   case Builtin::BI_bittestandset:
821     return {Set, Unlocked, false};
822   case Builtin::BI_interlockedbittestandreset:
823     return {Reset, Sequential, false};
824   case Builtin::BI_interlockedbittestandset:
825     return {Set, Sequential, false};
826 
827     // X86-specific 64-bit variants.
828   case Builtin::BI_bittest64:
829     return {TestOnly, Unlocked, true};
830   case Builtin::BI_bittestandcomplement64:
831     return {Complement, Unlocked, true};
832   case Builtin::BI_bittestandreset64:
833     return {Reset, Unlocked, true};
834   case Builtin::BI_bittestandset64:
835     return {Set, Unlocked, true};
836   case Builtin::BI_interlockedbittestandreset64:
837     return {Reset, Sequential, true};
838   case Builtin::BI_interlockedbittestandset64:
839     return {Set, Sequential, true};
840 
841     // ARM/AArch64-specific ordering variants.
842   case Builtin::BI_interlockedbittestandset_acq:
843     return {Set, Acquire, false};
844   case Builtin::BI_interlockedbittestandset_rel:
845     return {Set, Release, false};
846   case Builtin::BI_interlockedbittestandset_nf:
847     return {Set, NoFence, false};
848   case Builtin::BI_interlockedbittestandreset_acq:
849     return {Reset, Acquire, false};
850   case Builtin::BI_interlockedbittestandreset_rel:
851     return {Reset, Release, false};
852   case Builtin::BI_interlockedbittestandreset_nf:
853     return {Reset, NoFence, false};
854   }
855   llvm_unreachable("expected only bittest intrinsics");
856 }
857 
bitActionToX86BTCode(BitTest::ActionKind A)858 static char bitActionToX86BTCode(BitTest::ActionKind A) {
859   switch (A) {
860   case BitTest::TestOnly:   return '\0';
861   case BitTest::Complement: return 'c';
862   case BitTest::Reset:      return 'r';
863   case BitTest::Set:        return 's';
864   }
865   llvm_unreachable("invalid action");
866 }
867 
EmitX86BitTestIntrinsic(CodeGenFunction & CGF,BitTest BT,const CallExpr * E,Value * BitBase,Value * BitPos)868 static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
869                                             BitTest BT,
870                                             const CallExpr *E, Value *BitBase,
871                                             Value *BitPos) {
872   char Action = bitActionToX86BTCode(BT.Action);
873   char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
874 
875   // Build the assembly.
876   SmallString<64> Asm;
877   raw_svector_ostream AsmOS(Asm);
878   if (BT.Interlocking != BitTest::Unlocked)
879     AsmOS << "lock ";
880   AsmOS << "bt";
881   if (Action)
882     AsmOS << Action;
883   AsmOS << SizeSuffix << " $2, ($1)";
884 
885   // Build the constraints. FIXME: We should support immediates when possible.
886   std::string Constraints = "={@ccc},r,r,~{cc},~{memory}";
887   std::string MachineClobbers = CGF.getTarget().getClobbers();
888   if (!MachineClobbers.empty()) {
889     Constraints += ',';
890     Constraints += MachineClobbers;
891   }
892   llvm::IntegerType *IntType = llvm::IntegerType::get(
893       CGF.getLLVMContext(),
894       CGF.getContext().getTypeSize(E->getArg(1)->getType()));
895   llvm::Type *IntPtrType = IntType->getPointerTo();
896   llvm::FunctionType *FTy =
897       llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
898 
899   llvm::InlineAsm *IA =
900       llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
901   return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
902 }
903 
904 static llvm::AtomicOrdering
getBitTestAtomicOrdering(BitTest::InterlockingKind I)905 getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
906   switch (I) {
907   case BitTest::Unlocked:   return llvm::AtomicOrdering::NotAtomic;
908   case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
909   case BitTest::Acquire:    return llvm::AtomicOrdering::Acquire;
910   case BitTest::Release:    return llvm::AtomicOrdering::Release;
911   case BitTest::NoFence:    return llvm::AtomicOrdering::Monotonic;
912   }
913   llvm_unreachable("invalid interlocking");
914 }
915 
916 /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
917 /// bits and a bit position and read and optionally modify the bit at that
918 /// position. The position index can be arbitrarily large, i.e. it can be larger
919 /// than 31 or 63, so we need an indexed load in the general case.
EmitBitTestIntrinsic(CodeGenFunction & CGF,unsigned BuiltinID,const CallExpr * E)920 static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
921                                          unsigned BuiltinID,
922                                          const CallExpr *E) {
923   Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
924   Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
925 
926   BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
927 
928   // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
929   // indexing operation internally. Use them if possible.
930   if (CGF.getTarget().getTriple().isX86())
931     return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
932 
933   // Otherwise, use generic code to load one byte and test the bit. Use all but
934   // the bottom three bits as the array index, and the bottom three bits to form
935   // a mask.
936   // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
937   Value *ByteIndex = CGF.Builder.CreateAShr(
938       BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
939   Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
940   Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
941                                                  ByteIndex, "bittest.byteaddr"),
942                    CharUnits::One());
943   Value *PosLow =
944       CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
945                             llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
946 
947   // The updating instructions will need a mask.
948   Value *Mask = nullptr;
949   if (BT.Action != BitTest::TestOnly) {
950     Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
951                                  "bittest.mask");
952   }
953 
954   // Check the action and ordering of the interlocked intrinsics.
955   llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
956 
957   Value *OldByte = nullptr;
958   if (Ordering != llvm::AtomicOrdering::NotAtomic) {
959     // Emit a combined atomicrmw load/store operation for the interlocked
960     // intrinsics.
961     llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
962     if (BT.Action == BitTest::Reset) {
963       Mask = CGF.Builder.CreateNot(Mask);
964       RMWOp = llvm::AtomicRMWInst::And;
965     }
966     OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
967                                           Ordering);
968   } else {
969     // Emit a plain load for the non-interlocked intrinsics.
970     OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
971     Value *NewByte = nullptr;
972     switch (BT.Action) {
973     case BitTest::TestOnly:
974       // Don't store anything.
975       break;
976     case BitTest::Complement:
977       NewByte = CGF.Builder.CreateXor(OldByte, Mask);
978       break;
979     case BitTest::Reset:
980       NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
981       break;
982     case BitTest::Set:
983       NewByte = CGF.Builder.CreateOr(OldByte, Mask);
984       break;
985     }
986     if (NewByte)
987       CGF.Builder.CreateStore(NewByte, ByteAddr);
988   }
989 
990   // However we loaded the old byte, either by plain load or atomicrmw, shift
991   // the bit into the low position and mask it to 0 or 1.
992   Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
993   return CGF.Builder.CreateAnd(
994       ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
995 }
996 
997 namespace {
998 enum class MSVCSetJmpKind {
999   _setjmpex,
1000   _setjmp3,
1001   _setjmp
1002 };
1003 }
1004 
1005 /// MSVC handles setjmp a bit differently on different platforms. On every
1006 /// architecture except 32-bit x86, the frame address is passed. On x86, extra
1007 /// parameters can be passed as variadic arguments, but we always pass none.
EmitMSVCRTSetJmp(CodeGenFunction & CGF,MSVCSetJmpKind SJKind,const CallExpr * E)1008 static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
1009                                const CallExpr *E) {
1010   llvm::Value *Arg1 = nullptr;
1011   llvm::Type *Arg1Ty = nullptr;
1012   StringRef Name;
1013   bool IsVarArg = false;
1014   if (SJKind == MSVCSetJmpKind::_setjmp3) {
1015     Name = "_setjmp3";
1016     Arg1Ty = CGF.Int32Ty;
1017     Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
1018     IsVarArg = true;
1019   } else {
1020     Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
1021     Arg1Ty = CGF.Int8PtrTy;
1022     if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
1023       Arg1 = CGF.Builder.CreateCall(
1024           CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
1025     } else
1026       Arg1 = CGF.Builder.CreateCall(
1027           CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
1028           llvm::ConstantInt::get(CGF.Int32Ty, 0));
1029   }
1030 
1031   // Mark the call site and declaration with ReturnsTwice.
1032   llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
1033   llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
1034       CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
1035       llvm::Attribute::ReturnsTwice);
1036   llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
1037       llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
1038       ReturnsTwiceAttr, /*Local=*/true);
1039 
1040   llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
1041       CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
1042   llvm::Value *Args[] = {Buf, Arg1};
1043   llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
1044   CB->setAttributes(ReturnsTwiceAttr);
1045   return RValue::get(CB);
1046 }
1047 
1048 // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
1049 // we handle them here.
1050 enum class CodeGenFunction::MSVCIntrin {
1051   _BitScanForward,
1052   _BitScanReverse,
1053   _InterlockedAnd,
1054   _InterlockedDecrement,
1055   _InterlockedExchange,
1056   _InterlockedExchangeAdd,
1057   _InterlockedExchangeSub,
1058   _InterlockedIncrement,
1059   _InterlockedOr,
1060   _InterlockedXor,
1061   _InterlockedExchangeAdd_acq,
1062   _InterlockedExchangeAdd_rel,
1063   _InterlockedExchangeAdd_nf,
1064   _InterlockedExchange_acq,
1065   _InterlockedExchange_rel,
1066   _InterlockedExchange_nf,
1067   _InterlockedCompareExchange_acq,
1068   _InterlockedCompareExchange_rel,
1069   _InterlockedCompareExchange_nf,
1070   _InterlockedCompareExchange128,
1071   _InterlockedCompareExchange128_acq,
1072   _InterlockedCompareExchange128_rel,
1073   _InterlockedCompareExchange128_nf,
1074   _InterlockedOr_acq,
1075   _InterlockedOr_rel,
1076   _InterlockedOr_nf,
1077   _InterlockedXor_acq,
1078   _InterlockedXor_rel,
1079   _InterlockedXor_nf,
1080   _InterlockedAnd_acq,
1081   _InterlockedAnd_rel,
1082   _InterlockedAnd_nf,
1083   _InterlockedIncrement_acq,
1084   _InterlockedIncrement_rel,
1085   _InterlockedIncrement_nf,
1086   _InterlockedDecrement_acq,
1087   _InterlockedDecrement_rel,
1088   _InterlockedDecrement_nf,
1089   __fastfail,
1090 };
1091 
1092 static Optional<CodeGenFunction::MSVCIntrin>
translateArmToMsvcIntrin(unsigned BuiltinID)1093 translateArmToMsvcIntrin(unsigned BuiltinID) {
1094   using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1095   switch (BuiltinID) {
1096   default:
1097     return None;
1098   case ARM::BI_BitScanForward:
1099   case ARM::BI_BitScanForward64:
1100     return MSVCIntrin::_BitScanForward;
1101   case ARM::BI_BitScanReverse:
1102   case ARM::BI_BitScanReverse64:
1103     return MSVCIntrin::_BitScanReverse;
1104   case ARM::BI_InterlockedAnd64:
1105     return MSVCIntrin::_InterlockedAnd;
1106   case ARM::BI_InterlockedExchange64:
1107     return MSVCIntrin::_InterlockedExchange;
1108   case ARM::BI_InterlockedExchangeAdd64:
1109     return MSVCIntrin::_InterlockedExchangeAdd;
1110   case ARM::BI_InterlockedExchangeSub64:
1111     return MSVCIntrin::_InterlockedExchangeSub;
1112   case ARM::BI_InterlockedOr64:
1113     return MSVCIntrin::_InterlockedOr;
1114   case ARM::BI_InterlockedXor64:
1115     return MSVCIntrin::_InterlockedXor;
1116   case ARM::BI_InterlockedDecrement64:
1117     return MSVCIntrin::_InterlockedDecrement;
1118   case ARM::BI_InterlockedIncrement64:
1119     return MSVCIntrin::_InterlockedIncrement;
1120   case ARM::BI_InterlockedExchangeAdd8_acq:
1121   case ARM::BI_InterlockedExchangeAdd16_acq:
1122   case ARM::BI_InterlockedExchangeAdd_acq:
1123   case ARM::BI_InterlockedExchangeAdd64_acq:
1124     return MSVCIntrin::_InterlockedExchangeAdd_acq;
1125   case ARM::BI_InterlockedExchangeAdd8_rel:
1126   case ARM::BI_InterlockedExchangeAdd16_rel:
1127   case ARM::BI_InterlockedExchangeAdd_rel:
1128   case ARM::BI_InterlockedExchangeAdd64_rel:
1129     return MSVCIntrin::_InterlockedExchangeAdd_rel;
1130   case ARM::BI_InterlockedExchangeAdd8_nf:
1131   case ARM::BI_InterlockedExchangeAdd16_nf:
1132   case ARM::BI_InterlockedExchangeAdd_nf:
1133   case ARM::BI_InterlockedExchangeAdd64_nf:
1134     return MSVCIntrin::_InterlockedExchangeAdd_nf;
1135   case ARM::BI_InterlockedExchange8_acq:
1136   case ARM::BI_InterlockedExchange16_acq:
1137   case ARM::BI_InterlockedExchange_acq:
1138   case ARM::BI_InterlockedExchange64_acq:
1139     return MSVCIntrin::_InterlockedExchange_acq;
1140   case ARM::BI_InterlockedExchange8_rel:
1141   case ARM::BI_InterlockedExchange16_rel:
1142   case ARM::BI_InterlockedExchange_rel:
1143   case ARM::BI_InterlockedExchange64_rel:
1144     return MSVCIntrin::_InterlockedExchange_rel;
1145   case ARM::BI_InterlockedExchange8_nf:
1146   case ARM::BI_InterlockedExchange16_nf:
1147   case ARM::BI_InterlockedExchange_nf:
1148   case ARM::BI_InterlockedExchange64_nf:
1149     return MSVCIntrin::_InterlockedExchange_nf;
1150   case ARM::BI_InterlockedCompareExchange8_acq:
1151   case ARM::BI_InterlockedCompareExchange16_acq:
1152   case ARM::BI_InterlockedCompareExchange_acq:
1153   case ARM::BI_InterlockedCompareExchange64_acq:
1154     return MSVCIntrin::_InterlockedCompareExchange_acq;
1155   case ARM::BI_InterlockedCompareExchange8_rel:
1156   case ARM::BI_InterlockedCompareExchange16_rel:
1157   case ARM::BI_InterlockedCompareExchange_rel:
1158   case ARM::BI_InterlockedCompareExchange64_rel:
1159     return MSVCIntrin::_InterlockedCompareExchange_rel;
1160   case ARM::BI_InterlockedCompareExchange8_nf:
1161   case ARM::BI_InterlockedCompareExchange16_nf:
1162   case ARM::BI_InterlockedCompareExchange_nf:
1163   case ARM::BI_InterlockedCompareExchange64_nf:
1164     return MSVCIntrin::_InterlockedCompareExchange_nf;
1165   case ARM::BI_InterlockedOr8_acq:
1166   case ARM::BI_InterlockedOr16_acq:
1167   case ARM::BI_InterlockedOr_acq:
1168   case ARM::BI_InterlockedOr64_acq:
1169     return MSVCIntrin::_InterlockedOr_acq;
1170   case ARM::BI_InterlockedOr8_rel:
1171   case ARM::BI_InterlockedOr16_rel:
1172   case ARM::BI_InterlockedOr_rel:
1173   case ARM::BI_InterlockedOr64_rel:
1174     return MSVCIntrin::_InterlockedOr_rel;
1175   case ARM::BI_InterlockedOr8_nf:
1176   case ARM::BI_InterlockedOr16_nf:
1177   case ARM::BI_InterlockedOr_nf:
1178   case ARM::BI_InterlockedOr64_nf:
1179     return MSVCIntrin::_InterlockedOr_nf;
1180   case ARM::BI_InterlockedXor8_acq:
1181   case ARM::BI_InterlockedXor16_acq:
1182   case ARM::BI_InterlockedXor_acq:
1183   case ARM::BI_InterlockedXor64_acq:
1184     return MSVCIntrin::_InterlockedXor_acq;
1185   case ARM::BI_InterlockedXor8_rel:
1186   case ARM::BI_InterlockedXor16_rel:
1187   case ARM::BI_InterlockedXor_rel:
1188   case ARM::BI_InterlockedXor64_rel:
1189     return MSVCIntrin::_InterlockedXor_rel;
1190   case ARM::BI_InterlockedXor8_nf:
1191   case ARM::BI_InterlockedXor16_nf:
1192   case ARM::BI_InterlockedXor_nf:
1193   case ARM::BI_InterlockedXor64_nf:
1194     return MSVCIntrin::_InterlockedXor_nf;
1195   case ARM::BI_InterlockedAnd8_acq:
1196   case ARM::BI_InterlockedAnd16_acq:
1197   case ARM::BI_InterlockedAnd_acq:
1198   case ARM::BI_InterlockedAnd64_acq:
1199     return MSVCIntrin::_InterlockedAnd_acq;
1200   case ARM::BI_InterlockedAnd8_rel:
1201   case ARM::BI_InterlockedAnd16_rel:
1202   case ARM::BI_InterlockedAnd_rel:
1203   case ARM::BI_InterlockedAnd64_rel:
1204     return MSVCIntrin::_InterlockedAnd_rel;
1205   case ARM::BI_InterlockedAnd8_nf:
1206   case ARM::BI_InterlockedAnd16_nf:
1207   case ARM::BI_InterlockedAnd_nf:
1208   case ARM::BI_InterlockedAnd64_nf:
1209     return MSVCIntrin::_InterlockedAnd_nf;
1210   case ARM::BI_InterlockedIncrement16_acq:
1211   case ARM::BI_InterlockedIncrement_acq:
1212   case ARM::BI_InterlockedIncrement64_acq:
1213     return MSVCIntrin::_InterlockedIncrement_acq;
1214   case ARM::BI_InterlockedIncrement16_rel:
1215   case ARM::BI_InterlockedIncrement_rel:
1216   case ARM::BI_InterlockedIncrement64_rel:
1217     return MSVCIntrin::_InterlockedIncrement_rel;
1218   case ARM::BI_InterlockedIncrement16_nf:
1219   case ARM::BI_InterlockedIncrement_nf:
1220   case ARM::BI_InterlockedIncrement64_nf:
1221     return MSVCIntrin::_InterlockedIncrement_nf;
1222   case ARM::BI_InterlockedDecrement16_acq:
1223   case ARM::BI_InterlockedDecrement_acq:
1224   case ARM::BI_InterlockedDecrement64_acq:
1225     return MSVCIntrin::_InterlockedDecrement_acq;
1226   case ARM::BI_InterlockedDecrement16_rel:
1227   case ARM::BI_InterlockedDecrement_rel:
1228   case ARM::BI_InterlockedDecrement64_rel:
1229     return MSVCIntrin::_InterlockedDecrement_rel;
1230   case ARM::BI_InterlockedDecrement16_nf:
1231   case ARM::BI_InterlockedDecrement_nf:
1232   case ARM::BI_InterlockedDecrement64_nf:
1233     return MSVCIntrin::_InterlockedDecrement_nf;
1234   }
1235   llvm_unreachable("must return from switch");
1236 }
1237 
1238 static Optional<CodeGenFunction::MSVCIntrin>
translateAarch64ToMsvcIntrin(unsigned BuiltinID)1239 translateAarch64ToMsvcIntrin(unsigned BuiltinID) {
1240   using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1241   switch (BuiltinID) {
1242   default:
1243     return None;
1244   case AArch64::BI_BitScanForward:
1245   case AArch64::BI_BitScanForward64:
1246     return MSVCIntrin::_BitScanForward;
1247   case AArch64::BI_BitScanReverse:
1248   case AArch64::BI_BitScanReverse64:
1249     return MSVCIntrin::_BitScanReverse;
1250   case AArch64::BI_InterlockedAnd64:
1251     return MSVCIntrin::_InterlockedAnd;
1252   case AArch64::BI_InterlockedExchange64:
1253     return MSVCIntrin::_InterlockedExchange;
1254   case AArch64::BI_InterlockedExchangeAdd64:
1255     return MSVCIntrin::_InterlockedExchangeAdd;
1256   case AArch64::BI_InterlockedExchangeSub64:
1257     return MSVCIntrin::_InterlockedExchangeSub;
1258   case AArch64::BI_InterlockedOr64:
1259     return MSVCIntrin::_InterlockedOr;
1260   case AArch64::BI_InterlockedXor64:
1261     return MSVCIntrin::_InterlockedXor;
1262   case AArch64::BI_InterlockedDecrement64:
1263     return MSVCIntrin::_InterlockedDecrement;
1264   case AArch64::BI_InterlockedIncrement64:
1265     return MSVCIntrin::_InterlockedIncrement;
1266   case AArch64::BI_InterlockedExchangeAdd8_acq:
1267   case AArch64::BI_InterlockedExchangeAdd16_acq:
1268   case AArch64::BI_InterlockedExchangeAdd_acq:
1269   case AArch64::BI_InterlockedExchangeAdd64_acq:
1270     return MSVCIntrin::_InterlockedExchangeAdd_acq;
1271   case AArch64::BI_InterlockedExchangeAdd8_rel:
1272   case AArch64::BI_InterlockedExchangeAdd16_rel:
1273   case AArch64::BI_InterlockedExchangeAdd_rel:
1274   case AArch64::BI_InterlockedExchangeAdd64_rel:
1275     return MSVCIntrin::_InterlockedExchangeAdd_rel;
1276   case AArch64::BI_InterlockedExchangeAdd8_nf:
1277   case AArch64::BI_InterlockedExchangeAdd16_nf:
1278   case AArch64::BI_InterlockedExchangeAdd_nf:
1279   case AArch64::BI_InterlockedExchangeAdd64_nf:
1280     return MSVCIntrin::_InterlockedExchangeAdd_nf;
1281   case AArch64::BI_InterlockedExchange8_acq:
1282   case AArch64::BI_InterlockedExchange16_acq:
1283   case AArch64::BI_InterlockedExchange_acq:
1284   case AArch64::BI_InterlockedExchange64_acq:
1285     return MSVCIntrin::_InterlockedExchange_acq;
1286   case AArch64::BI_InterlockedExchange8_rel:
1287   case AArch64::BI_InterlockedExchange16_rel:
1288   case AArch64::BI_InterlockedExchange_rel:
1289   case AArch64::BI_InterlockedExchange64_rel:
1290     return MSVCIntrin::_InterlockedExchange_rel;
1291   case AArch64::BI_InterlockedExchange8_nf:
1292   case AArch64::BI_InterlockedExchange16_nf:
1293   case AArch64::BI_InterlockedExchange_nf:
1294   case AArch64::BI_InterlockedExchange64_nf:
1295     return MSVCIntrin::_InterlockedExchange_nf;
1296   case AArch64::BI_InterlockedCompareExchange8_acq:
1297   case AArch64::BI_InterlockedCompareExchange16_acq:
1298   case AArch64::BI_InterlockedCompareExchange_acq:
1299   case AArch64::BI_InterlockedCompareExchange64_acq:
1300     return MSVCIntrin::_InterlockedCompareExchange_acq;
1301   case AArch64::BI_InterlockedCompareExchange8_rel:
1302   case AArch64::BI_InterlockedCompareExchange16_rel:
1303   case AArch64::BI_InterlockedCompareExchange_rel:
1304   case AArch64::BI_InterlockedCompareExchange64_rel:
1305     return MSVCIntrin::_InterlockedCompareExchange_rel;
1306   case AArch64::BI_InterlockedCompareExchange8_nf:
1307   case AArch64::BI_InterlockedCompareExchange16_nf:
1308   case AArch64::BI_InterlockedCompareExchange_nf:
1309   case AArch64::BI_InterlockedCompareExchange64_nf:
1310     return MSVCIntrin::_InterlockedCompareExchange_nf;
1311   case AArch64::BI_InterlockedCompareExchange128:
1312     return MSVCIntrin::_InterlockedCompareExchange128;
1313   case AArch64::BI_InterlockedCompareExchange128_acq:
1314     return MSVCIntrin::_InterlockedCompareExchange128_acq;
1315   case AArch64::BI_InterlockedCompareExchange128_nf:
1316     return MSVCIntrin::_InterlockedCompareExchange128_nf;
1317   case AArch64::BI_InterlockedCompareExchange128_rel:
1318     return MSVCIntrin::_InterlockedCompareExchange128_rel;
1319   case AArch64::BI_InterlockedOr8_acq:
1320   case AArch64::BI_InterlockedOr16_acq:
1321   case AArch64::BI_InterlockedOr_acq:
1322   case AArch64::BI_InterlockedOr64_acq:
1323     return MSVCIntrin::_InterlockedOr_acq;
1324   case AArch64::BI_InterlockedOr8_rel:
1325   case AArch64::BI_InterlockedOr16_rel:
1326   case AArch64::BI_InterlockedOr_rel:
1327   case AArch64::BI_InterlockedOr64_rel:
1328     return MSVCIntrin::_InterlockedOr_rel;
1329   case AArch64::BI_InterlockedOr8_nf:
1330   case AArch64::BI_InterlockedOr16_nf:
1331   case AArch64::BI_InterlockedOr_nf:
1332   case AArch64::BI_InterlockedOr64_nf:
1333     return MSVCIntrin::_InterlockedOr_nf;
1334   case AArch64::BI_InterlockedXor8_acq:
1335   case AArch64::BI_InterlockedXor16_acq:
1336   case AArch64::BI_InterlockedXor_acq:
1337   case AArch64::BI_InterlockedXor64_acq:
1338     return MSVCIntrin::_InterlockedXor_acq;
1339   case AArch64::BI_InterlockedXor8_rel:
1340   case AArch64::BI_InterlockedXor16_rel:
1341   case AArch64::BI_InterlockedXor_rel:
1342   case AArch64::BI_InterlockedXor64_rel:
1343     return MSVCIntrin::_InterlockedXor_rel;
1344   case AArch64::BI_InterlockedXor8_nf:
1345   case AArch64::BI_InterlockedXor16_nf:
1346   case AArch64::BI_InterlockedXor_nf:
1347   case AArch64::BI_InterlockedXor64_nf:
1348     return MSVCIntrin::_InterlockedXor_nf;
1349   case AArch64::BI_InterlockedAnd8_acq:
1350   case AArch64::BI_InterlockedAnd16_acq:
1351   case AArch64::BI_InterlockedAnd_acq:
1352   case AArch64::BI_InterlockedAnd64_acq:
1353     return MSVCIntrin::_InterlockedAnd_acq;
1354   case AArch64::BI_InterlockedAnd8_rel:
1355   case AArch64::BI_InterlockedAnd16_rel:
1356   case AArch64::BI_InterlockedAnd_rel:
1357   case AArch64::BI_InterlockedAnd64_rel:
1358     return MSVCIntrin::_InterlockedAnd_rel;
1359   case AArch64::BI_InterlockedAnd8_nf:
1360   case AArch64::BI_InterlockedAnd16_nf:
1361   case AArch64::BI_InterlockedAnd_nf:
1362   case AArch64::BI_InterlockedAnd64_nf:
1363     return MSVCIntrin::_InterlockedAnd_nf;
1364   case AArch64::BI_InterlockedIncrement16_acq:
1365   case AArch64::BI_InterlockedIncrement_acq:
1366   case AArch64::BI_InterlockedIncrement64_acq:
1367     return MSVCIntrin::_InterlockedIncrement_acq;
1368   case AArch64::BI_InterlockedIncrement16_rel:
1369   case AArch64::BI_InterlockedIncrement_rel:
1370   case AArch64::BI_InterlockedIncrement64_rel:
1371     return MSVCIntrin::_InterlockedIncrement_rel;
1372   case AArch64::BI_InterlockedIncrement16_nf:
1373   case AArch64::BI_InterlockedIncrement_nf:
1374   case AArch64::BI_InterlockedIncrement64_nf:
1375     return MSVCIntrin::_InterlockedIncrement_nf;
1376   case AArch64::BI_InterlockedDecrement16_acq:
1377   case AArch64::BI_InterlockedDecrement_acq:
1378   case AArch64::BI_InterlockedDecrement64_acq:
1379     return MSVCIntrin::_InterlockedDecrement_acq;
1380   case AArch64::BI_InterlockedDecrement16_rel:
1381   case AArch64::BI_InterlockedDecrement_rel:
1382   case AArch64::BI_InterlockedDecrement64_rel:
1383     return MSVCIntrin::_InterlockedDecrement_rel;
1384   case AArch64::BI_InterlockedDecrement16_nf:
1385   case AArch64::BI_InterlockedDecrement_nf:
1386   case AArch64::BI_InterlockedDecrement64_nf:
1387     return MSVCIntrin::_InterlockedDecrement_nf;
1388   }
1389   llvm_unreachable("must return from switch");
1390 }
1391 
1392 static Optional<CodeGenFunction::MSVCIntrin>
translateX86ToMsvcIntrin(unsigned BuiltinID)1393 translateX86ToMsvcIntrin(unsigned BuiltinID) {
1394   using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1395   switch (BuiltinID) {
1396   default:
1397     return None;
1398   case clang::X86::BI_BitScanForward:
1399   case clang::X86::BI_BitScanForward64:
1400     return MSVCIntrin::_BitScanForward;
1401   case clang::X86::BI_BitScanReverse:
1402   case clang::X86::BI_BitScanReverse64:
1403     return MSVCIntrin::_BitScanReverse;
1404   case clang::X86::BI_InterlockedAnd64:
1405     return MSVCIntrin::_InterlockedAnd;
1406   case clang::X86::BI_InterlockedCompareExchange128:
1407     return MSVCIntrin::_InterlockedCompareExchange128;
1408   case clang::X86::BI_InterlockedExchange64:
1409     return MSVCIntrin::_InterlockedExchange;
1410   case clang::X86::BI_InterlockedExchangeAdd64:
1411     return MSVCIntrin::_InterlockedExchangeAdd;
1412   case clang::X86::BI_InterlockedExchangeSub64:
1413     return MSVCIntrin::_InterlockedExchangeSub;
1414   case clang::X86::BI_InterlockedOr64:
1415     return MSVCIntrin::_InterlockedOr;
1416   case clang::X86::BI_InterlockedXor64:
1417     return MSVCIntrin::_InterlockedXor;
1418   case clang::X86::BI_InterlockedDecrement64:
1419     return MSVCIntrin::_InterlockedDecrement;
1420   case clang::X86::BI_InterlockedIncrement64:
1421     return MSVCIntrin::_InterlockedIncrement;
1422   }
1423   llvm_unreachable("must return from switch");
1424 }
1425 
1426 // Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated.
EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,const CallExpr * E)1427 Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
1428                                             const CallExpr *E) {
1429   switch (BuiltinID) {
1430   case MSVCIntrin::_BitScanForward:
1431   case MSVCIntrin::_BitScanReverse: {
1432     Address IndexAddress(EmitPointerWithAlignment(E->getArg(0)));
1433     Value *ArgValue = EmitScalarExpr(E->getArg(1));
1434 
1435     llvm::Type *ArgType = ArgValue->getType();
1436     llvm::Type *IndexType =
1437         IndexAddress.getPointer()->getType()->getPointerElementType();
1438     llvm::Type *ResultType = ConvertType(E->getType());
1439 
1440     Value *ArgZero = llvm::Constant::getNullValue(ArgType);
1441     Value *ResZero = llvm::Constant::getNullValue(ResultType);
1442     Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
1443 
1444     BasicBlock *Begin = Builder.GetInsertBlock();
1445     BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
1446     Builder.SetInsertPoint(End);
1447     PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
1448 
1449     Builder.SetInsertPoint(Begin);
1450     Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
1451     BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
1452     Builder.CreateCondBr(IsZero, End, NotZero);
1453     Result->addIncoming(ResZero, Begin);
1454 
1455     Builder.SetInsertPoint(NotZero);
1456 
1457     if (BuiltinID == MSVCIntrin::_BitScanForward) {
1458       Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1459       Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1460       ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1461       Builder.CreateStore(ZeroCount, IndexAddress, false);
1462     } else {
1463       unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
1464       Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
1465 
1466       Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1467       Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1468       ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1469       Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
1470       Builder.CreateStore(Index, IndexAddress, false);
1471     }
1472     Builder.CreateBr(End);
1473     Result->addIncoming(ResOne, NotZero);
1474 
1475     Builder.SetInsertPoint(End);
1476     return Result;
1477   }
1478   case MSVCIntrin::_InterlockedAnd:
1479     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
1480   case MSVCIntrin::_InterlockedExchange:
1481     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
1482   case MSVCIntrin::_InterlockedExchangeAdd:
1483     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
1484   case MSVCIntrin::_InterlockedExchangeSub:
1485     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
1486   case MSVCIntrin::_InterlockedOr:
1487     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
1488   case MSVCIntrin::_InterlockedXor:
1489     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
1490   case MSVCIntrin::_InterlockedExchangeAdd_acq:
1491     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1492                                  AtomicOrdering::Acquire);
1493   case MSVCIntrin::_InterlockedExchangeAdd_rel:
1494     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1495                                  AtomicOrdering::Release);
1496   case MSVCIntrin::_InterlockedExchangeAdd_nf:
1497     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1498                                  AtomicOrdering::Monotonic);
1499   case MSVCIntrin::_InterlockedExchange_acq:
1500     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1501                                  AtomicOrdering::Acquire);
1502   case MSVCIntrin::_InterlockedExchange_rel:
1503     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1504                                  AtomicOrdering::Release);
1505   case MSVCIntrin::_InterlockedExchange_nf:
1506     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1507                                  AtomicOrdering::Monotonic);
1508   case MSVCIntrin::_InterlockedCompareExchange_acq:
1509     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
1510   case MSVCIntrin::_InterlockedCompareExchange_rel:
1511     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
1512   case MSVCIntrin::_InterlockedCompareExchange_nf:
1513     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1514   case MSVCIntrin::_InterlockedCompareExchange128:
1515     return EmitAtomicCmpXchg128ForMSIntrin(
1516         *this, E, AtomicOrdering::SequentiallyConsistent);
1517   case MSVCIntrin::_InterlockedCompareExchange128_acq:
1518     return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire);
1519   case MSVCIntrin::_InterlockedCompareExchange128_rel:
1520     return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release);
1521   case MSVCIntrin::_InterlockedCompareExchange128_nf:
1522     return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1523   case MSVCIntrin::_InterlockedOr_acq:
1524     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1525                                  AtomicOrdering::Acquire);
1526   case MSVCIntrin::_InterlockedOr_rel:
1527     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1528                                  AtomicOrdering::Release);
1529   case MSVCIntrin::_InterlockedOr_nf:
1530     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1531                                  AtomicOrdering::Monotonic);
1532   case MSVCIntrin::_InterlockedXor_acq:
1533     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1534                                  AtomicOrdering::Acquire);
1535   case MSVCIntrin::_InterlockedXor_rel:
1536     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1537                                  AtomicOrdering::Release);
1538   case MSVCIntrin::_InterlockedXor_nf:
1539     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1540                                  AtomicOrdering::Monotonic);
1541   case MSVCIntrin::_InterlockedAnd_acq:
1542     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1543                                  AtomicOrdering::Acquire);
1544   case MSVCIntrin::_InterlockedAnd_rel:
1545     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1546                                  AtomicOrdering::Release);
1547   case MSVCIntrin::_InterlockedAnd_nf:
1548     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1549                                  AtomicOrdering::Monotonic);
1550   case MSVCIntrin::_InterlockedIncrement_acq:
1551     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1552   case MSVCIntrin::_InterlockedIncrement_rel:
1553     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1554   case MSVCIntrin::_InterlockedIncrement_nf:
1555     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1556   case MSVCIntrin::_InterlockedDecrement_acq:
1557     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1558   case MSVCIntrin::_InterlockedDecrement_rel:
1559     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1560   case MSVCIntrin::_InterlockedDecrement_nf:
1561     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1562 
1563   case MSVCIntrin::_InterlockedDecrement:
1564     return EmitAtomicDecrementValue(*this, E);
1565   case MSVCIntrin::_InterlockedIncrement:
1566     return EmitAtomicIncrementValue(*this, E);
1567 
1568   case MSVCIntrin::__fastfail: {
1569     // Request immediate process termination from the kernel. The instruction
1570     // sequences to do this are documented on MSDN:
1571     // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1572     llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1573     StringRef Asm, Constraints;
1574     switch (ISA) {
1575     default:
1576       ErrorUnsupported(E, "__fastfail call for this architecture");
1577       break;
1578     case llvm::Triple::x86:
1579     case llvm::Triple::x86_64:
1580       Asm = "int $$0x29";
1581       Constraints = "{cx}";
1582       break;
1583     case llvm::Triple::thumb:
1584       Asm = "udf #251";
1585       Constraints = "{r0}";
1586       break;
1587     case llvm::Triple::aarch64:
1588       Asm = "brk #0xF003";
1589       Constraints = "{w0}";
1590     }
1591     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1592     llvm::InlineAsm *IA =
1593         llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1594     llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1595         getLLVMContext(), llvm::AttributeList::FunctionIndex,
1596         llvm::Attribute::NoReturn);
1597     llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1598     CI->setAttributes(NoReturnAttr);
1599     return CI;
1600   }
1601   }
1602   llvm_unreachable("Incorrect MSVC intrinsic!");
1603 }
1604 
1605 namespace {
1606 // ARC cleanup for __builtin_os_log_format
1607 struct CallObjCArcUse final : EHScopeStack::Cleanup {
CallObjCArcUse__anond87beae00411::CallObjCArcUse1608   CallObjCArcUse(llvm::Value *object) : object(object) {}
1609   llvm::Value *object;
1610 
Emit__anond87beae00411::CallObjCArcUse1611   void Emit(CodeGenFunction &CGF, Flags flags) override {
1612     CGF.EmitARCIntrinsicUse(object);
1613   }
1614 };
1615 }
1616 
EmitCheckedArgForBuiltin(const Expr * E,BuiltinCheckKind Kind)1617 Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
1618                                                  BuiltinCheckKind Kind) {
1619   assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)
1620           && "Unsupported builtin check kind");
1621 
1622   Value *ArgValue = EmitScalarExpr(E);
1623   if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
1624     return ArgValue;
1625 
1626   SanitizerScope SanScope(this);
1627   Value *Cond = Builder.CreateICmpNE(
1628       ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
1629   EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
1630             SanitizerHandler::InvalidBuiltin,
1631             {EmitCheckSourceLocation(E->getExprLoc()),
1632              llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
1633             None);
1634   return ArgValue;
1635 }
1636 
1637 /// Get the argument type for arguments to os_log_helper.
getOSLogArgType(ASTContext & C,int Size)1638 static CanQualType getOSLogArgType(ASTContext &C, int Size) {
1639   QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
1640   return C.getCanonicalType(UnsignedTy);
1641 }
1642 
generateBuiltinOSLogHelperFunction(const analyze_os_log::OSLogBufferLayout & Layout,CharUnits BufferAlignment)1643 llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
1644     const analyze_os_log::OSLogBufferLayout &Layout,
1645     CharUnits BufferAlignment) {
1646   ASTContext &Ctx = getContext();
1647 
1648   llvm::SmallString<64> Name;
1649   {
1650     raw_svector_ostream OS(Name);
1651     OS << "__os_log_helper";
1652     OS << "_" << BufferAlignment.getQuantity();
1653     OS << "_" << int(Layout.getSummaryByte());
1654     OS << "_" << int(Layout.getNumArgsByte());
1655     for (const auto &Item : Layout.Items)
1656       OS << "_" << int(Item.getSizeByte()) << "_"
1657          << int(Item.getDescriptorByte());
1658   }
1659 
1660   if (llvm::Function *F = CGM.getModule().getFunction(Name))
1661     return F;
1662 
1663   llvm::SmallVector<QualType, 4> ArgTys;
1664   FunctionArgList Args;
1665   Args.push_back(ImplicitParamDecl::Create(
1666       Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
1667       ImplicitParamDecl::Other));
1668   ArgTys.emplace_back(Ctx.VoidPtrTy);
1669 
1670   for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
1671     char Size = Layout.Items[I].getSizeByte();
1672     if (!Size)
1673       continue;
1674 
1675     QualType ArgTy = getOSLogArgType(Ctx, Size);
1676     Args.push_back(ImplicitParamDecl::Create(
1677         Ctx, nullptr, SourceLocation(),
1678         &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
1679         ImplicitParamDecl::Other));
1680     ArgTys.emplace_back(ArgTy);
1681   }
1682 
1683   QualType ReturnTy = Ctx.VoidTy;
1684   QualType FuncionTy = Ctx.getFunctionType(ReturnTy, ArgTys, {});
1685 
1686   // The helper function has linkonce_odr linkage to enable the linker to merge
1687   // identical functions. To ensure the merging always happens, 'noinline' is
1688   // attached to the function when compiling with -Oz.
1689   const CGFunctionInfo &FI =
1690       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
1691   llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
1692   llvm::Function *Fn = llvm::Function::Create(
1693       FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
1694   Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
1695   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn, /*IsThunk=*/false);
1696   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
1697   Fn->setDoesNotThrow();
1698 
1699   // Attach 'noinline' at -Oz.
1700   if (CGM.getCodeGenOpts().OptimizeSize == 2)
1701     Fn->addFnAttr(llvm::Attribute::NoInline);
1702 
1703   auto NL = ApplyDebugLocation::CreateEmpty(*this);
1704   IdentifierInfo *II = &Ctx.Idents.get(Name);
1705   FunctionDecl *FD = FunctionDecl::Create(
1706       Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
1707       FuncionTy, nullptr, SC_PrivateExtern, false, false);
1708   // Avoid generating debug location info for the function.
1709   FD->setImplicit();
1710 
1711   StartFunction(FD, ReturnTy, Fn, FI, Args);
1712 
1713   // Create a scope with an artificial location for the body of this function.
1714   auto AL = ApplyDebugLocation::CreateArtificial(*this);
1715 
1716   CharUnits Offset;
1717   Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"),
1718                   BufferAlignment);
1719   Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
1720                       Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
1721   Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
1722                       Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
1723 
1724   unsigned I = 1;
1725   for (const auto &Item : Layout.Items) {
1726     Builder.CreateStore(
1727         Builder.getInt8(Item.getDescriptorByte()),
1728         Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
1729     Builder.CreateStore(
1730         Builder.getInt8(Item.getSizeByte()),
1731         Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
1732 
1733     CharUnits Size = Item.size();
1734     if (!Size.getQuantity())
1735       continue;
1736 
1737     Address Arg = GetAddrOfLocalVar(Args[I]);
1738     Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
1739     Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(),
1740                                  "argDataCast");
1741     Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
1742     Offset += Size;
1743     ++I;
1744   }
1745 
1746   FinishFunction();
1747 
1748   return Fn;
1749 }
1750 
emitBuiltinOSLogFormat(const CallExpr & E)1751 RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
1752   assert(E.getNumArgs() >= 2 &&
1753          "__builtin_os_log_format takes at least 2 arguments");
1754   ASTContext &Ctx = getContext();
1755   analyze_os_log::OSLogBufferLayout Layout;
1756   analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
1757   Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
1758   llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
1759 
1760   // Ignore argument 1, the format string. It is not currently used.
1761   CallArgList Args;
1762   Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
1763 
1764   for (const auto &Item : Layout.Items) {
1765     int Size = Item.getSizeByte();
1766     if (!Size)
1767       continue;
1768 
1769     llvm::Value *ArgVal;
1770 
1771     if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
1772       uint64_t Val = 0;
1773       for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
1774         Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
1775       ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
1776     } else if (const Expr *TheExpr = Item.getExpr()) {
1777       ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
1778 
1779       // If a temporary object that requires destruction after the full
1780       // expression is passed, push a lifetime-extended cleanup to extend its
1781       // lifetime to the end of the enclosing block scope.
1782       auto LifetimeExtendObject = [&](const Expr *E) {
1783         E = E->IgnoreParenCasts();
1784         // Extend lifetimes of objects returned by function calls and message
1785         // sends.
1786 
1787         // FIXME: We should do this in other cases in which temporaries are
1788         //        created including arguments of non-ARC types (e.g., C++
1789         //        temporaries).
1790         if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E))
1791           return true;
1792         return false;
1793       };
1794 
1795       if (TheExpr->getType()->isObjCRetainableType() &&
1796           getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) {
1797         assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
1798                "Only scalar can be a ObjC retainable type");
1799         if (!isa<Constant>(ArgVal)) {
1800           CleanupKind Cleanup = getARCCleanupKind();
1801           QualType Ty = TheExpr->getType();
1802           Address Alloca = Address::invalid();
1803           Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca);
1804           ArgVal = EmitARCRetain(Ty, ArgVal);
1805           Builder.CreateStore(ArgVal, Addr);
1806           pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty,
1807                                       CodeGenFunction::destroyARCStrongPrecise,
1808                                       Cleanup & EHCleanup);
1809 
1810           // Push a clang.arc.use call to ensure ARC optimizer knows that the
1811           // argument has to be alive.
1812           if (CGM.getCodeGenOpts().OptimizationLevel != 0)
1813             pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal);
1814         }
1815       }
1816     } else {
1817       ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
1818     }
1819 
1820     unsigned ArgValSize =
1821         CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
1822     llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
1823                                                      ArgValSize);
1824     ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
1825     CanQualType ArgTy = getOSLogArgType(Ctx, Size);
1826     // If ArgVal has type x86_fp80, zero-extend ArgVal.
1827     ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
1828     Args.add(RValue::get(ArgVal), ArgTy);
1829   }
1830 
1831   const CGFunctionInfo &FI =
1832       CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
1833   llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
1834       Layout, BufAddr.getAlignment());
1835   EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
1836   return RValue::get(BufAddr.getPointer());
1837 }
1838 
isSpecialUnsignedMultiplySignedResult(unsigned BuiltinID,WidthAndSignedness Op1Info,WidthAndSignedness Op2Info,WidthAndSignedness ResultInfo)1839 static bool isSpecialUnsignedMultiplySignedResult(
1840     unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info,
1841     WidthAndSignedness ResultInfo) {
1842   return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1843          Op1Info.Width == Op2Info.Width && Op2Info.Width == ResultInfo.Width &&
1844          !Op1Info.Signed && !Op2Info.Signed && ResultInfo.Signed;
1845 }
1846 
EmitCheckedUnsignedMultiplySignedResult(CodeGenFunction & CGF,const clang::Expr * Op1,WidthAndSignedness Op1Info,const clang::Expr * Op2,WidthAndSignedness Op2Info,const clang::Expr * ResultArg,QualType ResultQTy,WidthAndSignedness ResultInfo)1847 static RValue EmitCheckedUnsignedMultiplySignedResult(
1848     CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info,
1849     const clang::Expr *Op2, WidthAndSignedness Op2Info,
1850     const clang::Expr *ResultArg, QualType ResultQTy,
1851     WidthAndSignedness ResultInfo) {
1852   assert(isSpecialUnsignedMultiplySignedResult(
1853              Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
1854          "Cannot specialize this multiply");
1855 
1856   llvm::Value *V1 = CGF.EmitScalarExpr(Op1);
1857   llvm::Value *V2 = CGF.EmitScalarExpr(Op2);
1858 
1859   llvm::Value *HasOverflow;
1860   llvm::Value *Result = EmitOverflowIntrinsic(
1861       CGF, llvm::Intrinsic::umul_with_overflow, V1, V2, HasOverflow);
1862 
1863   // The intrinsic call will detect overflow when the value is > UINT_MAX,
1864   // however, since the original builtin had a signed result, we need to report
1865   // an overflow when the result is greater than INT_MAX.
1866   auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width);
1867   llvm::Value *IntMaxValue = llvm::ConstantInt::get(Result->getType(), IntMax);
1868 
1869   llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(Result, IntMaxValue);
1870   HasOverflow = CGF.Builder.CreateOr(HasOverflow, IntMaxOverflow);
1871 
1872   bool isVolatile =
1873       ResultArg->getType()->getPointeeType().isVolatileQualified();
1874   Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1875   CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1876                           isVolatile);
1877   return RValue::get(HasOverflow);
1878 }
1879 
1880 /// Determine if a binop is a checked mixed-sign multiply we can specialize.
isSpecialMixedSignMultiply(unsigned BuiltinID,WidthAndSignedness Op1Info,WidthAndSignedness Op2Info,WidthAndSignedness ResultInfo)1881 static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
1882                                        WidthAndSignedness Op1Info,
1883                                        WidthAndSignedness Op2Info,
1884                                        WidthAndSignedness ResultInfo) {
1885   return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1886          std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
1887          Op1Info.Signed != Op2Info.Signed;
1888 }
1889 
1890 /// Emit a checked mixed-sign multiply. This is a cheaper specialization of
1891 /// the generic checked-binop irgen.
1892 static RValue
EmitCheckedMixedSignMultiply(CodeGenFunction & CGF,const clang::Expr * Op1,WidthAndSignedness Op1Info,const clang::Expr * Op2,WidthAndSignedness Op2Info,const clang::Expr * ResultArg,QualType ResultQTy,WidthAndSignedness ResultInfo)1893 EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
1894                              WidthAndSignedness Op1Info, const clang::Expr *Op2,
1895                              WidthAndSignedness Op2Info,
1896                              const clang::Expr *ResultArg, QualType ResultQTy,
1897                              WidthAndSignedness ResultInfo) {
1898   assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,
1899                                     Op2Info, ResultInfo) &&
1900          "Not a mixed-sign multipliction we can specialize");
1901 
1902   // Emit the signed and unsigned operands.
1903   const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
1904   const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
1905   llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
1906   llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
1907   unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
1908   unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
1909 
1910   // One of the operands may be smaller than the other. If so, [s|z]ext it.
1911   if (SignedOpWidth < UnsignedOpWidth)
1912     Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
1913   if (UnsignedOpWidth < SignedOpWidth)
1914     Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
1915 
1916   llvm::Type *OpTy = Signed->getType();
1917   llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
1918   Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1919   llvm::Type *ResTy = ResultPtr.getElementType();
1920   unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
1921 
1922   // Take the absolute value of the signed operand.
1923   llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
1924   llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
1925   llvm::Value *AbsSigned =
1926       CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
1927 
1928   // Perform a checked unsigned multiplication.
1929   llvm::Value *UnsignedOverflow;
1930   llvm::Value *UnsignedResult =
1931       EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
1932                             Unsigned, UnsignedOverflow);
1933 
1934   llvm::Value *Overflow, *Result;
1935   if (ResultInfo.Signed) {
1936     // Signed overflow occurs if the result is greater than INT_MAX or lesser
1937     // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
1938     auto IntMax =
1939         llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth);
1940     llvm::Value *MaxResult =
1941         CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
1942                               CGF.Builder.CreateZExt(IsNegative, OpTy));
1943     llvm::Value *SignedOverflow =
1944         CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
1945     Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
1946 
1947     // Prepare the signed result (possibly by negating it).
1948     llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
1949     llvm::Value *SignedResult =
1950         CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
1951     Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
1952   } else {
1953     // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
1954     llvm::Value *Underflow = CGF.Builder.CreateAnd(
1955         IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
1956     Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
1957     if (ResultInfo.Width < OpWidth) {
1958       auto IntMax =
1959           llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
1960       llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
1961           UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
1962       Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
1963     }
1964 
1965     // Negate the product if it would be negative in infinite precision.
1966     Result = CGF.Builder.CreateSelect(
1967         IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
1968 
1969     Result = CGF.Builder.CreateTrunc(Result, ResTy);
1970   }
1971   assert(Overflow && Result && "Missing overflow or result");
1972 
1973   bool isVolatile =
1974       ResultArg->getType()->getPointeeType().isVolatileQualified();
1975   CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1976                           isVolatile);
1977   return RValue::get(Overflow);
1978 }
1979 
dumpRecord(CodeGenFunction & CGF,QualType RType,Value * & RecordPtr,CharUnits Align,llvm::FunctionCallee Func,int Lvl)1980 static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType,
1981                                Value *&RecordPtr, CharUnits Align,
1982                                llvm::FunctionCallee Func, int Lvl) {
1983   ASTContext &Context = CGF.getContext();
1984   RecordDecl *RD = RType->castAs<RecordType>()->getDecl()->getDefinition();
1985   std::string Pad = std::string(Lvl * 4, ' ');
1986 
1987   Value *GString =
1988       CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n");
1989   Value *Res = CGF.Builder.CreateCall(Func, {GString});
1990 
1991   static llvm::DenseMap<QualType, const char *> Types;
1992   if (Types.empty()) {
1993     Types[Context.CharTy] = "%c";
1994     Types[Context.BoolTy] = "%d";
1995     Types[Context.SignedCharTy] = "%hhd";
1996     Types[Context.UnsignedCharTy] = "%hhu";
1997     Types[Context.IntTy] = "%d";
1998     Types[Context.UnsignedIntTy] = "%u";
1999     Types[Context.LongTy] = "%ld";
2000     Types[Context.UnsignedLongTy] = "%lu";
2001     Types[Context.LongLongTy] = "%lld";
2002     Types[Context.UnsignedLongLongTy] = "%llu";
2003     Types[Context.ShortTy] = "%hd";
2004     Types[Context.UnsignedShortTy] = "%hu";
2005     Types[Context.VoidPtrTy] = "%p";
2006     Types[Context.FloatTy] = "%f";
2007     Types[Context.DoubleTy] = "%f";
2008     Types[Context.LongDoubleTy] = "%Lf";
2009     Types[Context.getPointerType(Context.CharTy)] = "%s";
2010     Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s";
2011   }
2012 
2013   for (const auto *FD : RD->fields()) {
2014     Value *FieldPtr = RecordPtr;
2015     if (RD->isUnion())
2016       FieldPtr = CGF.Builder.CreatePointerCast(
2017           FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType())));
2018     else
2019       FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr,
2020                                              FD->getFieldIndex());
2021 
2022     GString = CGF.Builder.CreateGlobalStringPtr(
2023         llvm::Twine(Pad)
2024             .concat(FD->getType().getAsString())
2025             .concat(llvm::Twine(' '))
2026             .concat(FD->getNameAsString())
2027             .concat(" : ")
2028             .str());
2029     Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
2030     Res = CGF.Builder.CreateAdd(Res, TmpRes);
2031 
2032     QualType CanonicalType =
2033         FD->getType().getUnqualifiedType().getCanonicalType();
2034 
2035     // We check whether we are in a recursive type
2036     if (CanonicalType->isRecordType()) {
2037       TmpRes = dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1);
2038       Res = CGF.Builder.CreateAdd(TmpRes, Res);
2039       continue;
2040     }
2041 
2042     // We try to determine the best format to print the current field
2043     llvm::Twine Format = Types.find(CanonicalType) == Types.end()
2044                              ? Types[Context.VoidPtrTy]
2045                              : Types[CanonicalType];
2046 
2047     Address FieldAddress = Address(FieldPtr, Align);
2048     FieldPtr = CGF.Builder.CreateLoad(FieldAddress);
2049 
2050     // FIXME Need to handle bitfield here
2051     GString = CGF.Builder.CreateGlobalStringPtr(
2052         Format.concat(llvm::Twine('\n')).str());
2053     TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr});
2054     Res = CGF.Builder.CreateAdd(Res, TmpRes);
2055   }
2056 
2057   GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n");
2058   Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
2059   Res = CGF.Builder.CreateAdd(Res, TmpRes);
2060   return Res;
2061 }
2062 
2063 static bool
TypeRequiresBuiltinLaunderImp(const ASTContext & Ctx,QualType Ty,llvm::SmallPtrSetImpl<const Decl * > & Seen)2064 TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
2065                               llvm::SmallPtrSetImpl<const Decl *> &Seen) {
2066   if (const auto *Arr = Ctx.getAsArrayType(Ty))
2067     Ty = Ctx.getBaseElementType(Arr);
2068 
2069   const auto *Record = Ty->getAsCXXRecordDecl();
2070   if (!Record)
2071     return false;
2072 
2073   // We've already checked this type, or are in the process of checking it.
2074   if (!Seen.insert(Record).second)
2075     return false;
2076 
2077   assert(Record->hasDefinition() &&
2078          "Incomplete types should already be diagnosed");
2079 
2080   if (Record->isDynamicClass())
2081     return true;
2082 
2083   for (FieldDecl *F : Record->fields()) {
2084     if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
2085       return true;
2086   }
2087   return false;
2088 }
2089 
2090 /// Determine if the specified type requires laundering by checking if it is a
2091 /// dynamic class type or contains a subobject which is a dynamic class type.
TypeRequiresBuiltinLaunder(CodeGenModule & CGM,QualType Ty)2092 static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
2093   if (!CGM.getCodeGenOpts().StrictVTablePointers)
2094     return false;
2095   llvm::SmallPtrSet<const Decl *, 16> Seen;
2096   return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
2097 }
2098 
emitRotate(const CallExpr * E,bool IsRotateRight)2099 RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
2100   llvm::Value *Src = EmitScalarExpr(E->getArg(0));
2101   llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
2102 
2103   // The builtin's shift arg may have a different type than the source arg and
2104   // result, but the LLVM intrinsic uses the same type for all values.
2105   llvm::Type *Ty = Src->getType();
2106   ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
2107 
2108   // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
2109   unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
2110   Function *F = CGM.getIntrinsic(IID, Ty);
2111   return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
2112 }
2113 
2114 // Map math builtins for long-double to f128 version.
mutateLongDoubleBuiltin(unsigned BuiltinID)2115 static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) {
2116   switch (BuiltinID) {
2117 #define MUTATE_LDBL(func) \
2118   case Builtin::BI__builtin_##func##l: \
2119     return Builtin::BI__builtin_##func##f128;
2120   MUTATE_LDBL(sqrt)
2121   MUTATE_LDBL(cbrt)
2122   MUTATE_LDBL(fabs)
2123   MUTATE_LDBL(log)
2124   MUTATE_LDBL(log2)
2125   MUTATE_LDBL(log10)
2126   MUTATE_LDBL(log1p)
2127   MUTATE_LDBL(logb)
2128   MUTATE_LDBL(exp)
2129   MUTATE_LDBL(exp2)
2130   MUTATE_LDBL(expm1)
2131   MUTATE_LDBL(fdim)
2132   MUTATE_LDBL(hypot)
2133   MUTATE_LDBL(ilogb)
2134   MUTATE_LDBL(pow)
2135   MUTATE_LDBL(fmin)
2136   MUTATE_LDBL(fmax)
2137   MUTATE_LDBL(ceil)
2138   MUTATE_LDBL(trunc)
2139   MUTATE_LDBL(rint)
2140   MUTATE_LDBL(nearbyint)
2141   MUTATE_LDBL(round)
2142   MUTATE_LDBL(floor)
2143   MUTATE_LDBL(lround)
2144   MUTATE_LDBL(llround)
2145   MUTATE_LDBL(lrint)
2146   MUTATE_LDBL(llrint)
2147   MUTATE_LDBL(fmod)
2148   MUTATE_LDBL(modf)
2149   MUTATE_LDBL(nan)
2150   MUTATE_LDBL(nans)
2151   MUTATE_LDBL(inf)
2152   MUTATE_LDBL(fma)
2153   MUTATE_LDBL(sin)
2154   MUTATE_LDBL(cos)
2155   MUTATE_LDBL(tan)
2156   MUTATE_LDBL(sinh)
2157   MUTATE_LDBL(cosh)
2158   MUTATE_LDBL(tanh)
2159   MUTATE_LDBL(asin)
2160   MUTATE_LDBL(acos)
2161   MUTATE_LDBL(atan)
2162   MUTATE_LDBL(asinh)
2163   MUTATE_LDBL(acosh)
2164   MUTATE_LDBL(atanh)
2165   MUTATE_LDBL(atan2)
2166   MUTATE_LDBL(erf)
2167   MUTATE_LDBL(erfc)
2168   MUTATE_LDBL(ldexp)
2169   MUTATE_LDBL(frexp)
2170   MUTATE_LDBL(huge_val)
2171   MUTATE_LDBL(copysign)
2172   MUTATE_LDBL(nextafter)
2173   MUTATE_LDBL(nexttoward)
2174   MUTATE_LDBL(remainder)
2175   MUTATE_LDBL(remquo)
2176   MUTATE_LDBL(scalbln)
2177   MUTATE_LDBL(scalbn)
2178   MUTATE_LDBL(tgamma)
2179   MUTATE_LDBL(lgamma)
2180 #undef MUTATE_LDBL
2181   default:
2182     return BuiltinID;
2183   }
2184 }
2185 
EmitBuiltinExpr(const GlobalDecl GD,unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue)2186 RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
2187                                         const CallExpr *E,
2188                                         ReturnValueSlot ReturnValue) {
2189   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
2190   // See if we can constant fold this builtin.  If so, don't emit it at all.
2191   Expr::EvalResult Result;
2192   if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
2193       !Result.hasSideEffects()) {
2194     if (Result.Val.isInt())
2195       return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
2196                                                 Result.Val.getInt()));
2197     if (Result.Val.isFloat())
2198       return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
2199                                                Result.Val.getFloat()));
2200   }
2201 
2202   // If current long-double semantics is IEEE 128-bit, replace math builtins
2203   // of long-double with f128 equivalent.
2204   // TODO: This mutation should also be applied to other targets other than PPC,
2205   // after backend supports IEEE 128-bit style libcalls.
2206   if (getTarget().getTriple().isPPC64() &&
2207       &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
2208     BuiltinID = mutateLongDoubleBuiltin(BuiltinID);
2209 
2210   // If the builtin has been declared explicitly with an assembler label,
2211   // disable the specialized emitting below. Ideally we should communicate the
2212   // rename in IR, or at least avoid generating the intrinsic calls that are
2213   // likely to get lowered to the renamed library functions.
2214   const unsigned BuiltinIDIfNoAsmLabel =
2215       FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID;
2216 
2217   // There are LLVM math intrinsics/instructions corresponding to math library
2218   // functions except the LLVM op will never set errno while the math library
2219   // might. Also, math builtins have the same semantics as their math library
2220   // twins. Thus, we can transform math library and builtin calls to their
2221   // LLVM counterparts if the call is marked 'const' (known to never set errno).
2222   if (FD->hasAttr<ConstAttr>()) {
2223     switch (BuiltinIDIfNoAsmLabel) {
2224     case Builtin::BIceil:
2225     case Builtin::BIceilf:
2226     case Builtin::BIceill:
2227     case Builtin::BI__builtin_ceil:
2228     case Builtin::BI__builtin_ceilf:
2229     case Builtin::BI__builtin_ceilf16:
2230     case Builtin::BI__builtin_ceill:
2231     case Builtin::BI__builtin_ceilf128:
2232       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2233                                    Intrinsic::ceil,
2234                                    Intrinsic::experimental_constrained_ceil));
2235 
2236     case Builtin::BIcopysign:
2237     case Builtin::BIcopysignf:
2238     case Builtin::BIcopysignl:
2239     case Builtin::BI__builtin_copysign:
2240     case Builtin::BI__builtin_copysignf:
2241     case Builtin::BI__builtin_copysignf16:
2242     case Builtin::BI__builtin_copysignl:
2243     case Builtin::BI__builtin_copysignf128:
2244       return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
2245 
2246     case Builtin::BIcos:
2247     case Builtin::BIcosf:
2248     case Builtin::BIcosl:
2249     case Builtin::BI__builtin_cos:
2250     case Builtin::BI__builtin_cosf:
2251     case Builtin::BI__builtin_cosf16:
2252     case Builtin::BI__builtin_cosl:
2253     case Builtin::BI__builtin_cosf128:
2254       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2255                                    Intrinsic::cos,
2256                                    Intrinsic::experimental_constrained_cos));
2257 
2258     case Builtin::BIexp:
2259     case Builtin::BIexpf:
2260     case Builtin::BIexpl:
2261     case Builtin::BI__builtin_exp:
2262     case Builtin::BI__builtin_expf:
2263     case Builtin::BI__builtin_expf16:
2264     case Builtin::BI__builtin_expl:
2265     case Builtin::BI__builtin_expf128:
2266       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2267                                    Intrinsic::exp,
2268                                    Intrinsic::experimental_constrained_exp));
2269 
2270     case Builtin::BIexp2:
2271     case Builtin::BIexp2f:
2272     case Builtin::BIexp2l:
2273     case Builtin::BI__builtin_exp2:
2274     case Builtin::BI__builtin_exp2f:
2275     case Builtin::BI__builtin_exp2f16:
2276     case Builtin::BI__builtin_exp2l:
2277     case Builtin::BI__builtin_exp2f128:
2278       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2279                                    Intrinsic::exp2,
2280                                    Intrinsic::experimental_constrained_exp2));
2281 
2282     case Builtin::BIfabs:
2283     case Builtin::BIfabsf:
2284     case Builtin::BIfabsl:
2285     case Builtin::BI__builtin_fabs:
2286     case Builtin::BI__builtin_fabsf:
2287     case Builtin::BI__builtin_fabsf16:
2288     case Builtin::BI__builtin_fabsl:
2289     case Builtin::BI__builtin_fabsf128:
2290       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
2291 
2292     case Builtin::BIfloor:
2293     case Builtin::BIfloorf:
2294     case Builtin::BIfloorl:
2295     case Builtin::BI__builtin_floor:
2296     case Builtin::BI__builtin_floorf:
2297     case Builtin::BI__builtin_floorf16:
2298     case Builtin::BI__builtin_floorl:
2299     case Builtin::BI__builtin_floorf128:
2300       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2301                                    Intrinsic::floor,
2302                                    Intrinsic::experimental_constrained_floor));
2303 
2304     case Builtin::BIfma:
2305     case Builtin::BIfmaf:
2306     case Builtin::BIfmal:
2307     case Builtin::BI__builtin_fma:
2308     case Builtin::BI__builtin_fmaf:
2309     case Builtin::BI__builtin_fmaf16:
2310     case Builtin::BI__builtin_fmal:
2311     case Builtin::BI__builtin_fmaf128:
2312       return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E,
2313                                    Intrinsic::fma,
2314                                    Intrinsic::experimental_constrained_fma));
2315 
2316     case Builtin::BIfmax:
2317     case Builtin::BIfmaxf:
2318     case Builtin::BIfmaxl:
2319     case Builtin::BI__builtin_fmax:
2320     case Builtin::BI__builtin_fmaxf:
2321     case Builtin::BI__builtin_fmaxf16:
2322     case Builtin::BI__builtin_fmaxl:
2323     case Builtin::BI__builtin_fmaxf128:
2324       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2325                                    Intrinsic::maxnum,
2326                                    Intrinsic::experimental_constrained_maxnum));
2327 
2328     case Builtin::BIfmin:
2329     case Builtin::BIfminf:
2330     case Builtin::BIfminl:
2331     case Builtin::BI__builtin_fmin:
2332     case Builtin::BI__builtin_fminf:
2333     case Builtin::BI__builtin_fminf16:
2334     case Builtin::BI__builtin_fminl:
2335     case Builtin::BI__builtin_fminf128:
2336       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2337                                    Intrinsic::minnum,
2338                                    Intrinsic::experimental_constrained_minnum));
2339 
2340     // fmod() is a special-case. It maps to the frem instruction rather than an
2341     // LLVM intrinsic.
2342     case Builtin::BIfmod:
2343     case Builtin::BIfmodf:
2344     case Builtin::BIfmodl:
2345     case Builtin::BI__builtin_fmod:
2346     case Builtin::BI__builtin_fmodf:
2347     case Builtin::BI__builtin_fmodf16:
2348     case Builtin::BI__builtin_fmodl:
2349     case Builtin::BI__builtin_fmodf128: {
2350       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2351       Value *Arg1 = EmitScalarExpr(E->getArg(0));
2352       Value *Arg2 = EmitScalarExpr(E->getArg(1));
2353       return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
2354     }
2355 
2356     case Builtin::BIlog:
2357     case Builtin::BIlogf:
2358     case Builtin::BIlogl:
2359     case Builtin::BI__builtin_log:
2360     case Builtin::BI__builtin_logf:
2361     case Builtin::BI__builtin_logf16:
2362     case Builtin::BI__builtin_logl:
2363     case Builtin::BI__builtin_logf128:
2364       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2365                                    Intrinsic::log,
2366                                    Intrinsic::experimental_constrained_log));
2367 
2368     case Builtin::BIlog10:
2369     case Builtin::BIlog10f:
2370     case Builtin::BIlog10l:
2371     case Builtin::BI__builtin_log10:
2372     case Builtin::BI__builtin_log10f:
2373     case Builtin::BI__builtin_log10f16:
2374     case Builtin::BI__builtin_log10l:
2375     case Builtin::BI__builtin_log10f128:
2376       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2377                                    Intrinsic::log10,
2378                                    Intrinsic::experimental_constrained_log10));
2379 
2380     case Builtin::BIlog2:
2381     case Builtin::BIlog2f:
2382     case Builtin::BIlog2l:
2383     case Builtin::BI__builtin_log2:
2384     case Builtin::BI__builtin_log2f:
2385     case Builtin::BI__builtin_log2f16:
2386     case Builtin::BI__builtin_log2l:
2387     case Builtin::BI__builtin_log2f128:
2388       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2389                                    Intrinsic::log2,
2390                                    Intrinsic::experimental_constrained_log2));
2391 
2392     case Builtin::BInearbyint:
2393     case Builtin::BInearbyintf:
2394     case Builtin::BInearbyintl:
2395     case Builtin::BI__builtin_nearbyint:
2396     case Builtin::BI__builtin_nearbyintf:
2397     case Builtin::BI__builtin_nearbyintl:
2398     case Builtin::BI__builtin_nearbyintf128:
2399       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2400                                 Intrinsic::nearbyint,
2401                                 Intrinsic::experimental_constrained_nearbyint));
2402 
2403     case Builtin::BIpow:
2404     case Builtin::BIpowf:
2405     case Builtin::BIpowl:
2406     case Builtin::BI__builtin_pow:
2407     case Builtin::BI__builtin_powf:
2408     case Builtin::BI__builtin_powf16:
2409     case Builtin::BI__builtin_powl:
2410     case Builtin::BI__builtin_powf128:
2411       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2412                                    Intrinsic::pow,
2413                                    Intrinsic::experimental_constrained_pow));
2414 
2415     case Builtin::BIrint:
2416     case Builtin::BIrintf:
2417     case Builtin::BIrintl:
2418     case Builtin::BI__builtin_rint:
2419     case Builtin::BI__builtin_rintf:
2420     case Builtin::BI__builtin_rintf16:
2421     case Builtin::BI__builtin_rintl:
2422     case Builtin::BI__builtin_rintf128:
2423       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2424                                    Intrinsic::rint,
2425                                    Intrinsic::experimental_constrained_rint));
2426 
2427     case Builtin::BIround:
2428     case Builtin::BIroundf:
2429     case Builtin::BIroundl:
2430     case Builtin::BI__builtin_round:
2431     case Builtin::BI__builtin_roundf:
2432     case Builtin::BI__builtin_roundf16:
2433     case Builtin::BI__builtin_roundl:
2434     case Builtin::BI__builtin_roundf128:
2435       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2436                                    Intrinsic::round,
2437                                    Intrinsic::experimental_constrained_round));
2438 
2439     case Builtin::BIsin:
2440     case Builtin::BIsinf:
2441     case Builtin::BIsinl:
2442     case Builtin::BI__builtin_sin:
2443     case Builtin::BI__builtin_sinf:
2444     case Builtin::BI__builtin_sinf16:
2445     case Builtin::BI__builtin_sinl:
2446     case Builtin::BI__builtin_sinf128:
2447       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2448                                    Intrinsic::sin,
2449                                    Intrinsic::experimental_constrained_sin));
2450 
2451     case Builtin::BIsqrt:
2452     case Builtin::BIsqrtf:
2453     case Builtin::BIsqrtl:
2454     case Builtin::BI__builtin_sqrt:
2455     case Builtin::BI__builtin_sqrtf:
2456     case Builtin::BI__builtin_sqrtf16:
2457     case Builtin::BI__builtin_sqrtl:
2458     case Builtin::BI__builtin_sqrtf128:
2459       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2460                                    Intrinsic::sqrt,
2461                                    Intrinsic::experimental_constrained_sqrt));
2462 
2463     case Builtin::BItrunc:
2464     case Builtin::BItruncf:
2465     case Builtin::BItruncl:
2466     case Builtin::BI__builtin_trunc:
2467     case Builtin::BI__builtin_truncf:
2468     case Builtin::BI__builtin_truncf16:
2469     case Builtin::BI__builtin_truncl:
2470     case Builtin::BI__builtin_truncf128:
2471       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2472                                    Intrinsic::trunc,
2473                                    Intrinsic::experimental_constrained_trunc));
2474 
2475     case Builtin::BIlround:
2476     case Builtin::BIlroundf:
2477     case Builtin::BIlroundl:
2478     case Builtin::BI__builtin_lround:
2479     case Builtin::BI__builtin_lroundf:
2480     case Builtin::BI__builtin_lroundl:
2481     case Builtin::BI__builtin_lroundf128:
2482       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2483           *this, E, Intrinsic::lround,
2484           Intrinsic::experimental_constrained_lround));
2485 
2486     case Builtin::BIllround:
2487     case Builtin::BIllroundf:
2488     case Builtin::BIllroundl:
2489     case Builtin::BI__builtin_llround:
2490     case Builtin::BI__builtin_llroundf:
2491     case Builtin::BI__builtin_llroundl:
2492     case Builtin::BI__builtin_llroundf128:
2493       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2494           *this, E, Intrinsic::llround,
2495           Intrinsic::experimental_constrained_llround));
2496 
2497     case Builtin::BIlrint:
2498     case Builtin::BIlrintf:
2499     case Builtin::BIlrintl:
2500     case Builtin::BI__builtin_lrint:
2501     case Builtin::BI__builtin_lrintf:
2502     case Builtin::BI__builtin_lrintl:
2503     case Builtin::BI__builtin_lrintf128:
2504       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2505           *this, E, Intrinsic::lrint,
2506           Intrinsic::experimental_constrained_lrint));
2507 
2508     case Builtin::BIllrint:
2509     case Builtin::BIllrintf:
2510     case Builtin::BIllrintl:
2511     case Builtin::BI__builtin_llrint:
2512     case Builtin::BI__builtin_llrintf:
2513     case Builtin::BI__builtin_llrintl:
2514     case Builtin::BI__builtin_llrintf128:
2515       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2516           *this, E, Intrinsic::llrint,
2517           Intrinsic::experimental_constrained_llrint));
2518 
2519     default:
2520       break;
2521     }
2522   }
2523 
2524   switch (BuiltinIDIfNoAsmLabel) {
2525   default: break;
2526   case Builtin::BI__builtin___CFStringMakeConstantString:
2527   case Builtin::BI__builtin___NSStringMakeConstantString:
2528     return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
2529   case Builtin::BI__builtin_stdarg_start:
2530   case Builtin::BI__builtin_va_start:
2531   case Builtin::BI__va_start:
2532   case Builtin::BI__builtin_va_end:
2533     return RValue::get(
2534         EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
2535                            ? EmitScalarExpr(E->getArg(0))
2536                            : EmitVAListRef(E->getArg(0)).getPointer(),
2537                        BuiltinID != Builtin::BI__builtin_va_end));
2538   case Builtin::BI__builtin_va_copy: {
2539     Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
2540     Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
2541 
2542     llvm::Type *Type = Int8PtrTy;
2543 
2544     DstPtr = Builder.CreateBitCast(DstPtr, Type);
2545     SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
2546     return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
2547                                           {DstPtr, SrcPtr}));
2548   }
2549   case Builtin::BI__builtin_abs:
2550   case Builtin::BI__builtin_labs:
2551   case Builtin::BI__builtin_llabs: {
2552     // X < 0 ? -X : X
2553     // The negation has 'nsw' because abs of INT_MIN is undefined.
2554     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2555     Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
2556     Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
2557     Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
2558     Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
2559     return RValue::get(Result);
2560   }
2561   case Builtin::BI__builtin_complex: {
2562     Value *Real = EmitScalarExpr(E->getArg(0));
2563     Value *Imag = EmitScalarExpr(E->getArg(1));
2564     return RValue::getComplex({Real, Imag});
2565   }
2566   case Builtin::BI__builtin_conj:
2567   case Builtin::BI__builtin_conjf:
2568   case Builtin::BI__builtin_conjl:
2569   case Builtin::BIconj:
2570   case Builtin::BIconjf:
2571   case Builtin::BIconjl: {
2572     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2573     Value *Real = ComplexVal.first;
2574     Value *Imag = ComplexVal.second;
2575     Imag = Builder.CreateFNeg(Imag, "neg");
2576     return RValue::getComplex(std::make_pair(Real, Imag));
2577   }
2578   case Builtin::BI__builtin_creal:
2579   case Builtin::BI__builtin_crealf:
2580   case Builtin::BI__builtin_creall:
2581   case Builtin::BIcreal:
2582   case Builtin::BIcrealf:
2583   case Builtin::BIcreall: {
2584     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2585     return RValue::get(ComplexVal.first);
2586   }
2587 
2588   case Builtin::BI__builtin_dump_struct: {
2589     llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy);
2590     llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get(
2591         LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true);
2592 
2593     Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts());
2594     CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment();
2595 
2596     const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts();
2597     QualType Arg0Type = Arg0->getType()->getPointeeType();
2598 
2599     Value *RecordPtr = EmitScalarExpr(Arg0);
2600     Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align,
2601                             {LLVMFuncType, Func}, 0);
2602     return RValue::get(Res);
2603   }
2604 
2605   case Builtin::BI__builtin_preserve_access_index: {
2606     // Only enabled preserved access index region when debuginfo
2607     // is available as debuginfo is needed to preserve user-level
2608     // access pattern.
2609     if (!getDebugInfo()) {
2610       CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
2611       return RValue::get(EmitScalarExpr(E->getArg(0)));
2612     }
2613 
2614     // Nested builtin_preserve_access_index() not supported
2615     if (IsInPreservedAIRegion) {
2616       CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
2617       return RValue::get(EmitScalarExpr(E->getArg(0)));
2618     }
2619 
2620     IsInPreservedAIRegion = true;
2621     Value *Res = EmitScalarExpr(E->getArg(0));
2622     IsInPreservedAIRegion = false;
2623     return RValue::get(Res);
2624   }
2625 
2626   case Builtin::BI__builtin_cimag:
2627   case Builtin::BI__builtin_cimagf:
2628   case Builtin::BI__builtin_cimagl:
2629   case Builtin::BIcimag:
2630   case Builtin::BIcimagf:
2631   case Builtin::BIcimagl: {
2632     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2633     return RValue::get(ComplexVal.second);
2634   }
2635 
2636   case Builtin::BI__builtin_clrsb:
2637   case Builtin::BI__builtin_clrsbl:
2638   case Builtin::BI__builtin_clrsbll: {
2639     // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
2640     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2641 
2642     llvm::Type *ArgType = ArgValue->getType();
2643     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2644 
2645     llvm::Type *ResultType = ConvertType(E->getType());
2646     Value *Zero = llvm::Constant::getNullValue(ArgType);
2647     Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
2648     Value *Inverse = Builder.CreateNot(ArgValue, "not");
2649     Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
2650     Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
2651     Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
2652     Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2653                                    "cast");
2654     return RValue::get(Result);
2655   }
2656   case Builtin::BI__builtin_ctzs:
2657   case Builtin::BI__builtin_ctz:
2658   case Builtin::BI__builtin_ctzl:
2659   case Builtin::BI__builtin_ctzll: {
2660     Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
2661 
2662     llvm::Type *ArgType = ArgValue->getType();
2663     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2664 
2665     llvm::Type *ResultType = ConvertType(E->getType());
2666     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2667     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2668     if (Result->getType() != ResultType)
2669       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2670                                      "cast");
2671     return RValue::get(Result);
2672   }
2673   case Builtin::BI__builtin_clzs:
2674   case Builtin::BI__builtin_clz:
2675   case Builtin::BI__builtin_clzl:
2676   case Builtin::BI__builtin_clzll: {
2677     Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
2678 
2679     llvm::Type *ArgType = ArgValue->getType();
2680     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2681 
2682     llvm::Type *ResultType = ConvertType(E->getType());
2683     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2684     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2685     if (Result->getType() != ResultType)
2686       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2687                                      "cast");
2688     return RValue::get(Result);
2689   }
2690   case Builtin::BI__builtin_ffs:
2691   case Builtin::BI__builtin_ffsl:
2692   case Builtin::BI__builtin_ffsll: {
2693     // ffs(x) -> x ? cttz(x) + 1 : 0
2694     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2695 
2696     llvm::Type *ArgType = ArgValue->getType();
2697     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2698 
2699     llvm::Type *ResultType = ConvertType(E->getType());
2700     Value *Tmp =
2701         Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
2702                           llvm::ConstantInt::get(ArgType, 1));
2703     Value *Zero = llvm::Constant::getNullValue(ArgType);
2704     Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
2705     Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
2706     if (Result->getType() != ResultType)
2707       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2708                                      "cast");
2709     return RValue::get(Result);
2710   }
2711   case Builtin::BI__builtin_parity:
2712   case Builtin::BI__builtin_parityl:
2713   case Builtin::BI__builtin_parityll: {
2714     // parity(x) -> ctpop(x) & 1
2715     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2716 
2717     llvm::Type *ArgType = ArgValue->getType();
2718     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2719 
2720     llvm::Type *ResultType = ConvertType(E->getType());
2721     Value *Tmp = Builder.CreateCall(F, ArgValue);
2722     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
2723     if (Result->getType() != ResultType)
2724       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2725                                      "cast");
2726     return RValue::get(Result);
2727   }
2728   case Builtin::BI__lzcnt16:
2729   case Builtin::BI__lzcnt:
2730   case Builtin::BI__lzcnt64: {
2731     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2732 
2733     llvm::Type *ArgType = ArgValue->getType();
2734     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2735 
2736     llvm::Type *ResultType = ConvertType(E->getType());
2737     Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
2738     if (Result->getType() != ResultType)
2739       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2740                                      "cast");
2741     return RValue::get(Result);
2742   }
2743   case Builtin::BI__popcnt16:
2744   case Builtin::BI__popcnt:
2745   case Builtin::BI__popcnt64:
2746   case Builtin::BI__builtin_popcount:
2747   case Builtin::BI__builtin_popcountl:
2748   case Builtin::BI__builtin_popcountll: {
2749     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2750 
2751     llvm::Type *ArgType = ArgValue->getType();
2752     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2753 
2754     llvm::Type *ResultType = ConvertType(E->getType());
2755     Value *Result = Builder.CreateCall(F, ArgValue);
2756     if (Result->getType() != ResultType)
2757       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2758                                      "cast");
2759     return RValue::get(Result);
2760   }
2761   case Builtin::BI__builtin_unpredictable: {
2762     // Always return the argument of __builtin_unpredictable. LLVM does not
2763     // handle this builtin. Metadata for this builtin should be added directly
2764     // to instructions such as branches or switches that use it.
2765     return RValue::get(EmitScalarExpr(E->getArg(0)));
2766   }
2767   case Builtin::BI__builtin_expect: {
2768     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2769     llvm::Type *ArgType = ArgValue->getType();
2770 
2771     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2772     // Don't generate llvm.expect on -O0 as the backend won't use it for
2773     // anything.
2774     // Note, we still IRGen ExpectedValue because it could have side-effects.
2775     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2776       return RValue::get(ArgValue);
2777 
2778     Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
2779     Value *Result =
2780         Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
2781     return RValue::get(Result);
2782   }
2783   case Builtin::BI__builtin_expect_with_probability: {
2784     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2785     llvm::Type *ArgType = ArgValue->getType();
2786 
2787     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2788     llvm::APFloat Probability(0.0);
2789     const Expr *ProbArg = E->getArg(2);
2790     bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext());
2791     assert(EvalSucceed && "probability should be able to evaluate as float");
2792     (void)EvalSucceed;
2793     bool LoseInfo = false;
2794     Probability.convert(llvm::APFloat::IEEEdouble(),
2795                         llvm::RoundingMode::Dynamic, &LoseInfo);
2796     llvm::Type *Ty = ConvertType(ProbArg->getType());
2797     Constant *Confidence = ConstantFP::get(Ty, Probability);
2798     // Don't generate llvm.expect.with.probability on -O0 as the backend
2799     // won't use it for anything.
2800     // Note, we still IRGen ExpectedValue because it could have side-effects.
2801     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2802       return RValue::get(ArgValue);
2803 
2804     Function *FnExpect =
2805         CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType);
2806     Value *Result = Builder.CreateCall(
2807         FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval");
2808     return RValue::get(Result);
2809   }
2810   case Builtin::BI__builtin_assume_aligned: {
2811     const Expr *Ptr = E->getArg(0);
2812     Value *PtrValue = EmitScalarExpr(Ptr);
2813     Value *OffsetValue =
2814       (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
2815 
2816     Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
2817     ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
2818     if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
2819       AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
2820                                      llvm::Value::MaximumAlignment);
2821 
2822     emitAlignmentAssumption(PtrValue, Ptr,
2823                             /*The expr loc is sufficient.*/ SourceLocation(),
2824                             AlignmentCI, OffsetValue);
2825     return RValue::get(PtrValue);
2826   }
2827   case Builtin::BI__assume:
2828   case Builtin::BI__builtin_assume: {
2829     if (E->getArg(0)->HasSideEffects(getContext()))
2830       return RValue::get(nullptr);
2831 
2832     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2833     Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
2834     return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
2835   }
2836   case Builtin::BI__builtin_bswap16:
2837   case Builtin::BI__builtin_bswap32:
2838   case Builtin::BI__builtin_bswap64: {
2839     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
2840   }
2841   case Builtin::BI__builtin_bitreverse8:
2842   case Builtin::BI__builtin_bitreverse16:
2843   case Builtin::BI__builtin_bitreverse32:
2844   case Builtin::BI__builtin_bitreverse64: {
2845     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
2846   }
2847   case Builtin::BI__builtin_rotateleft8:
2848   case Builtin::BI__builtin_rotateleft16:
2849   case Builtin::BI__builtin_rotateleft32:
2850   case Builtin::BI__builtin_rotateleft64:
2851   case Builtin::BI_rotl8: // Microsoft variants of rotate left
2852   case Builtin::BI_rotl16:
2853   case Builtin::BI_rotl:
2854   case Builtin::BI_lrotl:
2855   case Builtin::BI_rotl64:
2856     return emitRotate(E, false);
2857 
2858   case Builtin::BI__builtin_rotateright8:
2859   case Builtin::BI__builtin_rotateright16:
2860   case Builtin::BI__builtin_rotateright32:
2861   case Builtin::BI__builtin_rotateright64:
2862   case Builtin::BI_rotr8: // Microsoft variants of rotate right
2863   case Builtin::BI_rotr16:
2864   case Builtin::BI_rotr:
2865   case Builtin::BI_lrotr:
2866   case Builtin::BI_rotr64:
2867     return emitRotate(E, true);
2868 
2869   case Builtin::BI__builtin_constant_p: {
2870     llvm::Type *ResultType = ConvertType(E->getType());
2871 
2872     const Expr *Arg = E->getArg(0);
2873     QualType ArgType = Arg->getType();
2874     // FIXME: The allowance for Obj-C pointers and block pointers is historical
2875     // and likely a mistake.
2876     if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
2877         !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
2878       // Per the GCC documentation, only numeric constants are recognized after
2879       // inlining.
2880       return RValue::get(ConstantInt::get(ResultType, 0));
2881 
2882     if (Arg->HasSideEffects(getContext()))
2883       // The argument is unevaluated, so be conservative if it might have
2884       // side-effects.
2885       return RValue::get(ConstantInt::get(ResultType, 0));
2886 
2887     Value *ArgValue = EmitScalarExpr(Arg);
2888     if (ArgType->isObjCObjectPointerType()) {
2889       // Convert Objective-C objects to id because we cannot distinguish between
2890       // LLVM types for Obj-C classes as they are opaque.
2891       ArgType = CGM.getContext().getObjCIdType();
2892       ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
2893     }
2894     Function *F =
2895         CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
2896     Value *Result = Builder.CreateCall(F, ArgValue);
2897     if (Result->getType() != ResultType)
2898       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
2899     return RValue::get(Result);
2900   }
2901   case Builtin::BI__builtin_dynamic_object_size:
2902   case Builtin::BI__builtin_object_size: {
2903     unsigned Type =
2904         E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
2905     auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
2906 
2907     // We pass this builtin onto the optimizer so that it can figure out the
2908     // object size in more complex cases.
2909     bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
2910     return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
2911                                              /*EmittedE=*/nullptr, IsDynamic));
2912   }
2913   case Builtin::BI__builtin_prefetch: {
2914     Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
2915     // FIXME: Technically these constants should of type 'int', yes?
2916     RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
2917       llvm::ConstantInt::get(Int32Ty, 0);
2918     Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
2919       llvm::ConstantInt::get(Int32Ty, 3);
2920     Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
2921     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
2922     return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
2923   }
2924   case Builtin::BI__builtin_readcyclecounter: {
2925     Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
2926     return RValue::get(Builder.CreateCall(F));
2927   }
2928   case Builtin::BI__builtin___clear_cache: {
2929     Value *Begin = EmitScalarExpr(E->getArg(0));
2930     Value *End = EmitScalarExpr(E->getArg(1));
2931     Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
2932     return RValue::get(Builder.CreateCall(F, {Begin, End}));
2933   }
2934   case Builtin::BI__builtin_trap:
2935     return RValue::get(EmitTrapCall(Intrinsic::trap));
2936   case Builtin::BI__debugbreak:
2937     return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
2938   case Builtin::BI__builtin_unreachable: {
2939     EmitUnreachable(E->getExprLoc());
2940 
2941     // We do need to preserve an insertion point.
2942     EmitBlock(createBasicBlock("unreachable.cont"));
2943 
2944     return RValue::get(nullptr);
2945   }
2946 
2947   case Builtin::BI__builtin_powi:
2948   case Builtin::BI__builtin_powif:
2949   case Builtin::BI__builtin_powil:
2950     return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(
2951         *this, E, Intrinsic::powi, Intrinsic::experimental_constrained_powi));
2952 
2953   case Builtin::BI__builtin_isgreater:
2954   case Builtin::BI__builtin_isgreaterequal:
2955   case Builtin::BI__builtin_isless:
2956   case Builtin::BI__builtin_islessequal:
2957   case Builtin::BI__builtin_islessgreater:
2958   case Builtin::BI__builtin_isunordered: {
2959     // Ordered comparisons: we know the arguments to these are matching scalar
2960     // floating point values.
2961     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2962     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
2963     Value *LHS = EmitScalarExpr(E->getArg(0));
2964     Value *RHS = EmitScalarExpr(E->getArg(1));
2965 
2966     switch (BuiltinID) {
2967     default: llvm_unreachable("Unknown ordered comparison");
2968     case Builtin::BI__builtin_isgreater:
2969       LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
2970       break;
2971     case Builtin::BI__builtin_isgreaterequal:
2972       LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
2973       break;
2974     case Builtin::BI__builtin_isless:
2975       LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
2976       break;
2977     case Builtin::BI__builtin_islessequal:
2978       LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
2979       break;
2980     case Builtin::BI__builtin_islessgreater:
2981       LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
2982       break;
2983     case Builtin::BI__builtin_isunordered:
2984       LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
2985       break;
2986     }
2987     // ZExt bool to int type.
2988     return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
2989   }
2990   case Builtin::BI__builtin_isnan: {
2991     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2992     Value *V = EmitScalarExpr(E->getArg(0));
2993     llvm::Type *Ty = V->getType();
2994     const llvm::fltSemantics &Semantics = Ty->getFltSemantics();
2995     if (!Builder.getIsFPConstrained() ||
2996         Builder.getDefaultConstrainedExcept() == fp::ebIgnore ||
2997         !Ty->isIEEE()) {
2998       V = Builder.CreateFCmpUNO(V, V, "cmp");
2999       return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3000     }
3001 
3002     if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM))
3003       return RValue::get(Result);
3004 
3005     // NaN has all exp bits set and a non zero significand. Therefore:
3006     // isnan(V) == ((exp mask - (abs(V) & exp mask)) < 0)
3007     unsigned bitsize = Ty->getScalarSizeInBits();
3008     llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize);
3009     Value *IntV = Builder.CreateBitCast(V, IntTy);
3010     APInt AndMask = APInt::getSignedMaxValue(bitsize);
3011     Value *AbsV =
3012         Builder.CreateAnd(IntV, llvm::ConstantInt::get(IntTy, AndMask));
3013     APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
3014     Value *Sub =
3015         Builder.CreateSub(llvm::ConstantInt::get(IntTy, ExpMask), AbsV);
3016     // V = sign bit (Sub) <=> V = (Sub < 0)
3017     V = Builder.CreateLShr(Sub, llvm::ConstantInt::get(IntTy, bitsize - 1));
3018     if (bitsize > 32)
3019       V = Builder.CreateTrunc(V, ConvertType(E->getType()));
3020     return RValue::get(V);
3021   }
3022 
3023   case Builtin::BI__builtin_matrix_transpose: {
3024     const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
3025     Value *MatValue = EmitScalarExpr(E->getArg(0));
3026     MatrixBuilder<CGBuilderTy> MB(Builder);
3027     Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(),
3028                                              MatrixTy->getNumColumns());
3029     return RValue::get(Result);
3030   }
3031 
3032   case Builtin::BI__builtin_matrix_column_major_load: {
3033     MatrixBuilder<CGBuilderTy> MB(Builder);
3034     // Emit everything that isn't dependent on the first parameter type
3035     Value *Stride = EmitScalarExpr(E->getArg(3));
3036     const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>();
3037     auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>();
3038     assert(PtrTy && "arg0 must be of pointer type");
3039     bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3040 
3041     Address Src = EmitPointerWithAlignment(E->getArg(0));
3042     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(0)->getType(),
3043                         E->getArg(0)->getExprLoc(), FD, 0);
3044     Value *Result = MB.CreateColumnMajorLoad(
3045         Src.getPointer(), Align(Src.getAlignment().getQuantity()), Stride,
3046         IsVolatile, ResultTy->getNumRows(), ResultTy->getNumColumns(),
3047         "matrix");
3048     return RValue::get(Result);
3049   }
3050 
3051   case Builtin::BI__builtin_matrix_column_major_store: {
3052     MatrixBuilder<CGBuilderTy> MB(Builder);
3053     Value *Matrix = EmitScalarExpr(E->getArg(0));
3054     Address Dst = EmitPointerWithAlignment(E->getArg(1));
3055     Value *Stride = EmitScalarExpr(E->getArg(2));
3056 
3057     const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
3058     auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>();
3059     assert(PtrTy && "arg1 must be of pointer type");
3060     bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3061 
3062     EmitNonNullArgCheck(RValue::get(Dst.getPointer()), E->getArg(1)->getType(),
3063                         E->getArg(1)->getExprLoc(), FD, 0);
3064     Value *Result = MB.CreateColumnMajorStore(
3065         Matrix, Dst.getPointer(), Align(Dst.getAlignment().getQuantity()),
3066         Stride, IsVolatile, MatrixTy->getNumRows(), MatrixTy->getNumColumns());
3067     return RValue::get(Result);
3068   }
3069 
3070   case Builtin::BIfinite:
3071   case Builtin::BI__finite:
3072   case Builtin::BIfinitef:
3073   case Builtin::BI__finitef:
3074   case Builtin::BIfinitel:
3075   case Builtin::BI__finitel:
3076   case Builtin::BI__builtin_isinf:
3077   case Builtin::BI__builtin_isfinite: {
3078     // isinf(x)    --> fabs(x) == infinity
3079     // isfinite(x) --> fabs(x) != infinity
3080     // x != NaN via the ordered compare in either case.
3081     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3082     Value *V = EmitScalarExpr(E->getArg(0));
3083     llvm::Type *Ty = V->getType();
3084     if (!Builder.getIsFPConstrained() ||
3085         Builder.getDefaultConstrainedExcept() == fp::ebIgnore ||
3086         !Ty->isIEEE()) {
3087       Value *Fabs = EmitFAbs(*this, V);
3088       Constant *Infinity = ConstantFP::getInfinity(V->getType());
3089       CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
3090                                     ? CmpInst::FCMP_OEQ
3091                                     : CmpInst::FCMP_ONE;
3092       Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
3093       return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
3094     }
3095 
3096     if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM))
3097       return RValue::get(Result);
3098 
3099     // Inf values have all exp bits set and a zero significand. Therefore:
3100     // isinf(V) == ((V << 1) == ((exp mask) << 1))
3101     // isfinite(V) == ((V << 1) < ((exp mask) << 1)) using unsigned comparison
3102     unsigned bitsize = Ty->getScalarSizeInBits();
3103     llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize);
3104     Value *IntV = Builder.CreateBitCast(V, IntTy);
3105     Value *Shl1 = Builder.CreateShl(IntV, 1);
3106     const llvm::fltSemantics &Semantics = Ty->getFltSemantics();
3107     APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
3108     Value *ExpMaskShl1 = llvm::ConstantInt::get(IntTy, ExpMask.shl(1));
3109     if (BuiltinID == Builtin::BI__builtin_isinf)
3110       V = Builder.CreateICmpEQ(Shl1, ExpMaskShl1);
3111     else
3112       V = Builder.CreateICmpULT(Shl1, ExpMaskShl1);
3113     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3114   }
3115 
3116   case Builtin::BI__builtin_isinf_sign: {
3117     // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
3118     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3119     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3120     Value *Arg = EmitScalarExpr(E->getArg(0));
3121     Value *AbsArg = EmitFAbs(*this, Arg);
3122     Value *IsInf = Builder.CreateFCmpOEQ(
3123         AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
3124     Value *IsNeg = EmitSignBit(*this, Arg);
3125 
3126     llvm::Type *IntTy = ConvertType(E->getType());
3127     Value *Zero = Constant::getNullValue(IntTy);
3128     Value *One = ConstantInt::get(IntTy, 1);
3129     Value *NegativeOne = ConstantInt::get(IntTy, -1);
3130     Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
3131     Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
3132     return RValue::get(Result);
3133   }
3134 
3135   case Builtin::BI__builtin_isnormal: {
3136     // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
3137     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3138     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3139     Value *V = EmitScalarExpr(E->getArg(0));
3140     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
3141 
3142     Value *Abs = EmitFAbs(*this, V);
3143     Value *IsLessThanInf =
3144       Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
3145     APFloat Smallest = APFloat::getSmallestNormalized(
3146                    getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
3147     Value *IsNormal =
3148       Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
3149                             "isnormal");
3150     V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
3151     V = Builder.CreateAnd(V, IsNormal, "and");
3152     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3153   }
3154 
3155   case Builtin::BI__builtin_flt_rounds: {
3156     Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds);
3157 
3158     llvm::Type *ResultType = ConvertType(E->getType());
3159     Value *Result = Builder.CreateCall(F);
3160     if (Result->getType() != ResultType)
3161       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3162                                      "cast");
3163     return RValue::get(Result);
3164   }
3165 
3166   case Builtin::BI__builtin_fpclassify: {
3167     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3168     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3169     Value *V = EmitScalarExpr(E->getArg(5));
3170     llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
3171 
3172     // Create Result
3173     BasicBlock *Begin = Builder.GetInsertBlock();
3174     BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
3175     Builder.SetInsertPoint(End);
3176     PHINode *Result =
3177       Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
3178                         "fpclassify_result");
3179 
3180     // if (V==0) return FP_ZERO
3181     Builder.SetInsertPoint(Begin);
3182     Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
3183                                           "iszero");
3184     Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
3185     BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
3186     Builder.CreateCondBr(IsZero, End, NotZero);
3187     Result->addIncoming(ZeroLiteral, Begin);
3188 
3189     // if (V != V) return FP_NAN
3190     Builder.SetInsertPoint(NotZero);
3191     Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
3192     Value *NanLiteral = EmitScalarExpr(E->getArg(0));
3193     BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
3194     Builder.CreateCondBr(IsNan, End, NotNan);
3195     Result->addIncoming(NanLiteral, NotZero);
3196 
3197     // if (fabs(V) == infinity) return FP_INFINITY
3198     Builder.SetInsertPoint(NotNan);
3199     Value *VAbs = EmitFAbs(*this, V);
3200     Value *IsInf =
3201       Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
3202                             "isinf");
3203     Value *InfLiteral = EmitScalarExpr(E->getArg(1));
3204     BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
3205     Builder.CreateCondBr(IsInf, End, NotInf);
3206     Result->addIncoming(InfLiteral, NotNan);
3207 
3208     // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
3209     Builder.SetInsertPoint(NotInf);
3210     APFloat Smallest = APFloat::getSmallestNormalized(
3211         getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
3212     Value *IsNormal =
3213       Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
3214                             "isnormal");
3215     Value *NormalResult =
3216       Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
3217                            EmitScalarExpr(E->getArg(3)));
3218     Builder.CreateBr(End);
3219     Result->addIncoming(NormalResult, NotInf);
3220 
3221     // return Result
3222     Builder.SetInsertPoint(End);
3223     return RValue::get(Result);
3224   }
3225 
3226   case Builtin::BIalloca:
3227   case Builtin::BI_alloca:
3228   case Builtin::BI__builtin_alloca: {
3229     Value *Size = EmitScalarExpr(E->getArg(0));
3230     const TargetInfo &TI = getContext().getTargetInfo();
3231     // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
3232     const Align SuitableAlignmentInBytes =
3233         CGM.getContext()
3234             .toCharUnitsFromBits(TI.getSuitableAlign())
3235             .getAsAlign();
3236     AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3237     AI->setAlignment(SuitableAlignmentInBytes);
3238     initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
3239     return RValue::get(AI);
3240   }
3241 
3242   case Builtin::BI__builtin_alloca_with_align: {
3243     Value *Size = EmitScalarExpr(E->getArg(0));
3244     Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
3245     auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
3246     unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
3247     const Align AlignmentInBytes =
3248         CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign();
3249     AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3250     AI->setAlignment(AlignmentInBytes);
3251     initializeAlloca(*this, AI, Size, AlignmentInBytes);
3252     return RValue::get(AI);
3253   }
3254 
3255   case Builtin::BIbzero:
3256   case Builtin::BI__builtin_bzero: {
3257     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3258     Value *SizeVal = EmitScalarExpr(E->getArg(1));
3259     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3260                         E->getArg(0)->getExprLoc(), FD, 0);
3261     Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
3262     return RValue::get(nullptr);
3263   }
3264   case Builtin::BImemcpy:
3265   case Builtin::BI__builtin_memcpy:
3266   case Builtin::BImempcpy:
3267   case Builtin::BI__builtin_mempcpy: {
3268     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3269     Address Src = EmitPointerWithAlignment(E->getArg(1));
3270     Value *SizeVal = EmitScalarExpr(E->getArg(2));
3271     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3272                         E->getArg(0)->getExprLoc(), FD, 0);
3273     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3274                         E->getArg(1)->getExprLoc(), FD, 1);
3275     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3276     if (BuiltinID == Builtin::BImempcpy ||
3277         BuiltinID == Builtin::BI__builtin_mempcpy)
3278       return RValue::get(Builder.CreateInBoundsGEP(Dest.getElementType(),
3279                                                    Dest.getPointer(), SizeVal));
3280     else
3281       return RValue::get(Dest.getPointer());
3282   }
3283 
3284   case Builtin::BI__builtin_memcpy_inline: {
3285     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3286     Address Src = EmitPointerWithAlignment(E->getArg(1));
3287     uint64_t Size =
3288         E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
3289     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3290                         E->getArg(0)->getExprLoc(), FD, 0);
3291     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3292                         E->getArg(1)->getExprLoc(), FD, 1);
3293     Builder.CreateMemCpyInline(Dest, Src, Size);
3294     return RValue::get(nullptr);
3295   }
3296 
3297   case Builtin::BI__builtin_char_memchr:
3298     BuiltinID = Builtin::BI__builtin_memchr;
3299     break;
3300 
3301   case Builtin::BI__builtin___memcpy_chk: {
3302     // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
3303     Expr::EvalResult SizeResult, DstSizeResult;
3304     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3305         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3306       break;
3307     llvm::APSInt Size = SizeResult.Val.getInt();
3308     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3309     if (Size.ugt(DstSize))
3310       break;
3311     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3312     Address Src = EmitPointerWithAlignment(E->getArg(1));
3313     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3314     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3315     return RValue::get(Dest.getPointer());
3316   }
3317 
3318   case Builtin::BI__builtin_objc_memmove_collectable: {
3319     Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
3320     Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
3321     Value *SizeVal = EmitScalarExpr(E->getArg(2));
3322     CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
3323                                                   DestAddr, SrcAddr, SizeVal);
3324     return RValue::get(DestAddr.getPointer());
3325   }
3326 
3327   case Builtin::BI__builtin___memmove_chk: {
3328     // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
3329     Expr::EvalResult SizeResult, DstSizeResult;
3330     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3331         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3332       break;
3333     llvm::APSInt Size = SizeResult.Val.getInt();
3334     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3335     if (Size.ugt(DstSize))
3336       break;
3337     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3338     Address Src = EmitPointerWithAlignment(E->getArg(1));
3339     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3340     Builder.CreateMemMove(Dest, Src, SizeVal, false);
3341     return RValue::get(Dest.getPointer());
3342   }
3343 
3344   case Builtin::BImemmove:
3345   case Builtin::BI__builtin_memmove: {
3346     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3347     Address Src = EmitPointerWithAlignment(E->getArg(1));
3348     Value *SizeVal = EmitScalarExpr(E->getArg(2));
3349     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3350                         E->getArg(0)->getExprLoc(), FD, 0);
3351     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3352                         E->getArg(1)->getExprLoc(), FD, 1);
3353     Builder.CreateMemMove(Dest, Src, SizeVal, false);
3354     return RValue::get(Dest.getPointer());
3355   }
3356   case Builtin::BImemset:
3357   case Builtin::BI__builtin_memset: {
3358     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3359     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3360                                          Builder.getInt8Ty());
3361     Value *SizeVal = EmitScalarExpr(E->getArg(2));
3362     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3363                         E->getArg(0)->getExprLoc(), FD, 0);
3364     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3365     return RValue::get(Dest.getPointer());
3366   }
3367   case Builtin::BI__builtin___memset_chk: {
3368     // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
3369     Expr::EvalResult SizeResult, DstSizeResult;
3370     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3371         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3372       break;
3373     llvm::APSInt Size = SizeResult.Val.getInt();
3374     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3375     if (Size.ugt(DstSize))
3376       break;
3377     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3378     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3379                                          Builder.getInt8Ty());
3380     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3381     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3382     return RValue::get(Dest.getPointer());
3383   }
3384   case Builtin::BI__builtin_wmemchr: {
3385     // The MSVC runtime library does not provide a definition of wmemchr, so we
3386     // need an inline implementation.
3387     if (!getTarget().getTriple().isOSMSVCRT())
3388       break;
3389 
3390     llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
3391     Value *Str = EmitScalarExpr(E->getArg(0));
3392     Value *Chr = EmitScalarExpr(E->getArg(1));
3393     Value *Size = EmitScalarExpr(E->getArg(2));
3394 
3395     BasicBlock *Entry = Builder.GetInsertBlock();
3396     BasicBlock *CmpEq = createBasicBlock("wmemchr.eq");
3397     BasicBlock *Next = createBasicBlock("wmemchr.next");
3398     BasicBlock *Exit = createBasicBlock("wmemchr.exit");
3399     Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
3400     Builder.CreateCondBr(SizeEq0, Exit, CmpEq);
3401 
3402     EmitBlock(CmpEq);
3403     PHINode *StrPhi = Builder.CreatePHI(Str->getType(), 2);
3404     StrPhi->addIncoming(Str, Entry);
3405     PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
3406     SizePhi->addIncoming(Size, Entry);
3407     CharUnits WCharAlign =
3408         getContext().getTypeAlignInChars(getContext().WCharTy);
3409     Value *StrCh = Builder.CreateAlignedLoad(WCharTy, StrPhi, WCharAlign);
3410     Value *FoundChr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 0);
3411     Value *StrEqChr = Builder.CreateICmpEQ(StrCh, Chr);
3412     Builder.CreateCondBr(StrEqChr, Exit, Next);
3413 
3414     EmitBlock(Next);
3415     Value *NextStr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 1);
3416     Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
3417     Value *NextSizeEq0 =
3418         Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
3419     Builder.CreateCondBr(NextSizeEq0, Exit, CmpEq);
3420     StrPhi->addIncoming(NextStr, Next);
3421     SizePhi->addIncoming(NextSize, Next);
3422 
3423     EmitBlock(Exit);
3424     PHINode *Ret = Builder.CreatePHI(Str->getType(), 3);
3425     Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Entry);
3426     Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Next);
3427     Ret->addIncoming(FoundChr, CmpEq);
3428     return RValue::get(Ret);
3429   }
3430   case Builtin::BI__builtin_wmemcmp: {
3431     // The MSVC runtime library does not provide a definition of wmemcmp, so we
3432     // need an inline implementation.
3433     if (!getTarget().getTriple().isOSMSVCRT())
3434       break;
3435 
3436     llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
3437 
3438     Value *Dst = EmitScalarExpr(E->getArg(0));
3439     Value *Src = EmitScalarExpr(E->getArg(1));
3440     Value *Size = EmitScalarExpr(E->getArg(2));
3441 
3442     BasicBlock *Entry = Builder.GetInsertBlock();
3443     BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
3444     BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
3445     BasicBlock *Next = createBasicBlock("wmemcmp.next");
3446     BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
3447     Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
3448     Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
3449 
3450     EmitBlock(CmpGT);
3451     PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
3452     DstPhi->addIncoming(Dst, Entry);
3453     PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
3454     SrcPhi->addIncoming(Src, Entry);
3455     PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
3456     SizePhi->addIncoming(Size, Entry);
3457     CharUnits WCharAlign =
3458         getContext().getTypeAlignInChars(getContext().WCharTy);
3459     Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
3460     Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
3461     Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
3462     Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
3463 
3464     EmitBlock(CmpLT);
3465     Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
3466     Builder.CreateCondBr(DstLtSrc, Exit, Next);
3467 
3468     EmitBlock(Next);
3469     Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
3470     Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
3471     Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
3472     Value *NextSizeEq0 =
3473         Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
3474     Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
3475     DstPhi->addIncoming(NextDst, Next);
3476     SrcPhi->addIncoming(NextSrc, Next);
3477     SizePhi->addIncoming(NextSize, Next);
3478 
3479     EmitBlock(Exit);
3480     PHINode *Ret = Builder.CreatePHI(IntTy, 4);
3481     Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
3482     Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
3483     Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
3484     Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
3485     return RValue::get(Ret);
3486   }
3487   case Builtin::BI__builtin_dwarf_cfa: {
3488     // The offset in bytes from the first argument to the CFA.
3489     //
3490     // Why on earth is this in the frontend?  Is there any reason at
3491     // all that the backend can't reasonably determine this while
3492     // lowering llvm.eh.dwarf.cfa()?
3493     //
3494     // TODO: If there's a satisfactory reason, add a target hook for
3495     // this instead of hard-coding 0, which is correct for most targets.
3496     int32_t Offset = 0;
3497 
3498     Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
3499     return RValue::get(Builder.CreateCall(F,
3500                                       llvm::ConstantInt::get(Int32Ty, Offset)));
3501   }
3502   case Builtin::BI__builtin_return_address: {
3503     Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3504                                                    getContext().UnsignedIntTy);
3505     Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3506     return RValue::get(Builder.CreateCall(F, Depth));
3507   }
3508   case Builtin::BI_ReturnAddress: {
3509     Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3510     return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
3511   }
3512   case Builtin::BI__builtin_frame_address: {
3513     Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3514                                                    getContext().UnsignedIntTy);
3515     Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy);
3516     return RValue::get(Builder.CreateCall(F, Depth));
3517   }
3518   case Builtin::BI__builtin_extract_return_addr: {
3519     Value *Address = EmitScalarExpr(E->getArg(0));
3520     Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
3521     return RValue::get(Result);
3522   }
3523   case Builtin::BI__builtin_frob_return_addr: {
3524     Value *Address = EmitScalarExpr(E->getArg(0));
3525     Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
3526     return RValue::get(Result);
3527   }
3528   case Builtin::BI__builtin_dwarf_sp_column: {
3529     llvm::IntegerType *Ty
3530       = cast<llvm::IntegerType>(ConvertType(E->getType()));
3531     int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
3532     if (Column == -1) {
3533       CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
3534       return RValue::get(llvm::UndefValue::get(Ty));
3535     }
3536     return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
3537   }
3538   case Builtin::BI__builtin_init_dwarf_reg_size_table: {
3539     Value *Address = EmitScalarExpr(E->getArg(0));
3540     if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
3541       CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
3542     return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
3543   }
3544   case Builtin::BI__builtin_eh_return: {
3545     Value *Int = EmitScalarExpr(E->getArg(0));
3546     Value *Ptr = EmitScalarExpr(E->getArg(1));
3547 
3548     llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
3549     assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
3550            "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
3551     Function *F =
3552         CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
3553                                                     : Intrinsic::eh_return_i64);
3554     Builder.CreateCall(F, {Int, Ptr});
3555     Builder.CreateUnreachable();
3556 
3557     // We do need to preserve an insertion point.
3558     EmitBlock(createBasicBlock("builtin_eh_return.cont"));
3559 
3560     return RValue::get(nullptr);
3561   }
3562   case Builtin::BI__builtin_unwind_init: {
3563     Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
3564     return RValue::get(Builder.CreateCall(F));
3565   }
3566   case Builtin::BI__builtin_extend_pointer: {
3567     // Extends a pointer to the size of an _Unwind_Word, which is
3568     // uint64_t on all platforms.  Generally this gets poked into a
3569     // register and eventually used as an address, so if the
3570     // addressing registers are wider than pointers and the platform
3571     // doesn't implicitly ignore high-order bits when doing
3572     // addressing, we need to make sure we zext / sext based on
3573     // the platform's expectations.
3574     //
3575     // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
3576 
3577     // Cast the pointer to intptr_t.
3578     Value *Ptr = EmitScalarExpr(E->getArg(0));
3579     Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
3580 
3581     // If that's 64 bits, we're done.
3582     if (IntPtrTy->getBitWidth() == 64)
3583       return RValue::get(Result);
3584 
3585     // Otherwise, ask the codegen data what to do.
3586     if (getTargetHooks().extendPointerWithSExt())
3587       return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
3588     else
3589       return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
3590   }
3591   case Builtin::BI__builtin_setjmp: {
3592     // Buffer is a void**.
3593     Address Buf = EmitPointerWithAlignment(E->getArg(0));
3594 
3595     // Store the frame pointer to the setjmp buffer.
3596     Value *FrameAddr = Builder.CreateCall(
3597         CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy),
3598         ConstantInt::get(Int32Ty, 0));
3599     Builder.CreateStore(FrameAddr, Buf);
3600 
3601     // Store the stack pointer to the setjmp buffer.
3602     Value *StackAddr =
3603         Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
3604     Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
3605     Builder.CreateStore(StackAddr, StackSaveSlot);
3606 
3607     // Call LLVM's EH setjmp, which is lightweight.
3608     Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
3609     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
3610     return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
3611   }
3612   case Builtin::BI__builtin_longjmp: {
3613     Value *Buf = EmitScalarExpr(E->getArg(0));
3614     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
3615 
3616     // Call LLVM's EH longjmp, which is lightweight.
3617     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
3618 
3619     // longjmp doesn't return; mark this as unreachable.
3620     Builder.CreateUnreachable();
3621 
3622     // We do need to preserve an insertion point.
3623     EmitBlock(createBasicBlock("longjmp.cont"));
3624 
3625     return RValue::get(nullptr);
3626   }
3627   case Builtin::BI__builtin_launder: {
3628     const Expr *Arg = E->getArg(0);
3629     QualType ArgTy = Arg->getType()->getPointeeType();
3630     Value *Ptr = EmitScalarExpr(Arg);
3631     if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
3632       Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
3633 
3634     return RValue::get(Ptr);
3635   }
3636   case Builtin::BI__sync_fetch_and_add:
3637   case Builtin::BI__sync_fetch_and_sub:
3638   case Builtin::BI__sync_fetch_and_or:
3639   case Builtin::BI__sync_fetch_and_and:
3640   case Builtin::BI__sync_fetch_and_xor:
3641   case Builtin::BI__sync_fetch_and_nand:
3642   case Builtin::BI__sync_add_and_fetch:
3643   case Builtin::BI__sync_sub_and_fetch:
3644   case Builtin::BI__sync_and_and_fetch:
3645   case Builtin::BI__sync_or_and_fetch:
3646   case Builtin::BI__sync_xor_and_fetch:
3647   case Builtin::BI__sync_nand_and_fetch:
3648   case Builtin::BI__sync_val_compare_and_swap:
3649   case Builtin::BI__sync_bool_compare_and_swap:
3650   case Builtin::BI__sync_lock_test_and_set:
3651   case Builtin::BI__sync_lock_release:
3652   case Builtin::BI__sync_swap:
3653     llvm_unreachable("Shouldn't make it through sema");
3654   case Builtin::BI__sync_fetch_and_add_1:
3655   case Builtin::BI__sync_fetch_and_add_2:
3656   case Builtin::BI__sync_fetch_and_add_4:
3657   case Builtin::BI__sync_fetch_and_add_8:
3658   case Builtin::BI__sync_fetch_and_add_16:
3659     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
3660   case Builtin::BI__sync_fetch_and_sub_1:
3661   case Builtin::BI__sync_fetch_and_sub_2:
3662   case Builtin::BI__sync_fetch_and_sub_4:
3663   case Builtin::BI__sync_fetch_and_sub_8:
3664   case Builtin::BI__sync_fetch_and_sub_16:
3665     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
3666   case Builtin::BI__sync_fetch_and_or_1:
3667   case Builtin::BI__sync_fetch_and_or_2:
3668   case Builtin::BI__sync_fetch_and_or_4:
3669   case Builtin::BI__sync_fetch_and_or_8:
3670   case Builtin::BI__sync_fetch_and_or_16:
3671     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
3672   case Builtin::BI__sync_fetch_and_and_1:
3673   case Builtin::BI__sync_fetch_and_and_2:
3674   case Builtin::BI__sync_fetch_and_and_4:
3675   case Builtin::BI__sync_fetch_and_and_8:
3676   case Builtin::BI__sync_fetch_and_and_16:
3677     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
3678   case Builtin::BI__sync_fetch_and_xor_1:
3679   case Builtin::BI__sync_fetch_and_xor_2:
3680   case Builtin::BI__sync_fetch_and_xor_4:
3681   case Builtin::BI__sync_fetch_and_xor_8:
3682   case Builtin::BI__sync_fetch_and_xor_16:
3683     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
3684   case Builtin::BI__sync_fetch_and_nand_1:
3685   case Builtin::BI__sync_fetch_and_nand_2:
3686   case Builtin::BI__sync_fetch_and_nand_4:
3687   case Builtin::BI__sync_fetch_and_nand_8:
3688   case Builtin::BI__sync_fetch_and_nand_16:
3689     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
3690 
3691   // Clang extensions: not overloaded yet.
3692   case Builtin::BI__sync_fetch_and_min:
3693     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
3694   case Builtin::BI__sync_fetch_and_max:
3695     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
3696   case Builtin::BI__sync_fetch_and_umin:
3697     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
3698   case Builtin::BI__sync_fetch_and_umax:
3699     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
3700 
3701   case Builtin::BI__sync_add_and_fetch_1:
3702   case Builtin::BI__sync_add_and_fetch_2:
3703   case Builtin::BI__sync_add_and_fetch_4:
3704   case Builtin::BI__sync_add_and_fetch_8:
3705   case Builtin::BI__sync_add_and_fetch_16:
3706     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
3707                                 llvm::Instruction::Add);
3708   case Builtin::BI__sync_sub_and_fetch_1:
3709   case Builtin::BI__sync_sub_and_fetch_2:
3710   case Builtin::BI__sync_sub_and_fetch_4:
3711   case Builtin::BI__sync_sub_and_fetch_8:
3712   case Builtin::BI__sync_sub_and_fetch_16:
3713     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
3714                                 llvm::Instruction::Sub);
3715   case Builtin::BI__sync_and_and_fetch_1:
3716   case Builtin::BI__sync_and_and_fetch_2:
3717   case Builtin::BI__sync_and_and_fetch_4:
3718   case Builtin::BI__sync_and_and_fetch_8:
3719   case Builtin::BI__sync_and_and_fetch_16:
3720     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
3721                                 llvm::Instruction::And);
3722   case Builtin::BI__sync_or_and_fetch_1:
3723   case Builtin::BI__sync_or_and_fetch_2:
3724   case Builtin::BI__sync_or_and_fetch_4:
3725   case Builtin::BI__sync_or_and_fetch_8:
3726   case Builtin::BI__sync_or_and_fetch_16:
3727     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
3728                                 llvm::Instruction::Or);
3729   case Builtin::BI__sync_xor_and_fetch_1:
3730   case Builtin::BI__sync_xor_and_fetch_2:
3731   case Builtin::BI__sync_xor_and_fetch_4:
3732   case Builtin::BI__sync_xor_and_fetch_8:
3733   case Builtin::BI__sync_xor_and_fetch_16:
3734     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
3735                                 llvm::Instruction::Xor);
3736   case Builtin::BI__sync_nand_and_fetch_1:
3737   case Builtin::BI__sync_nand_and_fetch_2:
3738   case Builtin::BI__sync_nand_and_fetch_4:
3739   case Builtin::BI__sync_nand_and_fetch_8:
3740   case Builtin::BI__sync_nand_and_fetch_16:
3741     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
3742                                 llvm::Instruction::And, true);
3743 
3744   case Builtin::BI__sync_val_compare_and_swap_1:
3745   case Builtin::BI__sync_val_compare_and_swap_2:
3746   case Builtin::BI__sync_val_compare_and_swap_4:
3747   case Builtin::BI__sync_val_compare_and_swap_8:
3748   case Builtin::BI__sync_val_compare_and_swap_16:
3749     return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
3750 
3751   case Builtin::BI__sync_bool_compare_and_swap_1:
3752   case Builtin::BI__sync_bool_compare_and_swap_2:
3753   case Builtin::BI__sync_bool_compare_and_swap_4:
3754   case Builtin::BI__sync_bool_compare_and_swap_8:
3755   case Builtin::BI__sync_bool_compare_and_swap_16:
3756     return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
3757 
3758   case Builtin::BI__sync_swap_1:
3759   case Builtin::BI__sync_swap_2:
3760   case Builtin::BI__sync_swap_4:
3761   case Builtin::BI__sync_swap_8:
3762   case Builtin::BI__sync_swap_16:
3763     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
3764 
3765   case Builtin::BI__sync_lock_test_and_set_1:
3766   case Builtin::BI__sync_lock_test_and_set_2:
3767   case Builtin::BI__sync_lock_test_and_set_4:
3768   case Builtin::BI__sync_lock_test_and_set_8:
3769   case Builtin::BI__sync_lock_test_and_set_16:
3770     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
3771 
3772   case Builtin::BI__sync_lock_release_1:
3773   case Builtin::BI__sync_lock_release_2:
3774   case Builtin::BI__sync_lock_release_4:
3775   case Builtin::BI__sync_lock_release_8:
3776   case Builtin::BI__sync_lock_release_16: {
3777     Value *Ptr = EmitScalarExpr(E->getArg(0));
3778     QualType ElTy = E->getArg(0)->getType()->getPointeeType();
3779     CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
3780     llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
3781                                              StoreSize.getQuantity() * 8);
3782     Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
3783     llvm::StoreInst *Store =
3784       Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
3785                                  StoreSize);
3786     Store->setAtomic(llvm::AtomicOrdering::Release);
3787     return RValue::get(nullptr);
3788   }
3789 
3790   case Builtin::BI__sync_synchronize: {
3791     // We assume this is supposed to correspond to a C++0x-style
3792     // sequentially-consistent fence (i.e. this is only usable for
3793     // synchronization, not device I/O or anything like that). This intrinsic
3794     // is really badly designed in the sense that in theory, there isn't
3795     // any way to safely use it... but in practice, it mostly works
3796     // to use it with non-atomic loads and stores to get acquire/release
3797     // semantics.
3798     Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
3799     return RValue::get(nullptr);
3800   }
3801 
3802   case Builtin::BI__builtin_nontemporal_load:
3803     return RValue::get(EmitNontemporalLoad(*this, E));
3804   case Builtin::BI__builtin_nontemporal_store:
3805     return RValue::get(EmitNontemporalStore(*this, E));
3806   case Builtin::BI__c11_atomic_is_lock_free:
3807   case Builtin::BI__atomic_is_lock_free: {
3808     // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
3809     // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
3810     // _Atomic(T) is always properly-aligned.
3811     const char *LibCallName = "__atomic_is_lock_free";
3812     CallArgList Args;
3813     Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
3814              getContext().getSizeType());
3815     if (BuiltinID == Builtin::BI__atomic_is_lock_free)
3816       Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
3817                getContext().VoidPtrTy);
3818     else
3819       Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
3820                getContext().VoidPtrTy);
3821     const CGFunctionInfo &FuncInfo =
3822         CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
3823     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
3824     llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
3825     return EmitCall(FuncInfo, CGCallee::forDirect(Func),
3826                     ReturnValueSlot(), Args);
3827   }
3828 
3829   case Builtin::BI__atomic_test_and_set: {
3830     // Look at the argument type to determine whether this is a volatile
3831     // operation. The parameter type is always volatile.
3832     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
3833     bool Volatile =
3834         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
3835 
3836     Value *Ptr = EmitScalarExpr(E->getArg(0));
3837     unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
3838     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
3839     Value *NewVal = Builder.getInt8(1);
3840     Value *Order = EmitScalarExpr(E->getArg(1));
3841     if (isa<llvm::ConstantInt>(Order)) {
3842       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3843       AtomicRMWInst *Result = nullptr;
3844       switch (ord) {
3845       case 0:  // memory_order_relaxed
3846       default: // invalid order
3847         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3848                                          llvm::AtomicOrdering::Monotonic);
3849         break;
3850       case 1: // memory_order_consume
3851       case 2: // memory_order_acquire
3852         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3853                                          llvm::AtomicOrdering::Acquire);
3854         break;
3855       case 3: // memory_order_release
3856         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3857                                          llvm::AtomicOrdering::Release);
3858         break;
3859       case 4: // memory_order_acq_rel
3860 
3861         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3862                                          llvm::AtomicOrdering::AcquireRelease);
3863         break;
3864       case 5: // memory_order_seq_cst
3865         Result = Builder.CreateAtomicRMW(
3866             llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3867             llvm::AtomicOrdering::SequentiallyConsistent);
3868         break;
3869       }
3870       Result->setVolatile(Volatile);
3871       return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
3872     }
3873 
3874     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3875 
3876     llvm::BasicBlock *BBs[5] = {
3877       createBasicBlock("monotonic", CurFn),
3878       createBasicBlock("acquire", CurFn),
3879       createBasicBlock("release", CurFn),
3880       createBasicBlock("acqrel", CurFn),
3881       createBasicBlock("seqcst", CurFn)
3882     };
3883     llvm::AtomicOrdering Orders[5] = {
3884         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
3885         llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
3886         llvm::AtomicOrdering::SequentiallyConsistent};
3887 
3888     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3889     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
3890 
3891     Builder.SetInsertPoint(ContBB);
3892     PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
3893 
3894     for (unsigned i = 0; i < 5; ++i) {
3895       Builder.SetInsertPoint(BBs[i]);
3896       AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
3897                                                    Ptr, NewVal, Orders[i]);
3898       RMW->setVolatile(Volatile);
3899       Result->addIncoming(RMW, BBs[i]);
3900       Builder.CreateBr(ContBB);
3901     }
3902 
3903     SI->addCase(Builder.getInt32(0), BBs[0]);
3904     SI->addCase(Builder.getInt32(1), BBs[1]);
3905     SI->addCase(Builder.getInt32(2), BBs[1]);
3906     SI->addCase(Builder.getInt32(3), BBs[2]);
3907     SI->addCase(Builder.getInt32(4), BBs[3]);
3908     SI->addCase(Builder.getInt32(5), BBs[4]);
3909 
3910     Builder.SetInsertPoint(ContBB);
3911     return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
3912   }
3913 
3914   case Builtin::BI__atomic_clear: {
3915     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
3916     bool Volatile =
3917         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
3918 
3919     Address Ptr = EmitPointerWithAlignment(E->getArg(0));
3920     unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace();
3921     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
3922     Value *NewVal = Builder.getInt8(0);
3923     Value *Order = EmitScalarExpr(E->getArg(1));
3924     if (isa<llvm::ConstantInt>(Order)) {
3925       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3926       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
3927       switch (ord) {
3928       case 0:  // memory_order_relaxed
3929       default: // invalid order
3930         Store->setOrdering(llvm::AtomicOrdering::Monotonic);
3931         break;
3932       case 3:  // memory_order_release
3933         Store->setOrdering(llvm::AtomicOrdering::Release);
3934         break;
3935       case 5:  // memory_order_seq_cst
3936         Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
3937         break;
3938       }
3939       return RValue::get(nullptr);
3940     }
3941 
3942     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3943 
3944     llvm::BasicBlock *BBs[3] = {
3945       createBasicBlock("monotonic", CurFn),
3946       createBasicBlock("release", CurFn),
3947       createBasicBlock("seqcst", CurFn)
3948     };
3949     llvm::AtomicOrdering Orders[3] = {
3950         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
3951         llvm::AtomicOrdering::SequentiallyConsistent};
3952 
3953     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3954     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
3955 
3956     for (unsigned i = 0; i < 3; ++i) {
3957       Builder.SetInsertPoint(BBs[i]);
3958       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
3959       Store->setOrdering(Orders[i]);
3960       Builder.CreateBr(ContBB);
3961     }
3962 
3963     SI->addCase(Builder.getInt32(0), BBs[0]);
3964     SI->addCase(Builder.getInt32(3), BBs[1]);
3965     SI->addCase(Builder.getInt32(5), BBs[2]);
3966 
3967     Builder.SetInsertPoint(ContBB);
3968     return RValue::get(nullptr);
3969   }
3970 
3971   case Builtin::BI__atomic_thread_fence:
3972   case Builtin::BI__atomic_signal_fence:
3973   case Builtin::BI__c11_atomic_thread_fence:
3974   case Builtin::BI__c11_atomic_signal_fence: {
3975     llvm::SyncScope::ID SSID;
3976     if (BuiltinID == Builtin::BI__atomic_signal_fence ||
3977         BuiltinID == Builtin::BI__c11_atomic_signal_fence)
3978       SSID = llvm::SyncScope::SingleThread;
3979     else
3980       SSID = llvm::SyncScope::System;
3981     Value *Order = EmitScalarExpr(E->getArg(0));
3982     if (isa<llvm::ConstantInt>(Order)) {
3983       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3984       switch (ord) {
3985       case 0:  // memory_order_relaxed
3986       default: // invalid order
3987         break;
3988       case 1:  // memory_order_consume
3989       case 2:  // memory_order_acquire
3990         Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
3991         break;
3992       case 3:  // memory_order_release
3993         Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
3994         break;
3995       case 4:  // memory_order_acq_rel
3996         Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
3997         break;
3998       case 5:  // memory_order_seq_cst
3999         Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4000         break;
4001       }
4002       return RValue::get(nullptr);
4003     }
4004 
4005     llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
4006     AcquireBB = createBasicBlock("acquire", CurFn);
4007     ReleaseBB = createBasicBlock("release", CurFn);
4008     AcqRelBB = createBasicBlock("acqrel", CurFn);
4009     SeqCstBB = createBasicBlock("seqcst", CurFn);
4010     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4011 
4012     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4013     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
4014 
4015     Builder.SetInsertPoint(AcquireBB);
4016     Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4017     Builder.CreateBr(ContBB);
4018     SI->addCase(Builder.getInt32(1), AcquireBB);
4019     SI->addCase(Builder.getInt32(2), AcquireBB);
4020 
4021     Builder.SetInsertPoint(ReleaseBB);
4022     Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4023     Builder.CreateBr(ContBB);
4024     SI->addCase(Builder.getInt32(3), ReleaseBB);
4025 
4026     Builder.SetInsertPoint(AcqRelBB);
4027     Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4028     Builder.CreateBr(ContBB);
4029     SI->addCase(Builder.getInt32(4), AcqRelBB);
4030 
4031     Builder.SetInsertPoint(SeqCstBB);
4032     Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4033     Builder.CreateBr(ContBB);
4034     SI->addCase(Builder.getInt32(5), SeqCstBB);
4035 
4036     Builder.SetInsertPoint(ContBB);
4037     return RValue::get(nullptr);
4038   }
4039 
4040   case Builtin::BI__builtin_signbit:
4041   case Builtin::BI__builtin_signbitf:
4042   case Builtin::BI__builtin_signbitl: {
4043     return RValue::get(
4044         Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
4045                            ConvertType(E->getType())));
4046   }
4047   case Builtin::BI__warn_memset_zero_len:
4048     return RValue::getIgnored();
4049   case Builtin::BI__annotation: {
4050     // Re-encode each wide string to UTF8 and make an MDString.
4051     SmallVector<Metadata *, 1> Strings;
4052     for (const Expr *Arg : E->arguments()) {
4053       const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
4054       assert(Str->getCharByteWidth() == 2);
4055       StringRef WideBytes = Str->getBytes();
4056       std::string StrUtf8;
4057       if (!convertUTF16ToUTF8String(
4058               makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
4059         CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
4060         continue;
4061       }
4062       Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
4063     }
4064 
4065     // Build and MDTuple of MDStrings and emit the intrinsic call.
4066     llvm::Function *F =
4067         CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
4068     MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
4069     Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
4070     return RValue::getIgnored();
4071   }
4072   case Builtin::BI__builtin_annotation: {
4073     llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
4074     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
4075                                       AnnVal->getType());
4076 
4077     // Get the annotation string, go through casts. Sema requires this to be a
4078     // non-wide string literal, potentially casted, so the cast<> is safe.
4079     const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
4080     StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
4081     return RValue::get(
4082         EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr));
4083   }
4084   case Builtin::BI__builtin_addcb:
4085   case Builtin::BI__builtin_addcs:
4086   case Builtin::BI__builtin_addc:
4087   case Builtin::BI__builtin_addcl:
4088   case Builtin::BI__builtin_addcll:
4089   case Builtin::BI__builtin_subcb:
4090   case Builtin::BI__builtin_subcs:
4091   case Builtin::BI__builtin_subc:
4092   case Builtin::BI__builtin_subcl:
4093   case Builtin::BI__builtin_subcll: {
4094 
4095     // We translate all of these builtins from expressions of the form:
4096     //   int x = ..., y = ..., carryin = ..., carryout, result;
4097     //   result = __builtin_addc(x, y, carryin, &carryout);
4098     //
4099     // to LLVM IR of the form:
4100     //
4101     //   %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
4102     //   %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
4103     //   %carry1 = extractvalue {i32, i1} %tmp1, 1
4104     //   %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
4105     //                                                       i32 %carryin)
4106     //   %result = extractvalue {i32, i1} %tmp2, 0
4107     //   %carry2 = extractvalue {i32, i1} %tmp2, 1
4108     //   %tmp3 = or i1 %carry1, %carry2
4109     //   %tmp4 = zext i1 %tmp3 to i32
4110     //   store i32 %tmp4, i32* %carryout
4111 
4112     // Scalarize our inputs.
4113     llvm::Value *X = EmitScalarExpr(E->getArg(0));
4114     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4115     llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
4116     Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
4117 
4118     // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
4119     llvm::Intrinsic::ID IntrinsicId;
4120     switch (BuiltinID) {
4121     default: llvm_unreachable("Unknown multiprecision builtin id.");
4122     case Builtin::BI__builtin_addcb:
4123     case Builtin::BI__builtin_addcs:
4124     case Builtin::BI__builtin_addc:
4125     case Builtin::BI__builtin_addcl:
4126     case Builtin::BI__builtin_addcll:
4127       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4128       break;
4129     case Builtin::BI__builtin_subcb:
4130     case Builtin::BI__builtin_subcs:
4131     case Builtin::BI__builtin_subc:
4132     case Builtin::BI__builtin_subcl:
4133     case Builtin::BI__builtin_subcll:
4134       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4135       break;
4136     }
4137 
4138     // Construct our resulting LLVM IR expression.
4139     llvm::Value *Carry1;
4140     llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
4141                                               X, Y, Carry1);
4142     llvm::Value *Carry2;
4143     llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
4144                                               Sum1, Carryin, Carry2);
4145     llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
4146                                                X->getType());
4147     Builder.CreateStore(CarryOut, CarryOutPtr);
4148     return RValue::get(Sum2);
4149   }
4150 
4151   case Builtin::BI__builtin_add_overflow:
4152   case Builtin::BI__builtin_sub_overflow:
4153   case Builtin::BI__builtin_mul_overflow: {
4154     const clang::Expr *LeftArg = E->getArg(0);
4155     const clang::Expr *RightArg = E->getArg(1);
4156     const clang::Expr *ResultArg = E->getArg(2);
4157 
4158     clang::QualType ResultQTy =
4159         ResultArg->getType()->castAs<PointerType>()->getPointeeType();
4160 
4161     WidthAndSignedness LeftInfo =
4162         getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
4163     WidthAndSignedness RightInfo =
4164         getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
4165     WidthAndSignedness ResultInfo =
4166         getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
4167 
4168     // Handle mixed-sign multiplication as a special case, because adding
4169     // runtime or backend support for our generic irgen would be too expensive.
4170     if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
4171       return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
4172                                           RightInfo, ResultArg, ResultQTy,
4173                                           ResultInfo);
4174 
4175     if (isSpecialUnsignedMultiplySignedResult(BuiltinID, LeftInfo, RightInfo,
4176                                               ResultInfo))
4177       return EmitCheckedUnsignedMultiplySignedResult(
4178           *this, LeftArg, LeftInfo, RightArg, RightInfo, ResultArg, ResultQTy,
4179           ResultInfo);
4180 
4181     WidthAndSignedness EncompassingInfo =
4182         EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
4183 
4184     llvm::Type *EncompassingLLVMTy =
4185         llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
4186 
4187     llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
4188 
4189     llvm::Intrinsic::ID IntrinsicId;
4190     switch (BuiltinID) {
4191     default:
4192       llvm_unreachable("Unknown overflow builtin id.");
4193     case Builtin::BI__builtin_add_overflow:
4194       IntrinsicId = EncompassingInfo.Signed
4195                         ? llvm::Intrinsic::sadd_with_overflow
4196                         : llvm::Intrinsic::uadd_with_overflow;
4197       break;
4198     case Builtin::BI__builtin_sub_overflow:
4199       IntrinsicId = EncompassingInfo.Signed
4200                         ? llvm::Intrinsic::ssub_with_overflow
4201                         : llvm::Intrinsic::usub_with_overflow;
4202       break;
4203     case Builtin::BI__builtin_mul_overflow:
4204       IntrinsicId = EncompassingInfo.Signed
4205                         ? llvm::Intrinsic::smul_with_overflow
4206                         : llvm::Intrinsic::umul_with_overflow;
4207       break;
4208     }
4209 
4210     llvm::Value *Left = EmitScalarExpr(LeftArg);
4211     llvm::Value *Right = EmitScalarExpr(RightArg);
4212     Address ResultPtr = EmitPointerWithAlignment(ResultArg);
4213 
4214     // Extend each operand to the encompassing type.
4215     Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
4216     Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
4217 
4218     // Perform the operation on the extended values.
4219     llvm::Value *Overflow, *Result;
4220     Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
4221 
4222     if (EncompassingInfo.Width > ResultInfo.Width) {
4223       // The encompassing type is wider than the result type, so we need to
4224       // truncate it.
4225       llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
4226 
4227       // To see if the truncation caused an overflow, we will extend
4228       // the result and then compare it to the original result.
4229       llvm::Value *ResultTruncExt = Builder.CreateIntCast(
4230           ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
4231       llvm::Value *TruncationOverflow =
4232           Builder.CreateICmpNE(Result, ResultTruncExt);
4233 
4234       Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
4235       Result = ResultTrunc;
4236     }
4237 
4238     // Finally, store the result using the pointer.
4239     bool isVolatile =
4240       ResultArg->getType()->getPointeeType().isVolatileQualified();
4241     Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
4242 
4243     return RValue::get(Overflow);
4244   }
4245 
4246   case Builtin::BI__builtin_uadd_overflow:
4247   case Builtin::BI__builtin_uaddl_overflow:
4248   case Builtin::BI__builtin_uaddll_overflow:
4249   case Builtin::BI__builtin_usub_overflow:
4250   case Builtin::BI__builtin_usubl_overflow:
4251   case Builtin::BI__builtin_usubll_overflow:
4252   case Builtin::BI__builtin_umul_overflow:
4253   case Builtin::BI__builtin_umull_overflow:
4254   case Builtin::BI__builtin_umulll_overflow:
4255   case Builtin::BI__builtin_sadd_overflow:
4256   case Builtin::BI__builtin_saddl_overflow:
4257   case Builtin::BI__builtin_saddll_overflow:
4258   case Builtin::BI__builtin_ssub_overflow:
4259   case Builtin::BI__builtin_ssubl_overflow:
4260   case Builtin::BI__builtin_ssubll_overflow:
4261   case Builtin::BI__builtin_smul_overflow:
4262   case Builtin::BI__builtin_smull_overflow:
4263   case Builtin::BI__builtin_smulll_overflow: {
4264 
4265     // We translate all of these builtins directly to the relevant llvm IR node.
4266 
4267     // Scalarize our inputs.
4268     llvm::Value *X = EmitScalarExpr(E->getArg(0));
4269     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4270     Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
4271 
4272     // Decide which of the overflow intrinsics we are lowering to:
4273     llvm::Intrinsic::ID IntrinsicId;
4274     switch (BuiltinID) {
4275     default: llvm_unreachable("Unknown overflow builtin id.");
4276     case Builtin::BI__builtin_uadd_overflow:
4277     case Builtin::BI__builtin_uaddl_overflow:
4278     case Builtin::BI__builtin_uaddll_overflow:
4279       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4280       break;
4281     case Builtin::BI__builtin_usub_overflow:
4282     case Builtin::BI__builtin_usubl_overflow:
4283     case Builtin::BI__builtin_usubll_overflow:
4284       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4285       break;
4286     case Builtin::BI__builtin_umul_overflow:
4287     case Builtin::BI__builtin_umull_overflow:
4288     case Builtin::BI__builtin_umulll_overflow:
4289       IntrinsicId = llvm::Intrinsic::umul_with_overflow;
4290       break;
4291     case Builtin::BI__builtin_sadd_overflow:
4292     case Builtin::BI__builtin_saddl_overflow:
4293     case Builtin::BI__builtin_saddll_overflow:
4294       IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
4295       break;
4296     case Builtin::BI__builtin_ssub_overflow:
4297     case Builtin::BI__builtin_ssubl_overflow:
4298     case Builtin::BI__builtin_ssubll_overflow:
4299       IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
4300       break;
4301     case Builtin::BI__builtin_smul_overflow:
4302     case Builtin::BI__builtin_smull_overflow:
4303     case Builtin::BI__builtin_smulll_overflow:
4304       IntrinsicId = llvm::Intrinsic::smul_with_overflow;
4305       break;
4306     }
4307 
4308 
4309     llvm::Value *Carry;
4310     llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
4311     Builder.CreateStore(Sum, SumOutPtr);
4312 
4313     return RValue::get(Carry);
4314   }
4315   case Builtin::BI__builtin_addressof:
4316     return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
4317   case Builtin::BI__builtin_operator_new:
4318     return EmitBuiltinNewDeleteCall(
4319         E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
4320   case Builtin::BI__builtin_operator_delete:
4321     return EmitBuiltinNewDeleteCall(
4322         E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
4323 
4324   case Builtin::BI__builtin_is_aligned:
4325     return EmitBuiltinIsAligned(E);
4326   case Builtin::BI__builtin_align_up:
4327     return EmitBuiltinAlignTo(E, true);
4328   case Builtin::BI__builtin_align_down:
4329     return EmitBuiltinAlignTo(E, false);
4330 
4331   case Builtin::BI__noop:
4332     // __noop always evaluates to an integer literal zero.
4333     return RValue::get(ConstantInt::get(IntTy, 0));
4334   case Builtin::BI__builtin_call_with_static_chain: {
4335     const CallExpr *Call = cast<CallExpr>(E->getArg(0));
4336     const Expr *Chain = E->getArg(1);
4337     return EmitCall(Call->getCallee()->getType(),
4338                     EmitCallee(Call->getCallee()), Call, ReturnValue,
4339                     EmitScalarExpr(Chain));
4340   }
4341   case Builtin::BI_InterlockedExchange8:
4342   case Builtin::BI_InterlockedExchange16:
4343   case Builtin::BI_InterlockedExchange:
4344   case Builtin::BI_InterlockedExchangePointer:
4345     return RValue::get(
4346         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
4347   case Builtin::BI_InterlockedCompareExchangePointer:
4348   case Builtin::BI_InterlockedCompareExchangePointer_nf: {
4349     llvm::Type *RTy;
4350     llvm::IntegerType *IntType =
4351       IntegerType::get(getLLVMContext(),
4352                        getContext().getTypeSize(E->getType()));
4353     llvm::Type *IntPtrType = IntType->getPointerTo();
4354 
4355     llvm::Value *Destination =
4356       Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
4357 
4358     llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
4359     RTy = Exchange->getType();
4360     Exchange = Builder.CreatePtrToInt(Exchange, IntType);
4361 
4362     llvm::Value *Comparand =
4363       Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
4364 
4365     auto Ordering =
4366       BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
4367       AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
4368 
4369     auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
4370                                               Ordering, Ordering);
4371     Result->setVolatile(true);
4372 
4373     return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
4374                                                                          0),
4375                                               RTy));
4376   }
4377   case Builtin::BI_InterlockedCompareExchange8:
4378   case Builtin::BI_InterlockedCompareExchange16:
4379   case Builtin::BI_InterlockedCompareExchange:
4380   case Builtin::BI_InterlockedCompareExchange64:
4381     return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
4382   case Builtin::BI_InterlockedIncrement16:
4383   case Builtin::BI_InterlockedIncrement:
4384     return RValue::get(
4385         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
4386   case Builtin::BI_InterlockedDecrement16:
4387   case Builtin::BI_InterlockedDecrement:
4388     return RValue::get(
4389         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
4390   case Builtin::BI_InterlockedAnd8:
4391   case Builtin::BI_InterlockedAnd16:
4392   case Builtin::BI_InterlockedAnd:
4393     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
4394   case Builtin::BI_InterlockedExchangeAdd8:
4395   case Builtin::BI_InterlockedExchangeAdd16:
4396   case Builtin::BI_InterlockedExchangeAdd:
4397     return RValue::get(
4398         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
4399   case Builtin::BI_InterlockedExchangeSub8:
4400   case Builtin::BI_InterlockedExchangeSub16:
4401   case Builtin::BI_InterlockedExchangeSub:
4402     return RValue::get(
4403         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
4404   case Builtin::BI_InterlockedOr8:
4405   case Builtin::BI_InterlockedOr16:
4406   case Builtin::BI_InterlockedOr:
4407     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
4408   case Builtin::BI_InterlockedXor8:
4409   case Builtin::BI_InterlockedXor16:
4410   case Builtin::BI_InterlockedXor:
4411     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
4412 
4413   case Builtin::BI_bittest64:
4414   case Builtin::BI_bittest:
4415   case Builtin::BI_bittestandcomplement64:
4416   case Builtin::BI_bittestandcomplement:
4417   case Builtin::BI_bittestandreset64:
4418   case Builtin::BI_bittestandreset:
4419   case Builtin::BI_bittestandset64:
4420   case Builtin::BI_bittestandset:
4421   case Builtin::BI_interlockedbittestandreset:
4422   case Builtin::BI_interlockedbittestandreset64:
4423   case Builtin::BI_interlockedbittestandset64:
4424   case Builtin::BI_interlockedbittestandset:
4425   case Builtin::BI_interlockedbittestandset_acq:
4426   case Builtin::BI_interlockedbittestandset_rel:
4427   case Builtin::BI_interlockedbittestandset_nf:
4428   case Builtin::BI_interlockedbittestandreset_acq:
4429   case Builtin::BI_interlockedbittestandreset_rel:
4430   case Builtin::BI_interlockedbittestandreset_nf:
4431     return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
4432 
4433     // These builtins exist to emit regular volatile loads and stores not
4434     // affected by the -fms-volatile setting.
4435   case Builtin::BI__iso_volatile_load8:
4436   case Builtin::BI__iso_volatile_load16:
4437   case Builtin::BI__iso_volatile_load32:
4438   case Builtin::BI__iso_volatile_load64:
4439     return RValue::get(EmitISOVolatileLoad(*this, E));
4440   case Builtin::BI__iso_volatile_store8:
4441   case Builtin::BI__iso_volatile_store16:
4442   case Builtin::BI__iso_volatile_store32:
4443   case Builtin::BI__iso_volatile_store64:
4444     return RValue::get(EmitISOVolatileStore(*this, E));
4445 
4446   case Builtin::BI__exception_code:
4447   case Builtin::BI_exception_code:
4448     return RValue::get(EmitSEHExceptionCode());
4449   case Builtin::BI__exception_info:
4450   case Builtin::BI_exception_info:
4451     return RValue::get(EmitSEHExceptionInfo());
4452   case Builtin::BI__abnormal_termination:
4453   case Builtin::BI_abnormal_termination:
4454     return RValue::get(EmitSEHAbnormalTermination());
4455   case Builtin::BI_setjmpex:
4456     if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
4457         E->getArg(0)->getType()->isPointerType())
4458       return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
4459     break;
4460   case Builtin::BI_setjmp:
4461     if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
4462         E->getArg(0)->getType()->isPointerType()) {
4463       if (getTarget().getTriple().getArch() == llvm::Triple::x86)
4464         return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
4465       else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
4466         return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
4467       return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
4468     }
4469     break;
4470 
4471   case Builtin::BI__GetExceptionInfo: {
4472     if (llvm::GlobalVariable *GV =
4473             CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
4474       return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
4475     break;
4476   }
4477 
4478   case Builtin::BI__fastfail:
4479     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
4480 
4481   case Builtin::BI__builtin_coro_size: {
4482     auto & Context = getContext();
4483     auto SizeTy = Context.getSizeType();
4484     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4485     Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T);
4486     return RValue::get(Builder.CreateCall(F));
4487   }
4488 
4489   case Builtin::BI__builtin_coro_id:
4490     return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
4491   case Builtin::BI__builtin_coro_promise:
4492     return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
4493   case Builtin::BI__builtin_coro_resume:
4494     return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
4495   case Builtin::BI__builtin_coro_frame:
4496     return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
4497   case Builtin::BI__builtin_coro_noop:
4498     return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
4499   case Builtin::BI__builtin_coro_free:
4500     return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
4501   case Builtin::BI__builtin_coro_destroy:
4502     return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
4503   case Builtin::BI__builtin_coro_done:
4504     return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
4505   case Builtin::BI__builtin_coro_alloc:
4506     return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
4507   case Builtin::BI__builtin_coro_begin:
4508     return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
4509   case Builtin::BI__builtin_coro_end:
4510     return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
4511   case Builtin::BI__builtin_coro_suspend:
4512     return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
4513   case Builtin::BI__builtin_coro_param:
4514     return EmitCoroutineIntrinsic(E, Intrinsic::coro_param);
4515 
4516   // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
4517   case Builtin::BIread_pipe:
4518   case Builtin::BIwrite_pipe: {
4519     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4520           *Arg1 = EmitScalarExpr(E->getArg(1));
4521     CGOpenCLRuntime OpenCLRT(CGM);
4522     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4523     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4524 
4525     // Type of the generic packet parameter.
4526     unsigned GenericAS =
4527         getContext().getTargetAddressSpace(LangAS::opencl_generic);
4528     llvm::Type *I8PTy = llvm::PointerType::get(
4529         llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
4530 
4531     // Testing which overloaded version we should generate the call for.
4532     if (2U == E->getNumArgs()) {
4533       const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
4534                                                              : "__write_pipe_2";
4535       // Creating a generic function type to be able to call with any builtin or
4536       // user defined type.
4537       llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
4538       llvm::FunctionType *FTy = llvm::FunctionType::get(
4539           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4540       Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
4541       return RValue::get(
4542           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4543                           {Arg0, BCast, PacketSize, PacketAlign}));
4544     } else {
4545       assert(4 == E->getNumArgs() &&
4546              "Illegal number of parameters to pipe function");
4547       const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
4548                                                              : "__write_pipe_4";
4549 
4550       llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
4551                               Int32Ty, Int32Ty};
4552       Value *Arg2 = EmitScalarExpr(E->getArg(2)),
4553             *Arg3 = EmitScalarExpr(E->getArg(3));
4554       llvm::FunctionType *FTy = llvm::FunctionType::get(
4555           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4556       Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
4557       // We know the third argument is an integer type, but we may need to cast
4558       // it to i32.
4559       if (Arg2->getType() != Int32Ty)
4560         Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
4561       return RValue::get(
4562           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4563                           {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
4564     }
4565   }
4566   // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
4567   // functions
4568   case Builtin::BIreserve_read_pipe:
4569   case Builtin::BIreserve_write_pipe:
4570   case Builtin::BIwork_group_reserve_read_pipe:
4571   case Builtin::BIwork_group_reserve_write_pipe:
4572   case Builtin::BIsub_group_reserve_read_pipe:
4573   case Builtin::BIsub_group_reserve_write_pipe: {
4574     // Composing the mangled name for the function.
4575     const char *Name;
4576     if (BuiltinID == Builtin::BIreserve_read_pipe)
4577       Name = "__reserve_read_pipe";
4578     else if (BuiltinID == Builtin::BIreserve_write_pipe)
4579       Name = "__reserve_write_pipe";
4580     else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
4581       Name = "__work_group_reserve_read_pipe";
4582     else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
4583       Name = "__work_group_reserve_write_pipe";
4584     else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
4585       Name = "__sub_group_reserve_read_pipe";
4586     else
4587       Name = "__sub_group_reserve_write_pipe";
4588 
4589     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4590           *Arg1 = EmitScalarExpr(E->getArg(1));
4591     llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
4592     CGOpenCLRuntime OpenCLRT(CGM);
4593     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4594     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4595 
4596     // Building the generic function prototype.
4597     llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
4598     llvm::FunctionType *FTy = llvm::FunctionType::get(
4599         ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4600     // We know the second argument is an integer type, but we may need to cast
4601     // it to i32.
4602     if (Arg1->getType() != Int32Ty)
4603       Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
4604     return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4605                                        {Arg0, Arg1, PacketSize, PacketAlign}));
4606   }
4607   // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
4608   // functions
4609   case Builtin::BIcommit_read_pipe:
4610   case Builtin::BIcommit_write_pipe:
4611   case Builtin::BIwork_group_commit_read_pipe:
4612   case Builtin::BIwork_group_commit_write_pipe:
4613   case Builtin::BIsub_group_commit_read_pipe:
4614   case Builtin::BIsub_group_commit_write_pipe: {
4615     const char *Name;
4616     if (BuiltinID == Builtin::BIcommit_read_pipe)
4617       Name = "__commit_read_pipe";
4618     else if (BuiltinID == Builtin::BIcommit_write_pipe)
4619       Name = "__commit_write_pipe";
4620     else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
4621       Name = "__work_group_commit_read_pipe";
4622     else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
4623       Name = "__work_group_commit_write_pipe";
4624     else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
4625       Name = "__sub_group_commit_read_pipe";
4626     else
4627       Name = "__sub_group_commit_write_pipe";
4628 
4629     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4630           *Arg1 = EmitScalarExpr(E->getArg(1));
4631     CGOpenCLRuntime OpenCLRT(CGM);
4632     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4633     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4634 
4635     // Building the generic function prototype.
4636     llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
4637     llvm::FunctionType *FTy =
4638         llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
4639                                 llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4640 
4641     return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4642                                        {Arg0, Arg1, PacketSize, PacketAlign}));
4643   }
4644   // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
4645   case Builtin::BIget_pipe_num_packets:
4646   case Builtin::BIget_pipe_max_packets: {
4647     const char *BaseName;
4648     const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>();
4649     if (BuiltinID == Builtin::BIget_pipe_num_packets)
4650       BaseName = "__get_pipe_num_packets";
4651     else
4652       BaseName = "__get_pipe_max_packets";
4653     std::string Name = std::string(BaseName) +
4654                        std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
4655 
4656     // Building the generic function prototype.
4657     Value *Arg0 = EmitScalarExpr(E->getArg(0));
4658     CGOpenCLRuntime OpenCLRT(CGM);
4659     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4660     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4661     llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
4662     llvm::FunctionType *FTy = llvm::FunctionType::get(
4663         Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4664 
4665     return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4666                                        {Arg0, PacketSize, PacketAlign}));
4667   }
4668 
4669   // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
4670   case Builtin::BIto_global:
4671   case Builtin::BIto_local:
4672   case Builtin::BIto_private: {
4673     auto Arg0 = EmitScalarExpr(E->getArg(0));
4674     auto NewArgT = llvm::PointerType::get(Int8Ty,
4675       CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
4676     auto NewRetT = llvm::PointerType::get(Int8Ty,
4677       CGM.getContext().getTargetAddressSpace(
4678         E->getType()->getPointeeType().getAddressSpace()));
4679     auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
4680     llvm::Value *NewArg;
4681     if (Arg0->getType()->getPointerAddressSpace() !=
4682         NewArgT->getPointerAddressSpace())
4683       NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
4684     else
4685       NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
4686     auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
4687     auto NewCall =
4688         EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
4689     return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
4690       ConvertType(E->getType())));
4691   }
4692 
4693   // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
4694   // It contains four different overload formats specified in Table 6.13.17.1.
4695   case Builtin::BIenqueue_kernel: {
4696     StringRef Name; // Generated function call name
4697     unsigned NumArgs = E->getNumArgs();
4698 
4699     llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
4700     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4701         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4702 
4703     llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
4704     llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
4705     LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
4706     llvm::Value *Range = NDRangeL.getAddress(*this).getPointer();
4707     llvm::Type *RangeTy = NDRangeL.getAddress(*this).getType();
4708 
4709     if (NumArgs == 4) {
4710       // The most basic form of the call with parameters:
4711       // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
4712       Name = "__enqueue_kernel_basic";
4713       llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
4714                               GenericVoidPtrTy};
4715       llvm::FunctionType *FTy = llvm::FunctionType::get(
4716           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4717 
4718       auto Info =
4719           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4720       llvm::Value *Kernel =
4721           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4722       llvm::Value *Block =
4723           Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4724 
4725       AttrBuilder B;
4726       B.addByValAttr(NDRangeL.getAddress(*this).getElementType());
4727       llvm::AttributeList ByValAttrSet =
4728           llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
4729 
4730       auto RTCall =
4731           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
4732                           {Queue, Flags, Range, Kernel, Block});
4733       RTCall->setAttributes(ByValAttrSet);
4734       return RValue::get(RTCall);
4735     }
4736     assert(NumArgs >= 5 && "Invalid enqueue_kernel signature");
4737 
4738     // Create a temporary array to hold the sizes of local pointer arguments
4739     // for the block. \p First is the position of the first size argument.
4740     auto CreateArrayForSizeVar = [=](unsigned First)
4741         -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
4742       llvm::APInt ArraySize(32, NumArgs - First);
4743       QualType SizeArrayTy = getContext().getConstantArrayType(
4744           getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal,
4745           /*IndexTypeQuals=*/0);
4746       auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
4747       llvm::Value *TmpPtr = Tmp.getPointer();
4748       llvm::Value *TmpSize = EmitLifetimeStart(
4749           CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
4750       llvm::Value *ElemPtr;
4751       // Each of the following arguments specifies the size of the corresponding
4752       // argument passed to the enqueued block.
4753       auto *Zero = llvm::ConstantInt::get(IntTy, 0);
4754       for (unsigned I = First; I < NumArgs; ++I) {
4755         auto *Index = llvm::ConstantInt::get(IntTy, I - First);
4756         auto *GEP = Builder.CreateGEP(Tmp.getElementType(), TmpPtr,
4757                                       {Zero, Index});
4758         if (I == First)
4759           ElemPtr = GEP;
4760         auto *V =
4761             Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
4762         Builder.CreateAlignedStore(
4763             V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy));
4764       }
4765       return std::tie(ElemPtr, TmpSize, TmpPtr);
4766     };
4767 
4768     // Could have events and/or varargs.
4769     if (E->getArg(3)->getType()->isBlockPointerType()) {
4770       // No events passed, but has variadic arguments.
4771       Name = "__enqueue_kernel_varargs";
4772       auto Info =
4773           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4774       llvm::Value *Kernel =
4775           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4776       auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4777       llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
4778       std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
4779 
4780       // Create a vector of the arguments, as well as a constant value to
4781       // express to the runtime the number of variadic arguments.
4782       llvm::Value *const Args[] = {Queue,  Flags,
4783                                    Range,  Kernel,
4784                                    Block,  ConstantInt::get(IntTy, NumArgs - 4),
4785                                    ElemPtr};
4786       llvm::Type *const ArgTys[] = {
4787           QueueTy,          IntTy, RangeTy,           GenericVoidPtrTy,
4788           GenericVoidPtrTy, IntTy, ElemPtr->getType()};
4789 
4790       llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false);
4791       auto Call = RValue::get(
4792           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Args));
4793       if (TmpSize)
4794         EmitLifetimeEnd(TmpSize, TmpPtr);
4795       return Call;
4796     }
4797     // Any calls now have event arguments passed.
4798     if (NumArgs >= 7) {
4799       llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
4800       llvm::PointerType *EventPtrTy = EventTy->getPointerTo(
4801           CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
4802 
4803       llvm::Value *NumEvents =
4804           Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
4805 
4806       // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
4807       // to be a null pointer constant (including `0` literal), we can take it
4808       // into account and emit null pointer directly.
4809       llvm::Value *EventWaitList = nullptr;
4810       if (E->getArg(4)->isNullPointerConstant(
4811               getContext(), Expr::NPC_ValueDependentIsNotNull)) {
4812         EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy);
4813       } else {
4814         EventWaitList = E->getArg(4)->getType()->isArrayType()
4815                         ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
4816                         : EmitScalarExpr(E->getArg(4));
4817         // Convert to generic address space.
4818         EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy);
4819       }
4820       llvm::Value *EventRet = nullptr;
4821       if (E->getArg(5)->isNullPointerConstant(
4822               getContext(), Expr::NPC_ValueDependentIsNotNull)) {
4823         EventRet = llvm::ConstantPointerNull::get(EventPtrTy);
4824       } else {
4825         EventRet =
4826             Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy);
4827       }
4828 
4829       auto Info =
4830           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
4831       llvm::Value *Kernel =
4832           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4833       llvm::Value *Block =
4834           Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4835 
4836       std::vector<llvm::Type *> ArgTys = {
4837           QueueTy,    Int32Ty,    RangeTy,          Int32Ty,
4838           EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
4839 
4840       std::vector<llvm::Value *> Args = {Queue,     Flags,         Range,
4841                                          NumEvents, EventWaitList, EventRet,
4842                                          Kernel,    Block};
4843 
4844       if (NumArgs == 7) {
4845         // Has events but no variadics.
4846         Name = "__enqueue_kernel_basic_events";
4847         llvm::FunctionType *FTy = llvm::FunctionType::get(
4848             Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4849         return RValue::get(
4850             EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4851                             llvm::ArrayRef<llvm::Value *>(Args)));
4852       }
4853       // Has event info and variadics
4854       // Pass the number of variadics to the runtime function too.
4855       Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
4856       ArgTys.push_back(Int32Ty);
4857       Name = "__enqueue_kernel_events_varargs";
4858 
4859       llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
4860       std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
4861       Args.push_back(ElemPtr);
4862       ArgTys.push_back(ElemPtr->getType());
4863 
4864       llvm::FunctionType *FTy = llvm::FunctionType::get(
4865           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4866       auto Call =
4867           RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4868                                       llvm::ArrayRef<llvm::Value *>(Args)));
4869       if (TmpSize)
4870         EmitLifetimeEnd(TmpSize, TmpPtr);
4871       return Call;
4872     }
4873     LLVM_FALLTHROUGH;
4874   }
4875   // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
4876   // parameter.
4877   case Builtin::BIget_kernel_work_group_size: {
4878     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4879         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4880     auto Info =
4881         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
4882     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4883     Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4884     return RValue::get(EmitRuntimeCall(
4885         CGM.CreateRuntimeFunction(
4886             llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
4887                                     false),
4888             "__get_kernel_work_group_size_impl"),
4889         {Kernel, Arg}));
4890   }
4891   case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
4892     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4893         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4894     auto Info =
4895         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
4896     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4897     Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4898     return RValue::get(EmitRuntimeCall(
4899         CGM.CreateRuntimeFunction(
4900             llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
4901                                     false),
4902             "__get_kernel_preferred_work_group_size_multiple_impl"),
4903         {Kernel, Arg}));
4904   }
4905   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
4906   case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
4907     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4908         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4909     LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
4910     llvm::Value *NDRange = NDRangeL.getAddress(*this).getPointer();
4911     auto Info =
4912         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
4913     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4914     Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4915     const char *Name =
4916         BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
4917             ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
4918             : "__get_kernel_sub_group_count_for_ndrange_impl";
4919     return RValue::get(EmitRuntimeCall(
4920         CGM.CreateRuntimeFunction(
4921             llvm::FunctionType::get(
4922                 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
4923                 false),
4924             Name),
4925         {NDRange, Kernel, Block}));
4926   }
4927 
4928   case Builtin::BI__builtin_store_half:
4929   case Builtin::BI__builtin_store_halff: {
4930     Value *Val = EmitScalarExpr(E->getArg(0));
4931     Address Address = EmitPointerWithAlignment(E->getArg(1));
4932     Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
4933     return RValue::get(Builder.CreateStore(HalfVal, Address));
4934   }
4935   case Builtin::BI__builtin_load_half: {
4936     Address Address = EmitPointerWithAlignment(E->getArg(0));
4937     Value *HalfVal = Builder.CreateLoad(Address);
4938     return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
4939   }
4940   case Builtin::BI__builtin_load_halff: {
4941     Address Address = EmitPointerWithAlignment(E->getArg(0));
4942     Value *HalfVal = Builder.CreateLoad(Address);
4943     return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
4944   }
4945   case Builtin::BIprintf:
4946     if (getTarget().getTriple().isNVPTX())
4947       return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue);
4948     if (getTarget().getTriple().getArch() == Triple::amdgcn &&
4949         getLangOpts().HIP)
4950       return EmitAMDGPUDevicePrintfCallExpr(E, ReturnValue);
4951     break;
4952   case Builtin::BI__builtin_canonicalize:
4953   case Builtin::BI__builtin_canonicalizef:
4954   case Builtin::BI__builtin_canonicalizef16:
4955   case Builtin::BI__builtin_canonicalizel:
4956     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
4957 
4958   case Builtin::BI__builtin_thread_pointer: {
4959     if (!getContext().getTargetInfo().isTLSSupported())
4960       CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
4961     // Fall through - it's already mapped to the intrinsic by GCCBuiltin.
4962     break;
4963   }
4964   case Builtin::BI__builtin_os_log_format:
4965     return emitBuiltinOSLogFormat(*E);
4966 
4967   case Builtin::BI__xray_customevent: {
4968     if (!ShouldXRayInstrumentFunction())
4969       return RValue::getIgnored();
4970 
4971     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
4972             XRayInstrKind::Custom))
4973       return RValue::getIgnored();
4974 
4975     if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
4976       if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
4977         return RValue::getIgnored();
4978 
4979     Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
4980     auto FTy = F->getFunctionType();
4981     auto Arg0 = E->getArg(0);
4982     auto Arg0Val = EmitScalarExpr(Arg0);
4983     auto Arg0Ty = Arg0->getType();
4984     auto PTy0 = FTy->getParamType(0);
4985     if (PTy0 != Arg0Val->getType()) {
4986       if (Arg0Ty->isArrayType())
4987         Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
4988       else
4989         Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
4990     }
4991     auto Arg1 = EmitScalarExpr(E->getArg(1));
4992     auto PTy1 = FTy->getParamType(1);
4993     if (PTy1 != Arg1->getType())
4994       Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
4995     return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
4996   }
4997 
4998   case Builtin::BI__xray_typedevent: {
4999     // TODO: There should be a way to always emit events even if the current
5000     // function is not instrumented. Losing events in a stream can cripple
5001     // a trace.
5002     if (!ShouldXRayInstrumentFunction())
5003       return RValue::getIgnored();
5004 
5005     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
5006             XRayInstrKind::Typed))
5007       return RValue::getIgnored();
5008 
5009     if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
5010       if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
5011         return RValue::getIgnored();
5012 
5013     Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
5014     auto FTy = F->getFunctionType();
5015     auto Arg0 = EmitScalarExpr(E->getArg(0));
5016     auto PTy0 = FTy->getParamType(0);
5017     if (PTy0 != Arg0->getType())
5018       Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
5019     auto Arg1 = E->getArg(1);
5020     auto Arg1Val = EmitScalarExpr(Arg1);
5021     auto Arg1Ty = Arg1->getType();
5022     auto PTy1 = FTy->getParamType(1);
5023     if (PTy1 != Arg1Val->getType()) {
5024       if (Arg1Ty->isArrayType())
5025         Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
5026       else
5027         Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
5028     }
5029     auto Arg2 = EmitScalarExpr(E->getArg(2));
5030     auto PTy2 = FTy->getParamType(2);
5031     if (PTy2 != Arg2->getType())
5032       Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
5033     return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
5034   }
5035 
5036   case Builtin::BI__builtin_ms_va_start:
5037   case Builtin::BI__builtin_ms_va_end:
5038     return RValue::get(
5039         EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
5040                        BuiltinID == Builtin::BI__builtin_ms_va_start));
5041 
5042   case Builtin::BI__builtin_ms_va_copy: {
5043     // Lower this manually. We can't reliably determine whether or not any
5044     // given va_copy() is for a Win64 va_list from the calling convention
5045     // alone, because it's legal to do this from a System V ABI function.
5046     // With opaque pointer types, we won't have enough information in LLVM
5047     // IR to determine this from the argument types, either. Best to do it
5048     // now, while we have enough information.
5049     Address DestAddr = EmitMSVAListRef(E->getArg(0));
5050     Address SrcAddr = EmitMSVAListRef(E->getArg(1));
5051 
5052     llvm::Type *BPP = Int8PtrPtrTy;
5053 
5054     DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
5055                        DestAddr.getAlignment());
5056     SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
5057                       SrcAddr.getAlignment());
5058 
5059     Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
5060     return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
5061   }
5062 
5063   case Builtin::BI__builtin_get_device_side_mangled_name: {
5064     auto Name = CGM.getCUDARuntime().getDeviceSideName(
5065         cast<DeclRefExpr>(E->getArg(0)->IgnoreImpCasts())->getDecl());
5066     auto Str = CGM.GetAddrOfConstantCString(Name, "");
5067     llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0),
5068                                llvm::ConstantInt::get(SizeTy, 0)};
5069     auto *Ptr = llvm::ConstantExpr::getGetElementPtr(Str.getElementType(),
5070                                                      Str.getPointer(), Zeros);
5071     return RValue::get(Ptr);
5072   }
5073   }
5074 
5075   // If this is an alias for a lib function (e.g. __builtin_sin), emit
5076   // the call using the normal call path, but using the unmangled
5077   // version of the function name.
5078   if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
5079     return emitLibraryCall(*this, FD, E,
5080                            CGM.getBuiltinLibFunction(FD, BuiltinID));
5081 
5082   // If this is a predefined lib function (e.g. malloc), emit the call
5083   // using exactly the normal call path.
5084   if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
5085     return emitLibraryCall(*this, FD, E,
5086                       cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
5087 
5088   // Check that a call to a target specific builtin has the correct target
5089   // features.
5090   // This is down here to avoid non-target specific builtins, however, if
5091   // generic builtins start to require generic target features then we
5092   // can move this up to the beginning of the function.
5093   checkTargetFeatures(E, FD);
5094 
5095   if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
5096     LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
5097 
5098   // See if we have a target specific intrinsic.
5099   const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
5100   Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
5101   StringRef Prefix =
5102       llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
5103   if (!Prefix.empty()) {
5104     IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name);
5105     // NOTE we don't need to perform a compatibility flag check here since the
5106     // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
5107     // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
5108     if (IntrinsicID == Intrinsic::not_intrinsic)
5109       IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
5110   }
5111 
5112   if (IntrinsicID != Intrinsic::not_intrinsic) {
5113     SmallVector<Value*, 16> Args;
5114 
5115     // Find out if any arguments are required to be integer constant
5116     // expressions.
5117     unsigned ICEArguments = 0;
5118     ASTContext::GetBuiltinTypeError Error;
5119     getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
5120     assert(Error == ASTContext::GE_None && "Should not codegen an error");
5121 
5122     Function *F = CGM.getIntrinsic(IntrinsicID);
5123     llvm::FunctionType *FTy = F->getFunctionType();
5124 
5125     for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
5126       Value *ArgValue;
5127       // If this is a normal argument, just emit it as a scalar.
5128       if ((ICEArguments & (1 << i)) == 0) {
5129         ArgValue = EmitScalarExpr(E->getArg(i));
5130       } else {
5131         // If this is required to be a constant, constant fold it so that we
5132         // know that the generated intrinsic gets a ConstantInt.
5133         ArgValue = llvm::ConstantInt::get(
5134             getLLVMContext(),
5135             *E->getArg(i)->getIntegerConstantExpr(getContext()));
5136       }
5137 
5138       // If the intrinsic arg type is different from the builtin arg type
5139       // we need to do a bit cast.
5140       llvm::Type *PTy = FTy->getParamType(i);
5141       if (PTy != ArgValue->getType()) {
5142         // XXX - vector of pointers?
5143         if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
5144           if (PtrTy->getAddressSpace() !=
5145               ArgValue->getType()->getPointerAddressSpace()) {
5146             ArgValue = Builder.CreateAddrSpaceCast(
5147               ArgValue,
5148               ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace()));
5149           }
5150         }
5151 
5152         assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
5153                "Must be able to losslessly bit cast to param");
5154         ArgValue = Builder.CreateBitCast(ArgValue, PTy);
5155       }
5156 
5157       Args.push_back(ArgValue);
5158     }
5159 
5160     Value *V = Builder.CreateCall(F, Args);
5161     QualType BuiltinRetType = E->getType();
5162 
5163     llvm::Type *RetTy = VoidTy;
5164     if (!BuiltinRetType->isVoidType())
5165       RetTy = ConvertType(BuiltinRetType);
5166 
5167     if (RetTy != V->getType()) {
5168       // XXX - vector of pointers?
5169       if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
5170         if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
5171           V = Builder.CreateAddrSpaceCast(
5172             V, V->getType()->getPointerTo(PtrTy->getAddressSpace()));
5173         }
5174       }
5175 
5176       assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
5177              "Must be able to losslessly bit cast result type");
5178       V = Builder.CreateBitCast(V, RetTy);
5179     }
5180 
5181     return RValue::get(V);
5182   }
5183 
5184   // Some target-specific builtins can have aggregate return values, e.g.
5185   // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force
5186   // ReturnValue to be non-null, so that the target-specific emission code can
5187   // always just emit into it.
5188   TypeEvaluationKind EvalKind = getEvaluationKind(E->getType());
5189   if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) {
5190     Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp");
5191     ReturnValue = ReturnValueSlot(DestPtr, false);
5192   }
5193 
5194   // Now see if we can emit a target-specific builtin.
5195   if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) {
5196     switch (EvalKind) {
5197     case TEK_Scalar:
5198       return RValue::get(V);
5199     case TEK_Aggregate:
5200       return RValue::getAggregate(ReturnValue.getValue(),
5201                                   ReturnValue.isVolatile());
5202     case TEK_Complex:
5203       llvm_unreachable("No current target builtin returns complex");
5204     }
5205     llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr");
5206   }
5207 
5208   ErrorUnsupported(E, "builtin function");
5209 
5210   // Unknown builtin, for now just dump it out and return undef.
5211   return GetUndefRValue(E->getType());
5212 }
5213 
EmitTargetArchBuiltinExpr(CodeGenFunction * CGF,unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue,llvm::Triple::ArchType Arch)5214 static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
5215                                         unsigned BuiltinID, const CallExpr *E,
5216                                         ReturnValueSlot ReturnValue,
5217                                         llvm::Triple::ArchType Arch) {
5218   switch (Arch) {
5219   case llvm::Triple::arm:
5220   case llvm::Triple::armeb:
5221   case llvm::Triple::thumb:
5222   case llvm::Triple::thumbeb:
5223     return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch);
5224   case llvm::Triple::aarch64:
5225   case llvm::Triple::aarch64_32:
5226   case llvm::Triple::aarch64_be:
5227     return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
5228   case llvm::Triple::bpfeb:
5229   case llvm::Triple::bpfel:
5230     return CGF->EmitBPFBuiltinExpr(BuiltinID, E);
5231   case llvm::Triple::x86:
5232   case llvm::Triple::x86_64:
5233     return CGF->EmitX86BuiltinExpr(BuiltinID, E);
5234   case llvm::Triple::ppc:
5235   case llvm::Triple::ppcle:
5236   case llvm::Triple::ppc64:
5237   case llvm::Triple::ppc64le:
5238     return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
5239   case llvm::Triple::r600:
5240   case llvm::Triple::amdgcn:
5241     return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
5242   case llvm::Triple::systemz:
5243     return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
5244   case llvm::Triple::nvptx:
5245   case llvm::Triple::nvptx64:
5246     return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
5247   case llvm::Triple::wasm32:
5248   case llvm::Triple::wasm64:
5249     return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
5250   case llvm::Triple::hexagon:
5251     return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
5252   case llvm::Triple::riscv32:
5253   case llvm::Triple::riscv64:
5254     return CGF->EmitRISCVBuiltinExpr(BuiltinID, E, ReturnValue);
5255   default:
5256     return nullptr;
5257   }
5258 }
5259 
EmitTargetBuiltinExpr(unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue)5260 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
5261                                               const CallExpr *E,
5262                                               ReturnValueSlot ReturnValue) {
5263   if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
5264     assert(getContext().getAuxTargetInfo() && "Missing aux target info");
5265     return EmitTargetArchBuiltinExpr(
5266         this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
5267         ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch());
5268   }
5269 
5270   return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue,
5271                                    getTarget().getTriple().getArch());
5272 }
5273 
GetNeonType(CodeGenFunction * CGF,NeonTypeFlags TypeFlags,bool HasLegalHalfType=true,bool V1Ty=false,bool AllowBFloatArgsAndRet=true)5274 static llvm::FixedVectorType *GetNeonType(CodeGenFunction *CGF,
5275                                           NeonTypeFlags TypeFlags,
5276                                           bool HasLegalHalfType = true,
5277                                           bool V1Ty = false,
5278                                           bool AllowBFloatArgsAndRet = true) {
5279   int IsQuad = TypeFlags.isQuad();
5280   switch (TypeFlags.getEltType()) {
5281   case NeonTypeFlags::Int8:
5282   case NeonTypeFlags::Poly8:
5283     return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
5284   case NeonTypeFlags::Int16:
5285   case NeonTypeFlags::Poly16:
5286     return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5287   case NeonTypeFlags::BFloat16:
5288     if (AllowBFloatArgsAndRet)
5289       return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad));
5290     else
5291       return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5292   case NeonTypeFlags::Float16:
5293     if (HasLegalHalfType)
5294       return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
5295     else
5296       return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5297   case NeonTypeFlags::Int32:
5298     return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
5299   case NeonTypeFlags::Int64:
5300   case NeonTypeFlags::Poly64:
5301     return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
5302   case NeonTypeFlags::Poly128:
5303     // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
5304     // There is a lot of i128 and f128 API missing.
5305     // so we use v16i8 to represent poly128 and get pattern matched.
5306     return llvm::FixedVectorType::get(CGF->Int8Ty, 16);
5307   case NeonTypeFlags::Float32:
5308     return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
5309   case NeonTypeFlags::Float64:
5310     return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
5311   }
5312   llvm_unreachable("Unknown vector element type!");
5313 }
5314 
GetFloatNeonType(CodeGenFunction * CGF,NeonTypeFlags IntTypeFlags)5315 static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
5316                                           NeonTypeFlags IntTypeFlags) {
5317   int IsQuad = IntTypeFlags.isQuad();
5318   switch (IntTypeFlags.getEltType()) {
5319   case NeonTypeFlags::Int16:
5320     return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad));
5321   case NeonTypeFlags::Int32:
5322     return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad));
5323   case NeonTypeFlags::Int64:
5324     return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad));
5325   default:
5326     llvm_unreachable("Type can't be converted to floating-point!");
5327   }
5328 }
5329 
EmitNeonSplat(Value * V,Constant * C,const ElementCount & Count)5330 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C,
5331                                       const ElementCount &Count) {
5332   Value *SV = llvm::ConstantVector::getSplat(Count, C);
5333   return Builder.CreateShuffleVector(V, V, SV, "lane");
5334 }
5335 
EmitNeonSplat(Value * V,Constant * C)5336 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
5337   ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount();
5338   return EmitNeonSplat(V, C, EC);
5339 }
5340 
EmitNeonCall(Function * F,SmallVectorImpl<Value * > & Ops,const char * name,unsigned shift,bool rightshift)5341 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
5342                                      const char *name,
5343                                      unsigned shift, bool rightshift) {
5344   unsigned j = 0;
5345   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
5346        ai != ae; ++ai, ++j) {
5347     if (F->isConstrainedFPIntrinsic())
5348       if (ai->getType()->isMetadataTy())
5349         continue;
5350     if (shift > 0 && shift == j)
5351       Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
5352     else
5353       Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
5354   }
5355 
5356   if (F->isConstrainedFPIntrinsic())
5357     return Builder.CreateConstrainedFPCall(F, Ops, name);
5358   else
5359     return Builder.CreateCall(F, Ops, name);
5360 }
5361 
EmitNeonShiftVector(Value * V,llvm::Type * Ty,bool neg)5362 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
5363                                             bool neg) {
5364   int SV = cast<ConstantInt>(V)->getSExtValue();
5365   return ConstantInt::get(Ty, neg ? -SV : SV);
5366 }
5367 
5368 // Right-shift a vector by a constant.
EmitNeonRShiftImm(Value * Vec,Value * Shift,llvm::Type * Ty,bool usgn,const char * name)5369 Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
5370                                           llvm::Type *Ty, bool usgn,
5371                                           const char *name) {
5372   llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
5373 
5374   int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
5375   int EltSize = VTy->getScalarSizeInBits();
5376 
5377   Vec = Builder.CreateBitCast(Vec, Ty);
5378 
5379   // lshr/ashr are undefined when the shift amount is equal to the vector
5380   // element size.
5381   if (ShiftAmt == EltSize) {
5382     if (usgn) {
5383       // Right-shifting an unsigned value by its size yields 0.
5384       return llvm::ConstantAggregateZero::get(VTy);
5385     } else {
5386       // Right-shifting a signed value by its size is equivalent
5387       // to a shift of size-1.
5388       --ShiftAmt;
5389       Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
5390     }
5391   }
5392 
5393   Shift = EmitNeonShiftVector(Shift, Ty, false);
5394   if (usgn)
5395     return Builder.CreateLShr(Vec, Shift, name);
5396   else
5397     return Builder.CreateAShr(Vec, Shift, name);
5398 }
5399 
5400 enum {
5401   AddRetType = (1 << 0),
5402   Add1ArgType = (1 << 1),
5403   Add2ArgTypes = (1 << 2),
5404 
5405   VectorizeRetType = (1 << 3),
5406   VectorizeArgTypes = (1 << 4),
5407 
5408   InventFloatType = (1 << 5),
5409   UnsignedAlts = (1 << 6),
5410 
5411   Use64BitVectors = (1 << 7),
5412   Use128BitVectors = (1 << 8),
5413 
5414   Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
5415   VectorRet = AddRetType | VectorizeRetType,
5416   VectorRetGetArgs01 =
5417       AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
5418   FpCmpzModifiers =
5419       AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
5420 };
5421 
5422 namespace {
5423 struct ARMVectorIntrinsicInfo {
5424   const char *NameHint;
5425   unsigned BuiltinID;
5426   unsigned LLVMIntrinsic;
5427   unsigned AltLLVMIntrinsic;
5428   uint64_t TypeModifier;
5429 
operator <__anond87beae00811::ARMVectorIntrinsicInfo5430   bool operator<(unsigned RHSBuiltinID) const {
5431     return BuiltinID < RHSBuiltinID;
5432   }
operator <__anond87beae00811::ARMVectorIntrinsicInfo5433   bool operator<(const ARMVectorIntrinsicInfo &TE) const {
5434     return BuiltinID < TE.BuiltinID;
5435   }
5436 };
5437 } // end anonymous namespace
5438 
5439 #define NEONMAP0(NameBase) \
5440   { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
5441 
5442 #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
5443   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
5444       Intrinsic::LLVMIntrinsic, 0, TypeModifier }
5445 
5446 #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
5447   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
5448       Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
5449       TypeModifier }
5450 
5451 static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = {
5452   NEONMAP1(__a32_vcvt_bf16_v, arm_neon_vcvtfp2bf, 0),
5453   NEONMAP0(splat_lane_v),
5454   NEONMAP0(splat_laneq_v),
5455   NEONMAP0(splatq_lane_v),
5456   NEONMAP0(splatq_laneq_v),
5457   NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
5458   NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
5459   NEONMAP1(vabs_v, arm_neon_vabs, 0),
5460   NEONMAP1(vabsq_v, arm_neon_vabs, 0),
5461   NEONMAP0(vadd_v),
5462   NEONMAP0(vaddhn_v),
5463   NEONMAP0(vaddq_v),
5464   NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
5465   NEONMAP1(vaeseq_v, arm_neon_aese, 0),
5466   NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
5467   NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
5468   NEONMAP1(vbfdot_v, arm_neon_bfdot, 0),
5469   NEONMAP1(vbfdotq_v, arm_neon_bfdot, 0),
5470   NEONMAP1(vbfmlalbq_v, arm_neon_bfmlalb, 0),
5471   NEONMAP1(vbfmlaltq_v, arm_neon_bfmlalt, 0),
5472   NEONMAP1(vbfmmlaq_v, arm_neon_bfmmla, 0),
5473   NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
5474   NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
5475   NEONMAP1(vcadd_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
5476   NEONMAP1(vcadd_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
5477   NEONMAP1(vcaddq_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
5478   NEONMAP1(vcaddq_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
5479   NEONMAP1(vcage_v, arm_neon_vacge, 0),
5480   NEONMAP1(vcageq_v, arm_neon_vacge, 0),
5481   NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
5482   NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
5483   NEONMAP1(vcale_v, arm_neon_vacge, 0),
5484   NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
5485   NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
5486   NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
5487   NEONMAP0(vceqz_v),
5488   NEONMAP0(vceqzq_v),
5489   NEONMAP0(vcgez_v),
5490   NEONMAP0(vcgezq_v),
5491   NEONMAP0(vcgtz_v),
5492   NEONMAP0(vcgtzq_v),
5493   NEONMAP0(vclez_v),
5494   NEONMAP0(vclezq_v),
5495   NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
5496   NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
5497   NEONMAP0(vcltz_v),
5498   NEONMAP0(vcltzq_v),
5499   NEONMAP1(vclz_v, ctlz, Add1ArgType),
5500   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
5501   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
5502   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
5503   NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
5504   NEONMAP0(vcvt_f16_v),
5505   NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
5506   NEONMAP0(vcvt_f32_v),
5507   NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5508   NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5509   NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0),
5510   NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
5511   NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
5512   NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0),
5513   NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
5514   NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
5515   NEONMAP0(vcvt_s16_v),
5516   NEONMAP0(vcvt_s32_v),
5517   NEONMAP0(vcvt_s64_v),
5518   NEONMAP0(vcvt_u16_v),
5519   NEONMAP0(vcvt_u32_v),
5520   NEONMAP0(vcvt_u64_v),
5521   NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0),
5522   NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
5523   NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
5524   NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0),
5525   NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
5526   NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
5527   NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0),
5528   NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
5529   NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
5530   NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0),
5531   NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
5532   NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
5533   NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0),
5534   NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0),
5535   NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
5536   NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
5537   NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0),
5538   NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
5539   NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
5540   NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0),
5541   NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
5542   NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
5543   NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0),
5544   NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
5545   NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
5546   NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0),
5547   NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
5548   NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
5549   NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0),
5550   NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
5551   NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
5552   NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0),
5553   NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
5554   NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
5555   NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0),
5556   NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
5557   NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
5558   NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0),
5559   NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
5560   NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
5561   NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0),
5562   NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
5563   NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
5564   NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0),
5565   NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
5566   NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
5567   NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0),
5568   NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
5569   NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
5570   NEONMAP0(vcvtq_f16_v),
5571   NEONMAP0(vcvtq_f32_v),
5572   NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5573   NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5574   NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0),
5575   NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
5576   NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
5577   NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0),
5578   NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
5579   NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
5580   NEONMAP0(vcvtq_s16_v),
5581   NEONMAP0(vcvtq_s32_v),
5582   NEONMAP0(vcvtq_s64_v),
5583   NEONMAP0(vcvtq_u16_v),
5584   NEONMAP0(vcvtq_u32_v),
5585   NEONMAP0(vcvtq_u64_v),
5586   NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0),
5587   NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0),
5588   NEONMAP0(vext_v),
5589   NEONMAP0(vextq_v),
5590   NEONMAP0(vfma_v),
5591   NEONMAP0(vfmaq_v),
5592   NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
5593   NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
5594   NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
5595   NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
5596   NEONMAP0(vld1_dup_v),
5597   NEONMAP1(vld1_v, arm_neon_vld1, 0),
5598   NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
5599   NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
5600   NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
5601   NEONMAP0(vld1q_dup_v),
5602   NEONMAP1(vld1q_v, arm_neon_vld1, 0),
5603   NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
5604   NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
5605   NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
5606   NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
5607   NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
5608   NEONMAP1(vld2_v, arm_neon_vld2, 0),
5609   NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
5610   NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
5611   NEONMAP1(vld2q_v, arm_neon_vld2, 0),
5612   NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
5613   NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
5614   NEONMAP1(vld3_v, arm_neon_vld3, 0),
5615   NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
5616   NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
5617   NEONMAP1(vld3q_v, arm_neon_vld3, 0),
5618   NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
5619   NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
5620   NEONMAP1(vld4_v, arm_neon_vld4, 0),
5621   NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
5622   NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
5623   NEONMAP1(vld4q_v, arm_neon_vld4, 0),
5624   NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
5625   NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
5626   NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
5627   NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
5628   NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
5629   NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
5630   NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
5631   NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
5632   NEONMAP2(vmmlaq_v, arm_neon_ummla, arm_neon_smmla, 0),
5633   NEONMAP0(vmovl_v),
5634   NEONMAP0(vmovn_v),
5635   NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
5636   NEONMAP0(vmull_v),
5637   NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
5638   NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
5639   NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
5640   NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
5641   NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
5642   NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
5643   NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
5644   NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
5645   NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
5646   NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
5647   NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
5648   NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
5649   NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
5650   NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0),
5651   NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0),
5652   NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
5653   NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
5654   NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
5655   NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
5656   NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
5657   NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
5658   NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
5659   NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
5660   NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
5661   NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
5662   NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
5663   NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
5664   NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
5665   NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
5666   NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
5667   NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
5668   NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
5669   NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
5670   NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
5671   NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
5672   NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
5673   NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
5674   NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
5675   NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
5676   NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
5677   NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
5678   NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
5679   NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
5680   NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
5681   NEONMAP0(vrndi_v),
5682   NEONMAP0(vrndiq_v),
5683   NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
5684   NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
5685   NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
5686   NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
5687   NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
5688   NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
5689   NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
5690   NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
5691   NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
5692   NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
5693   NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
5694   NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
5695   NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
5696   NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
5697   NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
5698   NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
5699   NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
5700   NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
5701   NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
5702   NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
5703   NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
5704   NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
5705   NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
5706   NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
5707   NEONMAP0(vshl_n_v),
5708   NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
5709   NEONMAP0(vshll_n_v),
5710   NEONMAP0(vshlq_n_v),
5711   NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
5712   NEONMAP0(vshr_n_v),
5713   NEONMAP0(vshrn_n_v),
5714   NEONMAP0(vshrq_n_v),
5715   NEONMAP1(vst1_v, arm_neon_vst1, 0),
5716   NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
5717   NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
5718   NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
5719   NEONMAP1(vst1q_v, arm_neon_vst1, 0),
5720   NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
5721   NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
5722   NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
5723   NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
5724   NEONMAP1(vst2_v, arm_neon_vst2, 0),
5725   NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
5726   NEONMAP1(vst2q_v, arm_neon_vst2, 0),
5727   NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
5728   NEONMAP1(vst3_v, arm_neon_vst3, 0),
5729   NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
5730   NEONMAP1(vst3q_v, arm_neon_vst3, 0),
5731   NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
5732   NEONMAP1(vst4_v, arm_neon_vst4, 0),
5733   NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
5734   NEONMAP1(vst4q_v, arm_neon_vst4, 0),
5735   NEONMAP0(vsubhn_v),
5736   NEONMAP0(vtrn_v),
5737   NEONMAP0(vtrnq_v),
5738   NEONMAP0(vtst_v),
5739   NEONMAP0(vtstq_v),
5740   NEONMAP1(vusdot_v, arm_neon_usdot, 0),
5741   NEONMAP1(vusdotq_v, arm_neon_usdot, 0),
5742   NEONMAP1(vusmmlaq_v, arm_neon_usmmla, 0),
5743   NEONMAP0(vuzp_v),
5744   NEONMAP0(vuzpq_v),
5745   NEONMAP0(vzip_v),
5746   NEONMAP0(vzipq_v)
5747 };
5748 
5749 static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
5750   NEONMAP1(__a64_vcvtq_low_bf16_v, aarch64_neon_bfcvtn, 0),
5751   NEONMAP0(splat_lane_v),
5752   NEONMAP0(splat_laneq_v),
5753   NEONMAP0(splatq_lane_v),
5754   NEONMAP0(splatq_laneq_v),
5755   NEONMAP1(vabs_v, aarch64_neon_abs, 0),
5756   NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
5757   NEONMAP0(vadd_v),
5758   NEONMAP0(vaddhn_v),
5759   NEONMAP0(vaddq_p128),
5760   NEONMAP0(vaddq_v),
5761   NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
5762   NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
5763   NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
5764   NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
5765   NEONMAP2(vbcaxq_v, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
5766   NEONMAP1(vbfdot_v, aarch64_neon_bfdot, 0),
5767   NEONMAP1(vbfdotq_v, aarch64_neon_bfdot, 0),
5768   NEONMAP1(vbfmlalbq_v, aarch64_neon_bfmlalb, 0),
5769   NEONMAP1(vbfmlaltq_v, aarch64_neon_bfmlalt, 0),
5770   NEONMAP1(vbfmmlaq_v, aarch64_neon_bfmmla, 0),
5771   NEONMAP1(vcadd_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
5772   NEONMAP1(vcadd_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
5773   NEONMAP1(vcaddq_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
5774   NEONMAP1(vcaddq_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
5775   NEONMAP1(vcage_v, aarch64_neon_facge, 0),
5776   NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
5777   NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
5778   NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
5779   NEONMAP1(vcale_v, aarch64_neon_facge, 0),
5780   NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
5781   NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
5782   NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
5783   NEONMAP0(vceqz_v),
5784   NEONMAP0(vceqzq_v),
5785   NEONMAP0(vcgez_v),
5786   NEONMAP0(vcgezq_v),
5787   NEONMAP0(vcgtz_v),
5788   NEONMAP0(vcgtzq_v),
5789   NEONMAP0(vclez_v),
5790   NEONMAP0(vclezq_v),
5791   NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
5792   NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
5793   NEONMAP0(vcltz_v),
5794   NEONMAP0(vcltzq_v),
5795   NEONMAP1(vclz_v, ctlz, Add1ArgType),
5796   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
5797   NEONMAP1(vcmla_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType),
5798   NEONMAP1(vcmla_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType),
5799   NEONMAP1(vcmla_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType),
5800   NEONMAP1(vcmla_v, aarch64_neon_vcmla_rot0, Add1ArgType),
5801   NEONMAP1(vcmlaq_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType),
5802   NEONMAP1(vcmlaq_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType),
5803   NEONMAP1(vcmlaq_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType),
5804   NEONMAP1(vcmlaq_v, aarch64_neon_vcmla_rot0, Add1ArgType),
5805   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
5806   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
5807   NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
5808   NEONMAP0(vcvt_f16_v),
5809   NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
5810   NEONMAP0(vcvt_f32_v),
5811   NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5812   NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5813   NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5814   NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
5815   NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
5816   NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
5817   NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
5818   NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
5819   NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
5820   NEONMAP0(vcvtq_f16_v),
5821   NEONMAP0(vcvtq_f32_v),
5822   NEONMAP1(vcvtq_high_bf16_v, aarch64_neon_bfcvtn2, 0),
5823   NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5824   NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5825   NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5826   NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
5827   NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
5828   NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
5829   NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
5830   NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
5831   NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
5832   NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
5833   NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
5834   NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
5835   NEONMAP2(veor3q_v, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
5836   NEONMAP0(vext_v),
5837   NEONMAP0(vextq_v),
5838   NEONMAP0(vfma_v),
5839   NEONMAP0(vfmaq_v),
5840   NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0),
5841   NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0),
5842   NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0),
5843   NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0),
5844   NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0),
5845   NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0),
5846   NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0),
5847   NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0),
5848   NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
5849   NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
5850   NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
5851   NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
5852   NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
5853   NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
5854   NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
5855   NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
5856   NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
5857   NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
5858   NEONMAP2(vmmlaq_v, aarch64_neon_ummla, aarch64_neon_smmla, 0),
5859   NEONMAP0(vmovl_v),
5860   NEONMAP0(vmovn_v),
5861   NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
5862   NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
5863   NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
5864   NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
5865   NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
5866   NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
5867   NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
5868   NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
5869   NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
5870   NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
5871   NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
5872   NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
5873   NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0),
5874   NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
5875   NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
5876   NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0),
5877   NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
5878   NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
5879   NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
5880   NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
5881   NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
5882   NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
5883   NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
5884   NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0),
5885   NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
5886   NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
5887   NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0),
5888   NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
5889   NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
5890   NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
5891   NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
5892   NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
5893   NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
5894   NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
5895   NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
5896   NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
5897   NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
5898   NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
5899   NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
5900   NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
5901   NEONMAP1(vrax1q_v, aarch64_crypto_rax1, 0),
5902   NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
5903   NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
5904   NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
5905   NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
5906   NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
5907   NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
5908   NEONMAP1(vrnd32x_v, aarch64_neon_frint32x, Add1ArgType),
5909   NEONMAP1(vrnd32xq_v, aarch64_neon_frint32x, Add1ArgType),
5910   NEONMAP1(vrnd32z_v, aarch64_neon_frint32z, Add1ArgType),
5911   NEONMAP1(vrnd32zq_v, aarch64_neon_frint32z, Add1ArgType),
5912   NEONMAP1(vrnd64x_v, aarch64_neon_frint64x, Add1ArgType),
5913   NEONMAP1(vrnd64xq_v, aarch64_neon_frint64x, Add1ArgType),
5914   NEONMAP1(vrnd64z_v, aarch64_neon_frint64z, Add1ArgType),
5915   NEONMAP1(vrnd64zq_v, aarch64_neon_frint64z, Add1ArgType),
5916   NEONMAP0(vrndi_v),
5917   NEONMAP0(vrndiq_v),
5918   NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
5919   NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
5920   NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
5921   NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
5922   NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
5923   NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
5924   NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
5925   NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
5926   NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
5927   NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
5928   NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
5929   NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
5930   NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
5931   NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
5932   NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
5933   NEONMAP1(vsha512h2q_v, aarch64_crypto_sha512h2, 0),
5934   NEONMAP1(vsha512hq_v, aarch64_crypto_sha512h, 0),
5935   NEONMAP1(vsha512su0q_v, aarch64_crypto_sha512su0, 0),
5936   NEONMAP1(vsha512su1q_v, aarch64_crypto_sha512su1, 0),
5937   NEONMAP0(vshl_n_v),
5938   NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
5939   NEONMAP0(vshll_n_v),
5940   NEONMAP0(vshlq_n_v),
5941   NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
5942   NEONMAP0(vshr_n_v),
5943   NEONMAP0(vshrn_n_v),
5944   NEONMAP0(vshrq_n_v),
5945   NEONMAP1(vsm3partw1q_v, aarch64_crypto_sm3partw1, 0),
5946   NEONMAP1(vsm3partw2q_v, aarch64_crypto_sm3partw2, 0),
5947   NEONMAP1(vsm3ss1q_v, aarch64_crypto_sm3ss1, 0),
5948   NEONMAP1(vsm3tt1aq_v, aarch64_crypto_sm3tt1a, 0),
5949   NEONMAP1(vsm3tt1bq_v, aarch64_crypto_sm3tt1b, 0),
5950   NEONMAP1(vsm3tt2aq_v, aarch64_crypto_sm3tt2a, 0),
5951   NEONMAP1(vsm3tt2bq_v, aarch64_crypto_sm3tt2b, 0),
5952   NEONMAP1(vsm4ekeyq_v, aarch64_crypto_sm4ekey, 0),
5953   NEONMAP1(vsm4eq_v, aarch64_crypto_sm4e, 0),
5954   NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
5955   NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
5956   NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
5957   NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
5958   NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
5959   NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
5960   NEONMAP0(vsubhn_v),
5961   NEONMAP0(vtst_v),
5962   NEONMAP0(vtstq_v),
5963   NEONMAP1(vusdot_v, aarch64_neon_usdot, 0),
5964   NEONMAP1(vusdotq_v, aarch64_neon_usdot, 0),
5965   NEONMAP1(vusmmlaq_v, aarch64_neon_usmmla, 0),
5966   NEONMAP1(vxarq_v, aarch64_crypto_xar, 0),
5967 };
5968 
5969 static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = {
5970   NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
5971   NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
5972   NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
5973   NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
5974   NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
5975   NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
5976   NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
5977   NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
5978   NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
5979   NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5980   NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
5981   NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
5982   NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
5983   NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
5984   NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5985   NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5986   NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
5987   NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
5988   NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
5989   NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
5990   NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
5991   NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
5992   NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
5993   NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
5994   NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5995   NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5996   NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5997   NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5998   NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5999   NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6000   NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6001   NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6002   NEONMAP1(vcvtd_s64_f64, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6003   NEONMAP1(vcvtd_u64_f64, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6004   NEONMAP1(vcvth_bf16_f32, aarch64_neon_bfcvt, 0),
6005   NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6006   NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6007   NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6008   NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6009   NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6010   NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6011   NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6012   NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6013   NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6014   NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6015   NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6016   NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6017   NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6018   NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6019   NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6020   NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6021   NEONMAP1(vcvts_s32_f32, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6022   NEONMAP1(vcvts_u32_f32, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6023   NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
6024   NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6025   NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6026   NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6027   NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6028   NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
6029   NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
6030   NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6031   NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6032   NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
6033   NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
6034   NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6035   NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6036   NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6037   NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6038   NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
6039   NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
6040   NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6041   NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
6042   NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
6043   NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
6044   NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
6045   NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
6046   NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
6047   NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6048   NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6049   NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6050   NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6051   NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6052   NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6053   NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6054   NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6055   NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
6056   NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6057   NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
6058   NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
6059   NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
6060   NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
6061   NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
6062   NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
6063   NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
6064   NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
6065   NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
6066   NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
6067   NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
6068   NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
6069   NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
6070   NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
6071   NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
6072   NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
6073   NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
6074   NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
6075   NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
6076   NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
6077   NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
6078   NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
6079   NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
6080   NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
6081   NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
6082   NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
6083   NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
6084   NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
6085   NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
6086   NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
6087   NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
6088   NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
6089   NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
6090   NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
6091   NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
6092   NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
6093   NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
6094   NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
6095   NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
6096   NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
6097   NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
6098   NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
6099   NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
6100   NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
6101   NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
6102   NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
6103   NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
6104   NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
6105   NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6106   NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6107   NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6108   NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6109   NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
6110   NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
6111   NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6112   NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6113   NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6114   NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6115   NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
6116   NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
6117   NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
6118   NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
6119   NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
6120   NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
6121   NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
6122   NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
6123   NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
6124   NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
6125   NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
6126   NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
6127   NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
6128   NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
6129   NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
6130   NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
6131   NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
6132   NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
6133   NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
6134   NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
6135   NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
6136   NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
6137   NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
6138   NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
6139   NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
6140   NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
6141   NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
6142   NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
6143   NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
6144   NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
6145   NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
6146   NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
6147   NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
6148   NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
6149   NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
6150   NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
6151   NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
6152   NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
6153   NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
6154   NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
6155   NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
6156   NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
6157   NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
6158   NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
6159   NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
6160   NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
6161   NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
6162   NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
6163   NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
6164   NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
6165   NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
6166   NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
6167   // FP16 scalar intrinisics go here.
6168   NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
6169   NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6170   NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6171   NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6172   NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6173   NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6174   NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6175   NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6176   NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6177   NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6178   NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6179   NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6180   NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6181   NEONMAP1(vcvth_s32_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6182   NEONMAP1(vcvth_s64_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6183   NEONMAP1(vcvth_u32_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6184   NEONMAP1(vcvth_u64_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6185   NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6186   NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6187   NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6188   NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6189   NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6190   NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6191   NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6192   NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6193   NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6194   NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6195   NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6196   NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6197   NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
6198   NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
6199   NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
6200   NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
6201   NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
6202 };
6203 
6204 #undef NEONMAP0
6205 #undef NEONMAP1
6206 #undef NEONMAP2
6207 
6208 #define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier)                         \
6209   {                                                                            \
6210     #NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0,   \
6211         TypeModifier                                                           \
6212   }
6213 
6214 #define SVEMAP2(NameBase, TypeModifier)                                        \
6215   { #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier }
6216 static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap[] = {
6217 #define GET_SVE_LLVM_INTRINSIC_MAP
6218 #include "clang/Basic/arm_sve_builtin_cg.inc"
6219 #undef GET_SVE_LLVM_INTRINSIC_MAP
6220 };
6221 
6222 #undef SVEMAP1
6223 #undef SVEMAP2
6224 
6225 static bool NEONSIMDIntrinsicsProvenSorted = false;
6226 
6227 static bool AArch64SIMDIntrinsicsProvenSorted = false;
6228 static bool AArch64SISDIntrinsicsProvenSorted = false;
6229 static bool AArch64SVEIntrinsicsProvenSorted = false;
6230 
6231 static const ARMVectorIntrinsicInfo *
findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap,unsigned BuiltinID,bool & MapProvenSorted)6232 findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap,
6233                             unsigned BuiltinID, bool &MapProvenSorted) {
6234 
6235 #ifndef NDEBUG
6236   if (!MapProvenSorted) {
6237     assert(llvm::is_sorted(IntrinsicMap));
6238     MapProvenSorted = true;
6239   }
6240 #endif
6241 
6242   const ARMVectorIntrinsicInfo *Builtin =
6243       llvm::lower_bound(IntrinsicMap, BuiltinID);
6244 
6245   if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
6246     return Builtin;
6247 
6248   return nullptr;
6249 }
6250 
LookupNeonLLVMIntrinsic(unsigned IntrinsicID,unsigned Modifier,llvm::Type * ArgType,const CallExpr * E)6251 Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
6252                                                    unsigned Modifier,
6253                                                    llvm::Type *ArgType,
6254                                                    const CallExpr *E) {
6255   int VectorSize = 0;
6256   if (Modifier & Use64BitVectors)
6257     VectorSize = 64;
6258   else if (Modifier & Use128BitVectors)
6259     VectorSize = 128;
6260 
6261   // Return type.
6262   SmallVector<llvm::Type *, 3> Tys;
6263   if (Modifier & AddRetType) {
6264     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
6265     if (Modifier & VectorizeRetType)
6266       Ty = llvm::FixedVectorType::get(
6267           Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
6268 
6269     Tys.push_back(Ty);
6270   }
6271 
6272   // Arguments.
6273   if (Modifier & VectorizeArgTypes) {
6274     int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
6275     ArgType = llvm::FixedVectorType::get(ArgType, Elts);
6276   }
6277 
6278   if (Modifier & (Add1ArgType | Add2ArgTypes))
6279     Tys.push_back(ArgType);
6280 
6281   if (Modifier & Add2ArgTypes)
6282     Tys.push_back(ArgType);
6283 
6284   if (Modifier & InventFloatType)
6285     Tys.push_back(FloatTy);
6286 
6287   return CGM.getIntrinsic(IntrinsicID, Tys);
6288 }
6289 
EmitCommonNeonSISDBuiltinExpr(CodeGenFunction & CGF,const ARMVectorIntrinsicInfo & SISDInfo,SmallVectorImpl<Value * > & Ops,const CallExpr * E)6290 static Value *EmitCommonNeonSISDBuiltinExpr(
6291     CodeGenFunction &CGF, const ARMVectorIntrinsicInfo &SISDInfo,
6292     SmallVectorImpl<Value *> &Ops, const CallExpr *E) {
6293   unsigned BuiltinID = SISDInfo.BuiltinID;
6294   unsigned int Int = SISDInfo.LLVMIntrinsic;
6295   unsigned Modifier = SISDInfo.TypeModifier;
6296   const char *s = SISDInfo.NameHint;
6297 
6298   switch (BuiltinID) {
6299   case NEON::BI__builtin_neon_vcled_s64:
6300   case NEON::BI__builtin_neon_vcled_u64:
6301   case NEON::BI__builtin_neon_vcles_f32:
6302   case NEON::BI__builtin_neon_vcled_f64:
6303   case NEON::BI__builtin_neon_vcltd_s64:
6304   case NEON::BI__builtin_neon_vcltd_u64:
6305   case NEON::BI__builtin_neon_vclts_f32:
6306   case NEON::BI__builtin_neon_vcltd_f64:
6307   case NEON::BI__builtin_neon_vcales_f32:
6308   case NEON::BI__builtin_neon_vcaled_f64:
6309   case NEON::BI__builtin_neon_vcalts_f32:
6310   case NEON::BI__builtin_neon_vcaltd_f64:
6311     // Only one direction of comparisons actually exist, cmle is actually a cmge
6312     // with swapped operands. The table gives us the right intrinsic but we
6313     // still need to do the swap.
6314     std::swap(Ops[0], Ops[1]);
6315     break;
6316   }
6317 
6318   assert(Int && "Generic code assumes a valid intrinsic");
6319 
6320   // Determine the type(s) of this overloaded AArch64 intrinsic.
6321   const Expr *Arg = E->getArg(0);
6322   llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
6323   Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
6324 
6325   int j = 0;
6326   ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
6327   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
6328        ai != ae; ++ai, ++j) {
6329     llvm::Type *ArgTy = ai->getType();
6330     if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
6331              ArgTy->getPrimitiveSizeInBits())
6332       continue;
6333 
6334     assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
6335     // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
6336     // it before inserting.
6337     Ops[j] = CGF.Builder.CreateTruncOrBitCast(
6338         Ops[j], cast<llvm::VectorType>(ArgTy)->getElementType());
6339     Ops[j] =
6340         CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
6341   }
6342 
6343   Value *Result = CGF.EmitNeonCall(F, Ops, s);
6344   llvm::Type *ResultType = CGF.ConvertType(E->getType());
6345   if (ResultType->getPrimitiveSizeInBits().getFixedSize() <
6346       Result->getType()->getPrimitiveSizeInBits().getFixedSize())
6347     return CGF.Builder.CreateExtractElement(Result, C0);
6348 
6349   return CGF.Builder.CreateBitCast(Result, ResultType, s);
6350 }
6351 
EmitCommonNeonBuiltinExpr(unsigned BuiltinID,unsigned LLVMIntrinsic,unsigned AltLLVMIntrinsic,const char * NameHint,unsigned Modifier,const CallExpr * E,SmallVectorImpl<llvm::Value * > & Ops,Address PtrOp0,Address PtrOp1,llvm::Triple::ArchType Arch)6352 Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
6353     unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
6354     const char *NameHint, unsigned Modifier, const CallExpr *E,
6355     SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
6356     llvm::Triple::ArchType Arch) {
6357   // Get the last argument, which specifies the vector type.
6358   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
6359   Optional<llvm::APSInt> NeonTypeConst =
6360       Arg->getIntegerConstantExpr(getContext());
6361   if (!NeonTypeConst)
6362     return nullptr;
6363 
6364   // Determine the type of this overloaded NEON intrinsic.
6365   NeonTypeFlags Type(NeonTypeConst->getZExtValue());
6366   bool Usgn = Type.isUnsigned();
6367   bool Quad = Type.isQuad();
6368   const bool HasLegalHalfType = getTarget().hasLegalHalfType();
6369   const bool AllowBFloatArgsAndRet =
6370       getTargetHooks().getABIInfo().allowBFloatArgsAndRet();
6371 
6372   llvm::FixedVectorType *VTy =
6373       GetNeonType(this, Type, HasLegalHalfType, false, AllowBFloatArgsAndRet);
6374   llvm::Type *Ty = VTy;
6375   if (!Ty)
6376     return nullptr;
6377 
6378   auto getAlignmentValue32 = [&](Address addr) -> Value* {
6379     return Builder.getInt32(addr.getAlignment().getQuantity());
6380   };
6381 
6382   unsigned Int = LLVMIntrinsic;
6383   if ((Modifier & UnsignedAlts) && !Usgn)
6384     Int = AltLLVMIntrinsic;
6385 
6386   switch (BuiltinID) {
6387   default: break;
6388   case NEON::BI__builtin_neon_splat_lane_v:
6389   case NEON::BI__builtin_neon_splat_laneq_v:
6390   case NEON::BI__builtin_neon_splatq_lane_v:
6391   case NEON::BI__builtin_neon_splatq_laneq_v: {
6392     auto NumElements = VTy->getElementCount();
6393     if (BuiltinID == NEON::BI__builtin_neon_splatq_lane_v)
6394       NumElements = NumElements * 2;
6395     if (BuiltinID == NEON::BI__builtin_neon_splat_laneq_v)
6396       NumElements = NumElements.divideCoefficientBy(2);
6397 
6398     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
6399     return EmitNeonSplat(Ops[0], cast<ConstantInt>(Ops[1]), NumElements);
6400   }
6401   case NEON::BI__builtin_neon_vpadd_v:
6402   case NEON::BI__builtin_neon_vpaddq_v:
6403     // We don't allow fp/int overloading of intrinsics.
6404     if (VTy->getElementType()->isFloatingPointTy() &&
6405         Int == Intrinsic::aarch64_neon_addp)
6406       Int = Intrinsic::aarch64_neon_faddp;
6407     break;
6408   case NEON::BI__builtin_neon_vabs_v:
6409   case NEON::BI__builtin_neon_vabsq_v:
6410     if (VTy->getElementType()->isFloatingPointTy())
6411       return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
6412     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
6413   case NEON::BI__builtin_neon_vadd_v:
6414   case NEON::BI__builtin_neon_vaddq_v: {
6415     llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, Quad ? 16 : 8);
6416     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
6417     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
6418     Ops[0] =  Builder.CreateXor(Ops[0], Ops[1]);
6419     return Builder.CreateBitCast(Ops[0], Ty);
6420   }
6421   case NEON::BI__builtin_neon_vaddhn_v: {
6422     llvm::FixedVectorType *SrcTy =
6423         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6424 
6425     // %sum = add <4 x i32> %lhs, %rhs
6426     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6427     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
6428     Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
6429 
6430     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
6431     Constant *ShiftAmt =
6432         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
6433     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
6434 
6435     // %res = trunc <4 x i32> %high to <4 x i16>
6436     return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
6437   }
6438   case NEON::BI__builtin_neon_vcale_v:
6439   case NEON::BI__builtin_neon_vcaleq_v:
6440   case NEON::BI__builtin_neon_vcalt_v:
6441   case NEON::BI__builtin_neon_vcaltq_v:
6442     std::swap(Ops[0], Ops[1]);
6443     LLVM_FALLTHROUGH;
6444   case NEON::BI__builtin_neon_vcage_v:
6445   case NEON::BI__builtin_neon_vcageq_v:
6446   case NEON::BI__builtin_neon_vcagt_v:
6447   case NEON::BI__builtin_neon_vcagtq_v: {
6448     llvm::Type *Ty;
6449     switch (VTy->getScalarSizeInBits()) {
6450     default: llvm_unreachable("unexpected type");
6451     case 32:
6452       Ty = FloatTy;
6453       break;
6454     case 64:
6455       Ty = DoubleTy;
6456       break;
6457     case 16:
6458       Ty = HalfTy;
6459       break;
6460     }
6461     auto *VecFlt = llvm::FixedVectorType::get(Ty, VTy->getNumElements());
6462     llvm::Type *Tys[] = { VTy, VecFlt };
6463     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6464     return EmitNeonCall(F, Ops, NameHint);
6465   }
6466   case NEON::BI__builtin_neon_vceqz_v:
6467   case NEON::BI__builtin_neon_vceqzq_v:
6468     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
6469                                          ICmpInst::ICMP_EQ, "vceqz");
6470   case NEON::BI__builtin_neon_vcgez_v:
6471   case NEON::BI__builtin_neon_vcgezq_v:
6472     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
6473                                          ICmpInst::ICMP_SGE, "vcgez");
6474   case NEON::BI__builtin_neon_vclez_v:
6475   case NEON::BI__builtin_neon_vclezq_v:
6476     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
6477                                          ICmpInst::ICMP_SLE, "vclez");
6478   case NEON::BI__builtin_neon_vcgtz_v:
6479   case NEON::BI__builtin_neon_vcgtzq_v:
6480     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
6481                                          ICmpInst::ICMP_SGT, "vcgtz");
6482   case NEON::BI__builtin_neon_vcltz_v:
6483   case NEON::BI__builtin_neon_vcltzq_v:
6484     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
6485                                          ICmpInst::ICMP_SLT, "vcltz");
6486   case NEON::BI__builtin_neon_vclz_v:
6487   case NEON::BI__builtin_neon_vclzq_v:
6488     // We generate target-independent intrinsic, which needs a second argument
6489     // for whether or not clz of zero is undefined; on ARM it isn't.
6490     Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
6491     break;
6492   case NEON::BI__builtin_neon_vcvt_f32_v:
6493   case NEON::BI__builtin_neon_vcvtq_f32_v:
6494     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6495     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
6496                      HasLegalHalfType);
6497     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
6498                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
6499   case NEON::BI__builtin_neon_vcvt_f16_v:
6500   case NEON::BI__builtin_neon_vcvtq_f16_v:
6501     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6502     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
6503                      HasLegalHalfType);
6504     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
6505                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
6506   case NEON::BI__builtin_neon_vcvt_n_f16_v:
6507   case NEON::BI__builtin_neon_vcvt_n_f32_v:
6508   case NEON::BI__builtin_neon_vcvt_n_f64_v:
6509   case NEON::BI__builtin_neon_vcvtq_n_f16_v:
6510   case NEON::BI__builtin_neon_vcvtq_n_f32_v:
6511   case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
6512     llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
6513     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
6514     Function *F = CGM.getIntrinsic(Int, Tys);
6515     return EmitNeonCall(F, Ops, "vcvt_n");
6516   }
6517   case NEON::BI__builtin_neon_vcvt_n_s16_v:
6518   case NEON::BI__builtin_neon_vcvt_n_s32_v:
6519   case NEON::BI__builtin_neon_vcvt_n_u16_v:
6520   case NEON::BI__builtin_neon_vcvt_n_u32_v:
6521   case NEON::BI__builtin_neon_vcvt_n_s64_v:
6522   case NEON::BI__builtin_neon_vcvt_n_u64_v:
6523   case NEON::BI__builtin_neon_vcvtq_n_s16_v:
6524   case NEON::BI__builtin_neon_vcvtq_n_s32_v:
6525   case NEON::BI__builtin_neon_vcvtq_n_u16_v:
6526   case NEON::BI__builtin_neon_vcvtq_n_u32_v:
6527   case NEON::BI__builtin_neon_vcvtq_n_s64_v:
6528   case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
6529     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
6530     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6531     return EmitNeonCall(F, Ops, "vcvt_n");
6532   }
6533   case NEON::BI__builtin_neon_vcvt_s32_v:
6534   case NEON::BI__builtin_neon_vcvt_u32_v:
6535   case NEON::BI__builtin_neon_vcvt_s64_v:
6536   case NEON::BI__builtin_neon_vcvt_u64_v:
6537   case NEON::BI__builtin_neon_vcvt_s16_v:
6538   case NEON::BI__builtin_neon_vcvt_u16_v:
6539   case NEON::BI__builtin_neon_vcvtq_s32_v:
6540   case NEON::BI__builtin_neon_vcvtq_u32_v:
6541   case NEON::BI__builtin_neon_vcvtq_s64_v:
6542   case NEON::BI__builtin_neon_vcvtq_u64_v:
6543   case NEON::BI__builtin_neon_vcvtq_s16_v:
6544   case NEON::BI__builtin_neon_vcvtq_u16_v: {
6545     Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
6546     return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
6547                 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
6548   }
6549   case NEON::BI__builtin_neon_vcvta_s16_v:
6550   case NEON::BI__builtin_neon_vcvta_s32_v:
6551   case NEON::BI__builtin_neon_vcvta_s64_v:
6552   case NEON::BI__builtin_neon_vcvta_u16_v:
6553   case NEON::BI__builtin_neon_vcvta_u32_v:
6554   case NEON::BI__builtin_neon_vcvta_u64_v:
6555   case NEON::BI__builtin_neon_vcvtaq_s16_v:
6556   case NEON::BI__builtin_neon_vcvtaq_s32_v:
6557   case NEON::BI__builtin_neon_vcvtaq_s64_v:
6558   case NEON::BI__builtin_neon_vcvtaq_u16_v:
6559   case NEON::BI__builtin_neon_vcvtaq_u32_v:
6560   case NEON::BI__builtin_neon_vcvtaq_u64_v:
6561   case NEON::BI__builtin_neon_vcvtn_s16_v:
6562   case NEON::BI__builtin_neon_vcvtn_s32_v:
6563   case NEON::BI__builtin_neon_vcvtn_s64_v:
6564   case NEON::BI__builtin_neon_vcvtn_u16_v:
6565   case NEON::BI__builtin_neon_vcvtn_u32_v:
6566   case NEON::BI__builtin_neon_vcvtn_u64_v:
6567   case NEON::BI__builtin_neon_vcvtnq_s16_v:
6568   case NEON::BI__builtin_neon_vcvtnq_s32_v:
6569   case NEON::BI__builtin_neon_vcvtnq_s64_v:
6570   case NEON::BI__builtin_neon_vcvtnq_u16_v:
6571   case NEON::BI__builtin_neon_vcvtnq_u32_v:
6572   case NEON::BI__builtin_neon_vcvtnq_u64_v:
6573   case NEON::BI__builtin_neon_vcvtp_s16_v:
6574   case NEON::BI__builtin_neon_vcvtp_s32_v:
6575   case NEON::BI__builtin_neon_vcvtp_s64_v:
6576   case NEON::BI__builtin_neon_vcvtp_u16_v:
6577   case NEON::BI__builtin_neon_vcvtp_u32_v:
6578   case NEON::BI__builtin_neon_vcvtp_u64_v:
6579   case NEON::BI__builtin_neon_vcvtpq_s16_v:
6580   case NEON::BI__builtin_neon_vcvtpq_s32_v:
6581   case NEON::BI__builtin_neon_vcvtpq_s64_v:
6582   case NEON::BI__builtin_neon_vcvtpq_u16_v:
6583   case NEON::BI__builtin_neon_vcvtpq_u32_v:
6584   case NEON::BI__builtin_neon_vcvtpq_u64_v:
6585   case NEON::BI__builtin_neon_vcvtm_s16_v:
6586   case NEON::BI__builtin_neon_vcvtm_s32_v:
6587   case NEON::BI__builtin_neon_vcvtm_s64_v:
6588   case NEON::BI__builtin_neon_vcvtm_u16_v:
6589   case NEON::BI__builtin_neon_vcvtm_u32_v:
6590   case NEON::BI__builtin_neon_vcvtm_u64_v:
6591   case NEON::BI__builtin_neon_vcvtmq_s16_v:
6592   case NEON::BI__builtin_neon_vcvtmq_s32_v:
6593   case NEON::BI__builtin_neon_vcvtmq_s64_v:
6594   case NEON::BI__builtin_neon_vcvtmq_u16_v:
6595   case NEON::BI__builtin_neon_vcvtmq_u32_v:
6596   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
6597     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
6598     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
6599   }
6600   case NEON::BI__builtin_neon_vcvtx_f32_v: {
6601     llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty};
6602     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
6603 
6604   }
6605   case NEON::BI__builtin_neon_vext_v:
6606   case NEON::BI__builtin_neon_vextq_v: {
6607     int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
6608     SmallVector<int, 16> Indices;
6609     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
6610       Indices.push_back(i+CV);
6611 
6612     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6613     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6614     return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
6615   }
6616   case NEON::BI__builtin_neon_vfma_v:
6617   case NEON::BI__builtin_neon_vfmaq_v: {
6618     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6619     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6620     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6621 
6622     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
6623     return emitCallMaybeConstrainedFPBuiltin(
6624         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
6625         {Ops[1], Ops[2], Ops[0]});
6626   }
6627   case NEON::BI__builtin_neon_vld1_v:
6628   case NEON::BI__builtin_neon_vld1q_v: {
6629     llvm::Type *Tys[] = {Ty, Int8PtrTy};
6630     Ops.push_back(getAlignmentValue32(PtrOp0));
6631     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
6632   }
6633   case NEON::BI__builtin_neon_vld1_x2_v:
6634   case NEON::BI__builtin_neon_vld1q_x2_v:
6635   case NEON::BI__builtin_neon_vld1_x3_v:
6636   case NEON::BI__builtin_neon_vld1q_x3_v:
6637   case NEON::BI__builtin_neon_vld1_x4_v:
6638   case NEON::BI__builtin_neon_vld1q_x4_v: {
6639     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
6640     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
6641     llvm::Type *Tys[2] = { VTy, PTy };
6642     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6643     Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
6644     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6645     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6646     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6647   }
6648   case NEON::BI__builtin_neon_vld2_v:
6649   case NEON::BI__builtin_neon_vld2q_v:
6650   case NEON::BI__builtin_neon_vld3_v:
6651   case NEON::BI__builtin_neon_vld3q_v:
6652   case NEON::BI__builtin_neon_vld4_v:
6653   case NEON::BI__builtin_neon_vld4q_v:
6654   case NEON::BI__builtin_neon_vld2_dup_v:
6655   case NEON::BI__builtin_neon_vld2q_dup_v:
6656   case NEON::BI__builtin_neon_vld3_dup_v:
6657   case NEON::BI__builtin_neon_vld3q_dup_v:
6658   case NEON::BI__builtin_neon_vld4_dup_v:
6659   case NEON::BI__builtin_neon_vld4q_dup_v: {
6660     llvm::Type *Tys[] = {Ty, Int8PtrTy};
6661     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6662     Value *Align = getAlignmentValue32(PtrOp1);
6663     Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
6664     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6665     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6666     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6667   }
6668   case NEON::BI__builtin_neon_vld1_dup_v:
6669   case NEON::BI__builtin_neon_vld1q_dup_v: {
6670     Value *V = UndefValue::get(Ty);
6671     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
6672     PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty);
6673     LoadInst *Ld = Builder.CreateLoad(PtrOp0);
6674     llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
6675     Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
6676     return EmitNeonSplat(Ops[0], CI);
6677   }
6678   case NEON::BI__builtin_neon_vld2_lane_v:
6679   case NEON::BI__builtin_neon_vld2q_lane_v:
6680   case NEON::BI__builtin_neon_vld3_lane_v:
6681   case NEON::BI__builtin_neon_vld3q_lane_v:
6682   case NEON::BI__builtin_neon_vld4_lane_v:
6683   case NEON::BI__builtin_neon_vld4q_lane_v: {
6684     llvm::Type *Tys[] = {Ty, Int8PtrTy};
6685     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6686     for (unsigned I = 2; I < Ops.size() - 1; ++I)
6687       Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
6688     Ops.push_back(getAlignmentValue32(PtrOp1));
6689     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
6690     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6691     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6692     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6693   }
6694   case NEON::BI__builtin_neon_vmovl_v: {
6695     llvm::FixedVectorType *DTy =
6696         llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
6697     Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
6698     if (Usgn)
6699       return Builder.CreateZExt(Ops[0], Ty, "vmovl");
6700     return Builder.CreateSExt(Ops[0], Ty, "vmovl");
6701   }
6702   case NEON::BI__builtin_neon_vmovn_v: {
6703     llvm::FixedVectorType *QTy =
6704         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6705     Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
6706     return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
6707   }
6708   case NEON::BI__builtin_neon_vmull_v:
6709     // FIXME: the integer vmull operations could be emitted in terms of pure
6710     // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
6711     // hoisting the exts outside loops. Until global ISel comes along that can
6712     // see through such movement this leads to bad CodeGen. So we need an
6713     // intrinsic for now.
6714     Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
6715     Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
6716     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
6717   case NEON::BI__builtin_neon_vpadal_v:
6718   case NEON::BI__builtin_neon_vpadalq_v: {
6719     // The source operand type has twice as many elements of half the size.
6720     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
6721     llvm::Type *EltTy =
6722       llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
6723     auto *NarrowTy =
6724         llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
6725     llvm::Type *Tys[2] = { Ty, NarrowTy };
6726     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6727   }
6728   case NEON::BI__builtin_neon_vpaddl_v:
6729   case NEON::BI__builtin_neon_vpaddlq_v: {
6730     // The source operand type has twice as many elements of half the size.
6731     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
6732     llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
6733     auto *NarrowTy =
6734         llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
6735     llvm::Type *Tys[2] = { Ty, NarrowTy };
6736     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
6737   }
6738   case NEON::BI__builtin_neon_vqdmlal_v:
6739   case NEON::BI__builtin_neon_vqdmlsl_v: {
6740     SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
6741     Ops[1] =
6742         EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
6743     Ops.resize(2);
6744     return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
6745   }
6746   case NEON::BI__builtin_neon_vqdmulhq_lane_v:
6747   case NEON::BI__builtin_neon_vqdmulh_lane_v:
6748   case NEON::BI__builtin_neon_vqrdmulhq_lane_v:
6749   case NEON::BI__builtin_neon_vqrdmulh_lane_v: {
6750     auto *RTy = cast<llvm::FixedVectorType>(Ty);
6751     if (BuiltinID == NEON::BI__builtin_neon_vqdmulhq_lane_v ||
6752         BuiltinID == NEON::BI__builtin_neon_vqrdmulhq_lane_v)
6753       RTy = llvm::FixedVectorType::get(RTy->getElementType(),
6754                                        RTy->getNumElements() * 2);
6755     llvm::Type *Tys[2] = {
6756         RTy, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
6757                                              /*isQuad*/ false))};
6758     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6759   }
6760   case NEON::BI__builtin_neon_vqdmulhq_laneq_v:
6761   case NEON::BI__builtin_neon_vqdmulh_laneq_v:
6762   case NEON::BI__builtin_neon_vqrdmulhq_laneq_v:
6763   case NEON::BI__builtin_neon_vqrdmulh_laneq_v: {
6764     llvm::Type *Tys[2] = {
6765         Ty, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
6766                                             /*isQuad*/ true))};
6767     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6768   }
6769   case NEON::BI__builtin_neon_vqshl_n_v:
6770   case NEON::BI__builtin_neon_vqshlq_n_v:
6771     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
6772                         1, false);
6773   case NEON::BI__builtin_neon_vqshlu_n_v:
6774   case NEON::BI__builtin_neon_vqshluq_n_v:
6775     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
6776                         1, false);
6777   case NEON::BI__builtin_neon_vrecpe_v:
6778   case NEON::BI__builtin_neon_vrecpeq_v:
6779   case NEON::BI__builtin_neon_vrsqrte_v:
6780   case NEON::BI__builtin_neon_vrsqrteq_v:
6781     Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
6782     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
6783   case NEON::BI__builtin_neon_vrndi_v:
6784   case NEON::BI__builtin_neon_vrndiq_v:
6785     Int = Builder.getIsFPConstrained()
6786               ? Intrinsic::experimental_constrained_nearbyint
6787               : Intrinsic::nearbyint;
6788     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
6789   case NEON::BI__builtin_neon_vrshr_n_v:
6790   case NEON::BI__builtin_neon_vrshrq_n_v:
6791     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
6792                         1, true);
6793   case NEON::BI__builtin_neon_vsha512hq_v:
6794   case NEON::BI__builtin_neon_vsha512h2q_v:
6795   case NEON::BI__builtin_neon_vsha512su0q_v:
6796   case NEON::BI__builtin_neon_vsha512su1q_v: {
6797     Function *F = CGM.getIntrinsic(Int);
6798     return EmitNeonCall(F, Ops, "");
6799   }
6800   case NEON::BI__builtin_neon_vshl_n_v:
6801   case NEON::BI__builtin_neon_vshlq_n_v:
6802     Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
6803     return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
6804                              "vshl_n");
6805   case NEON::BI__builtin_neon_vshll_n_v: {
6806     llvm::FixedVectorType *SrcTy =
6807         llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
6808     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6809     if (Usgn)
6810       Ops[0] = Builder.CreateZExt(Ops[0], VTy);
6811     else
6812       Ops[0] = Builder.CreateSExt(Ops[0], VTy);
6813     Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
6814     return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
6815   }
6816   case NEON::BI__builtin_neon_vshrn_n_v: {
6817     llvm::FixedVectorType *SrcTy =
6818         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6819     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6820     Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
6821     if (Usgn)
6822       Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
6823     else
6824       Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
6825     return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
6826   }
6827   case NEON::BI__builtin_neon_vshr_n_v:
6828   case NEON::BI__builtin_neon_vshrq_n_v:
6829     return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
6830   case NEON::BI__builtin_neon_vst1_v:
6831   case NEON::BI__builtin_neon_vst1q_v:
6832   case NEON::BI__builtin_neon_vst2_v:
6833   case NEON::BI__builtin_neon_vst2q_v:
6834   case NEON::BI__builtin_neon_vst3_v:
6835   case NEON::BI__builtin_neon_vst3q_v:
6836   case NEON::BI__builtin_neon_vst4_v:
6837   case NEON::BI__builtin_neon_vst4q_v:
6838   case NEON::BI__builtin_neon_vst2_lane_v:
6839   case NEON::BI__builtin_neon_vst2q_lane_v:
6840   case NEON::BI__builtin_neon_vst3_lane_v:
6841   case NEON::BI__builtin_neon_vst3q_lane_v:
6842   case NEON::BI__builtin_neon_vst4_lane_v:
6843   case NEON::BI__builtin_neon_vst4q_lane_v: {
6844     llvm::Type *Tys[] = {Int8PtrTy, Ty};
6845     Ops.push_back(getAlignmentValue32(PtrOp0));
6846     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
6847   }
6848   case NEON::BI__builtin_neon_vsm3partw1q_v:
6849   case NEON::BI__builtin_neon_vsm3partw2q_v:
6850   case NEON::BI__builtin_neon_vsm3ss1q_v:
6851   case NEON::BI__builtin_neon_vsm4ekeyq_v:
6852   case NEON::BI__builtin_neon_vsm4eq_v: {
6853     Function *F = CGM.getIntrinsic(Int);
6854     return EmitNeonCall(F, Ops, "");
6855   }
6856   case NEON::BI__builtin_neon_vsm3tt1aq_v:
6857   case NEON::BI__builtin_neon_vsm3tt1bq_v:
6858   case NEON::BI__builtin_neon_vsm3tt2aq_v:
6859   case NEON::BI__builtin_neon_vsm3tt2bq_v: {
6860     Function *F = CGM.getIntrinsic(Int);
6861     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
6862     return EmitNeonCall(F, Ops, "");
6863   }
6864   case NEON::BI__builtin_neon_vst1_x2_v:
6865   case NEON::BI__builtin_neon_vst1q_x2_v:
6866   case NEON::BI__builtin_neon_vst1_x3_v:
6867   case NEON::BI__builtin_neon_vst1q_x3_v:
6868   case NEON::BI__builtin_neon_vst1_x4_v:
6869   case NEON::BI__builtin_neon_vst1q_x4_v: {
6870     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
6871     // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
6872     // in AArch64 it comes last. We may want to stick to one or another.
6873     if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be ||
6874         Arch == llvm::Triple::aarch64_32) {
6875       llvm::Type *Tys[2] = { VTy, PTy };
6876       std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
6877       return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
6878     }
6879     llvm::Type *Tys[2] = { PTy, VTy };
6880     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
6881   }
6882   case NEON::BI__builtin_neon_vsubhn_v: {
6883     llvm::FixedVectorType *SrcTy =
6884         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6885 
6886     // %sum = add <4 x i32> %lhs, %rhs
6887     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6888     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
6889     Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
6890 
6891     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
6892     Constant *ShiftAmt =
6893         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
6894     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
6895 
6896     // %res = trunc <4 x i32> %high to <4 x i16>
6897     return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
6898   }
6899   case NEON::BI__builtin_neon_vtrn_v:
6900   case NEON::BI__builtin_neon_vtrnq_v: {
6901     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
6902     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6903     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6904     Value *SV = nullptr;
6905 
6906     for (unsigned vi = 0; vi != 2; ++vi) {
6907       SmallVector<int, 16> Indices;
6908       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
6909         Indices.push_back(i+vi);
6910         Indices.push_back(i+e+vi);
6911       }
6912       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
6913       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
6914       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6915     }
6916     return SV;
6917   }
6918   case NEON::BI__builtin_neon_vtst_v:
6919   case NEON::BI__builtin_neon_vtstq_v: {
6920     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6921     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6922     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
6923     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
6924                                 ConstantAggregateZero::get(Ty));
6925     return Builder.CreateSExt(Ops[0], Ty, "vtst");
6926   }
6927   case NEON::BI__builtin_neon_vuzp_v:
6928   case NEON::BI__builtin_neon_vuzpq_v: {
6929     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
6930     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6931     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6932     Value *SV = nullptr;
6933 
6934     for (unsigned vi = 0; vi != 2; ++vi) {
6935       SmallVector<int, 16> Indices;
6936       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
6937         Indices.push_back(2*i+vi);
6938 
6939       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
6940       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
6941       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6942     }
6943     return SV;
6944   }
6945   case NEON::BI__builtin_neon_vxarq_v: {
6946     Function *F = CGM.getIntrinsic(Int);
6947     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
6948     return EmitNeonCall(F, Ops, "");
6949   }
6950   case NEON::BI__builtin_neon_vzip_v:
6951   case NEON::BI__builtin_neon_vzipq_v: {
6952     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
6953     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6954     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6955     Value *SV = nullptr;
6956 
6957     for (unsigned vi = 0; vi != 2; ++vi) {
6958       SmallVector<int, 16> Indices;
6959       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
6960         Indices.push_back((i + vi*e) >> 1);
6961         Indices.push_back(((i + vi*e) >> 1)+e);
6962       }
6963       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
6964       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
6965       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6966     }
6967     return SV;
6968   }
6969   case NEON::BI__builtin_neon_vdot_v:
6970   case NEON::BI__builtin_neon_vdotq_v: {
6971     auto *InputTy =
6972         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6973     llvm::Type *Tys[2] = { Ty, InputTy };
6974     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
6975     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
6976   }
6977   case NEON::BI__builtin_neon_vfmlal_low_v:
6978   case NEON::BI__builtin_neon_vfmlalq_low_v: {
6979     auto *InputTy =
6980         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
6981     llvm::Type *Tys[2] = { Ty, InputTy };
6982     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
6983   }
6984   case NEON::BI__builtin_neon_vfmlsl_low_v:
6985   case NEON::BI__builtin_neon_vfmlslq_low_v: {
6986     auto *InputTy =
6987         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
6988     llvm::Type *Tys[2] = { Ty, InputTy };
6989     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
6990   }
6991   case NEON::BI__builtin_neon_vfmlal_high_v:
6992   case NEON::BI__builtin_neon_vfmlalq_high_v: {
6993     auto *InputTy =
6994         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
6995     llvm::Type *Tys[2] = { Ty, InputTy };
6996     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
6997   }
6998   case NEON::BI__builtin_neon_vfmlsl_high_v:
6999   case NEON::BI__builtin_neon_vfmlslq_high_v: {
7000     auto *InputTy =
7001         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7002     llvm::Type *Tys[2] = { Ty, InputTy };
7003     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
7004   }
7005   case NEON::BI__builtin_neon_vmmlaq_v: {
7006     auto *InputTy =
7007         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7008     llvm::Type *Tys[2] = { Ty, InputTy };
7009     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
7010     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmmla");
7011   }
7012   case NEON::BI__builtin_neon_vusmmlaq_v: {
7013     auto *InputTy =
7014         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7015     llvm::Type *Tys[2] = { Ty, InputTy };
7016     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusmmla");
7017   }
7018   case NEON::BI__builtin_neon_vusdot_v:
7019   case NEON::BI__builtin_neon_vusdotq_v: {
7020     auto *InputTy =
7021         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7022     llvm::Type *Tys[2] = { Ty, InputTy };
7023     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusdot");
7024   }
7025   case NEON::BI__builtin_neon_vbfdot_v:
7026   case NEON::BI__builtin_neon_vbfdotq_v: {
7027     llvm::Type *InputTy =
7028         llvm::FixedVectorType::get(BFloatTy, Ty->getPrimitiveSizeInBits() / 16);
7029     llvm::Type *Tys[2] = { Ty, InputTy };
7030     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfdot");
7031   }
7032   case NEON::BI__builtin_neon___a32_vcvt_bf16_v: {
7033     llvm::Type *Tys[1] = { Ty };
7034     Function *F = CGM.getIntrinsic(Int, Tys);
7035     return EmitNeonCall(F, Ops, "vcvtfp2bf");
7036   }
7037 
7038   }
7039 
7040   assert(Int && "Expected valid intrinsic number");
7041 
7042   // Determine the type(s) of this overloaded AArch64 intrinsic.
7043   Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
7044 
7045   Value *Result = EmitNeonCall(F, Ops, NameHint);
7046   llvm::Type *ResultType = ConvertType(E->getType());
7047   // AArch64 intrinsic one-element vector type cast to
7048   // scalar type expected by the builtin
7049   return Builder.CreateBitCast(Result, ResultType, NameHint);
7050 }
7051 
EmitAArch64CompareBuiltinExpr(Value * Op,llvm::Type * Ty,const CmpInst::Predicate Fp,const CmpInst::Predicate Ip,const Twine & Name)7052 Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
7053     Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
7054     const CmpInst::Predicate Ip, const Twine &Name) {
7055   llvm::Type *OTy = Op->getType();
7056 
7057   // FIXME: this is utterly horrific. We should not be looking at previous
7058   // codegen context to find out what needs doing. Unfortunately TableGen
7059   // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
7060   // (etc).
7061   if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
7062     OTy = BI->getOperand(0)->getType();
7063 
7064   Op = Builder.CreateBitCast(Op, OTy);
7065   if (OTy->getScalarType()->isFloatingPointTy()) {
7066     Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
7067   } else {
7068     Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
7069   }
7070   return Builder.CreateSExt(Op, Ty, Name);
7071 }
7072 
packTBLDVectorList(CodeGenFunction & CGF,ArrayRef<Value * > Ops,Value * ExtOp,Value * IndexOp,llvm::Type * ResTy,unsigned IntID,const char * Name)7073 static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
7074                                  Value *ExtOp, Value *IndexOp,
7075                                  llvm::Type *ResTy, unsigned IntID,
7076                                  const char *Name) {
7077   SmallVector<Value *, 2> TblOps;
7078   if (ExtOp)
7079     TblOps.push_back(ExtOp);
7080 
7081   // Build a vector containing sequential number like (0, 1, 2, ..., 15)
7082   SmallVector<int, 16> Indices;
7083   auto *TblTy = cast<llvm::FixedVectorType>(Ops[0]->getType());
7084   for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
7085     Indices.push_back(2*i);
7086     Indices.push_back(2*i+1);
7087   }
7088 
7089   int PairPos = 0, End = Ops.size() - 1;
7090   while (PairPos < End) {
7091     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
7092                                                      Ops[PairPos+1], Indices,
7093                                                      Name));
7094     PairPos += 2;
7095   }
7096 
7097   // If there's an odd number of 64-bit lookup table, fill the high 64-bit
7098   // of the 128-bit lookup table with zero.
7099   if (PairPos == End) {
7100     Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
7101     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
7102                                                      ZeroTbl, Indices, Name));
7103   }
7104 
7105   Function *TblF;
7106   TblOps.push_back(IndexOp);
7107   TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
7108 
7109   return CGF.EmitNeonCall(TblF, TblOps, Name);
7110 }
7111 
GetValueForARMHint(unsigned BuiltinID)7112 Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
7113   unsigned Value;
7114   switch (BuiltinID) {
7115   default:
7116     return nullptr;
7117   case ARM::BI__builtin_arm_nop:
7118     Value = 0;
7119     break;
7120   case ARM::BI__builtin_arm_yield:
7121   case ARM::BI__yield:
7122     Value = 1;
7123     break;
7124   case ARM::BI__builtin_arm_wfe:
7125   case ARM::BI__wfe:
7126     Value = 2;
7127     break;
7128   case ARM::BI__builtin_arm_wfi:
7129   case ARM::BI__wfi:
7130     Value = 3;
7131     break;
7132   case ARM::BI__builtin_arm_sev:
7133   case ARM::BI__sev:
7134     Value = 4;
7135     break;
7136   case ARM::BI__builtin_arm_sevl:
7137   case ARM::BI__sevl:
7138     Value = 5;
7139     break;
7140   }
7141 
7142   return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
7143                             llvm::ConstantInt::get(Int32Ty, Value));
7144 }
7145 
7146 enum SpecialRegisterAccessKind {
7147   NormalRead,
7148   VolatileRead,
7149   Write,
7150 };
7151 
7152 // Generates the IR for the read/write special register builtin,
7153 // ValueType is the type of the value that is to be written or read,
7154 // RegisterType is the type of the register being written to or read from.
EmitSpecialRegisterBuiltin(CodeGenFunction & CGF,const CallExpr * E,llvm::Type * RegisterType,llvm::Type * ValueType,SpecialRegisterAccessKind AccessKind,StringRef SysReg="")7155 static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
7156                                          const CallExpr *E,
7157                                          llvm::Type *RegisterType,
7158                                          llvm::Type *ValueType,
7159                                          SpecialRegisterAccessKind AccessKind,
7160                                          StringRef SysReg = "") {
7161   // write and register intrinsics only support 32 and 64 bit operations.
7162   assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))
7163           && "Unsupported size for register.");
7164 
7165   CodeGen::CGBuilderTy &Builder = CGF.Builder;
7166   CodeGen::CodeGenModule &CGM = CGF.CGM;
7167   LLVMContext &Context = CGM.getLLVMContext();
7168 
7169   if (SysReg.empty()) {
7170     const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
7171     SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
7172   }
7173 
7174   llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
7175   llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
7176   llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
7177 
7178   llvm::Type *Types[] = { RegisterType };
7179 
7180   bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
7181   assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))
7182             && "Can't fit 64-bit value in 32-bit register");
7183 
7184   if (AccessKind != Write) {
7185     assert(AccessKind == NormalRead || AccessKind == VolatileRead);
7186     llvm::Function *F = CGM.getIntrinsic(
7187         AccessKind == VolatileRead ? llvm::Intrinsic::read_volatile_register
7188                                    : llvm::Intrinsic::read_register,
7189         Types);
7190     llvm::Value *Call = Builder.CreateCall(F, Metadata);
7191 
7192     if (MixedTypes)
7193       // Read into 64 bit register and then truncate result to 32 bit.
7194       return Builder.CreateTrunc(Call, ValueType);
7195 
7196     if (ValueType->isPointerTy())
7197       // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
7198       return Builder.CreateIntToPtr(Call, ValueType);
7199 
7200     return Call;
7201   }
7202 
7203   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
7204   llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
7205   if (MixedTypes) {
7206     // Extend 32 bit write value to 64 bit to pass to write.
7207     ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
7208     return Builder.CreateCall(F, { Metadata, ArgValue });
7209   }
7210 
7211   if (ValueType->isPointerTy()) {
7212     // Have VoidPtrTy ArgValue but want to return an i32/i64.
7213     ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
7214     return Builder.CreateCall(F, { Metadata, ArgValue });
7215   }
7216 
7217   return Builder.CreateCall(F, { Metadata, ArgValue });
7218 }
7219 
7220 /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
7221 /// argument that specifies the vector type.
HasExtraNeonArgument(unsigned BuiltinID)7222 static bool HasExtraNeonArgument(unsigned BuiltinID) {
7223   switch (BuiltinID) {
7224   default: break;
7225   case NEON::BI__builtin_neon_vget_lane_i8:
7226   case NEON::BI__builtin_neon_vget_lane_i16:
7227   case NEON::BI__builtin_neon_vget_lane_bf16:
7228   case NEON::BI__builtin_neon_vget_lane_i32:
7229   case NEON::BI__builtin_neon_vget_lane_i64:
7230   case NEON::BI__builtin_neon_vget_lane_f32:
7231   case NEON::BI__builtin_neon_vgetq_lane_i8:
7232   case NEON::BI__builtin_neon_vgetq_lane_i16:
7233   case NEON::BI__builtin_neon_vgetq_lane_bf16:
7234   case NEON::BI__builtin_neon_vgetq_lane_i32:
7235   case NEON::BI__builtin_neon_vgetq_lane_i64:
7236   case NEON::BI__builtin_neon_vgetq_lane_f32:
7237   case NEON::BI__builtin_neon_vduph_lane_bf16:
7238   case NEON::BI__builtin_neon_vduph_laneq_bf16:
7239   case NEON::BI__builtin_neon_vset_lane_i8:
7240   case NEON::BI__builtin_neon_vset_lane_i16:
7241   case NEON::BI__builtin_neon_vset_lane_bf16:
7242   case NEON::BI__builtin_neon_vset_lane_i32:
7243   case NEON::BI__builtin_neon_vset_lane_i64:
7244   case NEON::BI__builtin_neon_vset_lane_f32:
7245   case NEON::BI__builtin_neon_vsetq_lane_i8:
7246   case NEON::BI__builtin_neon_vsetq_lane_i16:
7247   case NEON::BI__builtin_neon_vsetq_lane_bf16:
7248   case NEON::BI__builtin_neon_vsetq_lane_i32:
7249   case NEON::BI__builtin_neon_vsetq_lane_i64:
7250   case NEON::BI__builtin_neon_vsetq_lane_f32:
7251   case NEON::BI__builtin_neon_vsha1h_u32:
7252   case NEON::BI__builtin_neon_vsha1cq_u32:
7253   case NEON::BI__builtin_neon_vsha1pq_u32:
7254   case NEON::BI__builtin_neon_vsha1mq_u32:
7255   case NEON::BI__builtin_neon_vcvth_bf16_f32:
7256   case clang::ARM::BI_MoveToCoprocessor:
7257   case clang::ARM::BI_MoveToCoprocessor2:
7258     return false;
7259   }
7260   return true;
7261 }
7262 
EmitARMBuiltinExpr(unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue,llvm::Triple::ArchType Arch)7263 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
7264                                            const CallExpr *E,
7265                                            ReturnValueSlot ReturnValue,
7266                                            llvm::Triple::ArchType Arch) {
7267   if (auto Hint = GetValueForARMHint(BuiltinID))
7268     return Hint;
7269 
7270   if (BuiltinID == ARM::BI__emit) {
7271     bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
7272     llvm::FunctionType *FTy =
7273         llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
7274 
7275     Expr::EvalResult Result;
7276     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
7277       llvm_unreachable("Sema will ensure that the parameter is constant");
7278 
7279     llvm::APSInt Value = Result.Val.getInt();
7280     uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
7281 
7282     llvm::InlineAsm *Emit =
7283         IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
7284                                  /*hasSideEffects=*/true)
7285                 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
7286                                  /*hasSideEffects=*/true);
7287 
7288     return Builder.CreateCall(Emit);
7289   }
7290 
7291   if (BuiltinID == ARM::BI__builtin_arm_dbg) {
7292     Value *Option = EmitScalarExpr(E->getArg(0));
7293     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
7294   }
7295 
7296   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
7297     Value *Address = EmitScalarExpr(E->getArg(0));
7298     Value *RW      = EmitScalarExpr(E->getArg(1));
7299     Value *IsData  = EmitScalarExpr(E->getArg(2));
7300 
7301     // Locality is not supported on ARM target
7302     Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
7303 
7304     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
7305     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
7306   }
7307 
7308   if (BuiltinID == ARM::BI__builtin_arm_rbit) {
7309     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7310     return Builder.CreateCall(
7311         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
7312   }
7313 
7314   if (BuiltinID == ARM::BI__builtin_arm_cls) {
7315     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7316     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls");
7317   }
7318   if (BuiltinID == ARM::BI__builtin_arm_cls64) {
7319     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7320     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg,
7321                               "cls");
7322   }
7323 
7324   if (BuiltinID == ARM::BI__clear_cache) {
7325     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
7326     const FunctionDecl *FD = E->getDirectCallee();
7327     Value *Ops[2];
7328     for (unsigned i = 0; i < 2; i++)
7329       Ops[i] = EmitScalarExpr(E->getArg(i));
7330     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
7331     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
7332     StringRef Name = FD->getName();
7333     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
7334   }
7335 
7336   if (BuiltinID == ARM::BI__builtin_arm_mcrr ||
7337       BuiltinID == ARM::BI__builtin_arm_mcrr2) {
7338     Function *F;
7339 
7340     switch (BuiltinID) {
7341     default: llvm_unreachable("unexpected builtin");
7342     case ARM::BI__builtin_arm_mcrr:
7343       F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
7344       break;
7345     case ARM::BI__builtin_arm_mcrr2:
7346       F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
7347       break;
7348     }
7349 
7350     // MCRR{2} instruction has 5 operands but
7351     // the intrinsic has 4 because Rt and Rt2
7352     // are represented as a single unsigned 64
7353     // bit integer in the intrinsic definition
7354     // but internally it's represented as 2 32
7355     // bit integers.
7356 
7357     Value *Coproc = EmitScalarExpr(E->getArg(0));
7358     Value *Opc1 = EmitScalarExpr(E->getArg(1));
7359     Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
7360     Value *CRm = EmitScalarExpr(E->getArg(3));
7361 
7362     Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
7363     Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
7364     Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
7365     Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
7366 
7367     return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
7368   }
7369 
7370   if (BuiltinID == ARM::BI__builtin_arm_mrrc ||
7371       BuiltinID == ARM::BI__builtin_arm_mrrc2) {
7372     Function *F;
7373 
7374     switch (BuiltinID) {
7375     default: llvm_unreachable("unexpected builtin");
7376     case ARM::BI__builtin_arm_mrrc:
7377       F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
7378       break;
7379     case ARM::BI__builtin_arm_mrrc2:
7380       F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
7381       break;
7382     }
7383 
7384     Value *Coproc = EmitScalarExpr(E->getArg(0));
7385     Value *Opc1 = EmitScalarExpr(E->getArg(1));
7386     Value *CRm  = EmitScalarExpr(E->getArg(2));
7387     Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
7388 
7389     // Returns an unsigned 64 bit integer, represented
7390     // as two 32 bit integers.
7391 
7392     Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
7393     Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
7394     Rt = Builder.CreateZExt(Rt, Int64Ty);
7395     Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
7396 
7397     Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
7398     RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
7399     RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
7400 
7401     return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
7402   }
7403 
7404   if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
7405       ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
7406         BuiltinID == ARM::BI__builtin_arm_ldaex) &&
7407        getContext().getTypeSize(E->getType()) == 64) ||
7408       BuiltinID == ARM::BI__ldrexd) {
7409     Function *F;
7410 
7411     switch (BuiltinID) {
7412     default: llvm_unreachable("unexpected builtin");
7413     case ARM::BI__builtin_arm_ldaex:
7414       F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
7415       break;
7416     case ARM::BI__builtin_arm_ldrexd:
7417     case ARM::BI__builtin_arm_ldrex:
7418     case ARM::BI__ldrexd:
7419       F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
7420       break;
7421     }
7422 
7423     Value *LdPtr = EmitScalarExpr(E->getArg(0));
7424     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
7425                                     "ldrexd");
7426 
7427     Value *Val0 = Builder.CreateExtractValue(Val, 1);
7428     Value *Val1 = Builder.CreateExtractValue(Val, 0);
7429     Val0 = Builder.CreateZExt(Val0, Int64Ty);
7430     Val1 = Builder.CreateZExt(Val1, Int64Ty);
7431 
7432     Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
7433     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
7434     Val = Builder.CreateOr(Val, Val1);
7435     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
7436   }
7437 
7438   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
7439       BuiltinID == ARM::BI__builtin_arm_ldaex) {
7440     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
7441 
7442     QualType Ty = E->getType();
7443     llvm::Type *RealResTy = ConvertType(Ty);
7444     llvm::Type *PtrTy = llvm::IntegerType::get(
7445         getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
7446     LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
7447 
7448     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
7449                                        ? Intrinsic::arm_ldaex
7450                                        : Intrinsic::arm_ldrex,
7451                                    PtrTy);
7452     Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
7453 
7454     if (RealResTy->isPointerTy())
7455       return Builder.CreateIntToPtr(Val, RealResTy);
7456     else {
7457       llvm::Type *IntResTy = llvm::IntegerType::get(
7458           getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
7459       Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
7460       return Builder.CreateBitCast(Val, RealResTy);
7461     }
7462   }
7463 
7464   if (BuiltinID == ARM::BI__builtin_arm_strexd ||
7465       ((BuiltinID == ARM::BI__builtin_arm_stlex ||
7466         BuiltinID == ARM::BI__builtin_arm_strex) &&
7467        getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
7468     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
7469                                        ? Intrinsic::arm_stlexd
7470                                        : Intrinsic::arm_strexd);
7471     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
7472 
7473     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
7474     Value *Val = EmitScalarExpr(E->getArg(0));
7475     Builder.CreateStore(Val, Tmp);
7476 
7477     Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
7478     Val = Builder.CreateLoad(LdPtr);
7479 
7480     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
7481     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
7482     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
7483     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
7484   }
7485 
7486   if (BuiltinID == ARM::BI__builtin_arm_strex ||
7487       BuiltinID == ARM::BI__builtin_arm_stlex) {
7488     Value *StoreVal = EmitScalarExpr(E->getArg(0));
7489     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
7490 
7491     QualType Ty = E->getArg(0)->getType();
7492     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
7493                                                  getContext().getTypeSize(Ty));
7494     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
7495 
7496     if (StoreVal->getType()->isPointerTy())
7497       StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
7498     else {
7499       llvm::Type *IntTy = llvm::IntegerType::get(
7500           getLLVMContext(),
7501           CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
7502       StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
7503       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
7504     }
7505 
7506     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
7507                                        ? Intrinsic::arm_stlex
7508                                        : Intrinsic::arm_strex,
7509                                    StoreAddr->getType());
7510     return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
7511   }
7512 
7513   if (BuiltinID == ARM::BI__builtin_arm_clrex) {
7514     Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
7515     return Builder.CreateCall(F);
7516   }
7517 
7518   // CRC32
7519   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
7520   switch (BuiltinID) {
7521   case ARM::BI__builtin_arm_crc32b:
7522     CRCIntrinsicID = Intrinsic::arm_crc32b; break;
7523   case ARM::BI__builtin_arm_crc32cb:
7524     CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
7525   case ARM::BI__builtin_arm_crc32h:
7526     CRCIntrinsicID = Intrinsic::arm_crc32h; break;
7527   case ARM::BI__builtin_arm_crc32ch:
7528     CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
7529   case ARM::BI__builtin_arm_crc32w:
7530   case ARM::BI__builtin_arm_crc32d:
7531     CRCIntrinsicID = Intrinsic::arm_crc32w; break;
7532   case ARM::BI__builtin_arm_crc32cw:
7533   case ARM::BI__builtin_arm_crc32cd:
7534     CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
7535   }
7536 
7537   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
7538     Value *Arg0 = EmitScalarExpr(E->getArg(0));
7539     Value *Arg1 = EmitScalarExpr(E->getArg(1));
7540 
7541     // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
7542     // intrinsics, hence we need different codegen for these cases.
7543     if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
7544         BuiltinID == ARM::BI__builtin_arm_crc32cd) {
7545       Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
7546       Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
7547       Value *Arg1b = Builder.CreateLShr(Arg1, C1);
7548       Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
7549 
7550       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
7551       Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
7552       return Builder.CreateCall(F, {Res, Arg1b});
7553     } else {
7554       Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
7555 
7556       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
7557       return Builder.CreateCall(F, {Arg0, Arg1});
7558     }
7559   }
7560 
7561   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
7562       BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7563       BuiltinID == ARM::BI__builtin_arm_rsrp ||
7564       BuiltinID == ARM::BI__builtin_arm_wsr ||
7565       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
7566       BuiltinID == ARM::BI__builtin_arm_wsrp) {
7567 
7568     SpecialRegisterAccessKind AccessKind = Write;
7569     if (BuiltinID == ARM::BI__builtin_arm_rsr ||
7570         BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7571         BuiltinID == ARM::BI__builtin_arm_rsrp)
7572       AccessKind = VolatileRead;
7573 
7574     bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
7575                             BuiltinID == ARM::BI__builtin_arm_wsrp;
7576 
7577     bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7578                    BuiltinID == ARM::BI__builtin_arm_wsr64;
7579 
7580     llvm::Type *ValueType;
7581     llvm::Type *RegisterType;
7582     if (IsPointerBuiltin) {
7583       ValueType = VoidPtrTy;
7584       RegisterType = Int32Ty;
7585     } else if (Is64Bit) {
7586       ValueType = RegisterType = Int64Ty;
7587     } else {
7588       ValueType = RegisterType = Int32Ty;
7589     }
7590 
7591     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
7592                                       AccessKind);
7593   }
7594 
7595   // Handle MSVC intrinsics before argument evaluation to prevent double
7596   // evaluation.
7597   if (Optional<MSVCIntrin> MsvcIntId = translateArmToMsvcIntrin(BuiltinID))
7598     return EmitMSVCBuiltinExpr(*MsvcIntId, E);
7599 
7600   // Deal with MVE builtins
7601   if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
7602     return Result;
7603   // Handle CDE builtins
7604   if (Value *Result = EmitARMCDEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
7605     return Result;
7606 
7607   // Find out if any arguments are required to be integer constant
7608   // expressions.
7609   unsigned ICEArguments = 0;
7610   ASTContext::GetBuiltinTypeError Error;
7611   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
7612   assert(Error == ASTContext::GE_None && "Should not codegen an error");
7613 
7614   auto getAlignmentValue32 = [&](Address addr) -> Value* {
7615     return Builder.getInt32(addr.getAlignment().getQuantity());
7616   };
7617 
7618   Address PtrOp0 = Address::invalid();
7619   Address PtrOp1 = Address::invalid();
7620   SmallVector<Value*, 4> Ops;
7621   bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
7622   unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
7623   for (unsigned i = 0, e = NumArgs; i != e; i++) {
7624     if (i == 0) {
7625       switch (BuiltinID) {
7626       case NEON::BI__builtin_neon_vld1_v:
7627       case NEON::BI__builtin_neon_vld1q_v:
7628       case NEON::BI__builtin_neon_vld1q_lane_v:
7629       case NEON::BI__builtin_neon_vld1_lane_v:
7630       case NEON::BI__builtin_neon_vld1_dup_v:
7631       case NEON::BI__builtin_neon_vld1q_dup_v:
7632       case NEON::BI__builtin_neon_vst1_v:
7633       case NEON::BI__builtin_neon_vst1q_v:
7634       case NEON::BI__builtin_neon_vst1q_lane_v:
7635       case NEON::BI__builtin_neon_vst1_lane_v:
7636       case NEON::BI__builtin_neon_vst2_v:
7637       case NEON::BI__builtin_neon_vst2q_v:
7638       case NEON::BI__builtin_neon_vst2_lane_v:
7639       case NEON::BI__builtin_neon_vst2q_lane_v:
7640       case NEON::BI__builtin_neon_vst3_v:
7641       case NEON::BI__builtin_neon_vst3q_v:
7642       case NEON::BI__builtin_neon_vst3_lane_v:
7643       case NEON::BI__builtin_neon_vst3q_lane_v:
7644       case NEON::BI__builtin_neon_vst4_v:
7645       case NEON::BI__builtin_neon_vst4q_v:
7646       case NEON::BI__builtin_neon_vst4_lane_v:
7647       case NEON::BI__builtin_neon_vst4q_lane_v:
7648         // Get the alignment for the argument in addition to the value;
7649         // we'll use it later.
7650         PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
7651         Ops.push_back(PtrOp0.getPointer());
7652         continue;
7653       }
7654     }
7655     if (i == 1) {
7656       switch (BuiltinID) {
7657       case NEON::BI__builtin_neon_vld2_v:
7658       case NEON::BI__builtin_neon_vld2q_v:
7659       case NEON::BI__builtin_neon_vld3_v:
7660       case NEON::BI__builtin_neon_vld3q_v:
7661       case NEON::BI__builtin_neon_vld4_v:
7662       case NEON::BI__builtin_neon_vld4q_v:
7663       case NEON::BI__builtin_neon_vld2_lane_v:
7664       case NEON::BI__builtin_neon_vld2q_lane_v:
7665       case NEON::BI__builtin_neon_vld3_lane_v:
7666       case NEON::BI__builtin_neon_vld3q_lane_v:
7667       case NEON::BI__builtin_neon_vld4_lane_v:
7668       case NEON::BI__builtin_neon_vld4q_lane_v:
7669       case NEON::BI__builtin_neon_vld2_dup_v:
7670       case NEON::BI__builtin_neon_vld2q_dup_v:
7671       case NEON::BI__builtin_neon_vld3_dup_v:
7672       case NEON::BI__builtin_neon_vld3q_dup_v:
7673       case NEON::BI__builtin_neon_vld4_dup_v:
7674       case NEON::BI__builtin_neon_vld4q_dup_v:
7675         // Get the alignment for the argument in addition to the value;
7676         // we'll use it later.
7677         PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
7678         Ops.push_back(PtrOp1.getPointer());
7679         continue;
7680       }
7681     }
7682 
7683     if ((ICEArguments & (1 << i)) == 0) {
7684       Ops.push_back(EmitScalarExpr(E->getArg(i)));
7685     } else {
7686       // If this is required to be a constant, constant fold it so that we know
7687       // that the generated intrinsic gets a ConstantInt.
7688       Ops.push_back(llvm::ConstantInt::get(
7689           getLLVMContext(),
7690           *E->getArg(i)->getIntegerConstantExpr(getContext())));
7691     }
7692   }
7693 
7694   switch (BuiltinID) {
7695   default: break;
7696 
7697   case NEON::BI__builtin_neon_vget_lane_i8:
7698   case NEON::BI__builtin_neon_vget_lane_i16:
7699   case NEON::BI__builtin_neon_vget_lane_i32:
7700   case NEON::BI__builtin_neon_vget_lane_i64:
7701   case NEON::BI__builtin_neon_vget_lane_bf16:
7702   case NEON::BI__builtin_neon_vget_lane_f32:
7703   case NEON::BI__builtin_neon_vgetq_lane_i8:
7704   case NEON::BI__builtin_neon_vgetq_lane_i16:
7705   case NEON::BI__builtin_neon_vgetq_lane_i32:
7706   case NEON::BI__builtin_neon_vgetq_lane_i64:
7707   case NEON::BI__builtin_neon_vgetq_lane_bf16:
7708   case NEON::BI__builtin_neon_vgetq_lane_f32:
7709   case NEON::BI__builtin_neon_vduph_lane_bf16:
7710   case NEON::BI__builtin_neon_vduph_laneq_bf16:
7711     return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
7712 
7713   case NEON::BI__builtin_neon_vrndns_f32: {
7714     Value *Arg = EmitScalarExpr(E->getArg(0));
7715     llvm::Type *Tys[] = {Arg->getType()};
7716     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
7717     return Builder.CreateCall(F, {Arg}, "vrndn"); }
7718 
7719   case NEON::BI__builtin_neon_vset_lane_i8:
7720   case NEON::BI__builtin_neon_vset_lane_i16:
7721   case NEON::BI__builtin_neon_vset_lane_i32:
7722   case NEON::BI__builtin_neon_vset_lane_i64:
7723   case NEON::BI__builtin_neon_vset_lane_bf16:
7724   case NEON::BI__builtin_neon_vset_lane_f32:
7725   case NEON::BI__builtin_neon_vsetq_lane_i8:
7726   case NEON::BI__builtin_neon_vsetq_lane_i16:
7727   case NEON::BI__builtin_neon_vsetq_lane_i32:
7728   case NEON::BI__builtin_neon_vsetq_lane_i64:
7729   case NEON::BI__builtin_neon_vsetq_lane_bf16:
7730   case NEON::BI__builtin_neon_vsetq_lane_f32:
7731     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
7732 
7733   case NEON::BI__builtin_neon_vsha1h_u32:
7734     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
7735                         "vsha1h");
7736   case NEON::BI__builtin_neon_vsha1cq_u32:
7737     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
7738                         "vsha1h");
7739   case NEON::BI__builtin_neon_vsha1pq_u32:
7740     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
7741                         "vsha1h");
7742   case NEON::BI__builtin_neon_vsha1mq_u32:
7743     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
7744                         "vsha1h");
7745 
7746   case NEON::BI__builtin_neon_vcvth_bf16_f32: {
7747     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf), Ops,
7748                         "vcvtbfp2bf");
7749   }
7750 
7751   // The ARM _MoveToCoprocessor builtins put the input register value as
7752   // the first argument, but the LLVM intrinsic expects it as the third one.
7753   case ARM::BI_MoveToCoprocessor:
7754   case ARM::BI_MoveToCoprocessor2: {
7755     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
7756                                    Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
7757     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
7758                                   Ops[3], Ops[4], Ops[5]});
7759   }
7760   }
7761 
7762   // Get the last argument, which specifies the vector type.
7763   assert(HasExtraArg);
7764   const Expr *Arg = E->getArg(E->getNumArgs()-1);
7765   Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext());
7766   if (!Result)
7767     return nullptr;
7768 
7769   if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
7770       BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
7771     // Determine the overloaded type of this builtin.
7772     llvm::Type *Ty;
7773     if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
7774       Ty = FloatTy;
7775     else
7776       Ty = DoubleTy;
7777 
7778     // Determine whether this is an unsigned conversion or not.
7779     bool usgn = Result->getZExtValue() == 1;
7780     unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
7781 
7782     // Call the appropriate intrinsic.
7783     Function *F = CGM.getIntrinsic(Int, Ty);
7784     return Builder.CreateCall(F, Ops, "vcvtr");
7785   }
7786 
7787   // Determine the type of this overloaded NEON intrinsic.
7788   NeonTypeFlags Type = Result->getZExtValue();
7789   bool usgn = Type.isUnsigned();
7790   bool rightShift = false;
7791 
7792   llvm::FixedVectorType *VTy =
7793       GetNeonType(this, Type, getTarget().hasLegalHalfType(), false,
7794                   getTarget().hasBFloat16Type());
7795   llvm::Type *Ty = VTy;
7796   if (!Ty)
7797     return nullptr;
7798 
7799   // Many NEON builtins have identical semantics and uses in ARM and
7800   // AArch64. Emit these in a single function.
7801   auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
7802   const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
7803       IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
7804   if (Builtin)
7805     return EmitCommonNeonBuiltinExpr(
7806         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
7807         Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
7808 
7809   unsigned Int;
7810   switch (BuiltinID) {
7811   default: return nullptr;
7812   case NEON::BI__builtin_neon_vld1q_lane_v:
7813     // Handle 64-bit integer elements as a special case.  Use shuffles of
7814     // one-element vectors to avoid poor code for i64 in the backend.
7815     if (VTy->getElementType()->isIntegerTy(64)) {
7816       // Extract the other lane.
7817       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7818       int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
7819       Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
7820       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
7821       // Load the value as a one-element vector.
7822       Ty = llvm::FixedVectorType::get(VTy->getElementType(), 1);
7823       llvm::Type *Tys[] = {Ty, Int8PtrTy};
7824       Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
7825       Value *Align = getAlignmentValue32(PtrOp0);
7826       Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
7827       // Combine them.
7828       int Indices[] = {1 - Lane, Lane};
7829       return Builder.CreateShuffleVector(Ops[1], Ld, Indices, "vld1q_lane");
7830     }
7831     LLVM_FALLTHROUGH;
7832   case NEON::BI__builtin_neon_vld1_lane_v: {
7833     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7834     PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
7835     Value *Ld = Builder.CreateLoad(PtrOp0);
7836     return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
7837   }
7838   case NEON::BI__builtin_neon_vqrshrn_n_v:
7839     Int =
7840       usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
7841     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
7842                         1, true);
7843   case NEON::BI__builtin_neon_vqrshrun_n_v:
7844     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
7845                         Ops, "vqrshrun_n", 1, true);
7846   case NEON::BI__builtin_neon_vqshrn_n_v:
7847     Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
7848     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
7849                         1, true);
7850   case NEON::BI__builtin_neon_vqshrun_n_v:
7851     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
7852                         Ops, "vqshrun_n", 1, true);
7853   case NEON::BI__builtin_neon_vrecpe_v:
7854   case NEON::BI__builtin_neon_vrecpeq_v:
7855     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
7856                         Ops, "vrecpe");
7857   case NEON::BI__builtin_neon_vrshrn_n_v:
7858     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
7859                         Ops, "vrshrn_n", 1, true);
7860   case NEON::BI__builtin_neon_vrsra_n_v:
7861   case NEON::BI__builtin_neon_vrsraq_n_v:
7862     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7863     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7864     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
7865     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
7866     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
7867     return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
7868   case NEON::BI__builtin_neon_vsri_n_v:
7869   case NEON::BI__builtin_neon_vsriq_n_v:
7870     rightShift = true;
7871     LLVM_FALLTHROUGH;
7872   case NEON::BI__builtin_neon_vsli_n_v:
7873   case NEON::BI__builtin_neon_vsliq_n_v:
7874     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
7875     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
7876                         Ops, "vsli_n");
7877   case NEON::BI__builtin_neon_vsra_n_v:
7878   case NEON::BI__builtin_neon_vsraq_n_v:
7879     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7880     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
7881     return Builder.CreateAdd(Ops[0], Ops[1]);
7882   case NEON::BI__builtin_neon_vst1q_lane_v:
7883     // Handle 64-bit integer elements as a special case.  Use a shuffle to get
7884     // a one-element vector and avoid poor code for i64 in the backend.
7885     if (VTy->getElementType()->isIntegerTy(64)) {
7886       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7887       Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
7888       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
7889       Ops[2] = getAlignmentValue32(PtrOp0);
7890       llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
7891       return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
7892                                                  Tys), Ops);
7893     }
7894     LLVM_FALLTHROUGH;
7895   case NEON::BI__builtin_neon_vst1_lane_v: {
7896     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7897     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
7898     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
7899     auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty));
7900     return St;
7901   }
7902   case NEON::BI__builtin_neon_vtbl1_v:
7903     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
7904                         Ops, "vtbl1");
7905   case NEON::BI__builtin_neon_vtbl2_v:
7906     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
7907                         Ops, "vtbl2");
7908   case NEON::BI__builtin_neon_vtbl3_v:
7909     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
7910                         Ops, "vtbl3");
7911   case NEON::BI__builtin_neon_vtbl4_v:
7912     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
7913                         Ops, "vtbl4");
7914   case NEON::BI__builtin_neon_vtbx1_v:
7915     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
7916                         Ops, "vtbx1");
7917   case NEON::BI__builtin_neon_vtbx2_v:
7918     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
7919                         Ops, "vtbx2");
7920   case NEON::BI__builtin_neon_vtbx3_v:
7921     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
7922                         Ops, "vtbx3");
7923   case NEON::BI__builtin_neon_vtbx4_v:
7924     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
7925                         Ops, "vtbx4");
7926   }
7927 }
7928 
7929 template<typename Integer>
GetIntegerConstantValue(const Expr * E,ASTContext & Context)7930 static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) {
7931   return E->getIntegerConstantExpr(Context)->getExtValue();
7932 }
7933 
SignOrZeroExtend(CGBuilderTy & Builder,llvm::Value * V,llvm::Type * T,bool Unsigned)7934 static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V,
7935                                      llvm::Type *T, bool Unsigned) {
7936   // Helper function called by Tablegen-constructed ARM MVE builtin codegen,
7937   // which finds it convenient to specify signed/unsigned as a boolean flag.
7938   return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T);
7939 }
7940 
MVEImmediateShr(CGBuilderTy & Builder,llvm::Value * V,uint32_t Shift,bool Unsigned)7941 static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V,
7942                                     uint32_t Shift, bool Unsigned) {
7943   // MVE helper function for integer shift right. This must handle signed vs
7944   // unsigned, and also deal specially with the case where the shift count is
7945   // equal to the lane size. In LLVM IR, an LShr with that parameter would be
7946   // undefined behavior, but in MVE it's legal, so we must convert it to code
7947   // that is not undefined in IR.
7948   unsigned LaneBits = cast<llvm::VectorType>(V->getType())
7949                           ->getElementType()
7950                           ->getPrimitiveSizeInBits();
7951   if (Shift == LaneBits) {
7952     // An unsigned shift of the full lane size always generates zero, so we can
7953     // simply emit a zero vector. A signed shift of the full lane size does the
7954     // same thing as shifting by one bit fewer.
7955     if (Unsigned)
7956       return llvm::Constant::getNullValue(V->getType());
7957     else
7958       --Shift;
7959   }
7960   return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift);
7961 }
7962 
ARMMVEVectorSplat(CGBuilderTy & Builder,llvm::Value * V)7963 static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) {
7964   // MVE-specific helper function for a vector splat, which infers the element
7965   // count of the output vector by knowing that MVE vectors are all 128 bits
7966   // wide.
7967   unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits();
7968   return Builder.CreateVectorSplat(Elements, V);
7969 }
7970 
ARMMVEVectorReinterpret(CGBuilderTy & Builder,CodeGenFunction * CGF,llvm::Value * V,llvm::Type * DestType)7971 static llvm::Value *ARMMVEVectorReinterpret(CGBuilderTy &Builder,
7972                                             CodeGenFunction *CGF,
7973                                             llvm::Value *V,
7974                                             llvm::Type *DestType) {
7975   // Convert one MVE vector type into another by reinterpreting its in-register
7976   // format.
7977   //
7978   // Little-endian, this is identical to a bitcast (which reinterprets the
7979   // memory format). But big-endian, they're not necessarily the same, because
7980   // the register and memory formats map to each other differently depending on
7981   // the lane size.
7982   //
7983   // We generate a bitcast whenever we can (if we're little-endian, or if the
7984   // lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic
7985   // that performs the different kind of reinterpretation.
7986   if (CGF->getTarget().isBigEndian() &&
7987       V->getType()->getScalarSizeInBits() != DestType->getScalarSizeInBits()) {
7988     return Builder.CreateCall(
7989         CGF->CGM.getIntrinsic(Intrinsic::arm_mve_vreinterpretq,
7990                               {DestType, V->getType()}),
7991         V);
7992   } else {
7993     return Builder.CreateBitCast(V, DestType);
7994   }
7995 }
7996 
VectorUnzip(CGBuilderTy & Builder,llvm::Value * V,bool Odd)7997 static llvm::Value *VectorUnzip(CGBuilderTy &Builder, llvm::Value *V, bool Odd) {
7998   // Make a shufflevector that extracts every other element of a vector (evens
7999   // or odds, as desired).
8000   SmallVector<int, 16> Indices;
8001   unsigned InputElements =
8002       cast<llvm::FixedVectorType>(V->getType())->getNumElements();
8003   for (unsigned i = 0; i < InputElements; i += 2)
8004     Indices.push_back(i + Odd);
8005   return Builder.CreateShuffleVector(V, Indices);
8006 }
8007 
VectorZip(CGBuilderTy & Builder,llvm::Value * V0,llvm::Value * V1)8008 static llvm::Value *VectorZip(CGBuilderTy &Builder, llvm::Value *V0,
8009                               llvm::Value *V1) {
8010   // Make a shufflevector that interleaves two vectors element by element.
8011   assert(V0->getType() == V1->getType() && "Can't zip different vector types");
8012   SmallVector<int, 16> Indices;
8013   unsigned InputElements =
8014       cast<llvm::FixedVectorType>(V0->getType())->getNumElements();
8015   for (unsigned i = 0; i < InputElements; i++) {
8016     Indices.push_back(i);
8017     Indices.push_back(i + InputElements);
8018   }
8019   return Builder.CreateShuffleVector(V0, V1, Indices);
8020 }
8021 
8022 template<unsigned HighBit, unsigned OtherBits>
ARMMVEConstantSplat(CGBuilderTy & Builder,llvm::Type * VT)8023 static llvm::Value *ARMMVEConstantSplat(CGBuilderTy &Builder, llvm::Type *VT) {
8024   // MVE-specific helper function to make a vector splat of a constant such as
8025   // UINT_MAX or INT_MIN, in which all bits below the highest one are equal.
8026   llvm::Type *T = cast<llvm::VectorType>(VT)->getElementType();
8027   unsigned LaneBits = T->getPrimitiveSizeInBits();
8028   uint32_t Value = HighBit << (LaneBits - 1);
8029   if (OtherBits)
8030     Value |= (1UL << (LaneBits - 1)) - 1;
8031   llvm::Value *Lane = llvm::ConstantInt::get(T, Value);
8032   return ARMMVEVectorSplat(Builder, Lane);
8033 }
8034 
ARMMVEVectorElementReverse(CGBuilderTy & Builder,llvm::Value * V,unsigned ReverseWidth)8035 static llvm::Value *ARMMVEVectorElementReverse(CGBuilderTy &Builder,
8036                                                llvm::Value *V,
8037                                                unsigned ReverseWidth) {
8038   // MVE-specific helper function which reverses the elements of a
8039   // vector within every (ReverseWidth)-bit collection of lanes.
8040   SmallVector<int, 16> Indices;
8041   unsigned LaneSize = V->getType()->getScalarSizeInBits();
8042   unsigned Elements = 128 / LaneSize;
8043   unsigned Mask = ReverseWidth / LaneSize - 1;
8044   for (unsigned i = 0; i < Elements; i++)
8045     Indices.push_back(i ^ Mask);
8046   return Builder.CreateShuffleVector(V, Indices);
8047 }
8048 
EmitARMMVEBuiltinExpr(unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue,llvm::Triple::ArchType Arch)8049 Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID,
8050                                               const CallExpr *E,
8051                                               ReturnValueSlot ReturnValue,
8052                                               llvm::Triple::ArchType Arch) {
8053   enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType;
8054   Intrinsic::ID IRIntr;
8055   unsigned NumVectors;
8056 
8057   // Code autogenerated by Tablegen will handle all the simple builtins.
8058   switch (BuiltinID) {
8059     #include "clang/Basic/arm_mve_builtin_cg.inc"
8060 
8061     // If we didn't match an MVE builtin id at all, go back to the
8062     // main EmitARMBuiltinExpr.
8063   default:
8064     return nullptr;
8065   }
8066 
8067   // Anything that breaks from that switch is an MVE builtin that
8068   // needs handwritten code to generate.
8069 
8070   switch (CustomCodeGenType) {
8071 
8072   case CustomCodeGen::VLD24: {
8073     llvm::SmallVector<Value *, 4> Ops;
8074     llvm::SmallVector<llvm::Type *, 4> Tys;
8075 
8076     auto MvecCType = E->getType();
8077     auto MvecLType = ConvertType(MvecCType);
8078     assert(MvecLType->isStructTy() &&
8079            "Return type for vld[24]q should be a struct");
8080     assert(MvecLType->getStructNumElements() == 1 &&
8081            "Return-type struct for vld[24]q should have one element");
8082     auto MvecLTypeInner = MvecLType->getStructElementType(0);
8083     assert(MvecLTypeInner->isArrayTy() &&
8084            "Return-type struct for vld[24]q should contain an array");
8085     assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
8086            "Array member of return-type struct vld[24]q has wrong length");
8087     auto VecLType = MvecLTypeInner->getArrayElementType();
8088 
8089     Tys.push_back(VecLType);
8090 
8091     auto Addr = E->getArg(0);
8092     Ops.push_back(EmitScalarExpr(Addr));
8093     Tys.push_back(ConvertType(Addr->getType()));
8094 
8095     Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
8096     Value *LoadResult = Builder.CreateCall(F, Ops);
8097     Value *MvecOut = UndefValue::get(MvecLType);
8098     for (unsigned i = 0; i < NumVectors; ++i) {
8099       Value *Vec = Builder.CreateExtractValue(LoadResult, i);
8100       MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i});
8101     }
8102 
8103     if (ReturnValue.isNull())
8104       return MvecOut;
8105     else
8106       return Builder.CreateStore(MvecOut, ReturnValue.getValue());
8107   }
8108 
8109   case CustomCodeGen::VST24: {
8110     llvm::SmallVector<Value *, 4> Ops;
8111     llvm::SmallVector<llvm::Type *, 4> Tys;
8112 
8113     auto Addr = E->getArg(0);
8114     Ops.push_back(EmitScalarExpr(Addr));
8115     Tys.push_back(ConvertType(Addr->getType()));
8116 
8117     auto MvecCType = E->getArg(1)->getType();
8118     auto MvecLType = ConvertType(MvecCType);
8119     assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct");
8120     assert(MvecLType->getStructNumElements() == 1 &&
8121            "Data-type struct for vst2q should have one element");
8122     auto MvecLTypeInner = MvecLType->getStructElementType(0);
8123     assert(MvecLTypeInner->isArrayTy() &&
8124            "Data-type struct for vst2q should contain an array");
8125     assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
8126            "Array member of return-type struct vld[24]q has wrong length");
8127     auto VecLType = MvecLTypeInner->getArrayElementType();
8128 
8129     Tys.push_back(VecLType);
8130 
8131     AggValueSlot MvecSlot = CreateAggTemp(MvecCType);
8132     EmitAggExpr(E->getArg(1), MvecSlot);
8133     auto Mvec = Builder.CreateLoad(MvecSlot.getAddress());
8134     for (unsigned i = 0; i < NumVectors; i++)
8135       Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i}));
8136 
8137     Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
8138     Value *ToReturn = nullptr;
8139     for (unsigned i = 0; i < NumVectors; i++) {
8140       Ops.push_back(llvm::ConstantInt::get(Int32Ty, i));
8141       ToReturn = Builder.CreateCall(F, Ops);
8142       Ops.pop_back();
8143     }
8144     return ToReturn;
8145   }
8146   }
8147   llvm_unreachable("unknown custom codegen type.");
8148 }
8149 
EmitARMCDEBuiltinExpr(unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue,llvm::Triple::ArchType Arch)8150 Value *CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID,
8151                                               const CallExpr *E,
8152                                               ReturnValueSlot ReturnValue,
8153                                               llvm::Triple::ArchType Arch) {
8154   switch (BuiltinID) {
8155   default:
8156     return nullptr;
8157 #include "clang/Basic/arm_cde_builtin_cg.inc"
8158   }
8159 }
8160 
EmitAArch64TblBuiltinExpr(CodeGenFunction & CGF,unsigned BuiltinID,const CallExpr * E,SmallVectorImpl<Value * > & Ops,llvm::Triple::ArchType Arch)8161 static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
8162                                       const CallExpr *E,
8163                                       SmallVectorImpl<Value *> &Ops,
8164                                       llvm::Triple::ArchType Arch) {
8165   unsigned int Int = 0;
8166   const char *s = nullptr;
8167 
8168   switch (BuiltinID) {
8169   default:
8170     return nullptr;
8171   case NEON::BI__builtin_neon_vtbl1_v:
8172   case NEON::BI__builtin_neon_vqtbl1_v:
8173   case NEON::BI__builtin_neon_vqtbl1q_v:
8174   case NEON::BI__builtin_neon_vtbl2_v:
8175   case NEON::BI__builtin_neon_vqtbl2_v:
8176   case NEON::BI__builtin_neon_vqtbl2q_v:
8177   case NEON::BI__builtin_neon_vtbl3_v:
8178   case NEON::BI__builtin_neon_vqtbl3_v:
8179   case NEON::BI__builtin_neon_vqtbl3q_v:
8180   case NEON::BI__builtin_neon_vtbl4_v:
8181   case NEON::BI__builtin_neon_vqtbl4_v:
8182   case NEON::BI__builtin_neon_vqtbl4q_v:
8183     break;
8184   case NEON::BI__builtin_neon_vtbx1_v:
8185   case NEON::BI__builtin_neon_vqtbx1_v:
8186   case NEON::BI__builtin_neon_vqtbx1q_v:
8187   case NEON::BI__builtin_neon_vtbx2_v:
8188   case NEON::BI__builtin_neon_vqtbx2_v:
8189   case NEON::BI__builtin_neon_vqtbx2q_v:
8190   case NEON::BI__builtin_neon_vtbx3_v:
8191   case NEON::BI__builtin_neon_vqtbx3_v:
8192   case NEON::BI__builtin_neon_vqtbx3q_v:
8193   case NEON::BI__builtin_neon_vtbx4_v:
8194   case NEON::BI__builtin_neon_vqtbx4_v:
8195   case NEON::BI__builtin_neon_vqtbx4q_v:
8196     break;
8197   }
8198 
8199   assert(E->getNumArgs() >= 3);
8200 
8201   // Get the last argument, which specifies the vector type.
8202   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
8203   Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(CGF.getContext());
8204   if (!Result)
8205     return nullptr;
8206 
8207   // Determine the type of this overloaded NEON intrinsic.
8208   NeonTypeFlags Type = Result->getZExtValue();
8209   llvm::FixedVectorType *Ty = GetNeonType(&CGF, Type);
8210   if (!Ty)
8211     return nullptr;
8212 
8213   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8214 
8215   // AArch64 scalar builtins are not overloaded, they do not have an extra
8216   // argument that specifies the vector type, need to handle each case.
8217   switch (BuiltinID) {
8218   case NEON::BI__builtin_neon_vtbl1_v: {
8219     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
8220                               Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
8221                               "vtbl1");
8222   }
8223   case NEON::BI__builtin_neon_vtbl2_v: {
8224     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
8225                               Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
8226                               "vtbl1");
8227   }
8228   case NEON::BI__builtin_neon_vtbl3_v: {
8229     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
8230                               Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
8231                               "vtbl2");
8232   }
8233   case NEON::BI__builtin_neon_vtbl4_v: {
8234     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
8235                               Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
8236                               "vtbl2");
8237   }
8238   case NEON::BI__builtin_neon_vtbx1_v: {
8239     Value *TblRes =
8240         packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
8241                            Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
8242 
8243     llvm::Constant *EightV = ConstantInt::get(Ty, 8);
8244     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
8245     CmpRes = Builder.CreateSExt(CmpRes, Ty);
8246 
8247     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
8248     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
8249     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
8250   }
8251   case NEON::BI__builtin_neon_vtbx2_v: {
8252     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
8253                               Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
8254                               "vtbx1");
8255   }
8256   case NEON::BI__builtin_neon_vtbx3_v: {
8257     Value *TblRes =
8258         packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
8259                            Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
8260 
8261     llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
8262     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
8263                                            TwentyFourV);
8264     CmpRes = Builder.CreateSExt(CmpRes, Ty);
8265 
8266     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
8267     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
8268     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
8269   }
8270   case NEON::BI__builtin_neon_vtbx4_v: {
8271     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
8272                               Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
8273                               "vtbx2");
8274   }
8275   case NEON::BI__builtin_neon_vqtbl1_v:
8276   case NEON::BI__builtin_neon_vqtbl1q_v:
8277     Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
8278   case NEON::BI__builtin_neon_vqtbl2_v:
8279   case NEON::BI__builtin_neon_vqtbl2q_v: {
8280     Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
8281   case NEON::BI__builtin_neon_vqtbl3_v:
8282   case NEON::BI__builtin_neon_vqtbl3q_v:
8283     Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
8284   case NEON::BI__builtin_neon_vqtbl4_v:
8285   case NEON::BI__builtin_neon_vqtbl4q_v:
8286     Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
8287   case NEON::BI__builtin_neon_vqtbx1_v:
8288   case NEON::BI__builtin_neon_vqtbx1q_v:
8289     Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
8290   case NEON::BI__builtin_neon_vqtbx2_v:
8291   case NEON::BI__builtin_neon_vqtbx2q_v:
8292     Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
8293   case NEON::BI__builtin_neon_vqtbx3_v:
8294   case NEON::BI__builtin_neon_vqtbx3q_v:
8295     Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
8296   case NEON::BI__builtin_neon_vqtbx4_v:
8297   case NEON::BI__builtin_neon_vqtbx4q_v:
8298     Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
8299   }
8300   }
8301 
8302   if (!Int)
8303     return nullptr;
8304 
8305   Function *F = CGF.CGM.getIntrinsic(Int, Ty);
8306   return CGF.EmitNeonCall(F, Ops, s);
8307 }
8308 
vectorWrapScalar16(Value * Op)8309 Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
8310   auto *VTy = llvm::FixedVectorType::get(Int16Ty, 4);
8311   Op = Builder.CreateBitCast(Op, Int16Ty);
8312   Value *V = UndefValue::get(VTy);
8313   llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
8314   Op = Builder.CreateInsertElement(V, Op, CI);
8315   return Op;
8316 }
8317 
8318 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
8319 /// access builtin.  Only required if it can't be inferred from the base pointer
8320 /// operand.
SVEBuiltinMemEltTy(SVETypeFlags TypeFlags)8321 llvm::Type *CodeGenFunction::SVEBuiltinMemEltTy(SVETypeFlags TypeFlags) {
8322   switch (TypeFlags.getMemEltType()) {
8323   case SVETypeFlags::MemEltTyDefault:
8324     return getEltType(TypeFlags);
8325   case SVETypeFlags::MemEltTyInt8:
8326     return Builder.getInt8Ty();
8327   case SVETypeFlags::MemEltTyInt16:
8328     return Builder.getInt16Ty();
8329   case SVETypeFlags::MemEltTyInt32:
8330     return Builder.getInt32Ty();
8331   case SVETypeFlags::MemEltTyInt64:
8332     return Builder.getInt64Ty();
8333   }
8334   llvm_unreachable("Unknown MemEltType");
8335 }
8336 
getEltType(SVETypeFlags TypeFlags)8337 llvm::Type *CodeGenFunction::getEltType(SVETypeFlags TypeFlags) {
8338   switch (TypeFlags.getEltType()) {
8339   default:
8340     llvm_unreachable("Invalid SVETypeFlag!");
8341 
8342   case SVETypeFlags::EltTyInt8:
8343     return Builder.getInt8Ty();
8344   case SVETypeFlags::EltTyInt16:
8345     return Builder.getInt16Ty();
8346   case SVETypeFlags::EltTyInt32:
8347     return Builder.getInt32Ty();
8348   case SVETypeFlags::EltTyInt64:
8349     return Builder.getInt64Ty();
8350 
8351   case SVETypeFlags::EltTyFloat16:
8352     return Builder.getHalfTy();
8353   case SVETypeFlags::EltTyFloat32:
8354     return Builder.getFloatTy();
8355   case SVETypeFlags::EltTyFloat64:
8356     return Builder.getDoubleTy();
8357 
8358   case SVETypeFlags::EltTyBFloat16:
8359     return Builder.getBFloatTy();
8360 
8361   case SVETypeFlags::EltTyBool8:
8362   case SVETypeFlags::EltTyBool16:
8363   case SVETypeFlags::EltTyBool32:
8364   case SVETypeFlags::EltTyBool64:
8365     return Builder.getInt1Ty();
8366   }
8367 }
8368 
8369 // Return the llvm predicate vector type corresponding to the specified element
8370 // TypeFlags.
8371 llvm::ScalableVectorType *
getSVEPredType(SVETypeFlags TypeFlags)8372 CodeGenFunction::getSVEPredType(SVETypeFlags TypeFlags) {
8373   switch (TypeFlags.getEltType()) {
8374   default: llvm_unreachable("Unhandled SVETypeFlag!");
8375 
8376   case SVETypeFlags::EltTyInt8:
8377     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8378   case SVETypeFlags::EltTyInt16:
8379     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8380   case SVETypeFlags::EltTyInt32:
8381     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8382   case SVETypeFlags::EltTyInt64:
8383     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8384 
8385   case SVETypeFlags::EltTyBFloat16:
8386     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8387   case SVETypeFlags::EltTyFloat16:
8388     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8389   case SVETypeFlags::EltTyFloat32:
8390     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8391   case SVETypeFlags::EltTyFloat64:
8392     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8393 
8394   case SVETypeFlags::EltTyBool8:
8395     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8396   case SVETypeFlags::EltTyBool16:
8397     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8398   case SVETypeFlags::EltTyBool32:
8399     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8400   case SVETypeFlags::EltTyBool64:
8401     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8402   }
8403 }
8404 
8405 // Return the llvm vector type corresponding to the specified element TypeFlags.
8406 llvm::ScalableVectorType *
getSVEType(const SVETypeFlags & TypeFlags)8407 CodeGenFunction::getSVEType(const SVETypeFlags &TypeFlags) {
8408   switch (TypeFlags.getEltType()) {
8409   default:
8410     llvm_unreachable("Invalid SVETypeFlag!");
8411 
8412   case SVETypeFlags::EltTyInt8:
8413     return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16);
8414   case SVETypeFlags::EltTyInt16:
8415     return llvm::ScalableVectorType::get(Builder.getInt16Ty(), 8);
8416   case SVETypeFlags::EltTyInt32:
8417     return llvm::ScalableVectorType::get(Builder.getInt32Ty(), 4);
8418   case SVETypeFlags::EltTyInt64:
8419     return llvm::ScalableVectorType::get(Builder.getInt64Ty(), 2);
8420 
8421   case SVETypeFlags::EltTyFloat16:
8422     return llvm::ScalableVectorType::get(Builder.getHalfTy(), 8);
8423   case SVETypeFlags::EltTyBFloat16:
8424     return llvm::ScalableVectorType::get(Builder.getBFloatTy(), 8);
8425   case SVETypeFlags::EltTyFloat32:
8426     return llvm::ScalableVectorType::get(Builder.getFloatTy(), 4);
8427   case SVETypeFlags::EltTyFloat64:
8428     return llvm::ScalableVectorType::get(Builder.getDoubleTy(), 2);
8429 
8430   case SVETypeFlags::EltTyBool8:
8431     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8432   case SVETypeFlags::EltTyBool16:
8433     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8434   case SVETypeFlags::EltTyBool32:
8435     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8436   case SVETypeFlags::EltTyBool64:
8437     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8438   }
8439 }
8440 
EmitSVEAllTruePred(SVETypeFlags TypeFlags)8441 llvm::Value *CodeGenFunction::EmitSVEAllTruePred(SVETypeFlags TypeFlags) {
8442   Function *Ptrue =
8443       CGM.getIntrinsic(Intrinsic::aarch64_sve_ptrue, getSVEPredType(TypeFlags));
8444   return Builder.CreateCall(Ptrue, {Builder.getInt32(/*SV_ALL*/ 31)});
8445 }
8446 
8447 constexpr unsigned SVEBitsPerBlock = 128;
8448 
getSVEVectorForElementType(llvm::Type * EltTy)8449 static llvm::ScalableVectorType *getSVEVectorForElementType(llvm::Type *EltTy) {
8450   unsigned NumElts = SVEBitsPerBlock / EltTy->getScalarSizeInBits();
8451   return llvm::ScalableVectorType::get(EltTy, NumElts);
8452 }
8453 
8454 // Reinterpret the input predicate so that it can be used to correctly isolate
8455 // the elements of the specified datatype.
EmitSVEPredicateCast(Value * Pred,llvm::ScalableVectorType * VTy)8456 Value *CodeGenFunction::EmitSVEPredicateCast(Value *Pred,
8457                                              llvm::ScalableVectorType *VTy) {
8458   auto *RTy = llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy);
8459   if (Pred->getType() == RTy)
8460     return Pred;
8461 
8462   unsigned IntID;
8463   llvm::Type *IntrinsicTy;
8464   switch (VTy->getMinNumElements()) {
8465   default:
8466     llvm_unreachable("unsupported element count!");
8467   case 2:
8468   case 4:
8469   case 8:
8470     IntID = Intrinsic::aarch64_sve_convert_from_svbool;
8471     IntrinsicTy = RTy;
8472     break;
8473   case 16:
8474     IntID = Intrinsic::aarch64_sve_convert_to_svbool;
8475     IntrinsicTy = Pred->getType();
8476     break;
8477   }
8478 
8479   Function *F = CGM.getIntrinsic(IntID, IntrinsicTy);
8480   Value *C = Builder.CreateCall(F, Pred);
8481   assert(C->getType() == RTy && "Unexpected return type!");
8482   return C;
8483 }
8484 
EmitSVEGatherLoad(SVETypeFlags TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)8485 Value *CodeGenFunction::EmitSVEGatherLoad(SVETypeFlags TypeFlags,
8486                                           SmallVectorImpl<Value *> &Ops,
8487                                           unsigned IntID) {
8488   auto *ResultTy = getSVEType(TypeFlags);
8489   auto *OverloadedTy =
8490       llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), ResultTy);
8491 
8492   // At the ACLE level there's only one predicate type, svbool_t, which is
8493   // mapped to <n x 16 x i1>. However, this might be incompatible with the
8494   // actual type being loaded. For example, when loading doubles (i64) the
8495   // predicated should be <n x 2 x i1> instead. At the IR level the type of
8496   // the predicate and the data being loaded must match. Cast accordingly.
8497   Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
8498 
8499   Function *F = nullptr;
8500   if (Ops[1]->getType()->isVectorTy())
8501     // This is the "vector base, scalar offset" case. In order to uniquely
8502     // map this built-in to an LLVM IR intrinsic, we need both the return type
8503     // and the type of the vector base.
8504     F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[1]->getType()});
8505   else
8506     // This is the "scalar base, vector offset case". The type of the offset
8507     // is encoded in the name of the intrinsic. We only need to specify the
8508     // return type in order to uniquely map this built-in to an LLVM IR
8509     // intrinsic.
8510     F = CGM.getIntrinsic(IntID, OverloadedTy);
8511 
8512   // Pass 0 when the offset is missing. This can only be applied when using
8513   // the "vector base" addressing mode for which ACLE allows no offset. The
8514   // corresponding LLVM IR always requires an offset.
8515   if (Ops.size() == 2) {
8516     assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
8517     Ops.push_back(ConstantInt::get(Int64Ty, 0));
8518   }
8519 
8520   // For "vector base, scalar index" scale the index so that it becomes a
8521   // scalar offset.
8522   if (!TypeFlags.isByteIndexed() && Ops[1]->getType()->isVectorTy()) {
8523     unsigned BytesPerElt =
8524         OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
8525     Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8526     Ops[2] = Builder.CreateMul(Ops[2], Scale);
8527   }
8528 
8529   Value *Call = Builder.CreateCall(F, Ops);
8530 
8531   // The following sext/zext is only needed when ResultTy != OverloadedTy. In
8532   // other cases it's folded into a nop.
8533   return TypeFlags.isZExtReturn() ? Builder.CreateZExt(Call, ResultTy)
8534                                   : Builder.CreateSExt(Call, ResultTy);
8535 }
8536 
EmitSVEScatterStore(SVETypeFlags TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)8537 Value *CodeGenFunction::EmitSVEScatterStore(SVETypeFlags TypeFlags,
8538                                             SmallVectorImpl<Value *> &Ops,
8539                                             unsigned IntID) {
8540   auto *SrcDataTy = getSVEType(TypeFlags);
8541   auto *OverloadedTy =
8542       llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), SrcDataTy);
8543 
8544   // In ACLE the source data is passed in the last argument, whereas in LLVM IR
8545   // it's the first argument. Move it accordingly.
8546   Ops.insert(Ops.begin(), Ops.pop_back_val());
8547 
8548   Function *F = nullptr;
8549   if (Ops[2]->getType()->isVectorTy())
8550     // This is the "vector base, scalar offset" case. In order to uniquely
8551     // map this built-in to an LLVM IR intrinsic, we need both the return type
8552     // and the type of the vector base.
8553     F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[2]->getType()});
8554   else
8555     // This is the "scalar base, vector offset case". The type of the offset
8556     // is encoded in the name of the intrinsic. We only need to specify the
8557     // return type in order to uniquely map this built-in to an LLVM IR
8558     // intrinsic.
8559     F = CGM.getIntrinsic(IntID, OverloadedTy);
8560 
8561   // Pass 0 when the offset is missing. This can only be applied when using
8562   // the "vector base" addressing mode for which ACLE allows no offset. The
8563   // corresponding LLVM IR always requires an offset.
8564   if (Ops.size() == 3) {
8565     assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
8566     Ops.push_back(ConstantInt::get(Int64Ty, 0));
8567   }
8568 
8569   // Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's
8570   // folded into a nop.
8571   Ops[0] = Builder.CreateTrunc(Ops[0], OverloadedTy);
8572 
8573   // At the ACLE level there's only one predicate type, svbool_t, which is
8574   // mapped to <n x 16 x i1>. However, this might be incompatible with the
8575   // actual type being stored. For example, when storing doubles (i64) the
8576   // predicated should be <n x 2 x i1> instead. At the IR level the type of
8577   // the predicate and the data being stored must match. Cast accordingly.
8578   Ops[1] = EmitSVEPredicateCast(Ops[1], OverloadedTy);
8579 
8580   // For "vector base, scalar index" scale the index so that it becomes a
8581   // scalar offset.
8582   if (!TypeFlags.isByteIndexed() && Ops[2]->getType()->isVectorTy()) {
8583     unsigned BytesPerElt =
8584         OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
8585     Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8586     Ops[3] = Builder.CreateMul(Ops[3], Scale);
8587   }
8588 
8589   return Builder.CreateCall(F, Ops);
8590 }
8591 
EmitSVEGatherPrefetch(SVETypeFlags TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)8592 Value *CodeGenFunction::EmitSVEGatherPrefetch(SVETypeFlags TypeFlags,
8593                                               SmallVectorImpl<Value *> &Ops,
8594                                               unsigned IntID) {
8595   // The gather prefetches are overloaded on the vector input - this can either
8596   // be the vector of base addresses or vector of offsets.
8597   auto *OverloadedTy = dyn_cast<llvm::ScalableVectorType>(Ops[1]->getType());
8598   if (!OverloadedTy)
8599     OverloadedTy = cast<llvm::ScalableVectorType>(Ops[2]->getType());
8600 
8601   // Cast the predicate from svbool_t to the right number of elements.
8602   Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
8603 
8604   // vector + imm addressing modes
8605   if (Ops[1]->getType()->isVectorTy()) {
8606     if (Ops.size() == 3) {
8607       // Pass 0 for 'vector+imm' when the index is omitted.
8608       Ops.push_back(ConstantInt::get(Int64Ty, 0));
8609 
8610       // The sv_prfop is the last operand in the builtin and IR intrinsic.
8611       std::swap(Ops[2], Ops[3]);
8612     } else {
8613       // Index needs to be passed as scaled offset.
8614       llvm::Type *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
8615       unsigned BytesPerElt = MemEltTy->getPrimitiveSizeInBits() / 8;
8616       Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8617       Ops[2] = Builder.CreateMul(Ops[2], Scale);
8618     }
8619   }
8620 
8621   Function *F = CGM.getIntrinsic(IntID, OverloadedTy);
8622   return Builder.CreateCall(F, Ops);
8623 }
8624 
EmitSVEStructLoad(SVETypeFlags TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)8625 Value *CodeGenFunction::EmitSVEStructLoad(SVETypeFlags TypeFlags,
8626                                           SmallVectorImpl<Value*> &Ops,
8627                                           unsigned IntID) {
8628   llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
8629   auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
8630   auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
8631 
8632   unsigned N;
8633   switch (IntID) {
8634   case Intrinsic::aarch64_sve_ld2:
8635     N = 2;
8636     break;
8637   case Intrinsic::aarch64_sve_ld3:
8638     N = 3;
8639     break;
8640   case Intrinsic::aarch64_sve_ld4:
8641     N = 4;
8642     break;
8643   default:
8644     llvm_unreachable("unknown intrinsic!");
8645   }
8646   auto RetTy = llvm::VectorType::get(VTy->getElementType(),
8647                                      VTy->getElementCount() * N);
8648 
8649 	Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
8650   Value *BasePtr= Builder.CreateBitCast(Ops[1], VecPtrTy);
8651   Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
8652   BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
8653   BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
8654 
8655   Function *F = CGM.getIntrinsic(IntID, {RetTy, Predicate->getType()});
8656   return Builder.CreateCall(F, { Predicate, BasePtr });
8657 }
8658 
EmitSVEStructStore(SVETypeFlags TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)8659 Value *CodeGenFunction::EmitSVEStructStore(SVETypeFlags TypeFlags,
8660                                            SmallVectorImpl<Value*> &Ops,
8661                                            unsigned IntID) {
8662   llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
8663   auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
8664   auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
8665 
8666   unsigned N;
8667   switch (IntID) {
8668   case Intrinsic::aarch64_sve_st2:
8669     N = 2;
8670     break;
8671   case Intrinsic::aarch64_sve_st3:
8672     N = 3;
8673     break;
8674   case Intrinsic::aarch64_sve_st4:
8675     N = 4;
8676     break;
8677   default:
8678     llvm_unreachable("unknown intrinsic!");
8679   }
8680   auto TupleTy =
8681       llvm::VectorType::get(VTy->getElementType(), VTy->getElementCount() * N);
8682 
8683   Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
8684   Value *BasePtr = Builder.CreateBitCast(Ops[1], VecPtrTy);
8685   Value *Offset = Ops.size() > 3 ? Ops[2] : Builder.getInt32(0);
8686   Value *Val = Ops.back();
8687   BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
8688   BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
8689 
8690   // The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we
8691   // need to break up the tuple vector.
8692   SmallVector<llvm::Value*, 5> Operands;
8693   Function *FExtr =
8694       CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
8695   for (unsigned I = 0; I < N; ++I)
8696     Operands.push_back(Builder.CreateCall(FExtr, {Val, Builder.getInt32(I)}));
8697   Operands.append({Predicate, BasePtr});
8698 
8699   Function *F = CGM.getIntrinsic(IntID, { VTy });
8700   return Builder.CreateCall(F, Operands);
8701 }
8702 
8703 // SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and
8704 // svpmullt_pair intrinsics, with the exception that their results are bitcast
8705 // to a wider type.
EmitSVEPMull(SVETypeFlags TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned BuiltinID)8706 Value *CodeGenFunction::EmitSVEPMull(SVETypeFlags TypeFlags,
8707                                      SmallVectorImpl<Value *> &Ops,
8708                                      unsigned BuiltinID) {
8709   // Splat scalar operand to vector (intrinsics with _n infix)
8710   if (TypeFlags.hasSplatOperand()) {
8711     unsigned OpNo = TypeFlags.getSplatOperand();
8712     Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
8713   }
8714 
8715   // The pair-wise function has a narrower overloaded type.
8716   Function *F = CGM.getIntrinsic(BuiltinID, Ops[0]->getType());
8717   Value *Call = Builder.CreateCall(F, {Ops[0], Ops[1]});
8718 
8719   // Now bitcast to the wider result type.
8720   llvm::ScalableVectorType *Ty = getSVEType(TypeFlags);
8721   return EmitSVEReinterpret(Call, Ty);
8722 }
8723 
EmitSVEMovl(SVETypeFlags TypeFlags,ArrayRef<Value * > Ops,unsigned BuiltinID)8724 Value *CodeGenFunction::EmitSVEMovl(SVETypeFlags TypeFlags,
8725                                     ArrayRef<Value *> Ops, unsigned BuiltinID) {
8726   llvm::Type *OverloadedTy = getSVEType(TypeFlags);
8727   Function *F = CGM.getIntrinsic(BuiltinID, OverloadedTy);
8728   return Builder.CreateCall(F, {Ops[0], Builder.getInt32(0)});
8729 }
8730 
EmitSVEPrefetchLoad(SVETypeFlags TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned BuiltinID)8731 Value *CodeGenFunction::EmitSVEPrefetchLoad(SVETypeFlags TypeFlags,
8732                                             SmallVectorImpl<Value *> &Ops,
8733                                             unsigned BuiltinID) {
8734   auto *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
8735   auto *VectorTy = getSVEVectorForElementType(MemEltTy);
8736   auto *MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8737 
8738   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8739   Value *BasePtr = Ops[1];
8740 
8741   // Implement the index operand if not omitted.
8742   if (Ops.size() > 3) {
8743     BasePtr = Builder.CreateBitCast(BasePtr, MemoryTy->getPointerTo());
8744     BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
8745   }
8746 
8747   // Prefetch intriniscs always expect an i8*
8748   BasePtr = Builder.CreateBitCast(BasePtr, llvm::PointerType::getUnqual(Int8Ty));
8749   Value *PrfOp = Ops.back();
8750 
8751   Function *F = CGM.getIntrinsic(BuiltinID, Predicate->getType());
8752   return Builder.CreateCall(F, {Predicate, BasePtr, PrfOp});
8753 }
8754 
EmitSVEMaskedLoad(const CallExpr * E,llvm::Type * ReturnTy,SmallVectorImpl<Value * > & Ops,unsigned BuiltinID,bool IsZExtReturn)8755 Value *CodeGenFunction::EmitSVEMaskedLoad(const CallExpr *E,
8756                                           llvm::Type *ReturnTy,
8757                                           SmallVectorImpl<Value *> &Ops,
8758                                           unsigned BuiltinID,
8759                                           bool IsZExtReturn) {
8760   QualType LangPTy = E->getArg(1)->getType();
8761   llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
8762       LangPTy->castAs<PointerType>()->getPointeeType());
8763 
8764   // The vector type that is returned may be different from the
8765   // eventual type loaded from memory.
8766   auto VectorTy = cast<llvm::ScalableVectorType>(ReturnTy);
8767   auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8768 
8769   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8770   Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
8771   Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
8772   BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
8773 
8774   BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
8775   Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
8776   Value *Load = Builder.CreateCall(F, {Predicate, BasePtr});
8777 
8778   return IsZExtReturn ? Builder.CreateZExt(Load, VectorTy)
8779                      : Builder.CreateSExt(Load, VectorTy);
8780 }
8781 
EmitSVEMaskedStore(const CallExpr * E,SmallVectorImpl<Value * > & Ops,unsigned BuiltinID)8782 Value *CodeGenFunction::EmitSVEMaskedStore(const CallExpr *E,
8783                                            SmallVectorImpl<Value *> &Ops,
8784                                            unsigned BuiltinID) {
8785   QualType LangPTy = E->getArg(1)->getType();
8786   llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
8787       LangPTy->castAs<PointerType>()->getPointeeType());
8788 
8789   // The vector type that is stored may be different from the
8790   // eventual type stored to memory.
8791   auto VectorTy = cast<llvm::ScalableVectorType>(Ops.back()->getType());
8792   auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8793 
8794   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8795   Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
8796   Value *Offset = Ops.size() == 4 ? Ops[2] : Builder.getInt32(0);
8797   BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
8798 
8799   // Last value is always the data
8800   llvm::Value *Val = Builder.CreateTrunc(Ops.back(), MemoryTy);
8801 
8802   BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
8803   Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
8804   return Builder.CreateCall(F, {Val, Predicate, BasePtr});
8805 }
8806 
8807 // Limit the usage of scalable llvm IR generated by the ACLE by using the
8808 // sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat.
EmitSVEDupX(Value * Scalar,llvm::Type * Ty)8809 Value *CodeGenFunction::EmitSVEDupX(Value *Scalar, llvm::Type *Ty) {
8810   auto F = CGM.getIntrinsic(Intrinsic::aarch64_sve_dup_x, Ty);
8811   return Builder.CreateCall(F, Scalar);
8812 }
8813 
EmitSVEDupX(Value * Scalar)8814 Value *CodeGenFunction::EmitSVEDupX(Value* Scalar) {
8815   return EmitSVEDupX(Scalar, getSVEVectorForElementType(Scalar->getType()));
8816 }
8817 
EmitSVEReinterpret(Value * Val,llvm::Type * Ty)8818 Value *CodeGenFunction::EmitSVEReinterpret(Value *Val, llvm::Type *Ty) {
8819   // FIXME: For big endian this needs an additional REV, or needs a separate
8820   // intrinsic that is code-generated as a no-op, because the LLVM bitcast
8821   // instruction is defined as 'bitwise' equivalent from memory point of
8822   // view (when storing/reloading), whereas the svreinterpret builtin
8823   // implements bitwise equivalent cast from register point of view.
8824   // LLVM CodeGen for a bitcast must add an explicit REV for big-endian.
8825   return Builder.CreateBitCast(Val, Ty);
8826 }
8827 
InsertExplicitZeroOperand(CGBuilderTy & Builder,llvm::Type * Ty,SmallVectorImpl<Value * > & Ops)8828 static void InsertExplicitZeroOperand(CGBuilderTy &Builder, llvm::Type *Ty,
8829                                       SmallVectorImpl<Value *> &Ops) {
8830   auto *SplatZero = Constant::getNullValue(Ty);
8831   Ops.insert(Ops.begin(), SplatZero);
8832 }
8833 
InsertExplicitUndefOperand(CGBuilderTy & Builder,llvm::Type * Ty,SmallVectorImpl<Value * > & Ops)8834 static void InsertExplicitUndefOperand(CGBuilderTy &Builder, llvm::Type *Ty,
8835                                        SmallVectorImpl<Value *> &Ops) {
8836   auto *SplatUndef = UndefValue::get(Ty);
8837   Ops.insert(Ops.begin(), SplatUndef);
8838 }
8839 
getSVEOverloadTypes(SVETypeFlags TypeFlags,llvm::Type * ResultType,ArrayRef<Value * > Ops)8840 SmallVector<llvm::Type *, 2> CodeGenFunction::getSVEOverloadTypes(
8841     SVETypeFlags TypeFlags, llvm::Type *ResultType, ArrayRef<Value *> Ops) {
8842   if (TypeFlags.isOverloadNone())
8843     return {};
8844 
8845   llvm::Type *DefaultType = getSVEType(TypeFlags);
8846 
8847   if (TypeFlags.isOverloadWhile())
8848     return {DefaultType, Ops[1]->getType()};
8849 
8850   if (TypeFlags.isOverloadWhileRW())
8851     return {getSVEPredType(TypeFlags), Ops[0]->getType()};
8852 
8853   if (TypeFlags.isOverloadCvt() || TypeFlags.isTupleSet())
8854     return {Ops[0]->getType(), Ops.back()->getType()};
8855 
8856   if (TypeFlags.isTupleCreate() || TypeFlags.isTupleGet())
8857     return {ResultType, Ops[0]->getType()};
8858 
8859   assert(TypeFlags.isOverloadDefault() && "Unexpected value for overloads");
8860   return {DefaultType};
8861 }
8862 
EmitAArch64SVEBuiltinExpr(unsigned BuiltinID,const CallExpr * E)8863 Value *CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID,
8864                                                   const CallExpr *E) {
8865   // Find out if any arguments are required to be integer constant expressions.
8866   unsigned ICEArguments = 0;
8867   ASTContext::GetBuiltinTypeError Error;
8868   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
8869   assert(Error == ASTContext::GE_None && "Should not codegen an error");
8870 
8871   llvm::Type *Ty = ConvertType(E->getType());
8872   if (BuiltinID >= SVE::BI__builtin_sve_reinterpret_s8_s8 &&
8873       BuiltinID <= SVE::BI__builtin_sve_reinterpret_f64_f64) {
8874     Value *Val = EmitScalarExpr(E->getArg(0));
8875     return EmitSVEReinterpret(Val, Ty);
8876   }
8877 
8878   llvm::SmallVector<Value *, 4> Ops;
8879   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
8880     if ((ICEArguments & (1 << i)) == 0)
8881       Ops.push_back(EmitScalarExpr(E->getArg(i)));
8882     else {
8883       // If this is required to be a constant, constant fold it so that we know
8884       // that the generated intrinsic gets a ConstantInt.
8885       Optional<llvm::APSInt> Result =
8886           E->getArg(i)->getIntegerConstantExpr(getContext());
8887       assert(Result && "Expected argument to be a constant");
8888 
8889       // Immediates for SVE llvm intrinsics are always 32bit.  We can safely
8890       // truncate because the immediate has been range checked and no valid
8891       // immediate requires more than a handful of bits.
8892       *Result = Result->extOrTrunc(32);
8893       Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), *Result));
8894     }
8895   }
8896 
8897   auto *Builtin = findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap, BuiltinID,
8898                                               AArch64SVEIntrinsicsProvenSorted);
8899   SVETypeFlags TypeFlags(Builtin->TypeModifier);
8900   if (TypeFlags.isLoad())
8901     return EmitSVEMaskedLoad(E, Ty, Ops, Builtin->LLVMIntrinsic,
8902                              TypeFlags.isZExtReturn());
8903   else if (TypeFlags.isStore())
8904     return EmitSVEMaskedStore(E, Ops, Builtin->LLVMIntrinsic);
8905   else if (TypeFlags.isGatherLoad())
8906     return EmitSVEGatherLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8907   else if (TypeFlags.isScatterStore())
8908     return EmitSVEScatterStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8909   else if (TypeFlags.isPrefetch())
8910     return EmitSVEPrefetchLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8911   else if (TypeFlags.isGatherPrefetch())
8912     return EmitSVEGatherPrefetch(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8913 	else if (TypeFlags.isStructLoad())
8914 		return EmitSVEStructLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8915 	else if (TypeFlags.isStructStore())
8916 		return EmitSVEStructStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8917   else if (TypeFlags.isUndef())
8918     return UndefValue::get(Ty);
8919   else if (Builtin->LLVMIntrinsic != 0) {
8920     if (TypeFlags.getMergeType() == SVETypeFlags::MergeZeroExp)
8921       InsertExplicitZeroOperand(Builder, Ty, Ops);
8922 
8923     if (TypeFlags.getMergeType() == SVETypeFlags::MergeAnyExp)
8924       InsertExplicitUndefOperand(Builder, Ty, Ops);
8925 
8926     // Some ACLE builtins leave out the argument to specify the predicate
8927     // pattern, which is expected to be expanded to an SV_ALL pattern.
8928     if (TypeFlags.isAppendSVALL())
8929       Ops.push_back(Builder.getInt32(/*SV_ALL*/ 31));
8930     if (TypeFlags.isInsertOp1SVALL())
8931       Ops.insert(&Ops[1], Builder.getInt32(/*SV_ALL*/ 31));
8932 
8933     // Predicates must match the main datatype.
8934     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
8935       if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType()))
8936         if (PredTy->getElementType()->isIntegerTy(1))
8937           Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags));
8938 
8939     // Splat scalar operand to vector (intrinsics with _n infix)
8940     if (TypeFlags.hasSplatOperand()) {
8941       unsigned OpNo = TypeFlags.getSplatOperand();
8942       Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
8943     }
8944 
8945     if (TypeFlags.isReverseCompare())
8946       std::swap(Ops[1], Ops[2]);
8947 
8948     if (TypeFlags.isReverseUSDOT())
8949       std::swap(Ops[1], Ops[2]);
8950 
8951     // Predicated intrinsics with _z suffix need a select w/ zeroinitializer.
8952     if (TypeFlags.getMergeType() == SVETypeFlags::MergeZero) {
8953       llvm::Type *OpndTy = Ops[1]->getType();
8954       auto *SplatZero = Constant::getNullValue(OpndTy);
8955       Function *Sel = CGM.getIntrinsic(Intrinsic::aarch64_sve_sel, OpndTy);
8956       Ops[1] = Builder.CreateCall(Sel, {Ops[0], Ops[1], SplatZero});
8957     }
8958 
8959     Function *F = CGM.getIntrinsic(Builtin->LLVMIntrinsic,
8960                                    getSVEOverloadTypes(TypeFlags, Ty, Ops));
8961     Value *Call = Builder.CreateCall(F, Ops);
8962 
8963     // Predicate results must be converted to svbool_t.
8964     if (auto PredTy = dyn_cast<llvm::VectorType>(Call->getType()))
8965       if (PredTy->getScalarType()->isIntegerTy(1))
8966         Call = EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
8967 
8968     return Call;
8969   }
8970 
8971   switch (BuiltinID) {
8972   default:
8973     return nullptr;
8974 
8975   case SVE::BI__builtin_sve_svmov_b_z: {
8976     // svmov_b_z(pg, op) <=> svand_b_z(pg, op, op)
8977     SVETypeFlags TypeFlags(Builtin->TypeModifier);
8978     llvm::Type* OverloadedTy = getSVEType(TypeFlags);
8979     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_and_z, OverloadedTy);
8980     return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[1]});
8981   }
8982 
8983   case SVE::BI__builtin_sve_svnot_b_z: {
8984     // svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg)
8985     SVETypeFlags TypeFlags(Builtin->TypeModifier);
8986     llvm::Type* OverloadedTy = getSVEType(TypeFlags);
8987     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_eor_z, OverloadedTy);
8988     return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[0]});
8989   }
8990 
8991   case SVE::BI__builtin_sve_svmovlb_u16:
8992   case SVE::BI__builtin_sve_svmovlb_u32:
8993   case SVE::BI__builtin_sve_svmovlb_u64:
8994     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllb);
8995 
8996   case SVE::BI__builtin_sve_svmovlb_s16:
8997   case SVE::BI__builtin_sve_svmovlb_s32:
8998   case SVE::BI__builtin_sve_svmovlb_s64:
8999     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllb);
9000 
9001   case SVE::BI__builtin_sve_svmovlt_u16:
9002   case SVE::BI__builtin_sve_svmovlt_u32:
9003   case SVE::BI__builtin_sve_svmovlt_u64:
9004     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllt);
9005 
9006   case SVE::BI__builtin_sve_svmovlt_s16:
9007   case SVE::BI__builtin_sve_svmovlt_s32:
9008   case SVE::BI__builtin_sve_svmovlt_s64:
9009     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllt);
9010 
9011   case SVE::BI__builtin_sve_svpmullt_u16:
9012   case SVE::BI__builtin_sve_svpmullt_u64:
9013   case SVE::BI__builtin_sve_svpmullt_n_u16:
9014   case SVE::BI__builtin_sve_svpmullt_n_u64:
9015     return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullt_pair);
9016 
9017   case SVE::BI__builtin_sve_svpmullb_u16:
9018   case SVE::BI__builtin_sve_svpmullb_u64:
9019   case SVE::BI__builtin_sve_svpmullb_n_u16:
9020   case SVE::BI__builtin_sve_svpmullb_n_u64:
9021     return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullb_pair);
9022 
9023   case SVE::BI__builtin_sve_svdup_n_b8:
9024   case SVE::BI__builtin_sve_svdup_n_b16:
9025   case SVE::BI__builtin_sve_svdup_n_b32:
9026   case SVE::BI__builtin_sve_svdup_n_b64: {
9027     Value *CmpNE =
9028         Builder.CreateICmpNE(Ops[0], Constant::getNullValue(Ops[0]->getType()));
9029     llvm::ScalableVectorType *OverloadedTy = getSVEType(TypeFlags);
9030     Value *Dup = EmitSVEDupX(CmpNE, OverloadedTy);
9031     return EmitSVEPredicateCast(Dup, cast<llvm::ScalableVectorType>(Ty));
9032   }
9033 
9034   case SVE::BI__builtin_sve_svdupq_n_b8:
9035   case SVE::BI__builtin_sve_svdupq_n_b16:
9036   case SVE::BI__builtin_sve_svdupq_n_b32:
9037   case SVE::BI__builtin_sve_svdupq_n_b64:
9038   case SVE::BI__builtin_sve_svdupq_n_u8:
9039   case SVE::BI__builtin_sve_svdupq_n_s8:
9040   case SVE::BI__builtin_sve_svdupq_n_u64:
9041   case SVE::BI__builtin_sve_svdupq_n_f64:
9042   case SVE::BI__builtin_sve_svdupq_n_s64:
9043   case SVE::BI__builtin_sve_svdupq_n_u16:
9044   case SVE::BI__builtin_sve_svdupq_n_f16:
9045   case SVE::BI__builtin_sve_svdupq_n_bf16:
9046   case SVE::BI__builtin_sve_svdupq_n_s16:
9047   case SVE::BI__builtin_sve_svdupq_n_u32:
9048   case SVE::BI__builtin_sve_svdupq_n_f32:
9049   case SVE::BI__builtin_sve_svdupq_n_s32: {
9050     // These builtins are implemented by storing each element to an array and using
9051     // ld1rq to materialize a vector.
9052     unsigned NumOpnds = Ops.size();
9053 
9054     bool IsBoolTy =
9055         cast<llvm::VectorType>(Ty)->getElementType()->isIntegerTy(1);
9056 
9057     // For svdupq_n_b* the element type of is an integer of type 128/numelts,
9058     // so that the compare can use the width that is natural for the expected
9059     // number of predicate lanes.
9060     llvm::Type *EltTy = Ops[0]->getType();
9061     if (IsBoolTy)
9062       EltTy = IntegerType::get(getLLVMContext(), SVEBitsPerBlock / NumOpnds);
9063 
9064     Address Alloca = CreateTempAlloca(llvm::ArrayType::get(EltTy, NumOpnds),
9065                                      CharUnits::fromQuantity(16));
9066     for (unsigned I = 0; I < NumOpnds; ++I)
9067       Builder.CreateDefaultAlignedStore(
9068           IsBoolTy ? Builder.CreateZExt(Ops[I], EltTy) : Ops[I],
9069           Builder.CreateGEP(Alloca.getElementType(), Alloca.getPointer(),
9070                             {Builder.getInt64(0), Builder.getInt64(I)}));
9071 
9072     SVETypeFlags TypeFlags(Builtin->TypeModifier);
9073     Value *Pred = EmitSVEAllTruePred(TypeFlags);
9074 
9075     llvm::Type *OverloadedTy = getSVEVectorForElementType(EltTy);
9076     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_ld1rq, OverloadedTy);
9077     Value *Alloca0 = Builder.CreateGEP(
9078         Alloca.getElementType(), Alloca.getPointer(),
9079         {Builder.getInt64(0), Builder.getInt64(0)});
9080     Value *LD1RQ = Builder.CreateCall(F, {Pred, Alloca0});
9081 
9082     if (!IsBoolTy)
9083       return LD1RQ;
9084 
9085     // For svdupq_n_b* we need to add an additional 'cmpne' with '0'.
9086     F = CGM.getIntrinsic(NumOpnds == 2 ? Intrinsic::aarch64_sve_cmpne
9087                                        : Intrinsic::aarch64_sve_cmpne_wide,
9088                          OverloadedTy);
9089     Value *Call =
9090         Builder.CreateCall(F, {Pred, LD1RQ, EmitSVEDupX(Builder.getInt64(0))});
9091     return EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
9092   }
9093 
9094   case SVE::BI__builtin_sve_svpfalse_b:
9095     return ConstantInt::getFalse(Ty);
9096 
9097   case SVE::BI__builtin_sve_svlen_bf16:
9098   case SVE::BI__builtin_sve_svlen_f16:
9099   case SVE::BI__builtin_sve_svlen_f32:
9100   case SVE::BI__builtin_sve_svlen_f64:
9101   case SVE::BI__builtin_sve_svlen_s8:
9102   case SVE::BI__builtin_sve_svlen_s16:
9103   case SVE::BI__builtin_sve_svlen_s32:
9104   case SVE::BI__builtin_sve_svlen_s64:
9105   case SVE::BI__builtin_sve_svlen_u8:
9106   case SVE::BI__builtin_sve_svlen_u16:
9107   case SVE::BI__builtin_sve_svlen_u32:
9108   case SVE::BI__builtin_sve_svlen_u64: {
9109     SVETypeFlags TF(Builtin->TypeModifier);
9110     auto VTy = cast<llvm::VectorType>(getSVEType(TF));
9111     auto *NumEls =
9112         llvm::ConstantInt::get(Ty, VTy->getElementCount().getKnownMinValue());
9113 
9114     Function *F = CGM.getIntrinsic(Intrinsic::vscale, Ty);
9115     return Builder.CreateMul(NumEls, Builder.CreateCall(F));
9116   }
9117 
9118   case SVE::BI__builtin_sve_svtbl2_u8:
9119   case SVE::BI__builtin_sve_svtbl2_s8:
9120   case SVE::BI__builtin_sve_svtbl2_u16:
9121   case SVE::BI__builtin_sve_svtbl2_s16:
9122   case SVE::BI__builtin_sve_svtbl2_u32:
9123   case SVE::BI__builtin_sve_svtbl2_s32:
9124   case SVE::BI__builtin_sve_svtbl2_u64:
9125   case SVE::BI__builtin_sve_svtbl2_s64:
9126   case SVE::BI__builtin_sve_svtbl2_f16:
9127   case SVE::BI__builtin_sve_svtbl2_bf16:
9128   case SVE::BI__builtin_sve_svtbl2_f32:
9129   case SVE::BI__builtin_sve_svtbl2_f64: {
9130     SVETypeFlags TF(Builtin->TypeModifier);
9131     auto VTy = cast<llvm::VectorType>(getSVEType(TF));
9132     auto TupleTy = llvm::VectorType::getDoubleElementsVectorType(VTy);
9133     Function *FExtr =
9134         CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
9135     Value *V0 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(0)});
9136     Value *V1 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(1)});
9137     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_tbl2, VTy);
9138     return Builder.CreateCall(F, {V0, V1, Ops[1]});
9139   }
9140   }
9141 
9142   /// Should not happen
9143   return nullptr;
9144 }
9145 
EmitAArch64BuiltinExpr(unsigned BuiltinID,const CallExpr * E,llvm::Triple::ArchType Arch)9146 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
9147                                                const CallExpr *E,
9148                                                llvm::Triple::ArchType Arch) {
9149   if (BuiltinID >= AArch64::FirstSVEBuiltin &&
9150       BuiltinID <= AArch64::LastSVEBuiltin)
9151     return EmitAArch64SVEBuiltinExpr(BuiltinID, E);
9152 
9153   unsigned HintID = static_cast<unsigned>(-1);
9154   switch (BuiltinID) {
9155   default: break;
9156   case AArch64::BI__builtin_arm_nop:
9157     HintID = 0;
9158     break;
9159   case AArch64::BI__builtin_arm_yield:
9160   case AArch64::BI__yield:
9161     HintID = 1;
9162     break;
9163   case AArch64::BI__builtin_arm_wfe:
9164   case AArch64::BI__wfe:
9165     HintID = 2;
9166     break;
9167   case AArch64::BI__builtin_arm_wfi:
9168   case AArch64::BI__wfi:
9169     HintID = 3;
9170     break;
9171   case AArch64::BI__builtin_arm_sev:
9172   case AArch64::BI__sev:
9173     HintID = 4;
9174     break;
9175   case AArch64::BI__builtin_arm_sevl:
9176   case AArch64::BI__sevl:
9177     HintID = 5;
9178     break;
9179   }
9180 
9181   if (HintID != static_cast<unsigned>(-1)) {
9182     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
9183     return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
9184   }
9185 
9186   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
9187     Value *Address         = EmitScalarExpr(E->getArg(0));
9188     Value *RW              = EmitScalarExpr(E->getArg(1));
9189     Value *CacheLevel      = EmitScalarExpr(E->getArg(2));
9190     Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
9191     Value *IsData          = EmitScalarExpr(E->getArg(4));
9192 
9193     Value *Locality = nullptr;
9194     if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
9195       // Temporal fetch, needs to convert cache level to locality.
9196       Locality = llvm::ConstantInt::get(Int32Ty,
9197         -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
9198     } else {
9199       // Streaming fetch.
9200       Locality = llvm::ConstantInt::get(Int32Ty, 0);
9201     }
9202 
9203     // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
9204     // PLDL3STRM or PLDL2STRM.
9205     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
9206     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
9207   }
9208 
9209   if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
9210     assert((getContext().getTypeSize(E->getType()) == 32) &&
9211            "rbit of unusual size!");
9212     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9213     return Builder.CreateCall(
9214         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
9215   }
9216   if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
9217     assert((getContext().getTypeSize(E->getType()) == 64) &&
9218            "rbit of unusual size!");
9219     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9220     return Builder.CreateCall(
9221         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
9222   }
9223 
9224   if (BuiltinID == AArch64::BI__builtin_arm_cls) {
9225     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9226     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg,
9227                               "cls");
9228   }
9229   if (BuiltinID == AArch64::BI__builtin_arm_cls64) {
9230     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9231     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg,
9232                               "cls");
9233   }
9234 
9235   if (BuiltinID == AArch64::BI__builtin_arm_frint32zf ||
9236       BuiltinID == AArch64::BI__builtin_arm_frint32z) {
9237     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9238     llvm::Type *Ty = Arg->getType();
9239     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32z, Ty),
9240                               Arg, "frint32z");
9241   }
9242 
9243   if (BuiltinID == AArch64::BI__builtin_arm_frint64zf ||
9244       BuiltinID == AArch64::BI__builtin_arm_frint64z) {
9245     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9246     llvm::Type *Ty = Arg->getType();
9247     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64z, Ty),
9248                               Arg, "frint64z");
9249   }
9250 
9251   if (BuiltinID == AArch64::BI__builtin_arm_frint32xf ||
9252       BuiltinID == AArch64::BI__builtin_arm_frint32x) {
9253     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9254     llvm::Type *Ty = Arg->getType();
9255     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32x, Ty),
9256                               Arg, "frint32x");
9257   }
9258 
9259   if (BuiltinID == AArch64::BI__builtin_arm_frint64xf ||
9260       BuiltinID == AArch64::BI__builtin_arm_frint64x) {
9261     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9262     llvm::Type *Ty = Arg->getType();
9263     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64x, Ty),
9264                               Arg, "frint64x");
9265   }
9266 
9267   if (BuiltinID == AArch64::BI__builtin_arm_jcvt) {
9268     assert((getContext().getTypeSize(E->getType()) == 32) &&
9269            "__jcvt of unusual size!");
9270     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9271     return Builder.CreateCall(
9272         CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg);
9273   }
9274 
9275   if (BuiltinID == AArch64::BI__builtin_arm_ld64b ||
9276       BuiltinID == AArch64::BI__builtin_arm_st64b ||
9277       BuiltinID == AArch64::BI__builtin_arm_st64bv ||
9278       BuiltinID == AArch64::BI__builtin_arm_st64bv0) {
9279     llvm::Value *MemAddr = EmitScalarExpr(E->getArg(0));
9280     llvm::Value *ValPtr = EmitScalarExpr(E->getArg(1));
9281 
9282     if (BuiltinID == AArch64::BI__builtin_arm_ld64b) {
9283       // Load from the address via an LLVM intrinsic, receiving a
9284       // tuple of 8 i64 words, and store each one to ValPtr.
9285       Function *F = CGM.getIntrinsic(Intrinsic::aarch64_ld64b);
9286       llvm::Value *Val = Builder.CreateCall(F, MemAddr);
9287       llvm::Value *ToRet;
9288       for (size_t i = 0; i < 8; i++) {
9289         llvm::Value *ValOffsetPtr = Builder.CreateGEP(ValPtr, Builder.getInt32(i));
9290         Address Addr(ValOffsetPtr, CharUnits::fromQuantity(8));
9291         ToRet = Builder.CreateStore(Builder.CreateExtractValue(Val, i), Addr);
9292       }
9293       return ToRet;
9294     } else {
9295       // Load 8 i64 words from ValPtr, and store them to the address
9296       // via an LLVM intrinsic.
9297       SmallVector<llvm::Value *, 9> Args;
9298       Args.push_back(MemAddr);
9299       for (size_t i = 0; i < 8; i++) {
9300         llvm::Value *ValOffsetPtr = Builder.CreateGEP(ValPtr, Builder.getInt32(i));
9301         Address Addr(ValOffsetPtr, CharUnits::fromQuantity(8));
9302         Args.push_back(Builder.CreateLoad(Addr));
9303       }
9304 
9305       auto Intr = (BuiltinID == AArch64::BI__builtin_arm_st64b
9306                        ? Intrinsic::aarch64_st64b
9307                        : BuiltinID == AArch64::BI__builtin_arm_st64bv
9308                              ? Intrinsic::aarch64_st64bv
9309                              : Intrinsic::aarch64_st64bv0);
9310       Function *F = CGM.getIntrinsic(Intr);
9311       return Builder.CreateCall(F, Args);
9312     }
9313   }
9314 
9315   if (BuiltinID == AArch64::BI__builtin_arm_rndr ||
9316       BuiltinID == AArch64::BI__builtin_arm_rndrrs) {
9317 
9318     auto Intr = (BuiltinID == AArch64::BI__builtin_arm_rndr
9319                      ? Intrinsic::aarch64_rndr
9320                      : Intrinsic::aarch64_rndrrs);
9321     Function *F = CGM.getIntrinsic(Intr);
9322     llvm::Value *Val = Builder.CreateCall(F);
9323     Value *RandomValue = Builder.CreateExtractValue(Val, 0);
9324     Value *Status = Builder.CreateExtractValue(Val, 1);
9325 
9326     Address MemAddress = EmitPointerWithAlignment(E->getArg(0));
9327     Builder.CreateStore(RandomValue, MemAddress);
9328     Status = Builder.CreateZExt(Status, Int32Ty);
9329     return Status;
9330   }
9331 
9332   if (BuiltinID == AArch64::BI__clear_cache) {
9333     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
9334     const FunctionDecl *FD = E->getDirectCallee();
9335     Value *Ops[2];
9336     for (unsigned i = 0; i < 2; i++)
9337       Ops[i] = EmitScalarExpr(E->getArg(i));
9338     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
9339     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
9340     StringRef Name = FD->getName();
9341     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
9342   }
9343 
9344   if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
9345       BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
9346       getContext().getTypeSize(E->getType()) == 128) {
9347     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
9348                                        ? Intrinsic::aarch64_ldaxp
9349                                        : Intrinsic::aarch64_ldxp);
9350 
9351     Value *LdPtr = EmitScalarExpr(E->getArg(0));
9352     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
9353                                     "ldxp");
9354 
9355     Value *Val0 = Builder.CreateExtractValue(Val, 1);
9356     Value *Val1 = Builder.CreateExtractValue(Val, 0);
9357     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
9358     Val0 = Builder.CreateZExt(Val0, Int128Ty);
9359     Val1 = Builder.CreateZExt(Val1, Int128Ty);
9360 
9361     Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
9362     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
9363     Val = Builder.CreateOr(Val, Val1);
9364     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
9365   } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
9366              BuiltinID == AArch64::BI__builtin_arm_ldaex) {
9367     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
9368 
9369     QualType Ty = E->getType();
9370     llvm::Type *RealResTy = ConvertType(Ty);
9371     llvm::Type *PtrTy = llvm::IntegerType::get(
9372         getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
9373     LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
9374 
9375     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
9376                                        ? Intrinsic::aarch64_ldaxr
9377                                        : Intrinsic::aarch64_ldxr,
9378                                    PtrTy);
9379     Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
9380 
9381     if (RealResTy->isPointerTy())
9382       return Builder.CreateIntToPtr(Val, RealResTy);
9383 
9384     llvm::Type *IntResTy = llvm::IntegerType::get(
9385         getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
9386     Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
9387     return Builder.CreateBitCast(Val, RealResTy);
9388   }
9389 
9390   if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
9391        BuiltinID == AArch64::BI__builtin_arm_stlex) &&
9392       getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
9393     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
9394                                        ? Intrinsic::aarch64_stlxp
9395                                        : Intrinsic::aarch64_stxp);
9396     llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
9397 
9398     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
9399     EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
9400 
9401     Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy));
9402     llvm::Value *Val = Builder.CreateLoad(Tmp);
9403 
9404     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
9405     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
9406     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
9407                                          Int8PtrTy);
9408     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
9409   }
9410 
9411   if (BuiltinID == AArch64::BI__builtin_arm_strex ||
9412       BuiltinID == AArch64::BI__builtin_arm_stlex) {
9413     Value *StoreVal = EmitScalarExpr(E->getArg(0));
9414     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
9415 
9416     QualType Ty = E->getArg(0)->getType();
9417     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
9418                                                  getContext().getTypeSize(Ty));
9419     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
9420 
9421     if (StoreVal->getType()->isPointerTy())
9422       StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
9423     else {
9424       llvm::Type *IntTy = llvm::IntegerType::get(
9425           getLLVMContext(),
9426           CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
9427       StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
9428       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
9429     }
9430 
9431     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
9432                                        ? Intrinsic::aarch64_stlxr
9433                                        : Intrinsic::aarch64_stxr,
9434                                    StoreAddr->getType());
9435     return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
9436   }
9437 
9438   if (BuiltinID == AArch64::BI__getReg) {
9439     Expr::EvalResult Result;
9440     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
9441       llvm_unreachable("Sema will ensure that the parameter is constant");
9442 
9443     llvm::APSInt Value = Result.Val.getInt();
9444     LLVMContext &Context = CGM.getLLVMContext();
9445     std::string Reg = Value == 31 ? "sp" : "x" + Value.toString(10);
9446 
9447     llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
9448     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
9449     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
9450 
9451     llvm::Function *F =
9452         CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
9453     return Builder.CreateCall(F, Metadata);
9454   }
9455 
9456   if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
9457     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
9458     return Builder.CreateCall(F);
9459   }
9460 
9461   if (BuiltinID == AArch64::BI_ReadWriteBarrier)
9462     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
9463                                llvm::SyncScope::SingleThread);
9464 
9465   // CRC32
9466   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
9467   switch (BuiltinID) {
9468   case AArch64::BI__builtin_arm_crc32b:
9469     CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
9470   case AArch64::BI__builtin_arm_crc32cb:
9471     CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
9472   case AArch64::BI__builtin_arm_crc32h:
9473     CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
9474   case AArch64::BI__builtin_arm_crc32ch:
9475     CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
9476   case AArch64::BI__builtin_arm_crc32w:
9477     CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
9478   case AArch64::BI__builtin_arm_crc32cw:
9479     CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
9480   case AArch64::BI__builtin_arm_crc32d:
9481     CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
9482   case AArch64::BI__builtin_arm_crc32cd:
9483     CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
9484   }
9485 
9486   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
9487     Value *Arg0 = EmitScalarExpr(E->getArg(0));
9488     Value *Arg1 = EmitScalarExpr(E->getArg(1));
9489     Function *F = CGM.getIntrinsic(CRCIntrinsicID);
9490 
9491     llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
9492     Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
9493 
9494     return Builder.CreateCall(F, {Arg0, Arg1});
9495   }
9496 
9497   // Memory Tagging Extensions (MTE) Intrinsics
9498   Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
9499   switch (BuiltinID) {
9500   case AArch64::BI__builtin_arm_irg:
9501     MTEIntrinsicID = Intrinsic::aarch64_irg; break;
9502   case  AArch64::BI__builtin_arm_addg:
9503     MTEIntrinsicID = Intrinsic::aarch64_addg; break;
9504   case  AArch64::BI__builtin_arm_gmi:
9505     MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
9506   case  AArch64::BI__builtin_arm_ldg:
9507     MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
9508   case AArch64::BI__builtin_arm_stg:
9509     MTEIntrinsicID = Intrinsic::aarch64_stg; break;
9510   case AArch64::BI__builtin_arm_subp:
9511     MTEIntrinsicID = Intrinsic::aarch64_subp; break;
9512   }
9513 
9514   if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
9515     llvm::Type *T = ConvertType(E->getType());
9516 
9517     if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
9518       Value *Pointer = EmitScalarExpr(E->getArg(0));
9519       Value *Mask = EmitScalarExpr(E->getArg(1));
9520 
9521       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9522       Mask = Builder.CreateZExt(Mask, Int64Ty);
9523       Value *RV = Builder.CreateCall(
9524                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
9525        return Builder.CreatePointerCast(RV, T);
9526     }
9527     if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
9528       Value *Pointer = EmitScalarExpr(E->getArg(0));
9529       Value *TagOffset = EmitScalarExpr(E->getArg(1));
9530 
9531       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9532       TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
9533       Value *RV = Builder.CreateCall(
9534                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
9535       return Builder.CreatePointerCast(RV, T);
9536     }
9537     if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
9538       Value *Pointer = EmitScalarExpr(E->getArg(0));
9539       Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
9540 
9541       ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
9542       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9543       return Builder.CreateCall(
9544                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
9545     }
9546     // Although it is possible to supply a different return
9547     // address (first arg) to this intrinsic, for now we set
9548     // return address same as input address.
9549     if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
9550       Value *TagAddress = EmitScalarExpr(E->getArg(0));
9551       TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
9552       Value *RV = Builder.CreateCall(
9553                     CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
9554       return Builder.CreatePointerCast(RV, T);
9555     }
9556     // Although it is possible to supply a different tag (to set)
9557     // to this intrinsic (as first arg), for now we supply
9558     // the tag that is in input address arg (common use case).
9559     if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
9560         Value *TagAddress = EmitScalarExpr(E->getArg(0));
9561         TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
9562         return Builder.CreateCall(
9563                  CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
9564     }
9565     if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
9566       Value *PointerA = EmitScalarExpr(E->getArg(0));
9567       Value *PointerB = EmitScalarExpr(E->getArg(1));
9568       PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
9569       PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
9570       return Builder.CreateCall(
9571                        CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
9572     }
9573   }
9574 
9575   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
9576       BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
9577       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
9578       BuiltinID == AArch64::BI__builtin_arm_wsr ||
9579       BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
9580       BuiltinID == AArch64::BI__builtin_arm_wsrp) {
9581 
9582     SpecialRegisterAccessKind AccessKind = Write;
9583     if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
9584         BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
9585         BuiltinID == AArch64::BI__builtin_arm_rsrp)
9586       AccessKind = VolatileRead;
9587 
9588     bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
9589                             BuiltinID == AArch64::BI__builtin_arm_wsrp;
9590 
9591     bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
9592                    BuiltinID != AArch64::BI__builtin_arm_wsr;
9593 
9594     llvm::Type *ValueType;
9595     llvm::Type *RegisterType = Int64Ty;
9596     if (IsPointerBuiltin) {
9597       ValueType = VoidPtrTy;
9598     } else if (Is64Bit) {
9599       ValueType = Int64Ty;
9600     } else {
9601       ValueType = Int32Ty;
9602     }
9603 
9604     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
9605                                       AccessKind);
9606   }
9607 
9608   if (BuiltinID == AArch64::BI_ReadStatusReg ||
9609       BuiltinID == AArch64::BI_WriteStatusReg) {
9610     LLVMContext &Context = CGM.getLLVMContext();
9611 
9612     unsigned SysReg =
9613       E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
9614 
9615     std::string SysRegStr;
9616     llvm::raw_string_ostream(SysRegStr) <<
9617                        ((1 << 1) | ((SysReg >> 14) & 1))  << ":" <<
9618                        ((SysReg >> 11) & 7)               << ":" <<
9619                        ((SysReg >> 7)  & 15)              << ":" <<
9620                        ((SysReg >> 3)  & 15)              << ":" <<
9621                        ( SysReg        & 7);
9622 
9623     llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
9624     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
9625     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
9626 
9627     llvm::Type *RegisterType = Int64Ty;
9628     llvm::Type *Types[] = { RegisterType };
9629 
9630     if (BuiltinID == AArch64::BI_ReadStatusReg) {
9631       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
9632 
9633       return Builder.CreateCall(F, Metadata);
9634     }
9635 
9636     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
9637     llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
9638 
9639     return Builder.CreateCall(F, { Metadata, ArgValue });
9640   }
9641 
9642   if (BuiltinID == AArch64::BI_AddressOfReturnAddress) {
9643     llvm::Function *F =
9644         CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
9645     return Builder.CreateCall(F);
9646   }
9647 
9648   if (BuiltinID == AArch64::BI__builtin_sponentry) {
9649     llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
9650     return Builder.CreateCall(F);
9651   }
9652 
9653   // Handle MSVC intrinsics before argument evaluation to prevent double
9654   // evaluation.
9655   if (Optional<MSVCIntrin> MsvcIntId = translateAarch64ToMsvcIntrin(BuiltinID))
9656     return EmitMSVCBuiltinExpr(*MsvcIntId, E);
9657 
9658   // Find out if any arguments are required to be integer constant
9659   // expressions.
9660   unsigned ICEArguments = 0;
9661   ASTContext::GetBuiltinTypeError Error;
9662   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
9663   assert(Error == ASTContext::GE_None && "Should not codegen an error");
9664 
9665   llvm::SmallVector<Value*, 4> Ops;
9666   Address PtrOp0 = Address::invalid();
9667   for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
9668     if (i == 0) {
9669       switch (BuiltinID) {
9670       case NEON::BI__builtin_neon_vld1_v:
9671       case NEON::BI__builtin_neon_vld1q_v:
9672       case NEON::BI__builtin_neon_vld1_dup_v:
9673       case NEON::BI__builtin_neon_vld1q_dup_v:
9674       case NEON::BI__builtin_neon_vld1_lane_v:
9675       case NEON::BI__builtin_neon_vld1q_lane_v:
9676       case NEON::BI__builtin_neon_vst1_v:
9677       case NEON::BI__builtin_neon_vst1q_v:
9678       case NEON::BI__builtin_neon_vst1_lane_v:
9679       case NEON::BI__builtin_neon_vst1q_lane_v:
9680         // Get the alignment for the argument in addition to the value;
9681         // we'll use it later.
9682         PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
9683         Ops.push_back(PtrOp0.getPointer());
9684         continue;
9685       }
9686     }
9687     if ((ICEArguments & (1 << i)) == 0) {
9688       Ops.push_back(EmitScalarExpr(E->getArg(i)));
9689     } else {
9690       // If this is required to be a constant, constant fold it so that we know
9691       // that the generated intrinsic gets a ConstantInt.
9692       Ops.push_back(llvm::ConstantInt::get(
9693           getLLVMContext(),
9694           *E->getArg(i)->getIntegerConstantExpr(getContext())));
9695     }
9696   }
9697 
9698   auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
9699   const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
9700       SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
9701 
9702   if (Builtin) {
9703     Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
9704     Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
9705     assert(Result && "SISD intrinsic should have been handled");
9706     return Result;
9707   }
9708 
9709   const Expr *Arg = E->getArg(E->getNumArgs()-1);
9710   NeonTypeFlags Type(0);
9711   if (Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext()))
9712     // Determine the type of this overloaded NEON intrinsic.
9713     Type = NeonTypeFlags(Result->getZExtValue());
9714 
9715   bool usgn = Type.isUnsigned();
9716   bool quad = Type.isQuad();
9717 
9718   // Handle non-overloaded intrinsics first.
9719   switch (BuiltinID) {
9720   default: break;
9721   case NEON::BI__builtin_neon_vabsh_f16:
9722     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9723     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
9724   case NEON::BI__builtin_neon_vaddq_p128: {
9725     llvm::Type *Ty = GetNeonType(this, NeonTypeFlags::Poly128);
9726     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9727     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9728     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9729     Ops[0] =  Builder.CreateXor(Ops[0], Ops[1]);
9730     llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
9731     return Builder.CreateBitCast(Ops[0], Int128Ty);
9732   }
9733   case NEON::BI__builtin_neon_vldrq_p128: {
9734     llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
9735     llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
9736     Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
9737     return Builder.CreateAlignedLoad(Int128Ty, Ptr,
9738                                      CharUnits::fromQuantity(16));
9739   }
9740   case NEON::BI__builtin_neon_vstrq_p128: {
9741     llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
9742     Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
9743     return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
9744   }
9745   case NEON::BI__builtin_neon_vcvts_f32_u32:
9746   case NEON::BI__builtin_neon_vcvtd_f64_u64:
9747     usgn = true;
9748     LLVM_FALLTHROUGH;
9749   case NEON::BI__builtin_neon_vcvts_f32_s32:
9750   case NEON::BI__builtin_neon_vcvtd_f64_s64: {
9751     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9752     bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
9753     llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
9754     llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
9755     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
9756     if (usgn)
9757       return Builder.CreateUIToFP(Ops[0], FTy);
9758     return Builder.CreateSIToFP(Ops[0], FTy);
9759   }
9760   case NEON::BI__builtin_neon_vcvth_f16_u16:
9761   case NEON::BI__builtin_neon_vcvth_f16_u32:
9762   case NEON::BI__builtin_neon_vcvth_f16_u64:
9763     usgn = true;
9764     LLVM_FALLTHROUGH;
9765   case NEON::BI__builtin_neon_vcvth_f16_s16:
9766   case NEON::BI__builtin_neon_vcvth_f16_s32:
9767   case NEON::BI__builtin_neon_vcvth_f16_s64: {
9768     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9769     llvm::Type *FTy = HalfTy;
9770     llvm::Type *InTy;
9771     if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
9772       InTy = Int64Ty;
9773     else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
9774       InTy = Int32Ty;
9775     else
9776       InTy = Int16Ty;
9777     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
9778     if (usgn)
9779       return Builder.CreateUIToFP(Ops[0], FTy);
9780     return Builder.CreateSIToFP(Ops[0], FTy);
9781   }
9782   case NEON::BI__builtin_neon_vcvtah_u16_f16:
9783   case NEON::BI__builtin_neon_vcvtmh_u16_f16:
9784   case NEON::BI__builtin_neon_vcvtnh_u16_f16:
9785   case NEON::BI__builtin_neon_vcvtph_u16_f16:
9786   case NEON::BI__builtin_neon_vcvth_u16_f16:
9787   case NEON::BI__builtin_neon_vcvtah_s16_f16:
9788   case NEON::BI__builtin_neon_vcvtmh_s16_f16:
9789   case NEON::BI__builtin_neon_vcvtnh_s16_f16:
9790   case NEON::BI__builtin_neon_vcvtph_s16_f16:
9791   case NEON::BI__builtin_neon_vcvth_s16_f16: {
9792     unsigned Int;
9793     llvm::Type* InTy = Int32Ty;
9794     llvm::Type* FTy  = HalfTy;
9795     llvm::Type *Tys[2] = {InTy, FTy};
9796     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9797     switch (BuiltinID) {
9798     default: llvm_unreachable("missing builtin ID in switch!");
9799     case NEON::BI__builtin_neon_vcvtah_u16_f16:
9800       Int = Intrinsic::aarch64_neon_fcvtau; break;
9801     case NEON::BI__builtin_neon_vcvtmh_u16_f16:
9802       Int = Intrinsic::aarch64_neon_fcvtmu; break;
9803     case NEON::BI__builtin_neon_vcvtnh_u16_f16:
9804       Int = Intrinsic::aarch64_neon_fcvtnu; break;
9805     case NEON::BI__builtin_neon_vcvtph_u16_f16:
9806       Int = Intrinsic::aarch64_neon_fcvtpu; break;
9807     case NEON::BI__builtin_neon_vcvth_u16_f16:
9808       Int = Intrinsic::aarch64_neon_fcvtzu; break;
9809     case NEON::BI__builtin_neon_vcvtah_s16_f16:
9810       Int = Intrinsic::aarch64_neon_fcvtas; break;
9811     case NEON::BI__builtin_neon_vcvtmh_s16_f16:
9812       Int = Intrinsic::aarch64_neon_fcvtms; break;
9813     case NEON::BI__builtin_neon_vcvtnh_s16_f16:
9814       Int = Intrinsic::aarch64_neon_fcvtns; break;
9815     case NEON::BI__builtin_neon_vcvtph_s16_f16:
9816       Int = Intrinsic::aarch64_neon_fcvtps; break;
9817     case NEON::BI__builtin_neon_vcvth_s16_f16:
9818       Int = Intrinsic::aarch64_neon_fcvtzs; break;
9819     }
9820     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
9821     return Builder.CreateTrunc(Ops[0], Int16Ty);
9822   }
9823   case NEON::BI__builtin_neon_vcaleh_f16:
9824   case NEON::BI__builtin_neon_vcalth_f16:
9825   case NEON::BI__builtin_neon_vcageh_f16:
9826   case NEON::BI__builtin_neon_vcagth_f16: {
9827     unsigned Int;
9828     llvm::Type* InTy = Int32Ty;
9829     llvm::Type* FTy  = HalfTy;
9830     llvm::Type *Tys[2] = {InTy, FTy};
9831     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9832     switch (BuiltinID) {
9833     default: llvm_unreachable("missing builtin ID in switch!");
9834     case NEON::BI__builtin_neon_vcageh_f16:
9835       Int = Intrinsic::aarch64_neon_facge; break;
9836     case NEON::BI__builtin_neon_vcagth_f16:
9837       Int = Intrinsic::aarch64_neon_facgt; break;
9838     case NEON::BI__builtin_neon_vcaleh_f16:
9839       Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
9840     case NEON::BI__builtin_neon_vcalth_f16:
9841       Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
9842     }
9843     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
9844     return Builder.CreateTrunc(Ops[0], Int16Ty);
9845   }
9846   case NEON::BI__builtin_neon_vcvth_n_s16_f16:
9847   case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
9848     unsigned Int;
9849     llvm::Type* InTy = Int32Ty;
9850     llvm::Type* FTy  = HalfTy;
9851     llvm::Type *Tys[2] = {InTy, FTy};
9852     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9853     switch (BuiltinID) {
9854     default: llvm_unreachable("missing builtin ID in switch!");
9855     case NEON::BI__builtin_neon_vcvth_n_s16_f16:
9856       Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
9857     case NEON::BI__builtin_neon_vcvth_n_u16_f16:
9858       Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
9859     }
9860     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
9861     return Builder.CreateTrunc(Ops[0], Int16Ty);
9862   }
9863   case NEON::BI__builtin_neon_vcvth_n_f16_s16:
9864   case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
9865     unsigned Int;
9866     llvm::Type* FTy  = HalfTy;
9867     llvm::Type* InTy = Int32Ty;
9868     llvm::Type *Tys[2] = {FTy, InTy};
9869     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9870     switch (BuiltinID) {
9871     default: llvm_unreachable("missing builtin ID in switch!");
9872     case NEON::BI__builtin_neon_vcvth_n_f16_s16:
9873       Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
9874       Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
9875       break;
9876     case NEON::BI__builtin_neon_vcvth_n_f16_u16:
9877       Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
9878       Ops[0] = Builder.CreateZExt(Ops[0], InTy);
9879       break;
9880     }
9881     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
9882   }
9883   case NEON::BI__builtin_neon_vpaddd_s64: {
9884     auto *Ty = llvm::FixedVectorType::get(Int64Ty, 2);
9885     Value *Vec = EmitScalarExpr(E->getArg(0));
9886     // The vector is v2f64, so make sure it's bitcast to that.
9887     Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
9888     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
9889     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
9890     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
9891     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
9892     // Pairwise addition of a v2f64 into a scalar f64.
9893     return Builder.CreateAdd(Op0, Op1, "vpaddd");
9894   }
9895   case NEON::BI__builtin_neon_vpaddd_f64: {
9896     auto *Ty = llvm::FixedVectorType::get(DoubleTy, 2);
9897     Value *Vec = EmitScalarExpr(E->getArg(0));
9898     // The vector is v2f64, so make sure it's bitcast to that.
9899     Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
9900     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
9901     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
9902     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
9903     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
9904     // Pairwise addition of a v2f64 into a scalar f64.
9905     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
9906   }
9907   case NEON::BI__builtin_neon_vpadds_f32: {
9908     auto *Ty = llvm::FixedVectorType::get(FloatTy, 2);
9909     Value *Vec = EmitScalarExpr(E->getArg(0));
9910     // The vector is v2f32, so make sure it's bitcast to that.
9911     Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
9912     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
9913     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
9914     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
9915     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
9916     // Pairwise addition of a v2f32 into a scalar f32.
9917     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
9918   }
9919   case NEON::BI__builtin_neon_vceqzd_s64:
9920   case NEON::BI__builtin_neon_vceqzd_f64:
9921   case NEON::BI__builtin_neon_vceqzs_f32:
9922   case NEON::BI__builtin_neon_vceqzh_f16:
9923     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9924     return EmitAArch64CompareBuiltinExpr(
9925         Ops[0], ConvertType(E->getCallReturnType(getContext())),
9926         ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
9927   case NEON::BI__builtin_neon_vcgezd_s64:
9928   case NEON::BI__builtin_neon_vcgezd_f64:
9929   case NEON::BI__builtin_neon_vcgezs_f32:
9930   case NEON::BI__builtin_neon_vcgezh_f16:
9931     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9932     return EmitAArch64CompareBuiltinExpr(
9933         Ops[0], ConvertType(E->getCallReturnType(getContext())),
9934         ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
9935   case NEON::BI__builtin_neon_vclezd_s64:
9936   case NEON::BI__builtin_neon_vclezd_f64:
9937   case NEON::BI__builtin_neon_vclezs_f32:
9938   case NEON::BI__builtin_neon_vclezh_f16:
9939     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9940     return EmitAArch64CompareBuiltinExpr(
9941         Ops[0], ConvertType(E->getCallReturnType(getContext())),
9942         ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
9943   case NEON::BI__builtin_neon_vcgtzd_s64:
9944   case NEON::BI__builtin_neon_vcgtzd_f64:
9945   case NEON::BI__builtin_neon_vcgtzs_f32:
9946   case NEON::BI__builtin_neon_vcgtzh_f16:
9947     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9948     return EmitAArch64CompareBuiltinExpr(
9949         Ops[0], ConvertType(E->getCallReturnType(getContext())),
9950         ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
9951   case NEON::BI__builtin_neon_vcltzd_s64:
9952   case NEON::BI__builtin_neon_vcltzd_f64:
9953   case NEON::BI__builtin_neon_vcltzs_f32:
9954   case NEON::BI__builtin_neon_vcltzh_f16:
9955     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9956     return EmitAArch64CompareBuiltinExpr(
9957         Ops[0], ConvertType(E->getCallReturnType(getContext())),
9958         ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
9959 
9960   case NEON::BI__builtin_neon_vceqzd_u64: {
9961     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9962     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
9963     Ops[0] =
9964         Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
9965     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
9966   }
9967   case NEON::BI__builtin_neon_vceqd_f64:
9968   case NEON::BI__builtin_neon_vcled_f64:
9969   case NEON::BI__builtin_neon_vcltd_f64:
9970   case NEON::BI__builtin_neon_vcged_f64:
9971   case NEON::BI__builtin_neon_vcgtd_f64: {
9972     llvm::CmpInst::Predicate P;
9973     switch (BuiltinID) {
9974     default: llvm_unreachable("missing builtin ID in switch!");
9975     case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
9976     case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
9977     case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
9978     case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
9979     case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
9980     }
9981     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9982     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
9983     Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
9984     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
9985     return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
9986   }
9987   case NEON::BI__builtin_neon_vceqs_f32:
9988   case NEON::BI__builtin_neon_vcles_f32:
9989   case NEON::BI__builtin_neon_vclts_f32:
9990   case NEON::BI__builtin_neon_vcges_f32:
9991   case NEON::BI__builtin_neon_vcgts_f32: {
9992     llvm::CmpInst::Predicate P;
9993     switch (BuiltinID) {
9994     default: llvm_unreachable("missing builtin ID in switch!");
9995     case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
9996     case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
9997     case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
9998     case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
9999     case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
10000     }
10001     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10002     Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
10003     Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
10004     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10005     return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
10006   }
10007   case NEON::BI__builtin_neon_vceqh_f16:
10008   case NEON::BI__builtin_neon_vcleh_f16:
10009   case NEON::BI__builtin_neon_vclth_f16:
10010   case NEON::BI__builtin_neon_vcgeh_f16:
10011   case NEON::BI__builtin_neon_vcgth_f16: {
10012     llvm::CmpInst::Predicate P;
10013     switch (BuiltinID) {
10014     default: llvm_unreachable("missing builtin ID in switch!");
10015     case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
10016     case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
10017     case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
10018     case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
10019     case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
10020     }
10021     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10022     Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
10023     Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
10024     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10025     return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
10026   }
10027   case NEON::BI__builtin_neon_vceqd_s64:
10028   case NEON::BI__builtin_neon_vceqd_u64:
10029   case NEON::BI__builtin_neon_vcgtd_s64:
10030   case NEON::BI__builtin_neon_vcgtd_u64:
10031   case NEON::BI__builtin_neon_vcltd_s64:
10032   case NEON::BI__builtin_neon_vcltd_u64:
10033   case NEON::BI__builtin_neon_vcged_u64:
10034   case NEON::BI__builtin_neon_vcged_s64:
10035   case NEON::BI__builtin_neon_vcled_u64:
10036   case NEON::BI__builtin_neon_vcled_s64: {
10037     llvm::CmpInst::Predicate P;
10038     switch (BuiltinID) {
10039     default: llvm_unreachable("missing builtin ID in switch!");
10040     case NEON::BI__builtin_neon_vceqd_s64:
10041     case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
10042     case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
10043     case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
10044     case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
10045     case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
10046     case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
10047     case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
10048     case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
10049     case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
10050     }
10051     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10052     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10053     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10054     Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
10055     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
10056   }
10057   case NEON::BI__builtin_neon_vtstd_s64:
10058   case NEON::BI__builtin_neon_vtstd_u64: {
10059     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10060     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10061     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10062     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
10063     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
10064                                 llvm::Constant::getNullValue(Int64Ty));
10065     return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
10066   }
10067   case NEON::BI__builtin_neon_vset_lane_i8:
10068   case NEON::BI__builtin_neon_vset_lane_i16:
10069   case NEON::BI__builtin_neon_vset_lane_i32:
10070   case NEON::BI__builtin_neon_vset_lane_i64:
10071   case NEON::BI__builtin_neon_vset_lane_bf16:
10072   case NEON::BI__builtin_neon_vset_lane_f32:
10073   case NEON::BI__builtin_neon_vsetq_lane_i8:
10074   case NEON::BI__builtin_neon_vsetq_lane_i16:
10075   case NEON::BI__builtin_neon_vsetq_lane_i32:
10076   case NEON::BI__builtin_neon_vsetq_lane_i64:
10077   case NEON::BI__builtin_neon_vsetq_lane_bf16:
10078   case NEON::BI__builtin_neon_vsetq_lane_f32:
10079     Ops.push_back(EmitScalarExpr(E->getArg(2)));
10080     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10081   case NEON::BI__builtin_neon_vset_lane_f64:
10082     // The vector type needs a cast for the v1f64 variant.
10083     Ops[1] =
10084         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 1));
10085     Ops.push_back(EmitScalarExpr(E->getArg(2)));
10086     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10087   case NEON::BI__builtin_neon_vsetq_lane_f64:
10088     // The vector type needs a cast for the v2f64 variant.
10089     Ops[1] =
10090         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 2));
10091     Ops.push_back(EmitScalarExpr(E->getArg(2)));
10092     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10093 
10094   case NEON::BI__builtin_neon_vget_lane_i8:
10095   case NEON::BI__builtin_neon_vdupb_lane_i8:
10096     Ops[0] =
10097         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 8));
10098     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10099                                         "vget_lane");
10100   case NEON::BI__builtin_neon_vgetq_lane_i8:
10101   case NEON::BI__builtin_neon_vdupb_laneq_i8:
10102     Ops[0] =
10103         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 16));
10104     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10105                                         "vgetq_lane");
10106   case NEON::BI__builtin_neon_vget_lane_i16:
10107   case NEON::BI__builtin_neon_vduph_lane_i16:
10108     Ops[0] =
10109         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 4));
10110     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10111                                         "vget_lane");
10112   case NEON::BI__builtin_neon_vgetq_lane_i16:
10113   case NEON::BI__builtin_neon_vduph_laneq_i16:
10114     Ops[0] =
10115         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 8));
10116     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10117                                         "vgetq_lane");
10118   case NEON::BI__builtin_neon_vget_lane_i32:
10119   case NEON::BI__builtin_neon_vdups_lane_i32:
10120     Ops[0] =
10121         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 2));
10122     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10123                                         "vget_lane");
10124   case NEON::BI__builtin_neon_vdups_lane_f32:
10125     Ops[0] =
10126         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
10127     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10128                                         "vdups_lane");
10129   case NEON::BI__builtin_neon_vgetq_lane_i32:
10130   case NEON::BI__builtin_neon_vdups_laneq_i32:
10131     Ops[0] =
10132         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
10133     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10134                                         "vgetq_lane");
10135   case NEON::BI__builtin_neon_vget_lane_i64:
10136   case NEON::BI__builtin_neon_vdupd_lane_i64:
10137     Ops[0] =
10138         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 1));
10139     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10140                                         "vget_lane");
10141   case NEON::BI__builtin_neon_vdupd_lane_f64:
10142     Ops[0] =
10143         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
10144     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10145                                         "vdupd_lane");
10146   case NEON::BI__builtin_neon_vgetq_lane_i64:
10147   case NEON::BI__builtin_neon_vdupd_laneq_i64:
10148     Ops[0] =
10149         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
10150     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10151                                         "vgetq_lane");
10152   case NEON::BI__builtin_neon_vget_lane_f32:
10153     Ops[0] =
10154         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
10155     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10156                                         "vget_lane");
10157   case NEON::BI__builtin_neon_vget_lane_f64:
10158     Ops[0] =
10159         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
10160     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10161                                         "vget_lane");
10162   case NEON::BI__builtin_neon_vgetq_lane_f32:
10163   case NEON::BI__builtin_neon_vdups_laneq_f32:
10164     Ops[0] =
10165         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 4));
10166     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10167                                         "vgetq_lane");
10168   case NEON::BI__builtin_neon_vgetq_lane_f64:
10169   case NEON::BI__builtin_neon_vdupd_laneq_f64:
10170     Ops[0] =
10171         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 2));
10172     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10173                                         "vgetq_lane");
10174   case NEON::BI__builtin_neon_vaddh_f16:
10175     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10176     return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
10177   case NEON::BI__builtin_neon_vsubh_f16:
10178     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10179     return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
10180   case NEON::BI__builtin_neon_vmulh_f16:
10181     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10182     return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
10183   case NEON::BI__builtin_neon_vdivh_f16:
10184     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10185     return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
10186   case NEON::BI__builtin_neon_vfmah_f16:
10187     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
10188     return emitCallMaybeConstrainedFPBuiltin(
10189         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
10190         {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
10191   case NEON::BI__builtin_neon_vfmsh_f16: {
10192     // FIXME: This should be an fneg instruction:
10193     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy);
10194     Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh");
10195 
10196     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
10197     return emitCallMaybeConstrainedFPBuiltin(
10198         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
10199         {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]});
10200   }
10201   case NEON::BI__builtin_neon_vaddd_s64:
10202   case NEON::BI__builtin_neon_vaddd_u64:
10203     return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
10204   case NEON::BI__builtin_neon_vsubd_s64:
10205   case NEON::BI__builtin_neon_vsubd_u64:
10206     return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
10207   case NEON::BI__builtin_neon_vqdmlalh_s16:
10208   case NEON::BI__builtin_neon_vqdmlslh_s16: {
10209     SmallVector<Value *, 2> ProductOps;
10210     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
10211     ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
10212     auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
10213     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
10214                           ProductOps, "vqdmlXl");
10215     Constant *CI = ConstantInt::get(SizeTy, 0);
10216     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
10217 
10218     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
10219                                         ? Intrinsic::aarch64_neon_sqadd
10220                                         : Intrinsic::aarch64_neon_sqsub;
10221     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
10222   }
10223   case NEON::BI__builtin_neon_vqshlud_n_s64: {
10224     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10225     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
10226     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
10227                         Ops, "vqshlu_n");
10228   }
10229   case NEON::BI__builtin_neon_vqshld_n_u64:
10230   case NEON::BI__builtin_neon_vqshld_n_s64: {
10231     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
10232                                    ? Intrinsic::aarch64_neon_uqshl
10233                                    : Intrinsic::aarch64_neon_sqshl;
10234     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10235     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
10236     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
10237   }
10238   case NEON::BI__builtin_neon_vrshrd_n_u64:
10239   case NEON::BI__builtin_neon_vrshrd_n_s64: {
10240     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
10241                                    ? Intrinsic::aarch64_neon_urshl
10242                                    : Intrinsic::aarch64_neon_srshl;
10243     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10244     int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
10245     Ops[1] = ConstantInt::get(Int64Ty, -SV);
10246     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
10247   }
10248   case NEON::BI__builtin_neon_vrsrad_n_u64:
10249   case NEON::BI__builtin_neon_vrsrad_n_s64: {
10250     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
10251                                    ? Intrinsic::aarch64_neon_urshl
10252                                    : Intrinsic::aarch64_neon_srshl;
10253     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10254     Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
10255     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
10256                                 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
10257     return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
10258   }
10259   case NEON::BI__builtin_neon_vshld_n_s64:
10260   case NEON::BI__builtin_neon_vshld_n_u64: {
10261     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10262     return Builder.CreateShl(
10263         Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
10264   }
10265   case NEON::BI__builtin_neon_vshrd_n_s64: {
10266     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10267     return Builder.CreateAShr(
10268         Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
10269                                                    Amt->getZExtValue())),
10270         "shrd_n");
10271   }
10272   case NEON::BI__builtin_neon_vshrd_n_u64: {
10273     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10274     uint64_t ShiftAmt = Amt->getZExtValue();
10275     // Right-shifting an unsigned value by its size yields 0.
10276     if (ShiftAmt == 64)
10277       return ConstantInt::get(Int64Ty, 0);
10278     return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
10279                               "shrd_n");
10280   }
10281   case NEON::BI__builtin_neon_vsrad_n_s64: {
10282     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
10283     Ops[1] = Builder.CreateAShr(
10284         Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
10285                                                    Amt->getZExtValue())),
10286         "shrd_n");
10287     return Builder.CreateAdd(Ops[0], Ops[1]);
10288   }
10289   case NEON::BI__builtin_neon_vsrad_n_u64: {
10290     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
10291     uint64_t ShiftAmt = Amt->getZExtValue();
10292     // Right-shifting an unsigned value by its size yields 0.
10293     // As Op + 0 = Op, return Ops[0] directly.
10294     if (ShiftAmt == 64)
10295       return Ops[0];
10296     Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
10297                                 "shrd_n");
10298     return Builder.CreateAdd(Ops[0], Ops[1]);
10299   }
10300   case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
10301   case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
10302   case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
10303   case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
10304     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
10305                                           "lane");
10306     SmallVector<Value *, 2> ProductOps;
10307     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
10308     ProductOps.push_back(vectorWrapScalar16(Ops[2]));
10309     auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
10310     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
10311                           ProductOps, "vqdmlXl");
10312     Constant *CI = ConstantInt::get(SizeTy, 0);
10313     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
10314     Ops.pop_back();
10315 
10316     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
10317                        BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
10318                           ? Intrinsic::aarch64_neon_sqadd
10319                           : Intrinsic::aarch64_neon_sqsub;
10320     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
10321   }
10322   case NEON::BI__builtin_neon_vqdmlals_s32:
10323   case NEON::BI__builtin_neon_vqdmlsls_s32: {
10324     SmallVector<Value *, 2> ProductOps;
10325     ProductOps.push_back(Ops[1]);
10326     ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
10327     Ops[1] =
10328         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
10329                      ProductOps, "vqdmlXl");
10330 
10331     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
10332                                         ? Intrinsic::aarch64_neon_sqadd
10333                                         : Intrinsic::aarch64_neon_sqsub;
10334     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
10335   }
10336   case NEON::BI__builtin_neon_vqdmlals_lane_s32:
10337   case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
10338   case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
10339   case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
10340     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
10341                                           "lane");
10342     SmallVector<Value *, 2> ProductOps;
10343     ProductOps.push_back(Ops[1]);
10344     ProductOps.push_back(Ops[2]);
10345     Ops[1] =
10346         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
10347                      ProductOps, "vqdmlXl");
10348     Ops.pop_back();
10349 
10350     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
10351                        BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
10352                           ? Intrinsic::aarch64_neon_sqadd
10353                           : Intrinsic::aarch64_neon_sqsub;
10354     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
10355   }
10356   case NEON::BI__builtin_neon_vget_lane_bf16:
10357   case NEON::BI__builtin_neon_vduph_lane_bf16:
10358   case NEON::BI__builtin_neon_vduph_lane_f16: {
10359     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10360                                         "vget_lane");
10361   }
10362   case NEON::BI__builtin_neon_vgetq_lane_bf16:
10363   case NEON::BI__builtin_neon_vduph_laneq_bf16:
10364   case NEON::BI__builtin_neon_vduph_laneq_f16: {
10365     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10366                                         "vgetq_lane");
10367   }
10368 
10369   case AArch64::BI_InterlockedAdd: {
10370     Value *Arg0 = EmitScalarExpr(E->getArg(0));
10371     Value *Arg1 = EmitScalarExpr(E->getArg(1));
10372     AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
10373       AtomicRMWInst::Add, Arg0, Arg1,
10374       llvm::AtomicOrdering::SequentiallyConsistent);
10375     return Builder.CreateAdd(RMWI, Arg1);
10376   }
10377   }
10378 
10379   llvm::FixedVectorType *VTy = GetNeonType(this, Type);
10380   llvm::Type *Ty = VTy;
10381   if (!Ty)
10382     return nullptr;
10383 
10384   // Not all intrinsics handled by the common case work for AArch64 yet, so only
10385   // defer to common code if it's been added to our special map.
10386   Builtin = findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
10387                                         AArch64SIMDIntrinsicsProvenSorted);
10388 
10389   if (Builtin)
10390     return EmitCommonNeonBuiltinExpr(
10391         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
10392         Builtin->NameHint, Builtin->TypeModifier, E, Ops,
10393         /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
10394 
10395   if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
10396     return V;
10397 
10398   unsigned Int;
10399   switch (BuiltinID) {
10400   default: return nullptr;
10401   case NEON::BI__builtin_neon_vbsl_v:
10402   case NEON::BI__builtin_neon_vbslq_v: {
10403     llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
10404     Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
10405     Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
10406     Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
10407 
10408     Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
10409     Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
10410     Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
10411     return Builder.CreateBitCast(Ops[0], Ty);
10412   }
10413   case NEON::BI__builtin_neon_vfma_lane_v:
10414   case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
10415     // The ARM builtins (and instructions) have the addend as the first
10416     // operand, but the 'fma' intrinsics have it last. Swap it around here.
10417     Value *Addend = Ops[0];
10418     Value *Multiplicand = Ops[1];
10419     Value *LaneSource = Ops[2];
10420     Ops[0] = Multiplicand;
10421     Ops[1] = LaneSource;
10422     Ops[2] = Addend;
10423 
10424     // Now adjust things to handle the lane access.
10425     auto *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v
10426                          ? llvm::FixedVectorType::get(VTy->getElementType(),
10427                                                       VTy->getNumElements() / 2)
10428                          : VTy;
10429     llvm::Constant *cst = cast<Constant>(Ops[3]);
10430     Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cst);
10431     Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
10432     Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
10433 
10434     Ops.pop_back();
10435     Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma
10436                                        : Intrinsic::fma;
10437     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
10438   }
10439   case NEON::BI__builtin_neon_vfma_laneq_v: {
10440     auto *VTy = cast<llvm::FixedVectorType>(Ty);
10441     // v1f64 fma should be mapped to Neon scalar f64 fma
10442     if (VTy && VTy->getElementType() == DoubleTy) {
10443       Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10444       Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
10445       llvm::FixedVectorType *VTy =
10446           GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true));
10447       Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
10448       Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
10449       Value *Result;
10450       Result = emitCallMaybeConstrainedFPBuiltin(
10451           *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma,
10452           DoubleTy, {Ops[1], Ops[2], Ops[0]});
10453       return Builder.CreateBitCast(Result, Ty);
10454     }
10455     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10456     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10457 
10458     auto *STy = llvm::FixedVectorType::get(VTy->getElementType(),
10459                                            VTy->getNumElements() * 2);
10460     Ops[2] = Builder.CreateBitCast(Ops[2], STy);
10461     Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(),
10462                                                cast<ConstantInt>(Ops[3]));
10463     Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
10464 
10465     return emitCallMaybeConstrainedFPBuiltin(
10466         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10467         {Ops[2], Ops[1], Ops[0]});
10468   }
10469   case NEON::BI__builtin_neon_vfmaq_laneq_v: {
10470     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10471     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10472 
10473     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10474     Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
10475     return emitCallMaybeConstrainedFPBuiltin(
10476         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10477         {Ops[2], Ops[1], Ops[0]});
10478   }
10479   case NEON::BI__builtin_neon_vfmah_lane_f16:
10480   case NEON::BI__builtin_neon_vfmas_lane_f32:
10481   case NEON::BI__builtin_neon_vfmah_laneq_f16:
10482   case NEON::BI__builtin_neon_vfmas_laneq_f32:
10483   case NEON::BI__builtin_neon_vfmad_lane_f64:
10484   case NEON::BI__builtin_neon_vfmad_laneq_f64: {
10485     Ops.push_back(EmitScalarExpr(E->getArg(3)));
10486     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
10487     Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
10488     return emitCallMaybeConstrainedFPBuiltin(
10489         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10490         {Ops[1], Ops[2], Ops[0]});
10491   }
10492   case NEON::BI__builtin_neon_vmull_v:
10493     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10494     Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
10495     if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
10496     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
10497   case NEON::BI__builtin_neon_vmax_v:
10498   case NEON::BI__builtin_neon_vmaxq_v:
10499     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10500     Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
10501     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
10502     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
10503   case NEON::BI__builtin_neon_vmaxh_f16: {
10504     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10505     Int = Intrinsic::aarch64_neon_fmax;
10506     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
10507   }
10508   case NEON::BI__builtin_neon_vmin_v:
10509   case NEON::BI__builtin_neon_vminq_v:
10510     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10511     Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
10512     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
10513     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
10514   case NEON::BI__builtin_neon_vminh_f16: {
10515     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10516     Int = Intrinsic::aarch64_neon_fmin;
10517     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
10518   }
10519   case NEON::BI__builtin_neon_vabd_v:
10520   case NEON::BI__builtin_neon_vabdq_v:
10521     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10522     Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
10523     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
10524     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
10525   case NEON::BI__builtin_neon_vpadal_v:
10526   case NEON::BI__builtin_neon_vpadalq_v: {
10527     unsigned ArgElts = VTy->getNumElements();
10528     llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
10529     unsigned BitWidth = EltTy->getBitWidth();
10530     auto *ArgTy = llvm::FixedVectorType::get(
10531         llvm::IntegerType::get(getLLVMContext(), BitWidth / 2), 2 * ArgElts);
10532     llvm::Type* Tys[2] = { VTy, ArgTy };
10533     Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
10534     SmallVector<llvm::Value*, 1> TmpOps;
10535     TmpOps.push_back(Ops[1]);
10536     Function *F = CGM.getIntrinsic(Int, Tys);
10537     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
10538     llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
10539     return Builder.CreateAdd(tmp, addend);
10540   }
10541   case NEON::BI__builtin_neon_vpmin_v:
10542   case NEON::BI__builtin_neon_vpminq_v:
10543     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10544     Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
10545     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
10546     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
10547   case NEON::BI__builtin_neon_vpmax_v:
10548   case NEON::BI__builtin_neon_vpmaxq_v:
10549     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10550     Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
10551     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
10552     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
10553   case NEON::BI__builtin_neon_vminnm_v:
10554   case NEON::BI__builtin_neon_vminnmq_v:
10555     Int = Intrinsic::aarch64_neon_fminnm;
10556     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
10557   case NEON::BI__builtin_neon_vminnmh_f16:
10558     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10559     Int = Intrinsic::aarch64_neon_fminnm;
10560     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
10561   case NEON::BI__builtin_neon_vmaxnm_v:
10562   case NEON::BI__builtin_neon_vmaxnmq_v:
10563     Int = Intrinsic::aarch64_neon_fmaxnm;
10564     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
10565   case NEON::BI__builtin_neon_vmaxnmh_f16:
10566     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10567     Int = Intrinsic::aarch64_neon_fmaxnm;
10568     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
10569   case NEON::BI__builtin_neon_vrecpss_f32: {
10570     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10571     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
10572                         Ops, "vrecps");
10573   }
10574   case NEON::BI__builtin_neon_vrecpsd_f64:
10575     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10576     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
10577                         Ops, "vrecps");
10578   case NEON::BI__builtin_neon_vrecpsh_f16:
10579     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10580     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
10581                         Ops, "vrecps");
10582   case NEON::BI__builtin_neon_vqshrun_n_v:
10583     Int = Intrinsic::aarch64_neon_sqshrun;
10584     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
10585   case NEON::BI__builtin_neon_vqrshrun_n_v:
10586     Int = Intrinsic::aarch64_neon_sqrshrun;
10587     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
10588   case NEON::BI__builtin_neon_vqshrn_n_v:
10589     Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
10590     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
10591   case NEON::BI__builtin_neon_vrshrn_n_v:
10592     Int = Intrinsic::aarch64_neon_rshrn;
10593     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
10594   case NEON::BI__builtin_neon_vqrshrn_n_v:
10595     Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
10596     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
10597   case NEON::BI__builtin_neon_vrndah_f16: {
10598     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10599     Int = Builder.getIsFPConstrained()
10600               ? Intrinsic::experimental_constrained_round
10601               : Intrinsic::round;
10602     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
10603   }
10604   case NEON::BI__builtin_neon_vrnda_v:
10605   case NEON::BI__builtin_neon_vrndaq_v: {
10606     Int = Builder.getIsFPConstrained()
10607               ? Intrinsic::experimental_constrained_round
10608               : Intrinsic::round;
10609     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
10610   }
10611   case NEON::BI__builtin_neon_vrndih_f16: {
10612     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10613     Int = Builder.getIsFPConstrained()
10614               ? Intrinsic::experimental_constrained_nearbyint
10615               : Intrinsic::nearbyint;
10616     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
10617   }
10618   case NEON::BI__builtin_neon_vrndmh_f16: {
10619     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10620     Int = Builder.getIsFPConstrained()
10621               ? Intrinsic::experimental_constrained_floor
10622               : Intrinsic::floor;
10623     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
10624   }
10625   case NEON::BI__builtin_neon_vrndm_v:
10626   case NEON::BI__builtin_neon_vrndmq_v: {
10627     Int = Builder.getIsFPConstrained()
10628               ? Intrinsic::experimental_constrained_floor
10629               : Intrinsic::floor;
10630     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
10631   }
10632   case NEON::BI__builtin_neon_vrndnh_f16: {
10633     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10634     Int = Builder.getIsFPConstrained()
10635               ? Intrinsic::experimental_constrained_roundeven
10636               : Intrinsic::roundeven;
10637     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
10638   }
10639   case NEON::BI__builtin_neon_vrndn_v:
10640   case NEON::BI__builtin_neon_vrndnq_v: {
10641     Int = Builder.getIsFPConstrained()
10642               ? Intrinsic::experimental_constrained_roundeven
10643               : Intrinsic::roundeven;
10644     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
10645   }
10646   case NEON::BI__builtin_neon_vrndns_f32: {
10647     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10648     Int = Builder.getIsFPConstrained()
10649               ? Intrinsic::experimental_constrained_roundeven
10650               : Intrinsic::roundeven;
10651     return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
10652   }
10653   case NEON::BI__builtin_neon_vrndph_f16: {
10654     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10655     Int = Builder.getIsFPConstrained()
10656               ? Intrinsic::experimental_constrained_ceil
10657               : Intrinsic::ceil;
10658     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
10659   }
10660   case NEON::BI__builtin_neon_vrndp_v:
10661   case NEON::BI__builtin_neon_vrndpq_v: {
10662     Int = Builder.getIsFPConstrained()
10663               ? Intrinsic::experimental_constrained_ceil
10664               : Intrinsic::ceil;
10665     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
10666   }
10667   case NEON::BI__builtin_neon_vrndxh_f16: {
10668     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10669     Int = Builder.getIsFPConstrained()
10670               ? Intrinsic::experimental_constrained_rint
10671               : Intrinsic::rint;
10672     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
10673   }
10674   case NEON::BI__builtin_neon_vrndx_v:
10675   case NEON::BI__builtin_neon_vrndxq_v: {
10676     Int = Builder.getIsFPConstrained()
10677               ? Intrinsic::experimental_constrained_rint
10678               : Intrinsic::rint;
10679     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
10680   }
10681   case NEON::BI__builtin_neon_vrndh_f16: {
10682     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10683     Int = Builder.getIsFPConstrained()
10684               ? Intrinsic::experimental_constrained_trunc
10685               : Intrinsic::trunc;
10686     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
10687   }
10688   case NEON::BI__builtin_neon_vrnd32x_v:
10689   case NEON::BI__builtin_neon_vrnd32xq_v: {
10690     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10691     Int = Intrinsic::aarch64_neon_frint32x;
10692     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32x");
10693   }
10694   case NEON::BI__builtin_neon_vrnd32z_v:
10695   case NEON::BI__builtin_neon_vrnd32zq_v: {
10696     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10697     Int = Intrinsic::aarch64_neon_frint32z;
10698     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32z");
10699   }
10700   case NEON::BI__builtin_neon_vrnd64x_v:
10701   case NEON::BI__builtin_neon_vrnd64xq_v: {
10702     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10703     Int = Intrinsic::aarch64_neon_frint64x;
10704     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64x");
10705   }
10706   case NEON::BI__builtin_neon_vrnd64z_v:
10707   case NEON::BI__builtin_neon_vrnd64zq_v: {
10708     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10709     Int = Intrinsic::aarch64_neon_frint64z;
10710     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64z");
10711   }
10712   case NEON::BI__builtin_neon_vrnd_v:
10713   case NEON::BI__builtin_neon_vrndq_v: {
10714     Int = Builder.getIsFPConstrained()
10715               ? Intrinsic::experimental_constrained_trunc
10716               : Intrinsic::trunc;
10717     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
10718   }
10719   case NEON::BI__builtin_neon_vcvt_f64_v:
10720   case NEON::BI__builtin_neon_vcvtq_f64_v:
10721     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10722     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
10723     return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
10724                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
10725   case NEON::BI__builtin_neon_vcvt_f64_f32: {
10726     assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
10727            "unexpected vcvt_f64_f32 builtin");
10728     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
10729     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
10730 
10731     return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
10732   }
10733   case NEON::BI__builtin_neon_vcvt_f32_f64: {
10734     assert(Type.getEltType() == NeonTypeFlags::Float32 &&
10735            "unexpected vcvt_f32_f64 builtin");
10736     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
10737     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
10738 
10739     return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
10740   }
10741   case NEON::BI__builtin_neon_vcvt_s32_v:
10742   case NEON::BI__builtin_neon_vcvt_u32_v:
10743   case NEON::BI__builtin_neon_vcvt_s64_v:
10744   case NEON::BI__builtin_neon_vcvt_u64_v:
10745   case NEON::BI__builtin_neon_vcvt_s16_v:
10746   case NEON::BI__builtin_neon_vcvt_u16_v:
10747   case NEON::BI__builtin_neon_vcvtq_s32_v:
10748   case NEON::BI__builtin_neon_vcvtq_u32_v:
10749   case NEON::BI__builtin_neon_vcvtq_s64_v:
10750   case NEON::BI__builtin_neon_vcvtq_u64_v:
10751   case NEON::BI__builtin_neon_vcvtq_s16_v:
10752   case NEON::BI__builtin_neon_vcvtq_u16_v: {
10753     Int =
10754         usgn ? Intrinsic::aarch64_neon_fcvtzu : Intrinsic::aarch64_neon_fcvtzs;
10755     llvm::Type *Tys[2] = {Ty, GetFloatNeonType(this, Type)};
10756     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtz");
10757   }
10758   case NEON::BI__builtin_neon_vcvta_s16_v:
10759   case NEON::BI__builtin_neon_vcvta_u16_v:
10760   case NEON::BI__builtin_neon_vcvta_s32_v:
10761   case NEON::BI__builtin_neon_vcvtaq_s16_v:
10762   case NEON::BI__builtin_neon_vcvtaq_s32_v:
10763   case NEON::BI__builtin_neon_vcvta_u32_v:
10764   case NEON::BI__builtin_neon_vcvtaq_u16_v:
10765   case NEON::BI__builtin_neon_vcvtaq_u32_v:
10766   case NEON::BI__builtin_neon_vcvta_s64_v:
10767   case NEON::BI__builtin_neon_vcvtaq_s64_v:
10768   case NEON::BI__builtin_neon_vcvta_u64_v:
10769   case NEON::BI__builtin_neon_vcvtaq_u64_v: {
10770     Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
10771     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10772     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
10773   }
10774   case NEON::BI__builtin_neon_vcvtm_s16_v:
10775   case NEON::BI__builtin_neon_vcvtm_s32_v:
10776   case NEON::BI__builtin_neon_vcvtmq_s16_v:
10777   case NEON::BI__builtin_neon_vcvtmq_s32_v:
10778   case NEON::BI__builtin_neon_vcvtm_u16_v:
10779   case NEON::BI__builtin_neon_vcvtm_u32_v:
10780   case NEON::BI__builtin_neon_vcvtmq_u16_v:
10781   case NEON::BI__builtin_neon_vcvtmq_u32_v:
10782   case NEON::BI__builtin_neon_vcvtm_s64_v:
10783   case NEON::BI__builtin_neon_vcvtmq_s64_v:
10784   case NEON::BI__builtin_neon_vcvtm_u64_v:
10785   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
10786     Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
10787     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10788     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
10789   }
10790   case NEON::BI__builtin_neon_vcvtn_s16_v:
10791   case NEON::BI__builtin_neon_vcvtn_s32_v:
10792   case NEON::BI__builtin_neon_vcvtnq_s16_v:
10793   case NEON::BI__builtin_neon_vcvtnq_s32_v:
10794   case NEON::BI__builtin_neon_vcvtn_u16_v:
10795   case NEON::BI__builtin_neon_vcvtn_u32_v:
10796   case NEON::BI__builtin_neon_vcvtnq_u16_v:
10797   case NEON::BI__builtin_neon_vcvtnq_u32_v:
10798   case NEON::BI__builtin_neon_vcvtn_s64_v:
10799   case NEON::BI__builtin_neon_vcvtnq_s64_v:
10800   case NEON::BI__builtin_neon_vcvtn_u64_v:
10801   case NEON::BI__builtin_neon_vcvtnq_u64_v: {
10802     Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
10803     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10804     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
10805   }
10806   case NEON::BI__builtin_neon_vcvtp_s16_v:
10807   case NEON::BI__builtin_neon_vcvtp_s32_v:
10808   case NEON::BI__builtin_neon_vcvtpq_s16_v:
10809   case NEON::BI__builtin_neon_vcvtpq_s32_v:
10810   case NEON::BI__builtin_neon_vcvtp_u16_v:
10811   case NEON::BI__builtin_neon_vcvtp_u32_v:
10812   case NEON::BI__builtin_neon_vcvtpq_u16_v:
10813   case NEON::BI__builtin_neon_vcvtpq_u32_v:
10814   case NEON::BI__builtin_neon_vcvtp_s64_v:
10815   case NEON::BI__builtin_neon_vcvtpq_s64_v:
10816   case NEON::BI__builtin_neon_vcvtp_u64_v:
10817   case NEON::BI__builtin_neon_vcvtpq_u64_v: {
10818     Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
10819     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10820     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
10821   }
10822   case NEON::BI__builtin_neon_vmulx_v:
10823   case NEON::BI__builtin_neon_vmulxq_v: {
10824     Int = Intrinsic::aarch64_neon_fmulx;
10825     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
10826   }
10827   case NEON::BI__builtin_neon_vmulxh_lane_f16:
10828   case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
10829     // vmulx_lane should be mapped to Neon scalar mulx after
10830     // extracting the scalar element
10831     Ops.push_back(EmitScalarExpr(E->getArg(2)));
10832     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
10833     Ops.pop_back();
10834     Int = Intrinsic::aarch64_neon_fmulx;
10835     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
10836   }
10837   case NEON::BI__builtin_neon_vmul_lane_v:
10838   case NEON::BI__builtin_neon_vmul_laneq_v: {
10839     // v1f64 vmul_lane should be mapped to Neon scalar mul lane
10840     bool Quad = false;
10841     if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
10842       Quad = true;
10843     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10844     llvm::FixedVectorType *VTy =
10845         GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
10846     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
10847     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
10848     Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
10849     return Builder.CreateBitCast(Result, Ty);
10850   }
10851   case NEON::BI__builtin_neon_vnegd_s64:
10852     return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
10853   case NEON::BI__builtin_neon_vnegh_f16:
10854     return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
10855   case NEON::BI__builtin_neon_vpmaxnm_v:
10856   case NEON::BI__builtin_neon_vpmaxnmq_v: {
10857     Int = Intrinsic::aarch64_neon_fmaxnmp;
10858     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
10859   }
10860   case NEON::BI__builtin_neon_vpminnm_v:
10861   case NEON::BI__builtin_neon_vpminnmq_v: {
10862     Int = Intrinsic::aarch64_neon_fminnmp;
10863     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
10864   }
10865   case NEON::BI__builtin_neon_vsqrth_f16: {
10866     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10867     Int = Builder.getIsFPConstrained()
10868               ? Intrinsic::experimental_constrained_sqrt
10869               : Intrinsic::sqrt;
10870     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
10871   }
10872   case NEON::BI__builtin_neon_vsqrt_v:
10873   case NEON::BI__builtin_neon_vsqrtq_v: {
10874     Int = Builder.getIsFPConstrained()
10875               ? Intrinsic::experimental_constrained_sqrt
10876               : Intrinsic::sqrt;
10877     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10878     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
10879   }
10880   case NEON::BI__builtin_neon_vrbit_v:
10881   case NEON::BI__builtin_neon_vrbitq_v: {
10882     Int = Intrinsic::bitreverse;
10883     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
10884   }
10885   case NEON::BI__builtin_neon_vaddv_u8:
10886     // FIXME: These are handled by the AArch64 scalar code.
10887     usgn = true;
10888     LLVM_FALLTHROUGH;
10889   case NEON::BI__builtin_neon_vaddv_s8: {
10890     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10891     Ty = Int32Ty;
10892     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10893     llvm::Type *Tys[2] = { Ty, VTy };
10894     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10895     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10896     return Builder.CreateTrunc(Ops[0], Int8Ty);
10897   }
10898   case NEON::BI__builtin_neon_vaddv_u16:
10899     usgn = true;
10900     LLVM_FALLTHROUGH;
10901   case NEON::BI__builtin_neon_vaddv_s16: {
10902     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10903     Ty = Int32Ty;
10904     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10905     llvm::Type *Tys[2] = { Ty, VTy };
10906     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10907     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10908     return Builder.CreateTrunc(Ops[0], Int16Ty);
10909   }
10910   case NEON::BI__builtin_neon_vaddvq_u8:
10911     usgn = true;
10912     LLVM_FALLTHROUGH;
10913   case NEON::BI__builtin_neon_vaddvq_s8: {
10914     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10915     Ty = Int32Ty;
10916     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10917     llvm::Type *Tys[2] = { Ty, VTy };
10918     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10919     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10920     return Builder.CreateTrunc(Ops[0], Int8Ty);
10921   }
10922   case NEON::BI__builtin_neon_vaddvq_u16:
10923     usgn = true;
10924     LLVM_FALLTHROUGH;
10925   case NEON::BI__builtin_neon_vaddvq_s16: {
10926     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10927     Ty = Int32Ty;
10928     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10929     llvm::Type *Tys[2] = { Ty, VTy };
10930     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10931     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10932     return Builder.CreateTrunc(Ops[0], Int16Ty);
10933   }
10934   case NEON::BI__builtin_neon_vmaxv_u8: {
10935     Int = Intrinsic::aarch64_neon_umaxv;
10936     Ty = Int32Ty;
10937     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10938     llvm::Type *Tys[2] = { Ty, VTy };
10939     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10940     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10941     return Builder.CreateTrunc(Ops[0], Int8Ty);
10942   }
10943   case NEON::BI__builtin_neon_vmaxv_u16: {
10944     Int = Intrinsic::aarch64_neon_umaxv;
10945     Ty = Int32Ty;
10946     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10947     llvm::Type *Tys[2] = { Ty, VTy };
10948     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10949     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10950     return Builder.CreateTrunc(Ops[0], Int16Ty);
10951   }
10952   case NEON::BI__builtin_neon_vmaxvq_u8: {
10953     Int = Intrinsic::aarch64_neon_umaxv;
10954     Ty = Int32Ty;
10955     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10956     llvm::Type *Tys[2] = { Ty, VTy };
10957     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10958     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10959     return Builder.CreateTrunc(Ops[0], Int8Ty);
10960   }
10961   case NEON::BI__builtin_neon_vmaxvq_u16: {
10962     Int = Intrinsic::aarch64_neon_umaxv;
10963     Ty = Int32Ty;
10964     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10965     llvm::Type *Tys[2] = { Ty, VTy };
10966     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10967     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10968     return Builder.CreateTrunc(Ops[0], Int16Ty);
10969   }
10970   case NEON::BI__builtin_neon_vmaxv_s8: {
10971     Int = Intrinsic::aarch64_neon_smaxv;
10972     Ty = Int32Ty;
10973     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10974     llvm::Type *Tys[2] = { Ty, VTy };
10975     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10976     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10977     return Builder.CreateTrunc(Ops[0], Int8Ty);
10978   }
10979   case NEON::BI__builtin_neon_vmaxv_s16: {
10980     Int = Intrinsic::aarch64_neon_smaxv;
10981     Ty = Int32Ty;
10982     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10983     llvm::Type *Tys[2] = { Ty, VTy };
10984     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10985     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10986     return Builder.CreateTrunc(Ops[0], Int16Ty);
10987   }
10988   case NEON::BI__builtin_neon_vmaxvq_s8: {
10989     Int = Intrinsic::aarch64_neon_smaxv;
10990     Ty = Int32Ty;
10991     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10992     llvm::Type *Tys[2] = { Ty, VTy };
10993     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10994     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10995     return Builder.CreateTrunc(Ops[0], Int8Ty);
10996   }
10997   case NEON::BI__builtin_neon_vmaxvq_s16: {
10998     Int = Intrinsic::aarch64_neon_smaxv;
10999     Ty = Int32Ty;
11000     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11001     llvm::Type *Tys[2] = { Ty, VTy };
11002     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11003     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11004     return Builder.CreateTrunc(Ops[0], Int16Ty);
11005   }
11006   case NEON::BI__builtin_neon_vmaxv_f16: {
11007     Int = Intrinsic::aarch64_neon_fmaxv;
11008     Ty = HalfTy;
11009     VTy = llvm::FixedVectorType::get(HalfTy, 4);
11010     llvm::Type *Tys[2] = { Ty, VTy };
11011     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11012     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11013     return Builder.CreateTrunc(Ops[0], HalfTy);
11014   }
11015   case NEON::BI__builtin_neon_vmaxvq_f16: {
11016     Int = Intrinsic::aarch64_neon_fmaxv;
11017     Ty = HalfTy;
11018     VTy = llvm::FixedVectorType::get(HalfTy, 8);
11019     llvm::Type *Tys[2] = { Ty, VTy };
11020     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11021     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11022     return Builder.CreateTrunc(Ops[0], HalfTy);
11023   }
11024   case NEON::BI__builtin_neon_vminv_u8: {
11025     Int = Intrinsic::aarch64_neon_uminv;
11026     Ty = Int32Ty;
11027     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11028     llvm::Type *Tys[2] = { Ty, VTy };
11029     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11030     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11031     return Builder.CreateTrunc(Ops[0], Int8Ty);
11032   }
11033   case NEON::BI__builtin_neon_vminv_u16: {
11034     Int = Intrinsic::aarch64_neon_uminv;
11035     Ty = Int32Ty;
11036     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11037     llvm::Type *Tys[2] = { Ty, VTy };
11038     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11039     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11040     return Builder.CreateTrunc(Ops[0], Int16Ty);
11041   }
11042   case NEON::BI__builtin_neon_vminvq_u8: {
11043     Int = Intrinsic::aarch64_neon_uminv;
11044     Ty = Int32Ty;
11045     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11046     llvm::Type *Tys[2] = { Ty, VTy };
11047     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11048     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11049     return Builder.CreateTrunc(Ops[0], Int8Ty);
11050   }
11051   case NEON::BI__builtin_neon_vminvq_u16: {
11052     Int = Intrinsic::aarch64_neon_uminv;
11053     Ty = Int32Ty;
11054     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11055     llvm::Type *Tys[2] = { Ty, VTy };
11056     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11057     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11058     return Builder.CreateTrunc(Ops[0], Int16Ty);
11059   }
11060   case NEON::BI__builtin_neon_vminv_s8: {
11061     Int = Intrinsic::aarch64_neon_sminv;
11062     Ty = Int32Ty;
11063     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11064     llvm::Type *Tys[2] = { Ty, VTy };
11065     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11066     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11067     return Builder.CreateTrunc(Ops[0], Int8Ty);
11068   }
11069   case NEON::BI__builtin_neon_vminv_s16: {
11070     Int = Intrinsic::aarch64_neon_sminv;
11071     Ty = Int32Ty;
11072     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11073     llvm::Type *Tys[2] = { Ty, VTy };
11074     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11075     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11076     return Builder.CreateTrunc(Ops[0], Int16Ty);
11077   }
11078   case NEON::BI__builtin_neon_vminvq_s8: {
11079     Int = Intrinsic::aarch64_neon_sminv;
11080     Ty = Int32Ty;
11081     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11082     llvm::Type *Tys[2] = { Ty, VTy };
11083     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11084     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11085     return Builder.CreateTrunc(Ops[0], Int8Ty);
11086   }
11087   case NEON::BI__builtin_neon_vminvq_s16: {
11088     Int = Intrinsic::aarch64_neon_sminv;
11089     Ty = Int32Ty;
11090     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11091     llvm::Type *Tys[2] = { Ty, VTy };
11092     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11093     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11094     return Builder.CreateTrunc(Ops[0], Int16Ty);
11095   }
11096   case NEON::BI__builtin_neon_vminv_f16: {
11097     Int = Intrinsic::aarch64_neon_fminv;
11098     Ty = HalfTy;
11099     VTy = llvm::FixedVectorType::get(HalfTy, 4);
11100     llvm::Type *Tys[2] = { Ty, VTy };
11101     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11102     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11103     return Builder.CreateTrunc(Ops[0], HalfTy);
11104   }
11105   case NEON::BI__builtin_neon_vminvq_f16: {
11106     Int = Intrinsic::aarch64_neon_fminv;
11107     Ty = HalfTy;
11108     VTy = llvm::FixedVectorType::get(HalfTy, 8);
11109     llvm::Type *Tys[2] = { Ty, VTy };
11110     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11111     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11112     return Builder.CreateTrunc(Ops[0], HalfTy);
11113   }
11114   case NEON::BI__builtin_neon_vmaxnmv_f16: {
11115     Int = Intrinsic::aarch64_neon_fmaxnmv;
11116     Ty = HalfTy;
11117     VTy = llvm::FixedVectorType::get(HalfTy, 4);
11118     llvm::Type *Tys[2] = { Ty, VTy };
11119     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11120     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
11121     return Builder.CreateTrunc(Ops[0], HalfTy);
11122   }
11123   case NEON::BI__builtin_neon_vmaxnmvq_f16: {
11124     Int = Intrinsic::aarch64_neon_fmaxnmv;
11125     Ty = HalfTy;
11126     VTy = llvm::FixedVectorType::get(HalfTy, 8);
11127     llvm::Type *Tys[2] = { Ty, VTy };
11128     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11129     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
11130     return Builder.CreateTrunc(Ops[0], HalfTy);
11131   }
11132   case NEON::BI__builtin_neon_vminnmv_f16: {
11133     Int = Intrinsic::aarch64_neon_fminnmv;
11134     Ty = HalfTy;
11135     VTy = llvm::FixedVectorType::get(HalfTy, 4);
11136     llvm::Type *Tys[2] = { Ty, VTy };
11137     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11138     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
11139     return Builder.CreateTrunc(Ops[0], HalfTy);
11140   }
11141   case NEON::BI__builtin_neon_vminnmvq_f16: {
11142     Int = Intrinsic::aarch64_neon_fminnmv;
11143     Ty = HalfTy;
11144     VTy = llvm::FixedVectorType::get(HalfTy, 8);
11145     llvm::Type *Tys[2] = { Ty, VTy };
11146     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11147     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
11148     return Builder.CreateTrunc(Ops[0], HalfTy);
11149   }
11150   case NEON::BI__builtin_neon_vmul_n_f64: {
11151     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
11152     Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
11153     return Builder.CreateFMul(Ops[0], RHS);
11154   }
11155   case NEON::BI__builtin_neon_vaddlv_u8: {
11156     Int = Intrinsic::aarch64_neon_uaddlv;
11157     Ty = Int32Ty;
11158     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11159     llvm::Type *Tys[2] = { Ty, VTy };
11160     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11161     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11162     return Builder.CreateTrunc(Ops[0], Int16Ty);
11163   }
11164   case NEON::BI__builtin_neon_vaddlv_u16: {
11165     Int = Intrinsic::aarch64_neon_uaddlv;
11166     Ty = Int32Ty;
11167     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11168     llvm::Type *Tys[2] = { Ty, VTy };
11169     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11170     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11171   }
11172   case NEON::BI__builtin_neon_vaddlvq_u8: {
11173     Int = Intrinsic::aarch64_neon_uaddlv;
11174     Ty = Int32Ty;
11175     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11176     llvm::Type *Tys[2] = { Ty, VTy };
11177     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11178     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11179     return Builder.CreateTrunc(Ops[0], Int16Ty);
11180   }
11181   case NEON::BI__builtin_neon_vaddlvq_u16: {
11182     Int = Intrinsic::aarch64_neon_uaddlv;
11183     Ty = Int32Ty;
11184     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11185     llvm::Type *Tys[2] = { Ty, VTy };
11186     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11187     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11188   }
11189   case NEON::BI__builtin_neon_vaddlv_s8: {
11190     Int = Intrinsic::aarch64_neon_saddlv;
11191     Ty = Int32Ty;
11192     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11193     llvm::Type *Tys[2] = { Ty, VTy };
11194     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11195     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11196     return Builder.CreateTrunc(Ops[0], Int16Ty);
11197   }
11198   case NEON::BI__builtin_neon_vaddlv_s16: {
11199     Int = Intrinsic::aarch64_neon_saddlv;
11200     Ty = Int32Ty;
11201     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11202     llvm::Type *Tys[2] = { Ty, VTy };
11203     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11204     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11205   }
11206   case NEON::BI__builtin_neon_vaddlvq_s8: {
11207     Int = Intrinsic::aarch64_neon_saddlv;
11208     Ty = Int32Ty;
11209     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11210     llvm::Type *Tys[2] = { Ty, VTy };
11211     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11212     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11213     return Builder.CreateTrunc(Ops[0], Int16Ty);
11214   }
11215   case NEON::BI__builtin_neon_vaddlvq_s16: {
11216     Int = Intrinsic::aarch64_neon_saddlv;
11217     Ty = Int32Ty;
11218     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11219     llvm::Type *Tys[2] = { Ty, VTy };
11220     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11221     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11222   }
11223   case NEON::BI__builtin_neon_vsri_n_v:
11224   case NEON::BI__builtin_neon_vsriq_n_v: {
11225     Int = Intrinsic::aarch64_neon_vsri;
11226     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
11227     return EmitNeonCall(Intrin, Ops, "vsri_n");
11228   }
11229   case NEON::BI__builtin_neon_vsli_n_v:
11230   case NEON::BI__builtin_neon_vsliq_n_v: {
11231     Int = Intrinsic::aarch64_neon_vsli;
11232     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
11233     return EmitNeonCall(Intrin, Ops, "vsli_n");
11234   }
11235   case NEON::BI__builtin_neon_vsra_n_v:
11236   case NEON::BI__builtin_neon_vsraq_n_v:
11237     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11238     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
11239     return Builder.CreateAdd(Ops[0], Ops[1]);
11240   case NEON::BI__builtin_neon_vrsra_n_v:
11241   case NEON::BI__builtin_neon_vrsraq_n_v: {
11242     Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
11243     SmallVector<llvm::Value*,2> TmpOps;
11244     TmpOps.push_back(Ops[1]);
11245     TmpOps.push_back(Ops[2]);
11246     Function* F = CGM.getIntrinsic(Int, Ty);
11247     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
11248     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
11249     return Builder.CreateAdd(Ops[0], tmp);
11250   }
11251   case NEON::BI__builtin_neon_vld1_v:
11252   case NEON::BI__builtin_neon_vld1q_v: {
11253     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
11254     return Builder.CreateAlignedLoad(VTy, Ops[0], PtrOp0.getAlignment());
11255   }
11256   case NEON::BI__builtin_neon_vst1_v:
11257   case NEON::BI__builtin_neon_vst1q_v:
11258     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
11259     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
11260     return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
11261   case NEON::BI__builtin_neon_vld1_lane_v:
11262   case NEON::BI__builtin_neon_vld1q_lane_v: {
11263     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11264     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
11265     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11266     Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
11267                                        PtrOp0.getAlignment());
11268     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
11269   }
11270   case NEON::BI__builtin_neon_vld1_dup_v:
11271   case NEON::BI__builtin_neon_vld1q_dup_v: {
11272     Value *V = UndefValue::get(Ty);
11273     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
11274     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11275     Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
11276                                        PtrOp0.getAlignment());
11277     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
11278     Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
11279     return EmitNeonSplat(Ops[0], CI);
11280   }
11281   case NEON::BI__builtin_neon_vst1_lane_v:
11282   case NEON::BI__builtin_neon_vst1q_lane_v:
11283     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11284     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
11285     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11286     return Builder.CreateAlignedStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty),
11287                                       PtrOp0.getAlignment());
11288   case NEON::BI__builtin_neon_vld2_v:
11289   case NEON::BI__builtin_neon_vld2q_v: {
11290     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11291     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11292     llvm::Type *Tys[2] = { VTy, PTy };
11293     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
11294     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
11295     Ops[0] = Builder.CreateBitCast(Ops[0],
11296                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11297     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11298   }
11299   case NEON::BI__builtin_neon_vld3_v:
11300   case NEON::BI__builtin_neon_vld3q_v: {
11301     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11302     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11303     llvm::Type *Tys[2] = { VTy, PTy };
11304     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
11305     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
11306     Ops[0] = Builder.CreateBitCast(Ops[0],
11307                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11308     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11309   }
11310   case NEON::BI__builtin_neon_vld4_v:
11311   case NEON::BI__builtin_neon_vld4q_v: {
11312     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11313     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11314     llvm::Type *Tys[2] = { VTy, PTy };
11315     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
11316     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
11317     Ops[0] = Builder.CreateBitCast(Ops[0],
11318                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11319     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11320   }
11321   case NEON::BI__builtin_neon_vld2_dup_v:
11322   case NEON::BI__builtin_neon_vld2q_dup_v: {
11323     llvm::Type *PTy =
11324       llvm::PointerType::getUnqual(VTy->getElementType());
11325     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11326     llvm::Type *Tys[2] = { VTy, PTy };
11327     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
11328     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
11329     Ops[0] = Builder.CreateBitCast(Ops[0],
11330                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11331     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11332   }
11333   case NEON::BI__builtin_neon_vld3_dup_v:
11334   case NEON::BI__builtin_neon_vld3q_dup_v: {
11335     llvm::Type *PTy =
11336       llvm::PointerType::getUnqual(VTy->getElementType());
11337     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11338     llvm::Type *Tys[2] = { VTy, PTy };
11339     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
11340     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
11341     Ops[0] = Builder.CreateBitCast(Ops[0],
11342                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11343     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11344   }
11345   case NEON::BI__builtin_neon_vld4_dup_v:
11346   case NEON::BI__builtin_neon_vld4q_dup_v: {
11347     llvm::Type *PTy =
11348       llvm::PointerType::getUnqual(VTy->getElementType());
11349     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11350     llvm::Type *Tys[2] = { VTy, PTy };
11351     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
11352     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
11353     Ops[0] = Builder.CreateBitCast(Ops[0],
11354                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11355     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11356   }
11357   case NEON::BI__builtin_neon_vld2_lane_v:
11358   case NEON::BI__builtin_neon_vld2q_lane_v: {
11359     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11360     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
11361     std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11362     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11363     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11364     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
11365     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
11366     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11367     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11368     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11369   }
11370   case NEON::BI__builtin_neon_vld3_lane_v:
11371   case NEON::BI__builtin_neon_vld3q_lane_v: {
11372     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11373     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
11374     std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11375     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11376     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11377     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
11378     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
11379     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
11380     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11381     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11382     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11383   }
11384   case NEON::BI__builtin_neon_vld4_lane_v:
11385   case NEON::BI__builtin_neon_vld4q_lane_v: {
11386     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11387     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
11388     std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11389     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11390     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11391     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
11392     Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
11393     Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
11394     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
11395     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11396     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11397     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11398   }
11399   case NEON::BI__builtin_neon_vst2_v:
11400   case NEON::BI__builtin_neon_vst2q_v: {
11401     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11402     llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
11403     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
11404                         Ops, "");
11405   }
11406   case NEON::BI__builtin_neon_vst2_lane_v:
11407   case NEON::BI__builtin_neon_vst2q_lane_v: {
11408     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11409     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
11410     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
11411     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
11412                         Ops, "");
11413   }
11414   case NEON::BI__builtin_neon_vst3_v:
11415   case NEON::BI__builtin_neon_vst3q_v: {
11416     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11417     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
11418     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
11419                         Ops, "");
11420   }
11421   case NEON::BI__builtin_neon_vst3_lane_v:
11422   case NEON::BI__builtin_neon_vst3q_lane_v: {
11423     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11424     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
11425     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
11426     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
11427                         Ops, "");
11428   }
11429   case NEON::BI__builtin_neon_vst4_v:
11430   case NEON::BI__builtin_neon_vst4q_v: {
11431     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11432     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
11433     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
11434                         Ops, "");
11435   }
11436   case NEON::BI__builtin_neon_vst4_lane_v:
11437   case NEON::BI__builtin_neon_vst4q_lane_v: {
11438     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11439     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
11440     llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
11441     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
11442                         Ops, "");
11443   }
11444   case NEON::BI__builtin_neon_vtrn_v:
11445   case NEON::BI__builtin_neon_vtrnq_v: {
11446     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11447     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11448     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11449     Value *SV = nullptr;
11450 
11451     for (unsigned vi = 0; vi != 2; ++vi) {
11452       SmallVector<int, 16> Indices;
11453       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
11454         Indices.push_back(i+vi);
11455         Indices.push_back(i+e+vi);
11456       }
11457       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11458       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
11459       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11460     }
11461     return SV;
11462   }
11463   case NEON::BI__builtin_neon_vuzp_v:
11464   case NEON::BI__builtin_neon_vuzpq_v: {
11465     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11466     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11467     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11468     Value *SV = nullptr;
11469 
11470     for (unsigned vi = 0; vi != 2; ++vi) {
11471       SmallVector<int, 16> Indices;
11472       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
11473         Indices.push_back(2*i+vi);
11474 
11475       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11476       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
11477       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11478     }
11479     return SV;
11480   }
11481   case NEON::BI__builtin_neon_vzip_v:
11482   case NEON::BI__builtin_neon_vzipq_v: {
11483     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11484     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11485     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11486     Value *SV = nullptr;
11487 
11488     for (unsigned vi = 0; vi != 2; ++vi) {
11489       SmallVector<int, 16> Indices;
11490       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
11491         Indices.push_back((i + vi*e) >> 1);
11492         Indices.push_back(((i + vi*e) >> 1)+e);
11493       }
11494       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11495       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
11496       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11497     }
11498     return SV;
11499   }
11500   case NEON::BI__builtin_neon_vqtbl1q_v: {
11501     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
11502                         Ops, "vtbl1");
11503   }
11504   case NEON::BI__builtin_neon_vqtbl2q_v: {
11505     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
11506                         Ops, "vtbl2");
11507   }
11508   case NEON::BI__builtin_neon_vqtbl3q_v: {
11509     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
11510                         Ops, "vtbl3");
11511   }
11512   case NEON::BI__builtin_neon_vqtbl4q_v: {
11513     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
11514                         Ops, "vtbl4");
11515   }
11516   case NEON::BI__builtin_neon_vqtbx1q_v: {
11517     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
11518                         Ops, "vtbx1");
11519   }
11520   case NEON::BI__builtin_neon_vqtbx2q_v: {
11521     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
11522                         Ops, "vtbx2");
11523   }
11524   case NEON::BI__builtin_neon_vqtbx3q_v: {
11525     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
11526                         Ops, "vtbx3");
11527   }
11528   case NEON::BI__builtin_neon_vqtbx4q_v: {
11529     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
11530                         Ops, "vtbx4");
11531   }
11532   case NEON::BI__builtin_neon_vsqadd_v:
11533   case NEON::BI__builtin_neon_vsqaddq_v: {
11534     Int = Intrinsic::aarch64_neon_usqadd;
11535     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
11536   }
11537   case NEON::BI__builtin_neon_vuqadd_v:
11538   case NEON::BI__builtin_neon_vuqaddq_v: {
11539     Int = Intrinsic::aarch64_neon_suqadd;
11540     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
11541   }
11542   }
11543 }
11544 
EmitBPFBuiltinExpr(unsigned BuiltinID,const CallExpr * E)11545 Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID,
11546                                            const CallExpr *E) {
11547   assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
11548           BuiltinID == BPF::BI__builtin_btf_type_id ||
11549           BuiltinID == BPF::BI__builtin_preserve_type_info ||
11550           BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
11551          "unexpected BPF builtin");
11552 
11553   // A sequence number, injected into IR builtin functions, to
11554   // prevent CSE given the only difference of the funciton
11555   // may just be the debuginfo metadata.
11556   static uint32_t BuiltinSeqNum;
11557 
11558   switch (BuiltinID) {
11559   default:
11560     llvm_unreachable("Unexpected BPF builtin");
11561   case BPF::BI__builtin_preserve_field_info: {
11562     const Expr *Arg = E->getArg(0);
11563     bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField;
11564 
11565     if (!getDebugInfo()) {
11566       CGM.Error(E->getExprLoc(),
11567                 "using __builtin_preserve_field_info() without -g");
11568       return IsBitField ? EmitLValue(Arg).getBitFieldPointer()
11569                         : EmitLValue(Arg).getPointer(*this);
11570     }
11571 
11572     // Enable underlying preserve_*_access_index() generation.
11573     bool OldIsInPreservedAIRegion = IsInPreservedAIRegion;
11574     IsInPreservedAIRegion = true;
11575     Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer()
11576                                   : EmitLValue(Arg).getPointer(*this);
11577     IsInPreservedAIRegion = OldIsInPreservedAIRegion;
11578 
11579     ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11580     Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue());
11581 
11582     // Built the IR for the preserve_field_info intrinsic.
11583     llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration(
11584         &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info,
11585         {FieldAddr->getType()});
11586     return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind});
11587   }
11588   case BPF::BI__builtin_btf_type_id:
11589   case BPF::BI__builtin_preserve_type_info: {
11590     if (!getDebugInfo()) {
11591       CGM.Error(E->getExprLoc(), "using builtin function without -g");
11592       return nullptr;
11593     }
11594 
11595     const Expr *Arg0 = E->getArg(0);
11596     llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
11597         Arg0->getType(), Arg0->getExprLoc());
11598 
11599     ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11600     Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
11601     Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
11602 
11603     llvm::Function *FnDecl;
11604     if (BuiltinID == BPF::BI__builtin_btf_type_id)
11605       FnDecl = llvm::Intrinsic::getDeclaration(
11606           &CGM.getModule(), llvm::Intrinsic::bpf_btf_type_id, {});
11607     else
11608       FnDecl = llvm::Intrinsic::getDeclaration(
11609           &CGM.getModule(), llvm::Intrinsic::bpf_preserve_type_info, {});
11610     CallInst *Fn = Builder.CreateCall(FnDecl, {SeqNumVal, FlagValue});
11611     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
11612     return Fn;
11613   }
11614   case BPF::BI__builtin_preserve_enum_value: {
11615     if (!getDebugInfo()) {
11616       CGM.Error(E->getExprLoc(), "using builtin function without -g");
11617       return nullptr;
11618     }
11619 
11620     const Expr *Arg0 = E->getArg(0);
11621     llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
11622         Arg0->getType(), Arg0->getExprLoc());
11623 
11624     // Find enumerator
11625     const auto *UO = cast<UnaryOperator>(Arg0->IgnoreParens());
11626     const auto *CE = cast<CStyleCastExpr>(UO->getSubExpr());
11627     const auto *DR = cast<DeclRefExpr>(CE->getSubExpr());
11628     const auto *Enumerator = cast<EnumConstantDecl>(DR->getDecl());
11629 
11630     auto &InitVal = Enumerator->getInitVal();
11631     std::string InitValStr;
11632     if (InitVal.isNegative() || InitVal > uint64_t(INT64_MAX))
11633       InitValStr = std::to_string(InitVal.getSExtValue());
11634     else
11635       InitValStr = std::to_string(InitVal.getZExtValue());
11636     std::string EnumStr = Enumerator->getNameAsString() + ":" + InitValStr;
11637     Value *EnumStrVal = Builder.CreateGlobalStringPtr(EnumStr);
11638 
11639     ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11640     Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
11641     Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
11642 
11643     llvm::Function *IntrinsicFn = llvm::Intrinsic::getDeclaration(
11644         &CGM.getModule(), llvm::Intrinsic::bpf_preserve_enum_value, {});
11645     CallInst *Fn =
11646         Builder.CreateCall(IntrinsicFn, {SeqNumVal, EnumStrVal, FlagValue});
11647     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
11648     return Fn;
11649   }
11650   }
11651 }
11652 
11653 llvm::Value *CodeGenFunction::
BuildVector(ArrayRef<llvm::Value * > Ops)11654 BuildVector(ArrayRef<llvm::Value*> Ops) {
11655   assert((Ops.size() & (Ops.size() - 1)) == 0 &&
11656          "Not a power-of-two sized vector!");
11657   bool AllConstants = true;
11658   for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
11659     AllConstants &= isa<Constant>(Ops[i]);
11660 
11661   // If this is a constant vector, create a ConstantVector.
11662   if (AllConstants) {
11663     SmallVector<llvm::Constant*, 16> CstOps;
11664     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
11665       CstOps.push_back(cast<Constant>(Ops[i]));
11666     return llvm::ConstantVector::get(CstOps);
11667   }
11668 
11669   // Otherwise, insertelement the values to build the vector.
11670   Value *Result = llvm::UndefValue::get(
11671       llvm::FixedVectorType::get(Ops[0]->getType(), Ops.size()));
11672 
11673   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
11674     Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
11675 
11676   return Result;
11677 }
11678 
11679 // Convert the mask from an integer type to a vector of i1.
getMaskVecValue(CodeGenFunction & CGF,Value * Mask,unsigned NumElts)11680 static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
11681                               unsigned NumElts) {
11682 
11683   auto *MaskTy = llvm::FixedVectorType::get(
11684       CGF.Builder.getInt1Ty(),
11685       cast<IntegerType>(Mask->getType())->getBitWidth());
11686   Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
11687 
11688   // If we have less than 8 elements, then the starting mask was an i8 and
11689   // we need to extract down to the right number of elements.
11690   if (NumElts < 8) {
11691     int Indices[4];
11692     for (unsigned i = 0; i != NumElts; ++i)
11693       Indices[i] = i;
11694     MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec,
11695                                              makeArrayRef(Indices, NumElts),
11696                                              "extract");
11697   }
11698   return MaskVec;
11699 }
11700 
EmitX86MaskedStore(CodeGenFunction & CGF,ArrayRef<Value * > Ops,Align Alignment)11701 static Value *EmitX86MaskedStore(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11702                                  Align Alignment) {
11703   // Cast the pointer to right type.
11704   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11705                                llvm::PointerType::getUnqual(Ops[1]->getType()));
11706 
11707   Value *MaskVec = getMaskVecValue(
11708       CGF, Ops[2],
11709       cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements());
11710 
11711   return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Alignment, MaskVec);
11712 }
11713 
EmitX86MaskedLoad(CodeGenFunction & CGF,ArrayRef<Value * > Ops,Align Alignment)11714 static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11715                                 Align Alignment) {
11716   // Cast the pointer to right type.
11717   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11718                                llvm::PointerType::getUnqual(Ops[1]->getType()));
11719 
11720   Value *MaskVec = getMaskVecValue(
11721       CGF, Ops[2],
11722       cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements());
11723 
11724   return CGF.Builder.CreateMaskedLoad(Ptr, Alignment, MaskVec, Ops[1]);
11725 }
11726 
EmitX86ExpandLoad(CodeGenFunction & CGF,ArrayRef<Value * > Ops)11727 static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
11728                                 ArrayRef<Value *> Ops) {
11729   auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType());
11730   llvm::Type *PtrTy = ResultTy->getElementType();
11731 
11732   // Cast the pointer to element type.
11733   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11734                                          llvm::PointerType::getUnqual(PtrTy));
11735 
11736   Value *MaskVec = getMaskVecValue(
11737       CGF, Ops[2], cast<FixedVectorType>(ResultTy)->getNumElements());
11738 
11739   llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
11740                                            ResultTy);
11741   return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
11742 }
11743 
EmitX86CompressExpand(CodeGenFunction & CGF,ArrayRef<Value * > Ops,bool IsCompress)11744 static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
11745                                     ArrayRef<Value *> Ops,
11746                                     bool IsCompress) {
11747   auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
11748 
11749   Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
11750 
11751   Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
11752                                  : Intrinsic::x86_avx512_mask_expand;
11753   llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
11754   return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
11755 }
11756 
EmitX86CompressStore(CodeGenFunction & CGF,ArrayRef<Value * > Ops)11757 static Value *EmitX86CompressStore(CodeGenFunction &CGF,
11758                                    ArrayRef<Value *> Ops) {
11759   auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
11760   llvm::Type *PtrTy = ResultTy->getElementType();
11761 
11762   // Cast the pointer to element type.
11763   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11764                                          llvm::PointerType::getUnqual(PtrTy));
11765 
11766   Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
11767 
11768   llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
11769                                            ResultTy);
11770   return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
11771 }
11772 
EmitX86MaskLogic(CodeGenFunction & CGF,Instruction::BinaryOps Opc,ArrayRef<Value * > Ops,bool InvertLHS=false)11773 static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
11774                               ArrayRef<Value *> Ops,
11775                               bool InvertLHS = false) {
11776   unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11777   Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
11778   Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
11779 
11780   if (InvertLHS)
11781     LHS = CGF.Builder.CreateNot(LHS);
11782 
11783   return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
11784                                    Ops[0]->getType());
11785 }
11786 
EmitX86FunnelShift(CodeGenFunction & CGF,Value * Op0,Value * Op1,Value * Amt,bool IsRight)11787 static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
11788                                  Value *Amt, bool IsRight) {
11789   llvm::Type *Ty = Op0->getType();
11790 
11791   // Amount may be scalar immediate, in which case create a splat vector.
11792   // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
11793   // we only care about the lowest log2 bits anyway.
11794   if (Amt->getType() != Ty) {
11795     unsigned NumElts = cast<llvm::FixedVectorType>(Ty)->getNumElements();
11796     Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
11797     Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
11798   }
11799 
11800   unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
11801   Function *F = CGF.CGM.getIntrinsic(IID, Ty);
11802   return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
11803 }
11804 
EmitX86vpcom(CodeGenFunction & CGF,ArrayRef<Value * > Ops,bool IsSigned)11805 static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11806                            bool IsSigned) {
11807   Value *Op0 = Ops[0];
11808   Value *Op1 = Ops[1];
11809   llvm::Type *Ty = Op0->getType();
11810   uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
11811 
11812   CmpInst::Predicate Pred;
11813   switch (Imm) {
11814   case 0x0:
11815     Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
11816     break;
11817   case 0x1:
11818     Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
11819     break;
11820   case 0x2:
11821     Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
11822     break;
11823   case 0x3:
11824     Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
11825     break;
11826   case 0x4:
11827     Pred = ICmpInst::ICMP_EQ;
11828     break;
11829   case 0x5:
11830     Pred = ICmpInst::ICMP_NE;
11831     break;
11832   case 0x6:
11833     return llvm::Constant::getNullValue(Ty); // FALSE
11834   case 0x7:
11835     return llvm::Constant::getAllOnesValue(Ty); // TRUE
11836   default:
11837     llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate");
11838   }
11839 
11840   Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
11841   Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
11842   return Res;
11843 }
11844 
EmitX86Select(CodeGenFunction & CGF,Value * Mask,Value * Op0,Value * Op1)11845 static Value *EmitX86Select(CodeGenFunction &CGF,
11846                             Value *Mask, Value *Op0, Value *Op1) {
11847 
11848   // If the mask is all ones just return first argument.
11849   if (const auto *C = dyn_cast<Constant>(Mask))
11850     if (C->isAllOnesValue())
11851       return Op0;
11852 
11853   Mask = getMaskVecValue(
11854       CGF, Mask, cast<llvm::FixedVectorType>(Op0->getType())->getNumElements());
11855 
11856   return CGF.Builder.CreateSelect(Mask, Op0, Op1);
11857 }
11858 
EmitX86ScalarSelect(CodeGenFunction & CGF,Value * Mask,Value * Op0,Value * Op1)11859 static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
11860                                   Value *Mask, Value *Op0, Value *Op1) {
11861   // If the mask is all ones just return first argument.
11862   if (const auto *C = dyn_cast<Constant>(Mask))
11863     if (C->isAllOnesValue())
11864       return Op0;
11865 
11866   auto *MaskTy = llvm::FixedVectorType::get(
11867       CGF.Builder.getInt1Ty(), Mask->getType()->getIntegerBitWidth());
11868   Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
11869   Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
11870   return CGF.Builder.CreateSelect(Mask, Op0, Op1);
11871 }
11872 
EmitX86MaskedCompareResult(CodeGenFunction & CGF,Value * Cmp,unsigned NumElts,Value * MaskIn)11873 static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
11874                                          unsigned NumElts, Value *MaskIn) {
11875   if (MaskIn) {
11876     const auto *C = dyn_cast<Constant>(MaskIn);
11877     if (!C || !C->isAllOnesValue())
11878       Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
11879   }
11880 
11881   if (NumElts < 8) {
11882     int Indices[8];
11883     for (unsigned i = 0; i != NumElts; ++i)
11884       Indices[i] = i;
11885     for (unsigned i = NumElts; i != 8; ++i)
11886       Indices[i] = i % NumElts + NumElts;
11887     Cmp = CGF.Builder.CreateShuffleVector(
11888         Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
11889   }
11890 
11891   return CGF.Builder.CreateBitCast(Cmp,
11892                                    IntegerType::get(CGF.getLLVMContext(),
11893                                                     std::max(NumElts, 8U)));
11894 }
11895 
EmitX86MaskedCompare(CodeGenFunction & CGF,unsigned CC,bool Signed,ArrayRef<Value * > Ops)11896 static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
11897                                    bool Signed, ArrayRef<Value *> Ops) {
11898   assert((Ops.size() == 2 || Ops.size() == 4) &&
11899          "Unexpected number of arguments");
11900   unsigned NumElts =
11901       cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
11902   Value *Cmp;
11903 
11904   if (CC == 3) {
11905     Cmp = Constant::getNullValue(
11906         llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
11907   } else if (CC == 7) {
11908     Cmp = Constant::getAllOnesValue(
11909         llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
11910   } else {
11911     ICmpInst::Predicate Pred;
11912     switch (CC) {
11913     default: llvm_unreachable("Unknown condition code");
11914     case 0: Pred = ICmpInst::ICMP_EQ;  break;
11915     case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
11916     case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
11917     case 4: Pred = ICmpInst::ICMP_NE;  break;
11918     case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
11919     case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
11920     }
11921     Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
11922   }
11923 
11924   Value *MaskIn = nullptr;
11925   if (Ops.size() == 4)
11926     MaskIn = Ops[3];
11927 
11928   return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
11929 }
11930 
EmitX86ConvertToMask(CodeGenFunction & CGF,Value * In)11931 static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
11932   Value *Zero = Constant::getNullValue(In->getType());
11933   return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
11934 }
11935 
EmitX86ConvertIntToFp(CodeGenFunction & CGF,const CallExpr * E,ArrayRef<Value * > Ops,bool IsSigned)11936 static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF, const CallExpr *E,
11937                                     ArrayRef<Value *> Ops, bool IsSigned) {
11938   unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
11939   llvm::Type *Ty = Ops[1]->getType();
11940 
11941   Value *Res;
11942   if (Rnd != 4) {
11943     Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
11944                                  : Intrinsic::x86_avx512_uitofp_round;
11945     Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
11946     Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
11947   } else {
11948     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
11949     Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
11950                    : CGF.Builder.CreateUIToFP(Ops[0], Ty);
11951   }
11952 
11953   return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
11954 }
11955 
11956 // Lowers X86 FMA intrinsics to IR.
EmitX86FMAExpr(CodeGenFunction & CGF,const CallExpr * E,ArrayRef<Value * > Ops,unsigned BuiltinID,bool IsAddSub)11957 static Value *EmitX86FMAExpr(CodeGenFunction &CGF, const CallExpr *E,
11958                              ArrayRef<Value *> Ops, unsigned BuiltinID,
11959                              bool IsAddSub) {
11960 
11961   bool Subtract = false;
11962   Intrinsic::ID IID = Intrinsic::not_intrinsic;
11963   switch (BuiltinID) {
11964   default: break;
11965   case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
11966     Subtract = true;
11967     LLVM_FALLTHROUGH;
11968   case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
11969   case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
11970   case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
11971     IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
11972   case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
11973     Subtract = true;
11974     LLVM_FALLTHROUGH;
11975   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
11976   case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
11977   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
11978     IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
11979   case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
11980     Subtract = true;
11981     LLVM_FALLTHROUGH;
11982   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
11983   case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
11984   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
11985     IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
11986     break;
11987   case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
11988     Subtract = true;
11989     LLVM_FALLTHROUGH;
11990   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
11991   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
11992   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
11993     IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
11994     break;
11995   }
11996 
11997   Value *A = Ops[0];
11998   Value *B = Ops[1];
11999   Value *C = Ops[2];
12000 
12001   if (Subtract)
12002     C = CGF.Builder.CreateFNeg(C);
12003 
12004   Value *Res;
12005 
12006   // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
12007   if (IID != Intrinsic::not_intrinsic &&
12008       (cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4 ||
12009        IsAddSub)) {
12010     Function *Intr = CGF.CGM.getIntrinsic(IID);
12011     Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
12012   } else {
12013     llvm::Type *Ty = A->getType();
12014     Function *FMA;
12015     if (CGF.Builder.getIsFPConstrained()) {
12016       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12017       FMA = CGF.CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, Ty);
12018       Res = CGF.Builder.CreateConstrainedFPCall(FMA, {A, B, C});
12019     } else {
12020       FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
12021       Res = CGF.Builder.CreateCall(FMA, {A, B, C});
12022     }
12023   }
12024 
12025   // Handle any required masking.
12026   Value *MaskFalseVal = nullptr;
12027   switch (BuiltinID) {
12028   case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
12029   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
12030   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
12031   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12032     MaskFalseVal = Ops[0];
12033     break;
12034   case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
12035   case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
12036   case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12037   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12038     MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
12039     break;
12040   case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
12041   case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
12042   case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
12043   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
12044   case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12045   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12046   case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12047   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12048     MaskFalseVal = Ops[2];
12049     break;
12050   }
12051 
12052   if (MaskFalseVal)
12053     return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
12054 
12055   return Res;
12056 }
12057 
EmitScalarFMAExpr(CodeGenFunction & CGF,const CallExpr * E,MutableArrayRef<Value * > Ops,Value * Upper,bool ZeroMask=false,unsigned PTIdx=0,bool NegAcc=false)12058 static Value *EmitScalarFMAExpr(CodeGenFunction &CGF, const CallExpr *E,
12059                                 MutableArrayRef<Value *> Ops, Value *Upper,
12060                                 bool ZeroMask = false, unsigned PTIdx = 0,
12061                                 bool NegAcc = false) {
12062   unsigned Rnd = 4;
12063   if (Ops.size() > 4)
12064     Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
12065 
12066   if (NegAcc)
12067     Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
12068 
12069   Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
12070   Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
12071   Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
12072   Value *Res;
12073   if (Rnd != 4) {
12074     Intrinsic::ID IID = Ops[0]->getType()->getPrimitiveSizeInBits() == 32 ?
12075                         Intrinsic::x86_avx512_vfmadd_f32 :
12076                         Intrinsic::x86_avx512_vfmadd_f64;
12077     Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
12078                                  {Ops[0], Ops[1], Ops[2], Ops[4]});
12079   } else if (CGF.Builder.getIsFPConstrained()) {
12080     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12081     Function *FMA = CGF.CGM.getIntrinsic(
12082         Intrinsic::experimental_constrained_fma, Ops[0]->getType());
12083     Res = CGF.Builder.CreateConstrainedFPCall(FMA, Ops.slice(0, 3));
12084   } else {
12085     Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
12086     Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
12087   }
12088   // If we have more than 3 arguments, we need to do masking.
12089   if (Ops.size() > 3) {
12090     Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
12091                                : Ops[PTIdx];
12092 
12093     // If we negated the accumulator and the its the PassThru value we need to
12094     // bypass the negate. Conveniently Upper should be the same thing in this
12095     // case.
12096     if (NegAcc && PTIdx == 2)
12097       PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
12098 
12099     Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
12100   }
12101   return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
12102 }
12103 
EmitX86Muldq(CodeGenFunction & CGF,bool IsSigned,ArrayRef<Value * > Ops)12104 static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
12105                            ArrayRef<Value *> Ops) {
12106   llvm::Type *Ty = Ops[0]->getType();
12107   // Arguments have a vXi32 type so cast to vXi64.
12108   Ty = llvm::FixedVectorType::get(CGF.Int64Ty,
12109                                   Ty->getPrimitiveSizeInBits() / 64);
12110   Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
12111   Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
12112 
12113   if (IsSigned) {
12114     // Shift left then arithmetic shift right.
12115     Constant *ShiftAmt = ConstantInt::get(Ty, 32);
12116     LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
12117     LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
12118     RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
12119     RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
12120   } else {
12121     // Clear the upper bits.
12122     Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
12123     LHS = CGF.Builder.CreateAnd(LHS, Mask);
12124     RHS = CGF.Builder.CreateAnd(RHS, Mask);
12125   }
12126 
12127   return CGF.Builder.CreateMul(LHS, RHS);
12128 }
12129 
12130 // Emit a masked pternlog intrinsic. This only exists because the header has to
12131 // use a macro and we aren't able to pass the input argument to a pternlog
12132 // builtin and a select builtin without evaluating it twice.
EmitX86Ternlog(CodeGenFunction & CGF,bool ZeroMask,ArrayRef<Value * > Ops)12133 static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
12134                              ArrayRef<Value *> Ops) {
12135   llvm::Type *Ty = Ops[0]->getType();
12136 
12137   unsigned VecWidth = Ty->getPrimitiveSizeInBits();
12138   unsigned EltWidth = Ty->getScalarSizeInBits();
12139   Intrinsic::ID IID;
12140   if (VecWidth == 128 && EltWidth == 32)
12141     IID = Intrinsic::x86_avx512_pternlog_d_128;
12142   else if (VecWidth == 256 && EltWidth == 32)
12143     IID = Intrinsic::x86_avx512_pternlog_d_256;
12144   else if (VecWidth == 512 && EltWidth == 32)
12145     IID = Intrinsic::x86_avx512_pternlog_d_512;
12146   else if (VecWidth == 128 && EltWidth == 64)
12147     IID = Intrinsic::x86_avx512_pternlog_q_128;
12148   else if (VecWidth == 256 && EltWidth == 64)
12149     IID = Intrinsic::x86_avx512_pternlog_q_256;
12150   else if (VecWidth == 512 && EltWidth == 64)
12151     IID = Intrinsic::x86_avx512_pternlog_q_512;
12152   else
12153     llvm_unreachable("Unexpected intrinsic");
12154 
12155   Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
12156                                           Ops.drop_back());
12157   Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
12158   return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
12159 }
12160 
EmitX86SExtMask(CodeGenFunction & CGF,Value * Op,llvm::Type * DstTy)12161 static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
12162                               llvm::Type *DstTy) {
12163   unsigned NumberOfElements =
12164       cast<llvm::FixedVectorType>(DstTy)->getNumElements();
12165   Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
12166   return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
12167 }
12168 
12169 // Emit binary intrinsic with the same type used in result/args.
EmitX86BinaryIntrinsic(CodeGenFunction & CGF,ArrayRef<Value * > Ops,Intrinsic::ID IID)12170 static Value *EmitX86BinaryIntrinsic(CodeGenFunction &CGF,
12171                                      ArrayRef<Value *> Ops, Intrinsic::ID IID) {
12172   llvm::Function *F = CGF.CGM.getIntrinsic(IID, Ops[0]->getType());
12173   return CGF.Builder.CreateCall(F, {Ops[0], Ops[1]});
12174 }
12175 
EmitX86CpuIs(const CallExpr * E)12176 Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
12177   const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
12178   StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
12179   return EmitX86CpuIs(CPUStr);
12180 }
12181 
12182 // Convert F16 halfs to floats.
EmitX86CvtF16ToFloatExpr(CodeGenFunction & CGF,ArrayRef<Value * > Ops,llvm::Type * DstTy)12183 static Value *EmitX86CvtF16ToFloatExpr(CodeGenFunction &CGF,
12184                                        ArrayRef<Value *> Ops,
12185                                        llvm::Type *DstTy) {
12186   assert((Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) &&
12187          "Unknown cvtph2ps intrinsic");
12188 
12189   // If the SAE intrinsic doesn't use default rounding then we can't upgrade.
12190   if (Ops.size() == 4 && cast<llvm::ConstantInt>(Ops[3])->getZExtValue() != 4) {
12191     Function *F =
12192         CGF.CGM.getIntrinsic(Intrinsic::x86_avx512_mask_vcvtph2ps_512);
12193     return CGF.Builder.CreateCall(F, {Ops[0], Ops[1], Ops[2], Ops[3]});
12194   }
12195 
12196   unsigned NumDstElts = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
12197   Value *Src = Ops[0];
12198 
12199   // Extract the subvector.
12200   if (NumDstElts !=
12201       cast<llvm::FixedVectorType>(Src->getType())->getNumElements()) {
12202     assert(NumDstElts == 4 && "Unexpected vector size");
12203     Src = CGF.Builder.CreateShuffleVector(Src, ArrayRef<int>{0, 1, 2, 3});
12204   }
12205 
12206   // Bitcast from vXi16 to vXf16.
12207   auto *HalfTy = llvm::FixedVectorType::get(
12208       llvm::Type::getHalfTy(CGF.getLLVMContext()), NumDstElts);
12209   Src = CGF.Builder.CreateBitCast(Src, HalfTy);
12210 
12211   // Perform the fp-extension.
12212   Value *Res = CGF.Builder.CreateFPExt(Src, DstTy, "cvtph2ps");
12213 
12214   if (Ops.size() >= 3)
12215     Res = EmitX86Select(CGF, Ops[2], Res, Ops[1]);
12216   return Res;
12217 }
12218 
12219 // Convert a BF16 to a float.
EmitX86CvtBF16ToFloatExpr(CodeGenFunction & CGF,const CallExpr * E,ArrayRef<Value * > Ops)12220 static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF,
12221                                         const CallExpr *E,
12222                                         ArrayRef<Value *> Ops) {
12223   llvm::Type *Int32Ty = CGF.Builder.getInt32Ty();
12224   Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty);
12225   Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16);
12226   llvm::Type *ResultType = CGF.ConvertType(E->getType());
12227   Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType);
12228   return BitCast;
12229 }
12230 
EmitX86CpuIs(StringRef CPUStr)12231 Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
12232 
12233   llvm::Type *Int32Ty = Builder.getInt32Ty();
12234 
12235   // Matching the struct layout from the compiler-rt/libgcc structure that is
12236   // filled in:
12237   // unsigned int __cpu_vendor;
12238   // unsigned int __cpu_type;
12239   // unsigned int __cpu_subtype;
12240   // unsigned int __cpu_features[1];
12241   llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
12242                                           llvm::ArrayType::get(Int32Ty, 1));
12243 
12244   // Grab the global __cpu_model.
12245   llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
12246   cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
12247 
12248   // Calculate the index needed to access the correct field based on the
12249   // range. Also adjust the expected value.
12250   unsigned Index;
12251   unsigned Value;
12252   std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
12253 #define X86_VENDOR(ENUM, STRING)                                               \
12254   .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
12255 #define X86_CPU_TYPE_ALIAS(ENUM, ALIAS)                                        \
12256   .Case(ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
12257 #define X86_CPU_TYPE(ENUM, STR)                                                \
12258   .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
12259 #define X86_CPU_SUBTYPE(ENUM, STR)                                             \
12260   .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
12261 #include "llvm/Support/X86TargetParser.def"
12262                                .Default({0, 0});
12263   assert(Value != 0 && "Invalid CPUStr passed to CpuIs");
12264 
12265   // Grab the appropriate field from __cpu_model.
12266   llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
12267                          ConstantInt::get(Int32Ty, Index)};
12268   llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
12269   CpuValue = Builder.CreateAlignedLoad(Int32Ty, CpuValue,
12270                                        CharUnits::fromQuantity(4));
12271 
12272   // Check the value of the field against the requested value.
12273   return Builder.CreateICmpEQ(CpuValue,
12274                                   llvm::ConstantInt::get(Int32Ty, Value));
12275 }
12276 
EmitX86CpuSupports(const CallExpr * E)12277 Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
12278   const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
12279   StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
12280   return EmitX86CpuSupports(FeatureStr);
12281 }
12282 
12283 uint64_t
GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs)12284 CodeGenFunction::GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs) {
12285   // Processor features and mapping to processor feature value.
12286   uint64_t FeaturesMask = 0;
12287   for (const StringRef &FeatureStr : FeatureStrs) {
12288     unsigned Feature =
12289         StringSwitch<unsigned>(FeatureStr)
12290 #define X86_FEATURE_COMPAT(ENUM, STR) .Case(STR, llvm::X86::FEATURE_##ENUM)
12291 #include "llvm/Support/X86TargetParser.def"
12292         ;
12293     FeaturesMask |= (1ULL << Feature);
12294   }
12295   return FeaturesMask;
12296 }
12297 
EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs)12298 Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
12299   return EmitX86CpuSupports(GetX86CpuSupportsMask(FeatureStrs));
12300 }
12301 
EmitX86CpuSupports(uint64_t FeaturesMask)12302 llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) {
12303   uint32_t Features1 = Lo_32(FeaturesMask);
12304   uint32_t Features2 = Hi_32(FeaturesMask);
12305 
12306   Value *Result = Builder.getTrue();
12307 
12308   if (Features1 != 0) {
12309     // Matching the struct layout from the compiler-rt/libgcc structure that is
12310     // filled in:
12311     // unsigned int __cpu_vendor;
12312     // unsigned int __cpu_type;
12313     // unsigned int __cpu_subtype;
12314     // unsigned int __cpu_features[1];
12315     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
12316                                             llvm::ArrayType::get(Int32Ty, 1));
12317 
12318     // Grab the global __cpu_model.
12319     llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
12320     cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
12321 
12322     // Grab the first (0th) element from the field __cpu_features off of the
12323     // global in the struct STy.
12324     Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
12325                      Builder.getInt32(0)};
12326     Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
12327     Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures,
12328                                                 CharUnits::fromQuantity(4));
12329 
12330     // Check the value of the bit corresponding to the feature requested.
12331     Value *Mask = Builder.getInt32(Features1);
12332     Value *Bitset = Builder.CreateAnd(Features, Mask);
12333     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
12334     Result = Builder.CreateAnd(Result, Cmp);
12335   }
12336 
12337   if (Features2 != 0) {
12338     llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty,
12339                                                              "__cpu_features2");
12340     cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
12341 
12342     Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures2,
12343                                                 CharUnits::fromQuantity(4));
12344 
12345     // Check the value of the bit corresponding to the feature requested.
12346     Value *Mask = Builder.getInt32(Features2);
12347     Value *Bitset = Builder.CreateAnd(Features, Mask);
12348     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
12349     Result = Builder.CreateAnd(Result, Cmp);
12350   }
12351 
12352   return Result;
12353 }
12354 
EmitX86CpuInit()12355 Value *CodeGenFunction::EmitX86CpuInit() {
12356   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
12357                                                     /*Variadic*/ false);
12358   llvm::FunctionCallee Func =
12359       CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
12360   cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
12361   cast<llvm::GlobalValue>(Func.getCallee())
12362       ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
12363   return Builder.CreateCall(Func);
12364 }
12365 
EmitX86BuiltinExpr(unsigned BuiltinID,const CallExpr * E)12366 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
12367                                            const CallExpr *E) {
12368   if (BuiltinID == X86::BI__builtin_cpu_is)
12369     return EmitX86CpuIs(E);
12370   if (BuiltinID == X86::BI__builtin_cpu_supports)
12371     return EmitX86CpuSupports(E);
12372   if (BuiltinID == X86::BI__builtin_cpu_init)
12373     return EmitX86CpuInit();
12374 
12375   // Handle MSVC intrinsics before argument evaluation to prevent double
12376   // evaluation.
12377   if (Optional<MSVCIntrin> MsvcIntId = translateX86ToMsvcIntrin(BuiltinID))
12378     return EmitMSVCBuiltinExpr(*MsvcIntId, E);
12379 
12380   SmallVector<Value*, 4> Ops;
12381   bool IsMaskFCmp = false;
12382 
12383   // Find out if any arguments are required to be integer constant expressions.
12384   unsigned ICEArguments = 0;
12385   ASTContext::GetBuiltinTypeError Error;
12386   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
12387   assert(Error == ASTContext::GE_None && "Should not codegen an error");
12388 
12389   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
12390     // If this is a normal argument, just emit it as a scalar.
12391     if ((ICEArguments & (1 << i)) == 0) {
12392       Ops.push_back(EmitScalarExpr(E->getArg(i)));
12393       continue;
12394     }
12395 
12396     // If this is required to be a constant, constant fold it so that we know
12397     // that the generated intrinsic gets a ConstantInt.
12398     Ops.push_back(llvm::ConstantInt::get(
12399         getLLVMContext(), *E->getArg(i)->getIntegerConstantExpr(getContext())));
12400   }
12401 
12402   // These exist so that the builtin that takes an immediate can be bounds
12403   // checked by clang to avoid passing bad immediates to the backend. Since
12404   // AVX has a larger immediate than SSE we would need separate builtins to
12405   // do the different bounds checking. Rather than create a clang specific
12406   // SSE only builtin, this implements eight separate builtins to match gcc
12407   // implementation.
12408   auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
12409     Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
12410     llvm::Function *F = CGM.getIntrinsic(ID);
12411     return Builder.CreateCall(F, Ops);
12412   };
12413 
12414   // For the vector forms of FP comparisons, translate the builtins directly to
12415   // IR.
12416   // TODO: The builtins could be removed if the SSE header files used vector
12417   // extension comparisons directly (vector ordered/unordered may need
12418   // additional support via __builtin_isnan()).
12419   auto getVectorFCmpIR = [this, &Ops, E](CmpInst::Predicate Pred,
12420                                          bool IsSignaling) {
12421     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
12422     Value *Cmp;
12423     if (IsSignaling)
12424       Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
12425     else
12426       Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
12427     llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
12428     llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
12429     Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
12430     return Builder.CreateBitCast(Sext, FPVecTy);
12431   };
12432 
12433   switch (BuiltinID) {
12434   default: return nullptr;
12435   case X86::BI_mm_prefetch: {
12436     Value *Address = Ops[0];
12437     ConstantInt *C = cast<ConstantInt>(Ops[1]);
12438     Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
12439     Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
12440     Value *Data = ConstantInt::get(Int32Ty, 1);
12441     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
12442     return Builder.CreateCall(F, {Address, RW, Locality, Data});
12443   }
12444   case X86::BI_mm_clflush: {
12445     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
12446                               Ops[0]);
12447   }
12448   case X86::BI_mm_lfence: {
12449     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
12450   }
12451   case X86::BI_mm_mfence: {
12452     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
12453   }
12454   case X86::BI_mm_sfence: {
12455     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
12456   }
12457   case X86::BI_mm_pause: {
12458     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
12459   }
12460   case X86::BI__rdtsc: {
12461     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
12462   }
12463   case X86::BI__builtin_ia32_rdtscp: {
12464     Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
12465     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
12466                                       Ops[0]);
12467     return Builder.CreateExtractValue(Call, 0);
12468   }
12469   case X86::BI__builtin_ia32_lzcnt_u16:
12470   case X86::BI__builtin_ia32_lzcnt_u32:
12471   case X86::BI__builtin_ia32_lzcnt_u64: {
12472     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
12473     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
12474   }
12475   case X86::BI__builtin_ia32_tzcnt_u16:
12476   case X86::BI__builtin_ia32_tzcnt_u32:
12477   case X86::BI__builtin_ia32_tzcnt_u64: {
12478     Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
12479     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
12480   }
12481   case X86::BI__builtin_ia32_undef128:
12482   case X86::BI__builtin_ia32_undef256:
12483   case X86::BI__builtin_ia32_undef512:
12484     // The x86 definition of "undef" is not the same as the LLVM definition
12485     // (PR32176). We leave optimizing away an unnecessary zero constant to the
12486     // IR optimizer and backend.
12487     // TODO: If we had a "freeze" IR instruction to generate a fixed undef
12488     // value, we should use that here instead of a zero.
12489     return llvm::Constant::getNullValue(ConvertType(E->getType()));
12490   case X86::BI__builtin_ia32_vec_init_v8qi:
12491   case X86::BI__builtin_ia32_vec_init_v4hi:
12492   case X86::BI__builtin_ia32_vec_init_v2si:
12493     return Builder.CreateBitCast(BuildVector(Ops),
12494                                  llvm::Type::getX86_MMXTy(getLLVMContext()));
12495   case X86::BI__builtin_ia32_vec_ext_v2si:
12496   case X86::BI__builtin_ia32_vec_ext_v16qi:
12497   case X86::BI__builtin_ia32_vec_ext_v8hi:
12498   case X86::BI__builtin_ia32_vec_ext_v4si:
12499   case X86::BI__builtin_ia32_vec_ext_v4sf:
12500   case X86::BI__builtin_ia32_vec_ext_v2di:
12501   case X86::BI__builtin_ia32_vec_ext_v32qi:
12502   case X86::BI__builtin_ia32_vec_ext_v16hi:
12503   case X86::BI__builtin_ia32_vec_ext_v8si:
12504   case X86::BI__builtin_ia32_vec_ext_v4di: {
12505     unsigned NumElts =
12506         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12507     uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
12508     Index &= NumElts - 1;
12509     // These builtins exist so we can ensure the index is an ICE and in range.
12510     // Otherwise we could just do this in the header file.
12511     return Builder.CreateExtractElement(Ops[0], Index);
12512   }
12513   case X86::BI__builtin_ia32_vec_set_v16qi:
12514   case X86::BI__builtin_ia32_vec_set_v8hi:
12515   case X86::BI__builtin_ia32_vec_set_v4si:
12516   case X86::BI__builtin_ia32_vec_set_v2di:
12517   case X86::BI__builtin_ia32_vec_set_v32qi:
12518   case X86::BI__builtin_ia32_vec_set_v16hi:
12519   case X86::BI__builtin_ia32_vec_set_v8si:
12520   case X86::BI__builtin_ia32_vec_set_v4di: {
12521     unsigned NumElts =
12522         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12523     unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
12524     Index &= NumElts - 1;
12525     // These builtins exist so we can ensure the index is an ICE and in range.
12526     // Otherwise we could just do this in the header file.
12527     return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
12528   }
12529   case X86::BI_mm_setcsr:
12530   case X86::BI__builtin_ia32_ldmxcsr: {
12531     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
12532     Builder.CreateStore(Ops[0], Tmp);
12533     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
12534                           Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
12535   }
12536   case X86::BI_mm_getcsr:
12537   case X86::BI__builtin_ia32_stmxcsr: {
12538     Address Tmp = CreateMemTemp(E->getType());
12539     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
12540                        Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
12541     return Builder.CreateLoad(Tmp, "stmxcsr");
12542   }
12543   case X86::BI__builtin_ia32_xsave:
12544   case X86::BI__builtin_ia32_xsave64:
12545   case X86::BI__builtin_ia32_xrstor:
12546   case X86::BI__builtin_ia32_xrstor64:
12547   case X86::BI__builtin_ia32_xsaveopt:
12548   case X86::BI__builtin_ia32_xsaveopt64:
12549   case X86::BI__builtin_ia32_xrstors:
12550   case X86::BI__builtin_ia32_xrstors64:
12551   case X86::BI__builtin_ia32_xsavec:
12552   case X86::BI__builtin_ia32_xsavec64:
12553   case X86::BI__builtin_ia32_xsaves:
12554   case X86::BI__builtin_ia32_xsaves64:
12555   case X86::BI__builtin_ia32_xsetbv:
12556   case X86::BI_xsetbv: {
12557     Intrinsic::ID ID;
12558 #define INTRINSIC_X86_XSAVE_ID(NAME) \
12559     case X86::BI__builtin_ia32_##NAME: \
12560       ID = Intrinsic::x86_##NAME; \
12561       break
12562     switch (BuiltinID) {
12563     default: llvm_unreachable("Unsupported intrinsic!");
12564     INTRINSIC_X86_XSAVE_ID(xsave);
12565     INTRINSIC_X86_XSAVE_ID(xsave64);
12566     INTRINSIC_X86_XSAVE_ID(xrstor);
12567     INTRINSIC_X86_XSAVE_ID(xrstor64);
12568     INTRINSIC_X86_XSAVE_ID(xsaveopt);
12569     INTRINSIC_X86_XSAVE_ID(xsaveopt64);
12570     INTRINSIC_X86_XSAVE_ID(xrstors);
12571     INTRINSIC_X86_XSAVE_ID(xrstors64);
12572     INTRINSIC_X86_XSAVE_ID(xsavec);
12573     INTRINSIC_X86_XSAVE_ID(xsavec64);
12574     INTRINSIC_X86_XSAVE_ID(xsaves);
12575     INTRINSIC_X86_XSAVE_ID(xsaves64);
12576     INTRINSIC_X86_XSAVE_ID(xsetbv);
12577     case X86::BI_xsetbv:
12578       ID = Intrinsic::x86_xsetbv;
12579       break;
12580     }
12581 #undef INTRINSIC_X86_XSAVE_ID
12582     Value *Mhi = Builder.CreateTrunc(
12583       Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
12584     Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
12585     Ops[1] = Mhi;
12586     Ops.push_back(Mlo);
12587     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
12588   }
12589   case X86::BI__builtin_ia32_xgetbv:
12590   case X86::BI_xgetbv:
12591     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
12592   case X86::BI__builtin_ia32_storedqudi128_mask:
12593   case X86::BI__builtin_ia32_storedqusi128_mask:
12594   case X86::BI__builtin_ia32_storedquhi128_mask:
12595   case X86::BI__builtin_ia32_storedquqi128_mask:
12596   case X86::BI__builtin_ia32_storeupd128_mask:
12597   case X86::BI__builtin_ia32_storeups128_mask:
12598   case X86::BI__builtin_ia32_storedqudi256_mask:
12599   case X86::BI__builtin_ia32_storedqusi256_mask:
12600   case X86::BI__builtin_ia32_storedquhi256_mask:
12601   case X86::BI__builtin_ia32_storedquqi256_mask:
12602   case X86::BI__builtin_ia32_storeupd256_mask:
12603   case X86::BI__builtin_ia32_storeups256_mask:
12604   case X86::BI__builtin_ia32_storedqudi512_mask:
12605   case X86::BI__builtin_ia32_storedqusi512_mask:
12606   case X86::BI__builtin_ia32_storedquhi512_mask:
12607   case X86::BI__builtin_ia32_storedquqi512_mask:
12608   case X86::BI__builtin_ia32_storeupd512_mask:
12609   case X86::BI__builtin_ia32_storeups512_mask:
12610     return EmitX86MaskedStore(*this, Ops, Align(1));
12611 
12612   case X86::BI__builtin_ia32_storess128_mask:
12613   case X86::BI__builtin_ia32_storesd128_mask:
12614     return EmitX86MaskedStore(*this, Ops, Align(1));
12615 
12616   case X86::BI__builtin_ia32_vpopcntb_128:
12617   case X86::BI__builtin_ia32_vpopcntd_128:
12618   case X86::BI__builtin_ia32_vpopcntq_128:
12619   case X86::BI__builtin_ia32_vpopcntw_128:
12620   case X86::BI__builtin_ia32_vpopcntb_256:
12621   case X86::BI__builtin_ia32_vpopcntd_256:
12622   case X86::BI__builtin_ia32_vpopcntq_256:
12623   case X86::BI__builtin_ia32_vpopcntw_256:
12624   case X86::BI__builtin_ia32_vpopcntb_512:
12625   case X86::BI__builtin_ia32_vpopcntd_512:
12626   case X86::BI__builtin_ia32_vpopcntq_512:
12627   case X86::BI__builtin_ia32_vpopcntw_512: {
12628     llvm::Type *ResultType = ConvertType(E->getType());
12629     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
12630     return Builder.CreateCall(F, Ops);
12631   }
12632   case X86::BI__builtin_ia32_cvtmask2b128:
12633   case X86::BI__builtin_ia32_cvtmask2b256:
12634   case X86::BI__builtin_ia32_cvtmask2b512:
12635   case X86::BI__builtin_ia32_cvtmask2w128:
12636   case X86::BI__builtin_ia32_cvtmask2w256:
12637   case X86::BI__builtin_ia32_cvtmask2w512:
12638   case X86::BI__builtin_ia32_cvtmask2d128:
12639   case X86::BI__builtin_ia32_cvtmask2d256:
12640   case X86::BI__builtin_ia32_cvtmask2d512:
12641   case X86::BI__builtin_ia32_cvtmask2q128:
12642   case X86::BI__builtin_ia32_cvtmask2q256:
12643   case X86::BI__builtin_ia32_cvtmask2q512:
12644     return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
12645 
12646   case X86::BI__builtin_ia32_cvtb2mask128:
12647   case X86::BI__builtin_ia32_cvtb2mask256:
12648   case X86::BI__builtin_ia32_cvtb2mask512:
12649   case X86::BI__builtin_ia32_cvtw2mask128:
12650   case X86::BI__builtin_ia32_cvtw2mask256:
12651   case X86::BI__builtin_ia32_cvtw2mask512:
12652   case X86::BI__builtin_ia32_cvtd2mask128:
12653   case X86::BI__builtin_ia32_cvtd2mask256:
12654   case X86::BI__builtin_ia32_cvtd2mask512:
12655   case X86::BI__builtin_ia32_cvtq2mask128:
12656   case X86::BI__builtin_ia32_cvtq2mask256:
12657   case X86::BI__builtin_ia32_cvtq2mask512:
12658     return EmitX86ConvertToMask(*this, Ops[0]);
12659 
12660   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
12661   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
12662   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
12663     return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ true);
12664   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
12665   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
12666   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
12667     return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ false);
12668 
12669   case X86::BI__builtin_ia32_vfmaddss3:
12670   case X86::BI__builtin_ia32_vfmaddsd3:
12671   case X86::BI__builtin_ia32_vfmaddss3_mask:
12672   case X86::BI__builtin_ia32_vfmaddsd3_mask:
12673     return EmitScalarFMAExpr(*this, E, Ops, Ops[0]);
12674   case X86::BI__builtin_ia32_vfmaddss:
12675   case X86::BI__builtin_ia32_vfmaddsd:
12676     return EmitScalarFMAExpr(*this, E, Ops,
12677                              Constant::getNullValue(Ops[0]->getType()));
12678   case X86::BI__builtin_ia32_vfmaddss3_maskz:
12679   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
12680     return EmitScalarFMAExpr(*this, E, Ops, Ops[0], /*ZeroMask*/ true);
12681   case X86::BI__builtin_ia32_vfmaddss3_mask3:
12682   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
12683     return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2);
12684   case X86::BI__builtin_ia32_vfmsubss3_mask3:
12685   case X86::BI__builtin_ia32_vfmsubsd3_mask3:
12686     return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2,
12687                              /*NegAcc*/ true);
12688   case X86::BI__builtin_ia32_vfmaddps:
12689   case X86::BI__builtin_ia32_vfmaddpd:
12690   case X86::BI__builtin_ia32_vfmaddps256:
12691   case X86::BI__builtin_ia32_vfmaddpd256:
12692   case X86::BI__builtin_ia32_vfmaddps512_mask:
12693   case X86::BI__builtin_ia32_vfmaddps512_maskz:
12694   case X86::BI__builtin_ia32_vfmaddps512_mask3:
12695   case X86::BI__builtin_ia32_vfmsubps512_mask3:
12696   case X86::BI__builtin_ia32_vfmaddpd512_mask:
12697   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
12698   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
12699   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
12700     return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ false);
12701   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
12702   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12703   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12704   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12705   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12706   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12707   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12708   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12709     return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ true);
12710 
12711   case X86::BI__builtin_ia32_movdqa32store128_mask:
12712   case X86::BI__builtin_ia32_movdqa64store128_mask:
12713   case X86::BI__builtin_ia32_storeaps128_mask:
12714   case X86::BI__builtin_ia32_storeapd128_mask:
12715   case X86::BI__builtin_ia32_movdqa32store256_mask:
12716   case X86::BI__builtin_ia32_movdqa64store256_mask:
12717   case X86::BI__builtin_ia32_storeaps256_mask:
12718   case X86::BI__builtin_ia32_storeapd256_mask:
12719   case X86::BI__builtin_ia32_movdqa32store512_mask:
12720   case X86::BI__builtin_ia32_movdqa64store512_mask:
12721   case X86::BI__builtin_ia32_storeaps512_mask:
12722   case X86::BI__builtin_ia32_storeapd512_mask:
12723     return EmitX86MaskedStore(
12724         *this, Ops,
12725         getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
12726 
12727   case X86::BI__builtin_ia32_loadups128_mask:
12728   case X86::BI__builtin_ia32_loadups256_mask:
12729   case X86::BI__builtin_ia32_loadups512_mask:
12730   case X86::BI__builtin_ia32_loadupd128_mask:
12731   case X86::BI__builtin_ia32_loadupd256_mask:
12732   case X86::BI__builtin_ia32_loadupd512_mask:
12733   case X86::BI__builtin_ia32_loaddquqi128_mask:
12734   case X86::BI__builtin_ia32_loaddquqi256_mask:
12735   case X86::BI__builtin_ia32_loaddquqi512_mask:
12736   case X86::BI__builtin_ia32_loaddquhi128_mask:
12737   case X86::BI__builtin_ia32_loaddquhi256_mask:
12738   case X86::BI__builtin_ia32_loaddquhi512_mask:
12739   case X86::BI__builtin_ia32_loaddqusi128_mask:
12740   case X86::BI__builtin_ia32_loaddqusi256_mask:
12741   case X86::BI__builtin_ia32_loaddqusi512_mask:
12742   case X86::BI__builtin_ia32_loaddqudi128_mask:
12743   case X86::BI__builtin_ia32_loaddqudi256_mask:
12744   case X86::BI__builtin_ia32_loaddqudi512_mask:
12745     return EmitX86MaskedLoad(*this, Ops, Align(1));
12746 
12747   case X86::BI__builtin_ia32_loadss128_mask:
12748   case X86::BI__builtin_ia32_loadsd128_mask:
12749     return EmitX86MaskedLoad(*this, Ops, Align(1));
12750 
12751   case X86::BI__builtin_ia32_loadaps128_mask:
12752   case X86::BI__builtin_ia32_loadaps256_mask:
12753   case X86::BI__builtin_ia32_loadaps512_mask:
12754   case X86::BI__builtin_ia32_loadapd128_mask:
12755   case X86::BI__builtin_ia32_loadapd256_mask:
12756   case X86::BI__builtin_ia32_loadapd512_mask:
12757   case X86::BI__builtin_ia32_movdqa32load128_mask:
12758   case X86::BI__builtin_ia32_movdqa32load256_mask:
12759   case X86::BI__builtin_ia32_movdqa32load512_mask:
12760   case X86::BI__builtin_ia32_movdqa64load128_mask:
12761   case X86::BI__builtin_ia32_movdqa64load256_mask:
12762   case X86::BI__builtin_ia32_movdqa64load512_mask:
12763     return EmitX86MaskedLoad(
12764         *this, Ops,
12765         getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
12766 
12767   case X86::BI__builtin_ia32_expandloaddf128_mask:
12768   case X86::BI__builtin_ia32_expandloaddf256_mask:
12769   case X86::BI__builtin_ia32_expandloaddf512_mask:
12770   case X86::BI__builtin_ia32_expandloadsf128_mask:
12771   case X86::BI__builtin_ia32_expandloadsf256_mask:
12772   case X86::BI__builtin_ia32_expandloadsf512_mask:
12773   case X86::BI__builtin_ia32_expandloaddi128_mask:
12774   case X86::BI__builtin_ia32_expandloaddi256_mask:
12775   case X86::BI__builtin_ia32_expandloaddi512_mask:
12776   case X86::BI__builtin_ia32_expandloadsi128_mask:
12777   case X86::BI__builtin_ia32_expandloadsi256_mask:
12778   case X86::BI__builtin_ia32_expandloadsi512_mask:
12779   case X86::BI__builtin_ia32_expandloadhi128_mask:
12780   case X86::BI__builtin_ia32_expandloadhi256_mask:
12781   case X86::BI__builtin_ia32_expandloadhi512_mask:
12782   case X86::BI__builtin_ia32_expandloadqi128_mask:
12783   case X86::BI__builtin_ia32_expandloadqi256_mask:
12784   case X86::BI__builtin_ia32_expandloadqi512_mask:
12785     return EmitX86ExpandLoad(*this, Ops);
12786 
12787   case X86::BI__builtin_ia32_compressstoredf128_mask:
12788   case X86::BI__builtin_ia32_compressstoredf256_mask:
12789   case X86::BI__builtin_ia32_compressstoredf512_mask:
12790   case X86::BI__builtin_ia32_compressstoresf128_mask:
12791   case X86::BI__builtin_ia32_compressstoresf256_mask:
12792   case X86::BI__builtin_ia32_compressstoresf512_mask:
12793   case X86::BI__builtin_ia32_compressstoredi128_mask:
12794   case X86::BI__builtin_ia32_compressstoredi256_mask:
12795   case X86::BI__builtin_ia32_compressstoredi512_mask:
12796   case X86::BI__builtin_ia32_compressstoresi128_mask:
12797   case X86::BI__builtin_ia32_compressstoresi256_mask:
12798   case X86::BI__builtin_ia32_compressstoresi512_mask:
12799   case X86::BI__builtin_ia32_compressstorehi128_mask:
12800   case X86::BI__builtin_ia32_compressstorehi256_mask:
12801   case X86::BI__builtin_ia32_compressstorehi512_mask:
12802   case X86::BI__builtin_ia32_compressstoreqi128_mask:
12803   case X86::BI__builtin_ia32_compressstoreqi256_mask:
12804   case X86::BI__builtin_ia32_compressstoreqi512_mask:
12805     return EmitX86CompressStore(*this, Ops);
12806 
12807   case X86::BI__builtin_ia32_expanddf128_mask:
12808   case X86::BI__builtin_ia32_expanddf256_mask:
12809   case X86::BI__builtin_ia32_expanddf512_mask:
12810   case X86::BI__builtin_ia32_expandsf128_mask:
12811   case X86::BI__builtin_ia32_expandsf256_mask:
12812   case X86::BI__builtin_ia32_expandsf512_mask:
12813   case X86::BI__builtin_ia32_expanddi128_mask:
12814   case X86::BI__builtin_ia32_expanddi256_mask:
12815   case X86::BI__builtin_ia32_expanddi512_mask:
12816   case X86::BI__builtin_ia32_expandsi128_mask:
12817   case X86::BI__builtin_ia32_expandsi256_mask:
12818   case X86::BI__builtin_ia32_expandsi512_mask:
12819   case X86::BI__builtin_ia32_expandhi128_mask:
12820   case X86::BI__builtin_ia32_expandhi256_mask:
12821   case X86::BI__builtin_ia32_expandhi512_mask:
12822   case X86::BI__builtin_ia32_expandqi128_mask:
12823   case X86::BI__builtin_ia32_expandqi256_mask:
12824   case X86::BI__builtin_ia32_expandqi512_mask:
12825     return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
12826 
12827   case X86::BI__builtin_ia32_compressdf128_mask:
12828   case X86::BI__builtin_ia32_compressdf256_mask:
12829   case X86::BI__builtin_ia32_compressdf512_mask:
12830   case X86::BI__builtin_ia32_compresssf128_mask:
12831   case X86::BI__builtin_ia32_compresssf256_mask:
12832   case X86::BI__builtin_ia32_compresssf512_mask:
12833   case X86::BI__builtin_ia32_compressdi128_mask:
12834   case X86::BI__builtin_ia32_compressdi256_mask:
12835   case X86::BI__builtin_ia32_compressdi512_mask:
12836   case X86::BI__builtin_ia32_compresssi128_mask:
12837   case X86::BI__builtin_ia32_compresssi256_mask:
12838   case X86::BI__builtin_ia32_compresssi512_mask:
12839   case X86::BI__builtin_ia32_compresshi128_mask:
12840   case X86::BI__builtin_ia32_compresshi256_mask:
12841   case X86::BI__builtin_ia32_compresshi512_mask:
12842   case X86::BI__builtin_ia32_compressqi128_mask:
12843   case X86::BI__builtin_ia32_compressqi256_mask:
12844   case X86::BI__builtin_ia32_compressqi512_mask:
12845     return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
12846 
12847   case X86::BI__builtin_ia32_gather3div2df:
12848   case X86::BI__builtin_ia32_gather3div2di:
12849   case X86::BI__builtin_ia32_gather3div4df:
12850   case X86::BI__builtin_ia32_gather3div4di:
12851   case X86::BI__builtin_ia32_gather3div4sf:
12852   case X86::BI__builtin_ia32_gather3div4si:
12853   case X86::BI__builtin_ia32_gather3div8sf:
12854   case X86::BI__builtin_ia32_gather3div8si:
12855   case X86::BI__builtin_ia32_gather3siv2df:
12856   case X86::BI__builtin_ia32_gather3siv2di:
12857   case X86::BI__builtin_ia32_gather3siv4df:
12858   case X86::BI__builtin_ia32_gather3siv4di:
12859   case X86::BI__builtin_ia32_gather3siv4sf:
12860   case X86::BI__builtin_ia32_gather3siv4si:
12861   case X86::BI__builtin_ia32_gather3siv8sf:
12862   case X86::BI__builtin_ia32_gather3siv8si:
12863   case X86::BI__builtin_ia32_gathersiv8df:
12864   case X86::BI__builtin_ia32_gathersiv16sf:
12865   case X86::BI__builtin_ia32_gatherdiv8df:
12866   case X86::BI__builtin_ia32_gatherdiv16sf:
12867   case X86::BI__builtin_ia32_gathersiv8di:
12868   case X86::BI__builtin_ia32_gathersiv16si:
12869   case X86::BI__builtin_ia32_gatherdiv8di:
12870   case X86::BI__builtin_ia32_gatherdiv16si: {
12871     Intrinsic::ID IID;
12872     switch (BuiltinID) {
12873     default: llvm_unreachable("Unexpected builtin");
12874     case X86::BI__builtin_ia32_gather3div2df:
12875       IID = Intrinsic::x86_avx512_mask_gather3div2_df;
12876       break;
12877     case X86::BI__builtin_ia32_gather3div2di:
12878       IID = Intrinsic::x86_avx512_mask_gather3div2_di;
12879       break;
12880     case X86::BI__builtin_ia32_gather3div4df:
12881       IID = Intrinsic::x86_avx512_mask_gather3div4_df;
12882       break;
12883     case X86::BI__builtin_ia32_gather3div4di:
12884       IID = Intrinsic::x86_avx512_mask_gather3div4_di;
12885       break;
12886     case X86::BI__builtin_ia32_gather3div4sf:
12887       IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
12888       break;
12889     case X86::BI__builtin_ia32_gather3div4si:
12890       IID = Intrinsic::x86_avx512_mask_gather3div4_si;
12891       break;
12892     case X86::BI__builtin_ia32_gather3div8sf:
12893       IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
12894       break;
12895     case X86::BI__builtin_ia32_gather3div8si:
12896       IID = Intrinsic::x86_avx512_mask_gather3div8_si;
12897       break;
12898     case X86::BI__builtin_ia32_gather3siv2df:
12899       IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
12900       break;
12901     case X86::BI__builtin_ia32_gather3siv2di:
12902       IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
12903       break;
12904     case X86::BI__builtin_ia32_gather3siv4df:
12905       IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
12906       break;
12907     case X86::BI__builtin_ia32_gather3siv4di:
12908       IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
12909       break;
12910     case X86::BI__builtin_ia32_gather3siv4sf:
12911       IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
12912       break;
12913     case X86::BI__builtin_ia32_gather3siv4si:
12914       IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
12915       break;
12916     case X86::BI__builtin_ia32_gather3siv8sf:
12917       IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
12918       break;
12919     case X86::BI__builtin_ia32_gather3siv8si:
12920       IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
12921       break;
12922     case X86::BI__builtin_ia32_gathersiv8df:
12923       IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
12924       break;
12925     case X86::BI__builtin_ia32_gathersiv16sf:
12926       IID = Intrinsic::x86_avx512_mask_gather_dps_512;
12927       break;
12928     case X86::BI__builtin_ia32_gatherdiv8df:
12929       IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
12930       break;
12931     case X86::BI__builtin_ia32_gatherdiv16sf:
12932       IID = Intrinsic::x86_avx512_mask_gather_qps_512;
12933       break;
12934     case X86::BI__builtin_ia32_gathersiv8di:
12935       IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
12936       break;
12937     case X86::BI__builtin_ia32_gathersiv16si:
12938       IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
12939       break;
12940     case X86::BI__builtin_ia32_gatherdiv8di:
12941       IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
12942       break;
12943     case X86::BI__builtin_ia32_gatherdiv16si:
12944       IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
12945       break;
12946     }
12947 
12948     unsigned MinElts = std::min(
12949         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(),
12950         cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements());
12951     Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
12952     Function *Intr = CGM.getIntrinsic(IID);
12953     return Builder.CreateCall(Intr, Ops);
12954   }
12955 
12956   case X86::BI__builtin_ia32_scattersiv8df:
12957   case X86::BI__builtin_ia32_scattersiv16sf:
12958   case X86::BI__builtin_ia32_scatterdiv8df:
12959   case X86::BI__builtin_ia32_scatterdiv16sf:
12960   case X86::BI__builtin_ia32_scattersiv8di:
12961   case X86::BI__builtin_ia32_scattersiv16si:
12962   case X86::BI__builtin_ia32_scatterdiv8di:
12963   case X86::BI__builtin_ia32_scatterdiv16si:
12964   case X86::BI__builtin_ia32_scatterdiv2df:
12965   case X86::BI__builtin_ia32_scatterdiv2di:
12966   case X86::BI__builtin_ia32_scatterdiv4df:
12967   case X86::BI__builtin_ia32_scatterdiv4di:
12968   case X86::BI__builtin_ia32_scatterdiv4sf:
12969   case X86::BI__builtin_ia32_scatterdiv4si:
12970   case X86::BI__builtin_ia32_scatterdiv8sf:
12971   case X86::BI__builtin_ia32_scatterdiv8si:
12972   case X86::BI__builtin_ia32_scattersiv2df:
12973   case X86::BI__builtin_ia32_scattersiv2di:
12974   case X86::BI__builtin_ia32_scattersiv4df:
12975   case X86::BI__builtin_ia32_scattersiv4di:
12976   case X86::BI__builtin_ia32_scattersiv4sf:
12977   case X86::BI__builtin_ia32_scattersiv4si:
12978   case X86::BI__builtin_ia32_scattersiv8sf:
12979   case X86::BI__builtin_ia32_scattersiv8si: {
12980     Intrinsic::ID IID;
12981     switch (BuiltinID) {
12982     default: llvm_unreachable("Unexpected builtin");
12983     case X86::BI__builtin_ia32_scattersiv8df:
12984       IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
12985       break;
12986     case X86::BI__builtin_ia32_scattersiv16sf:
12987       IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
12988       break;
12989     case X86::BI__builtin_ia32_scatterdiv8df:
12990       IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
12991       break;
12992     case X86::BI__builtin_ia32_scatterdiv16sf:
12993       IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
12994       break;
12995     case X86::BI__builtin_ia32_scattersiv8di:
12996       IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
12997       break;
12998     case X86::BI__builtin_ia32_scattersiv16si:
12999       IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
13000       break;
13001     case X86::BI__builtin_ia32_scatterdiv8di:
13002       IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
13003       break;
13004     case X86::BI__builtin_ia32_scatterdiv16si:
13005       IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
13006       break;
13007     case X86::BI__builtin_ia32_scatterdiv2df:
13008       IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
13009       break;
13010     case X86::BI__builtin_ia32_scatterdiv2di:
13011       IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
13012       break;
13013     case X86::BI__builtin_ia32_scatterdiv4df:
13014       IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
13015       break;
13016     case X86::BI__builtin_ia32_scatterdiv4di:
13017       IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
13018       break;
13019     case X86::BI__builtin_ia32_scatterdiv4sf:
13020       IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
13021       break;
13022     case X86::BI__builtin_ia32_scatterdiv4si:
13023       IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
13024       break;
13025     case X86::BI__builtin_ia32_scatterdiv8sf:
13026       IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
13027       break;
13028     case X86::BI__builtin_ia32_scatterdiv8si:
13029       IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
13030       break;
13031     case X86::BI__builtin_ia32_scattersiv2df:
13032       IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
13033       break;
13034     case X86::BI__builtin_ia32_scattersiv2di:
13035       IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
13036       break;
13037     case X86::BI__builtin_ia32_scattersiv4df:
13038       IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
13039       break;
13040     case X86::BI__builtin_ia32_scattersiv4di:
13041       IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
13042       break;
13043     case X86::BI__builtin_ia32_scattersiv4sf:
13044       IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
13045       break;
13046     case X86::BI__builtin_ia32_scattersiv4si:
13047       IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
13048       break;
13049     case X86::BI__builtin_ia32_scattersiv8sf:
13050       IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
13051       break;
13052     case X86::BI__builtin_ia32_scattersiv8si:
13053       IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
13054       break;
13055     }
13056 
13057     unsigned MinElts = std::min(
13058         cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements(),
13059         cast<llvm::FixedVectorType>(Ops[3]->getType())->getNumElements());
13060     Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
13061     Function *Intr = CGM.getIntrinsic(IID);
13062     return Builder.CreateCall(Intr, Ops);
13063   }
13064 
13065   case X86::BI__builtin_ia32_vextractf128_pd256:
13066   case X86::BI__builtin_ia32_vextractf128_ps256:
13067   case X86::BI__builtin_ia32_vextractf128_si256:
13068   case X86::BI__builtin_ia32_extract128i256:
13069   case X86::BI__builtin_ia32_extractf64x4_mask:
13070   case X86::BI__builtin_ia32_extractf32x4_mask:
13071   case X86::BI__builtin_ia32_extracti64x4_mask:
13072   case X86::BI__builtin_ia32_extracti32x4_mask:
13073   case X86::BI__builtin_ia32_extractf32x8_mask:
13074   case X86::BI__builtin_ia32_extracti32x8_mask:
13075   case X86::BI__builtin_ia32_extractf32x4_256_mask:
13076   case X86::BI__builtin_ia32_extracti32x4_256_mask:
13077   case X86::BI__builtin_ia32_extractf64x2_256_mask:
13078   case X86::BI__builtin_ia32_extracti64x2_256_mask:
13079   case X86::BI__builtin_ia32_extractf64x2_512_mask:
13080   case X86::BI__builtin_ia32_extracti64x2_512_mask: {
13081     auto *DstTy = cast<llvm::FixedVectorType>(ConvertType(E->getType()));
13082     unsigned NumElts = DstTy->getNumElements();
13083     unsigned SrcNumElts =
13084         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13085     unsigned SubVectors = SrcNumElts / NumElts;
13086     unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
13087     assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
13088     Index &= SubVectors - 1; // Remove any extra bits.
13089     Index *= NumElts;
13090 
13091     int Indices[16];
13092     for (unsigned i = 0; i != NumElts; ++i)
13093       Indices[i] = i + Index;
13094 
13095     Value *Res = Builder.CreateShuffleVector(Ops[0],
13096                                              makeArrayRef(Indices, NumElts),
13097                                              "extract");
13098 
13099     if (Ops.size() == 4)
13100       Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
13101 
13102     return Res;
13103   }
13104   case X86::BI__builtin_ia32_vinsertf128_pd256:
13105   case X86::BI__builtin_ia32_vinsertf128_ps256:
13106   case X86::BI__builtin_ia32_vinsertf128_si256:
13107   case X86::BI__builtin_ia32_insert128i256:
13108   case X86::BI__builtin_ia32_insertf64x4:
13109   case X86::BI__builtin_ia32_insertf32x4:
13110   case X86::BI__builtin_ia32_inserti64x4:
13111   case X86::BI__builtin_ia32_inserti32x4:
13112   case X86::BI__builtin_ia32_insertf32x8:
13113   case X86::BI__builtin_ia32_inserti32x8:
13114   case X86::BI__builtin_ia32_insertf32x4_256:
13115   case X86::BI__builtin_ia32_inserti32x4_256:
13116   case X86::BI__builtin_ia32_insertf64x2_256:
13117   case X86::BI__builtin_ia32_inserti64x2_256:
13118   case X86::BI__builtin_ia32_insertf64x2_512:
13119   case X86::BI__builtin_ia32_inserti64x2_512: {
13120     unsigned DstNumElts =
13121         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13122     unsigned SrcNumElts =
13123         cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements();
13124     unsigned SubVectors = DstNumElts / SrcNumElts;
13125     unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
13126     assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
13127     Index &= SubVectors - 1; // Remove any extra bits.
13128     Index *= SrcNumElts;
13129 
13130     int Indices[16];
13131     for (unsigned i = 0; i != DstNumElts; ++i)
13132       Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
13133 
13134     Value *Op1 = Builder.CreateShuffleVector(Ops[1],
13135                                              makeArrayRef(Indices, DstNumElts),
13136                                              "widen");
13137 
13138     for (unsigned i = 0; i != DstNumElts; ++i) {
13139       if (i >= Index && i < (Index + SrcNumElts))
13140         Indices[i] = (i - Index) + DstNumElts;
13141       else
13142         Indices[i] = i;
13143     }
13144 
13145     return Builder.CreateShuffleVector(Ops[0], Op1,
13146                                        makeArrayRef(Indices, DstNumElts),
13147                                        "insert");
13148   }
13149   case X86::BI__builtin_ia32_pmovqd512_mask:
13150   case X86::BI__builtin_ia32_pmovwb512_mask: {
13151     Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
13152     return EmitX86Select(*this, Ops[2], Res, Ops[1]);
13153   }
13154   case X86::BI__builtin_ia32_pmovdb512_mask:
13155   case X86::BI__builtin_ia32_pmovdw512_mask:
13156   case X86::BI__builtin_ia32_pmovqw512_mask: {
13157     if (const auto *C = dyn_cast<Constant>(Ops[2]))
13158       if (C->isAllOnesValue())
13159         return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
13160 
13161     Intrinsic::ID IID;
13162     switch (BuiltinID) {
13163     default: llvm_unreachable("Unsupported intrinsic!");
13164     case X86::BI__builtin_ia32_pmovdb512_mask:
13165       IID = Intrinsic::x86_avx512_mask_pmov_db_512;
13166       break;
13167     case X86::BI__builtin_ia32_pmovdw512_mask:
13168       IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
13169       break;
13170     case X86::BI__builtin_ia32_pmovqw512_mask:
13171       IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
13172       break;
13173     }
13174 
13175     Function *Intr = CGM.getIntrinsic(IID);
13176     return Builder.CreateCall(Intr, Ops);
13177   }
13178   case X86::BI__builtin_ia32_pblendw128:
13179   case X86::BI__builtin_ia32_blendpd:
13180   case X86::BI__builtin_ia32_blendps:
13181   case X86::BI__builtin_ia32_blendpd256:
13182   case X86::BI__builtin_ia32_blendps256:
13183   case X86::BI__builtin_ia32_pblendw256:
13184   case X86::BI__builtin_ia32_pblendd128:
13185   case X86::BI__builtin_ia32_pblendd256: {
13186     unsigned NumElts =
13187         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13188     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13189 
13190     int Indices[16];
13191     // If there are more than 8 elements, the immediate is used twice so make
13192     // sure we handle that.
13193     for (unsigned i = 0; i != NumElts; ++i)
13194       Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
13195 
13196     return Builder.CreateShuffleVector(Ops[0], Ops[1],
13197                                        makeArrayRef(Indices, NumElts),
13198                                        "blend");
13199   }
13200   case X86::BI__builtin_ia32_pshuflw:
13201   case X86::BI__builtin_ia32_pshuflw256:
13202   case X86::BI__builtin_ia32_pshuflw512: {
13203     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13204     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13205     unsigned NumElts = Ty->getNumElements();
13206 
13207     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13208     Imm = (Imm & 0xff) * 0x01010101;
13209 
13210     int Indices[32];
13211     for (unsigned l = 0; l != NumElts; l += 8) {
13212       for (unsigned i = 0; i != 4; ++i) {
13213         Indices[l + i] = l + (Imm & 3);
13214         Imm >>= 2;
13215       }
13216       for (unsigned i = 4; i != 8; ++i)
13217         Indices[l + i] = l + i;
13218     }
13219 
13220     return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13221                                        "pshuflw");
13222   }
13223   case X86::BI__builtin_ia32_pshufhw:
13224   case X86::BI__builtin_ia32_pshufhw256:
13225   case X86::BI__builtin_ia32_pshufhw512: {
13226     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13227     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13228     unsigned NumElts = Ty->getNumElements();
13229 
13230     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13231     Imm = (Imm & 0xff) * 0x01010101;
13232 
13233     int Indices[32];
13234     for (unsigned l = 0; l != NumElts; l += 8) {
13235       for (unsigned i = 0; i != 4; ++i)
13236         Indices[l + i] = l + i;
13237       for (unsigned i = 4; i != 8; ++i) {
13238         Indices[l + i] = l + 4 + (Imm & 3);
13239         Imm >>= 2;
13240       }
13241     }
13242 
13243     return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13244                                        "pshufhw");
13245   }
13246   case X86::BI__builtin_ia32_pshufd:
13247   case X86::BI__builtin_ia32_pshufd256:
13248   case X86::BI__builtin_ia32_pshufd512:
13249   case X86::BI__builtin_ia32_vpermilpd:
13250   case X86::BI__builtin_ia32_vpermilps:
13251   case X86::BI__builtin_ia32_vpermilpd256:
13252   case X86::BI__builtin_ia32_vpermilps256:
13253   case X86::BI__builtin_ia32_vpermilpd512:
13254   case X86::BI__builtin_ia32_vpermilps512: {
13255     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13256     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13257     unsigned NumElts = Ty->getNumElements();
13258     unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
13259     unsigned NumLaneElts = NumElts / NumLanes;
13260 
13261     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13262     Imm = (Imm & 0xff) * 0x01010101;
13263 
13264     int Indices[16];
13265     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13266       for (unsigned i = 0; i != NumLaneElts; ++i) {
13267         Indices[i + l] = (Imm % NumLaneElts) + l;
13268         Imm /= NumLaneElts;
13269       }
13270     }
13271 
13272     return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13273                                        "permil");
13274   }
13275   case X86::BI__builtin_ia32_shufpd:
13276   case X86::BI__builtin_ia32_shufpd256:
13277   case X86::BI__builtin_ia32_shufpd512:
13278   case X86::BI__builtin_ia32_shufps:
13279   case X86::BI__builtin_ia32_shufps256:
13280   case X86::BI__builtin_ia32_shufps512: {
13281     uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13282     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13283     unsigned NumElts = Ty->getNumElements();
13284     unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
13285     unsigned NumLaneElts = NumElts / NumLanes;
13286 
13287     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13288     Imm = (Imm & 0xff) * 0x01010101;
13289 
13290     int Indices[16];
13291     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13292       for (unsigned i = 0; i != NumLaneElts; ++i) {
13293         unsigned Index = Imm % NumLaneElts;
13294         Imm /= NumLaneElts;
13295         if (i >= (NumLaneElts / 2))
13296           Index += NumElts;
13297         Indices[l + i] = l + Index;
13298       }
13299     }
13300 
13301     return Builder.CreateShuffleVector(Ops[0], Ops[1],
13302                                        makeArrayRef(Indices, NumElts),
13303                                        "shufp");
13304   }
13305   case X86::BI__builtin_ia32_permdi256:
13306   case X86::BI__builtin_ia32_permdf256:
13307   case X86::BI__builtin_ia32_permdi512:
13308   case X86::BI__builtin_ia32_permdf512: {
13309     unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13310     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13311     unsigned NumElts = Ty->getNumElements();
13312 
13313     // These intrinsics operate on 256-bit lanes of four 64-bit elements.
13314     int Indices[8];
13315     for (unsigned l = 0; l != NumElts; l += 4)
13316       for (unsigned i = 0; i != 4; ++i)
13317         Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
13318 
13319     return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13320                                        "perm");
13321   }
13322   case X86::BI__builtin_ia32_palignr128:
13323   case X86::BI__builtin_ia32_palignr256:
13324   case X86::BI__builtin_ia32_palignr512: {
13325     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
13326 
13327     unsigned NumElts =
13328         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13329     assert(NumElts % 16 == 0);
13330 
13331     // If palignr is shifting the pair of vectors more than the size of two
13332     // lanes, emit zero.
13333     if (ShiftVal >= 32)
13334       return llvm::Constant::getNullValue(ConvertType(E->getType()));
13335 
13336     // If palignr is shifting the pair of input vectors more than one lane,
13337     // but less than two lanes, convert to shifting in zeroes.
13338     if (ShiftVal > 16) {
13339       ShiftVal -= 16;
13340       Ops[1] = Ops[0];
13341       Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
13342     }
13343 
13344     int Indices[64];
13345     // 256-bit palignr operates on 128-bit lanes so we need to handle that
13346     for (unsigned l = 0; l != NumElts; l += 16) {
13347       for (unsigned i = 0; i != 16; ++i) {
13348         unsigned Idx = ShiftVal + i;
13349         if (Idx >= 16)
13350           Idx += NumElts - 16; // End of lane, switch operand.
13351         Indices[l + i] = Idx + l;
13352       }
13353     }
13354 
13355     return Builder.CreateShuffleVector(Ops[1], Ops[0],
13356                                        makeArrayRef(Indices, NumElts),
13357                                        "palignr");
13358   }
13359   case X86::BI__builtin_ia32_alignd128:
13360   case X86::BI__builtin_ia32_alignd256:
13361   case X86::BI__builtin_ia32_alignd512:
13362   case X86::BI__builtin_ia32_alignq128:
13363   case X86::BI__builtin_ia32_alignq256:
13364   case X86::BI__builtin_ia32_alignq512: {
13365     unsigned NumElts =
13366         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13367     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
13368 
13369     // Mask the shift amount to width of two vectors.
13370     ShiftVal &= (2 * NumElts) - 1;
13371 
13372     int Indices[16];
13373     for (unsigned i = 0; i != NumElts; ++i)
13374       Indices[i] = i + ShiftVal;
13375 
13376     return Builder.CreateShuffleVector(Ops[1], Ops[0],
13377                                        makeArrayRef(Indices, NumElts),
13378                                        "valign");
13379   }
13380   case X86::BI__builtin_ia32_shuf_f32x4_256:
13381   case X86::BI__builtin_ia32_shuf_f64x2_256:
13382   case X86::BI__builtin_ia32_shuf_i32x4_256:
13383   case X86::BI__builtin_ia32_shuf_i64x2_256:
13384   case X86::BI__builtin_ia32_shuf_f32x4:
13385   case X86::BI__builtin_ia32_shuf_f64x2:
13386   case X86::BI__builtin_ia32_shuf_i32x4:
13387   case X86::BI__builtin_ia32_shuf_i64x2: {
13388     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13389     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13390     unsigned NumElts = Ty->getNumElements();
13391     unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
13392     unsigned NumLaneElts = NumElts / NumLanes;
13393 
13394     int Indices[16];
13395     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13396       unsigned Index = (Imm % NumLanes) * NumLaneElts;
13397       Imm /= NumLanes; // Discard the bits we just used.
13398       if (l >= (NumElts / 2))
13399         Index += NumElts; // Switch to other source.
13400       for (unsigned i = 0; i != NumLaneElts; ++i) {
13401         Indices[l + i] = Index + i;
13402       }
13403     }
13404 
13405     return Builder.CreateShuffleVector(Ops[0], Ops[1],
13406                                        makeArrayRef(Indices, NumElts),
13407                                        "shuf");
13408   }
13409 
13410   case X86::BI__builtin_ia32_vperm2f128_pd256:
13411   case X86::BI__builtin_ia32_vperm2f128_ps256:
13412   case X86::BI__builtin_ia32_vperm2f128_si256:
13413   case X86::BI__builtin_ia32_permti256: {
13414     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13415     unsigned NumElts =
13416         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13417 
13418     // This takes a very simple approach since there are two lanes and a
13419     // shuffle can have 2 inputs. So we reserve the first input for the first
13420     // lane and the second input for the second lane. This may result in
13421     // duplicate sources, but this can be dealt with in the backend.
13422 
13423     Value *OutOps[2];
13424     int Indices[8];
13425     for (unsigned l = 0; l != 2; ++l) {
13426       // Determine the source for this lane.
13427       if (Imm & (1 << ((l * 4) + 3)))
13428         OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
13429       else if (Imm & (1 << ((l * 4) + 1)))
13430         OutOps[l] = Ops[1];
13431       else
13432         OutOps[l] = Ops[0];
13433 
13434       for (unsigned i = 0; i != NumElts/2; ++i) {
13435         // Start with ith element of the source for this lane.
13436         unsigned Idx = (l * NumElts) + i;
13437         // If bit 0 of the immediate half is set, switch to the high half of
13438         // the source.
13439         if (Imm & (1 << (l * 4)))
13440           Idx += NumElts/2;
13441         Indices[(l * (NumElts/2)) + i] = Idx;
13442       }
13443     }
13444 
13445     return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
13446                                        makeArrayRef(Indices, NumElts),
13447                                        "vperm");
13448   }
13449 
13450   case X86::BI__builtin_ia32_pslldqi128_byteshift:
13451   case X86::BI__builtin_ia32_pslldqi256_byteshift:
13452   case X86::BI__builtin_ia32_pslldqi512_byteshift: {
13453     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13454     auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
13455     // Builtin type is vXi64 so multiply by 8 to get bytes.
13456     unsigned NumElts = ResultType->getNumElements() * 8;
13457 
13458     // If pslldq is shifting the vector more than 15 bytes, emit zero.
13459     if (ShiftVal >= 16)
13460       return llvm::Constant::getNullValue(ResultType);
13461 
13462     int Indices[64];
13463     // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
13464     for (unsigned l = 0; l != NumElts; l += 16) {
13465       for (unsigned i = 0; i != 16; ++i) {
13466         unsigned Idx = NumElts + i - ShiftVal;
13467         if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
13468         Indices[l + i] = Idx + l;
13469       }
13470     }
13471 
13472     auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
13473     Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
13474     Value *Zero = llvm::Constant::getNullValue(VecTy);
13475     Value *SV = Builder.CreateShuffleVector(Zero, Cast,
13476                                             makeArrayRef(Indices, NumElts),
13477                                             "pslldq");
13478     return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
13479   }
13480   case X86::BI__builtin_ia32_psrldqi128_byteshift:
13481   case X86::BI__builtin_ia32_psrldqi256_byteshift:
13482   case X86::BI__builtin_ia32_psrldqi512_byteshift: {
13483     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13484     auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
13485     // Builtin type is vXi64 so multiply by 8 to get bytes.
13486     unsigned NumElts = ResultType->getNumElements() * 8;
13487 
13488     // If psrldq is shifting the vector more than 15 bytes, emit zero.
13489     if (ShiftVal >= 16)
13490       return llvm::Constant::getNullValue(ResultType);
13491 
13492     int Indices[64];
13493     // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
13494     for (unsigned l = 0; l != NumElts; l += 16) {
13495       for (unsigned i = 0; i != 16; ++i) {
13496         unsigned Idx = i + ShiftVal;
13497         if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
13498         Indices[l + i] = Idx + l;
13499       }
13500     }
13501 
13502     auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
13503     Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
13504     Value *Zero = llvm::Constant::getNullValue(VecTy);
13505     Value *SV = Builder.CreateShuffleVector(Cast, Zero,
13506                                             makeArrayRef(Indices, NumElts),
13507                                             "psrldq");
13508     return Builder.CreateBitCast(SV, ResultType, "cast");
13509   }
13510   case X86::BI__builtin_ia32_kshiftliqi:
13511   case X86::BI__builtin_ia32_kshiftlihi:
13512   case X86::BI__builtin_ia32_kshiftlisi:
13513   case X86::BI__builtin_ia32_kshiftlidi: {
13514     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13515     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13516 
13517     if (ShiftVal >= NumElts)
13518       return llvm::Constant::getNullValue(Ops[0]->getType());
13519 
13520     Value *In = getMaskVecValue(*this, Ops[0], NumElts);
13521 
13522     int Indices[64];
13523     for (unsigned i = 0; i != NumElts; ++i)
13524       Indices[i] = NumElts + i - ShiftVal;
13525 
13526     Value *Zero = llvm::Constant::getNullValue(In->getType());
13527     Value *SV = Builder.CreateShuffleVector(Zero, In,
13528                                             makeArrayRef(Indices, NumElts),
13529                                             "kshiftl");
13530     return Builder.CreateBitCast(SV, Ops[0]->getType());
13531   }
13532   case X86::BI__builtin_ia32_kshiftriqi:
13533   case X86::BI__builtin_ia32_kshiftrihi:
13534   case X86::BI__builtin_ia32_kshiftrisi:
13535   case X86::BI__builtin_ia32_kshiftridi: {
13536     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13537     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13538 
13539     if (ShiftVal >= NumElts)
13540       return llvm::Constant::getNullValue(Ops[0]->getType());
13541 
13542     Value *In = getMaskVecValue(*this, Ops[0], NumElts);
13543 
13544     int Indices[64];
13545     for (unsigned i = 0; i != NumElts; ++i)
13546       Indices[i] = i + ShiftVal;
13547 
13548     Value *Zero = llvm::Constant::getNullValue(In->getType());
13549     Value *SV = Builder.CreateShuffleVector(In, Zero,
13550                                             makeArrayRef(Indices, NumElts),
13551                                             "kshiftr");
13552     return Builder.CreateBitCast(SV, Ops[0]->getType());
13553   }
13554   case X86::BI__builtin_ia32_movnti:
13555   case X86::BI__builtin_ia32_movnti64:
13556   case X86::BI__builtin_ia32_movntsd:
13557   case X86::BI__builtin_ia32_movntss: {
13558     llvm::MDNode *Node = llvm::MDNode::get(
13559         getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
13560 
13561     Value *Ptr = Ops[0];
13562     Value *Src = Ops[1];
13563 
13564     // Extract the 0'th element of the source vector.
13565     if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
13566         BuiltinID == X86::BI__builtin_ia32_movntss)
13567       Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
13568 
13569     // Convert the type of the pointer to a pointer to the stored type.
13570     Value *BC = Builder.CreateBitCast(
13571         Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
13572 
13573     // Unaligned nontemporal store of the scalar value.
13574     StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
13575     SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
13576     SI->setAlignment(llvm::Align(1));
13577     return SI;
13578   }
13579   // Rotate is a special case of funnel shift - 1st 2 args are the same.
13580   case X86::BI__builtin_ia32_vprotb:
13581   case X86::BI__builtin_ia32_vprotw:
13582   case X86::BI__builtin_ia32_vprotd:
13583   case X86::BI__builtin_ia32_vprotq:
13584   case X86::BI__builtin_ia32_vprotbi:
13585   case X86::BI__builtin_ia32_vprotwi:
13586   case X86::BI__builtin_ia32_vprotdi:
13587   case X86::BI__builtin_ia32_vprotqi:
13588   case X86::BI__builtin_ia32_prold128:
13589   case X86::BI__builtin_ia32_prold256:
13590   case X86::BI__builtin_ia32_prold512:
13591   case X86::BI__builtin_ia32_prolq128:
13592   case X86::BI__builtin_ia32_prolq256:
13593   case X86::BI__builtin_ia32_prolq512:
13594   case X86::BI__builtin_ia32_prolvd128:
13595   case X86::BI__builtin_ia32_prolvd256:
13596   case X86::BI__builtin_ia32_prolvd512:
13597   case X86::BI__builtin_ia32_prolvq128:
13598   case X86::BI__builtin_ia32_prolvq256:
13599   case X86::BI__builtin_ia32_prolvq512:
13600     return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
13601   case X86::BI__builtin_ia32_prord128:
13602   case X86::BI__builtin_ia32_prord256:
13603   case X86::BI__builtin_ia32_prord512:
13604   case X86::BI__builtin_ia32_prorq128:
13605   case X86::BI__builtin_ia32_prorq256:
13606   case X86::BI__builtin_ia32_prorq512:
13607   case X86::BI__builtin_ia32_prorvd128:
13608   case X86::BI__builtin_ia32_prorvd256:
13609   case X86::BI__builtin_ia32_prorvd512:
13610   case X86::BI__builtin_ia32_prorvq128:
13611   case X86::BI__builtin_ia32_prorvq256:
13612   case X86::BI__builtin_ia32_prorvq512:
13613     return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
13614   case X86::BI__builtin_ia32_selectb_128:
13615   case X86::BI__builtin_ia32_selectb_256:
13616   case X86::BI__builtin_ia32_selectb_512:
13617   case X86::BI__builtin_ia32_selectw_128:
13618   case X86::BI__builtin_ia32_selectw_256:
13619   case X86::BI__builtin_ia32_selectw_512:
13620   case X86::BI__builtin_ia32_selectd_128:
13621   case X86::BI__builtin_ia32_selectd_256:
13622   case X86::BI__builtin_ia32_selectd_512:
13623   case X86::BI__builtin_ia32_selectq_128:
13624   case X86::BI__builtin_ia32_selectq_256:
13625   case X86::BI__builtin_ia32_selectq_512:
13626   case X86::BI__builtin_ia32_selectps_128:
13627   case X86::BI__builtin_ia32_selectps_256:
13628   case X86::BI__builtin_ia32_selectps_512:
13629   case X86::BI__builtin_ia32_selectpd_128:
13630   case X86::BI__builtin_ia32_selectpd_256:
13631   case X86::BI__builtin_ia32_selectpd_512:
13632     return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
13633   case X86::BI__builtin_ia32_selectss_128:
13634   case X86::BI__builtin_ia32_selectsd_128: {
13635     Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
13636     Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
13637     A = EmitX86ScalarSelect(*this, Ops[0], A, B);
13638     return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
13639   }
13640   case X86::BI__builtin_ia32_cmpb128_mask:
13641   case X86::BI__builtin_ia32_cmpb256_mask:
13642   case X86::BI__builtin_ia32_cmpb512_mask:
13643   case X86::BI__builtin_ia32_cmpw128_mask:
13644   case X86::BI__builtin_ia32_cmpw256_mask:
13645   case X86::BI__builtin_ia32_cmpw512_mask:
13646   case X86::BI__builtin_ia32_cmpd128_mask:
13647   case X86::BI__builtin_ia32_cmpd256_mask:
13648   case X86::BI__builtin_ia32_cmpd512_mask:
13649   case X86::BI__builtin_ia32_cmpq128_mask:
13650   case X86::BI__builtin_ia32_cmpq256_mask:
13651   case X86::BI__builtin_ia32_cmpq512_mask: {
13652     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
13653     return EmitX86MaskedCompare(*this, CC, true, Ops);
13654   }
13655   case X86::BI__builtin_ia32_ucmpb128_mask:
13656   case X86::BI__builtin_ia32_ucmpb256_mask:
13657   case X86::BI__builtin_ia32_ucmpb512_mask:
13658   case X86::BI__builtin_ia32_ucmpw128_mask:
13659   case X86::BI__builtin_ia32_ucmpw256_mask:
13660   case X86::BI__builtin_ia32_ucmpw512_mask:
13661   case X86::BI__builtin_ia32_ucmpd128_mask:
13662   case X86::BI__builtin_ia32_ucmpd256_mask:
13663   case X86::BI__builtin_ia32_ucmpd512_mask:
13664   case X86::BI__builtin_ia32_ucmpq128_mask:
13665   case X86::BI__builtin_ia32_ucmpq256_mask:
13666   case X86::BI__builtin_ia32_ucmpq512_mask: {
13667     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
13668     return EmitX86MaskedCompare(*this, CC, false, Ops);
13669   }
13670   case X86::BI__builtin_ia32_vpcomb:
13671   case X86::BI__builtin_ia32_vpcomw:
13672   case X86::BI__builtin_ia32_vpcomd:
13673   case X86::BI__builtin_ia32_vpcomq:
13674     return EmitX86vpcom(*this, Ops, true);
13675   case X86::BI__builtin_ia32_vpcomub:
13676   case X86::BI__builtin_ia32_vpcomuw:
13677   case X86::BI__builtin_ia32_vpcomud:
13678   case X86::BI__builtin_ia32_vpcomuq:
13679     return EmitX86vpcom(*this, Ops, false);
13680 
13681   case X86::BI__builtin_ia32_kortestcqi:
13682   case X86::BI__builtin_ia32_kortestchi:
13683   case X86::BI__builtin_ia32_kortestcsi:
13684   case X86::BI__builtin_ia32_kortestcdi: {
13685     Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
13686     Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
13687     Value *Cmp = Builder.CreateICmpEQ(Or, C);
13688     return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
13689   }
13690   case X86::BI__builtin_ia32_kortestzqi:
13691   case X86::BI__builtin_ia32_kortestzhi:
13692   case X86::BI__builtin_ia32_kortestzsi:
13693   case X86::BI__builtin_ia32_kortestzdi: {
13694     Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
13695     Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
13696     Value *Cmp = Builder.CreateICmpEQ(Or, C);
13697     return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
13698   }
13699 
13700   case X86::BI__builtin_ia32_ktestcqi:
13701   case X86::BI__builtin_ia32_ktestzqi:
13702   case X86::BI__builtin_ia32_ktestchi:
13703   case X86::BI__builtin_ia32_ktestzhi:
13704   case X86::BI__builtin_ia32_ktestcsi:
13705   case X86::BI__builtin_ia32_ktestzsi:
13706   case X86::BI__builtin_ia32_ktestcdi:
13707   case X86::BI__builtin_ia32_ktestzdi: {
13708     Intrinsic::ID IID;
13709     switch (BuiltinID) {
13710     default: llvm_unreachable("Unsupported intrinsic!");
13711     case X86::BI__builtin_ia32_ktestcqi:
13712       IID = Intrinsic::x86_avx512_ktestc_b;
13713       break;
13714     case X86::BI__builtin_ia32_ktestzqi:
13715       IID = Intrinsic::x86_avx512_ktestz_b;
13716       break;
13717     case X86::BI__builtin_ia32_ktestchi:
13718       IID = Intrinsic::x86_avx512_ktestc_w;
13719       break;
13720     case X86::BI__builtin_ia32_ktestzhi:
13721       IID = Intrinsic::x86_avx512_ktestz_w;
13722       break;
13723     case X86::BI__builtin_ia32_ktestcsi:
13724       IID = Intrinsic::x86_avx512_ktestc_d;
13725       break;
13726     case X86::BI__builtin_ia32_ktestzsi:
13727       IID = Intrinsic::x86_avx512_ktestz_d;
13728       break;
13729     case X86::BI__builtin_ia32_ktestcdi:
13730       IID = Intrinsic::x86_avx512_ktestc_q;
13731       break;
13732     case X86::BI__builtin_ia32_ktestzdi:
13733       IID = Intrinsic::x86_avx512_ktestz_q;
13734       break;
13735     }
13736 
13737     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13738     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13739     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13740     Function *Intr = CGM.getIntrinsic(IID);
13741     return Builder.CreateCall(Intr, {LHS, RHS});
13742   }
13743 
13744   case X86::BI__builtin_ia32_kaddqi:
13745   case X86::BI__builtin_ia32_kaddhi:
13746   case X86::BI__builtin_ia32_kaddsi:
13747   case X86::BI__builtin_ia32_kadddi: {
13748     Intrinsic::ID IID;
13749     switch (BuiltinID) {
13750     default: llvm_unreachable("Unsupported intrinsic!");
13751     case X86::BI__builtin_ia32_kaddqi:
13752       IID = Intrinsic::x86_avx512_kadd_b;
13753       break;
13754     case X86::BI__builtin_ia32_kaddhi:
13755       IID = Intrinsic::x86_avx512_kadd_w;
13756       break;
13757     case X86::BI__builtin_ia32_kaddsi:
13758       IID = Intrinsic::x86_avx512_kadd_d;
13759       break;
13760     case X86::BI__builtin_ia32_kadddi:
13761       IID = Intrinsic::x86_avx512_kadd_q;
13762       break;
13763     }
13764 
13765     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13766     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13767     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13768     Function *Intr = CGM.getIntrinsic(IID);
13769     Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
13770     return Builder.CreateBitCast(Res, Ops[0]->getType());
13771   }
13772   case X86::BI__builtin_ia32_kandqi:
13773   case X86::BI__builtin_ia32_kandhi:
13774   case X86::BI__builtin_ia32_kandsi:
13775   case X86::BI__builtin_ia32_kanddi:
13776     return EmitX86MaskLogic(*this, Instruction::And, Ops);
13777   case X86::BI__builtin_ia32_kandnqi:
13778   case X86::BI__builtin_ia32_kandnhi:
13779   case X86::BI__builtin_ia32_kandnsi:
13780   case X86::BI__builtin_ia32_kandndi:
13781     return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
13782   case X86::BI__builtin_ia32_korqi:
13783   case X86::BI__builtin_ia32_korhi:
13784   case X86::BI__builtin_ia32_korsi:
13785   case X86::BI__builtin_ia32_kordi:
13786     return EmitX86MaskLogic(*this, Instruction::Or, Ops);
13787   case X86::BI__builtin_ia32_kxnorqi:
13788   case X86::BI__builtin_ia32_kxnorhi:
13789   case X86::BI__builtin_ia32_kxnorsi:
13790   case X86::BI__builtin_ia32_kxnordi:
13791     return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
13792   case X86::BI__builtin_ia32_kxorqi:
13793   case X86::BI__builtin_ia32_kxorhi:
13794   case X86::BI__builtin_ia32_kxorsi:
13795   case X86::BI__builtin_ia32_kxordi:
13796     return EmitX86MaskLogic(*this, Instruction::Xor,  Ops);
13797   case X86::BI__builtin_ia32_knotqi:
13798   case X86::BI__builtin_ia32_knothi:
13799   case X86::BI__builtin_ia32_knotsi:
13800   case X86::BI__builtin_ia32_knotdi: {
13801     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13802     Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
13803     return Builder.CreateBitCast(Builder.CreateNot(Res),
13804                                  Ops[0]->getType());
13805   }
13806   case X86::BI__builtin_ia32_kmovb:
13807   case X86::BI__builtin_ia32_kmovw:
13808   case X86::BI__builtin_ia32_kmovd:
13809   case X86::BI__builtin_ia32_kmovq: {
13810     // Bitcast to vXi1 type and then back to integer. This gets the mask
13811     // register type into the IR, but might be optimized out depending on
13812     // what's around it.
13813     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13814     Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
13815     return Builder.CreateBitCast(Res, Ops[0]->getType());
13816   }
13817 
13818   case X86::BI__builtin_ia32_kunpckdi:
13819   case X86::BI__builtin_ia32_kunpcksi:
13820   case X86::BI__builtin_ia32_kunpckhi: {
13821     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13822     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13823     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13824     int Indices[64];
13825     for (unsigned i = 0; i != NumElts; ++i)
13826       Indices[i] = i;
13827 
13828     // First extract half of each vector. This gives better codegen than
13829     // doing it in a single shuffle.
13830     LHS = Builder.CreateShuffleVector(LHS, LHS,
13831                                       makeArrayRef(Indices, NumElts / 2));
13832     RHS = Builder.CreateShuffleVector(RHS, RHS,
13833                                       makeArrayRef(Indices, NumElts / 2));
13834     // Concat the vectors.
13835     // NOTE: Operands are swapped to match the intrinsic definition.
13836     Value *Res = Builder.CreateShuffleVector(RHS, LHS,
13837                                              makeArrayRef(Indices, NumElts));
13838     return Builder.CreateBitCast(Res, Ops[0]->getType());
13839   }
13840 
13841   case X86::BI__builtin_ia32_vplzcntd_128:
13842   case X86::BI__builtin_ia32_vplzcntd_256:
13843   case X86::BI__builtin_ia32_vplzcntd_512:
13844   case X86::BI__builtin_ia32_vplzcntq_128:
13845   case X86::BI__builtin_ia32_vplzcntq_256:
13846   case X86::BI__builtin_ia32_vplzcntq_512: {
13847     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
13848     return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
13849   }
13850   case X86::BI__builtin_ia32_sqrtss:
13851   case X86::BI__builtin_ia32_sqrtsd: {
13852     Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
13853     Function *F;
13854     if (Builder.getIsFPConstrained()) {
13855       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
13856       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
13857                            A->getType());
13858       A = Builder.CreateConstrainedFPCall(F, {A});
13859     } else {
13860       F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
13861       A = Builder.CreateCall(F, {A});
13862     }
13863     return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
13864   }
13865   case X86::BI__builtin_ia32_sqrtsd_round_mask:
13866   case X86::BI__builtin_ia32_sqrtss_round_mask: {
13867     unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
13868     // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
13869     // otherwise keep the intrinsic.
13870     if (CC != 4) {
13871       Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtsd_round_mask ?
13872                           Intrinsic::x86_avx512_mask_sqrt_sd :
13873                           Intrinsic::x86_avx512_mask_sqrt_ss;
13874       return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
13875     }
13876     Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
13877     Function *F;
13878     if (Builder.getIsFPConstrained()) {
13879       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
13880       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
13881                            A->getType());
13882       A = Builder.CreateConstrainedFPCall(F, A);
13883     } else {
13884       F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
13885       A = Builder.CreateCall(F, A);
13886     }
13887     Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
13888     A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
13889     return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
13890   }
13891   case X86::BI__builtin_ia32_sqrtpd256:
13892   case X86::BI__builtin_ia32_sqrtpd:
13893   case X86::BI__builtin_ia32_sqrtps256:
13894   case X86::BI__builtin_ia32_sqrtps:
13895   case X86::BI__builtin_ia32_sqrtps512:
13896   case X86::BI__builtin_ia32_sqrtpd512: {
13897     if (Ops.size() == 2) {
13898       unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13899       // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
13900       // otherwise keep the intrinsic.
13901       if (CC != 4) {
13902         Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtps512 ?
13903                             Intrinsic::x86_avx512_sqrt_ps_512 :
13904                             Intrinsic::x86_avx512_sqrt_pd_512;
13905         return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
13906       }
13907     }
13908     if (Builder.getIsFPConstrained()) {
13909       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
13910       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
13911                                      Ops[0]->getType());
13912       return Builder.CreateConstrainedFPCall(F, Ops[0]);
13913     } else {
13914       Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
13915       return Builder.CreateCall(F, Ops[0]);
13916     }
13917   }
13918   case X86::BI__builtin_ia32_pabsb128:
13919   case X86::BI__builtin_ia32_pabsw128:
13920   case X86::BI__builtin_ia32_pabsd128:
13921   case X86::BI__builtin_ia32_pabsb256:
13922   case X86::BI__builtin_ia32_pabsw256:
13923   case X86::BI__builtin_ia32_pabsd256:
13924   case X86::BI__builtin_ia32_pabsq128:
13925   case X86::BI__builtin_ia32_pabsq256:
13926   case X86::BI__builtin_ia32_pabsb512:
13927   case X86::BI__builtin_ia32_pabsw512:
13928   case X86::BI__builtin_ia32_pabsd512:
13929   case X86::BI__builtin_ia32_pabsq512: {
13930     Function *F = CGM.getIntrinsic(Intrinsic::abs, Ops[0]->getType());
13931     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
13932   }
13933   case X86::BI__builtin_ia32_pmaxsb128:
13934   case X86::BI__builtin_ia32_pmaxsw128:
13935   case X86::BI__builtin_ia32_pmaxsd128:
13936   case X86::BI__builtin_ia32_pmaxsq128:
13937   case X86::BI__builtin_ia32_pmaxsb256:
13938   case X86::BI__builtin_ia32_pmaxsw256:
13939   case X86::BI__builtin_ia32_pmaxsd256:
13940   case X86::BI__builtin_ia32_pmaxsq256:
13941   case X86::BI__builtin_ia32_pmaxsb512:
13942   case X86::BI__builtin_ia32_pmaxsw512:
13943   case X86::BI__builtin_ia32_pmaxsd512:
13944   case X86::BI__builtin_ia32_pmaxsq512:
13945     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::smax);
13946   case X86::BI__builtin_ia32_pmaxub128:
13947   case X86::BI__builtin_ia32_pmaxuw128:
13948   case X86::BI__builtin_ia32_pmaxud128:
13949   case X86::BI__builtin_ia32_pmaxuq128:
13950   case X86::BI__builtin_ia32_pmaxub256:
13951   case X86::BI__builtin_ia32_pmaxuw256:
13952   case X86::BI__builtin_ia32_pmaxud256:
13953   case X86::BI__builtin_ia32_pmaxuq256:
13954   case X86::BI__builtin_ia32_pmaxub512:
13955   case X86::BI__builtin_ia32_pmaxuw512:
13956   case X86::BI__builtin_ia32_pmaxud512:
13957   case X86::BI__builtin_ia32_pmaxuq512:
13958     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::umax);
13959   case X86::BI__builtin_ia32_pminsb128:
13960   case X86::BI__builtin_ia32_pminsw128:
13961   case X86::BI__builtin_ia32_pminsd128:
13962   case X86::BI__builtin_ia32_pminsq128:
13963   case X86::BI__builtin_ia32_pminsb256:
13964   case X86::BI__builtin_ia32_pminsw256:
13965   case X86::BI__builtin_ia32_pminsd256:
13966   case X86::BI__builtin_ia32_pminsq256:
13967   case X86::BI__builtin_ia32_pminsb512:
13968   case X86::BI__builtin_ia32_pminsw512:
13969   case X86::BI__builtin_ia32_pminsd512:
13970   case X86::BI__builtin_ia32_pminsq512:
13971     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::smin);
13972   case X86::BI__builtin_ia32_pminub128:
13973   case X86::BI__builtin_ia32_pminuw128:
13974   case X86::BI__builtin_ia32_pminud128:
13975   case X86::BI__builtin_ia32_pminuq128:
13976   case X86::BI__builtin_ia32_pminub256:
13977   case X86::BI__builtin_ia32_pminuw256:
13978   case X86::BI__builtin_ia32_pminud256:
13979   case X86::BI__builtin_ia32_pminuq256:
13980   case X86::BI__builtin_ia32_pminub512:
13981   case X86::BI__builtin_ia32_pminuw512:
13982   case X86::BI__builtin_ia32_pminud512:
13983   case X86::BI__builtin_ia32_pminuq512:
13984     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::umin);
13985 
13986   case X86::BI__builtin_ia32_pmuludq128:
13987   case X86::BI__builtin_ia32_pmuludq256:
13988   case X86::BI__builtin_ia32_pmuludq512:
13989     return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
13990 
13991   case X86::BI__builtin_ia32_pmuldq128:
13992   case X86::BI__builtin_ia32_pmuldq256:
13993   case X86::BI__builtin_ia32_pmuldq512:
13994     return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
13995 
13996   case X86::BI__builtin_ia32_pternlogd512_mask:
13997   case X86::BI__builtin_ia32_pternlogq512_mask:
13998   case X86::BI__builtin_ia32_pternlogd128_mask:
13999   case X86::BI__builtin_ia32_pternlogd256_mask:
14000   case X86::BI__builtin_ia32_pternlogq128_mask:
14001   case X86::BI__builtin_ia32_pternlogq256_mask:
14002     return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
14003 
14004   case X86::BI__builtin_ia32_pternlogd512_maskz:
14005   case X86::BI__builtin_ia32_pternlogq512_maskz:
14006   case X86::BI__builtin_ia32_pternlogd128_maskz:
14007   case X86::BI__builtin_ia32_pternlogd256_maskz:
14008   case X86::BI__builtin_ia32_pternlogq128_maskz:
14009   case X86::BI__builtin_ia32_pternlogq256_maskz:
14010     return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
14011 
14012   case X86::BI__builtin_ia32_vpshldd128:
14013   case X86::BI__builtin_ia32_vpshldd256:
14014   case X86::BI__builtin_ia32_vpshldd512:
14015   case X86::BI__builtin_ia32_vpshldq128:
14016   case X86::BI__builtin_ia32_vpshldq256:
14017   case X86::BI__builtin_ia32_vpshldq512:
14018   case X86::BI__builtin_ia32_vpshldw128:
14019   case X86::BI__builtin_ia32_vpshldw256:
14020   case X86::BI__builtin_ia32_vpshldw512:
14021     return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
14022 
14023   case X86::BI__builtin_ia32_vpshrdd128:
14024   case X86::BI__builtin_ia32_vpshrdd256:
14025   case X86::BI__builtin_ia32_vpshrdd512:
14026   case X86::BI__builtin_ia32_vpshrdq128:
14027   case X86::BI__builtin_ia32_vpshrdq256:
14028   case X86::BI__builtin_ia32_vpshrdq512:
14029   case X86::BI__builtin_ia32_vpshrdw128:
14030   case X86::BI__builtin_ia32_vpshrdw256:
14031   case X86::BI__builtin_ia32_vpshrdw512:
14032     // Ops 0 and 1 are swapped.
14033     return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
14034 
14035   case X86::BI__builtin_ia32_vpshldvd128:
14036   case X86::BI__builtin_ia32_vpshldvd256:
14037   case X86::BI__builtin_ia32_vpshldvd512:
14038   case X86::BI__builtin_ia32_vpshldvq128:
14039   case X86::BI__builtin_ia32_vpshldvq256:
14040   case X86::BI__builtin_ia32_vpshldvq512:
14041   case X86::BI__builtin_ia32_vpshldvw128:
14042   case X86::BI__builtin_ia32_vpshldvw256:
14043   case X86::BI__builtin_ia32_vpshldvw512:
14044     return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
14045 
14046   case X86::BI__builtin_ia32_vpshrdvd128:
14047   case X86::BI__builtin_ia32_vpshrdvd256:
14048   case X86::BI__builtin_ia32_vpshrdvd512:
14049   case X86::BI__builtin_ia32_vpshrdvq128:
14050   case X86::BI__builtin_ia32_vpshrdvq256:
14051   case X86::BI__builtin_ia32_vpshrdvq512:
14052   case X86::BI__builtin_ia32_vpshrdvw128:
14053   case X86::BI__builtin_ia32_vpshrdvw256:
14054   case X86::BI__builtin_ia32_vpshrdvw512:
14055     // Ops 0 and 1 are swapped.
14056     return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
14057 
14058   // Reductions
14059   case X86::BI__builtin_ia32_reduce_add_d512:
14060   case X86::BI__builtin_ia32_reduce_add_q512: {
14061     Function *F =
14062         CGM.getIntrinsic(Intrinsic::vector_reduce_add, Ops[0]->getType());
14063     return Builder.CreateCall(F, {Ops[0]});
14064   }
14065   case X86::BI__builtin_ia32_reduce_and_d512:
14066   case X86::BI__builtin_ia32_reduce_and_q512: {
14067     Function *F =
14068         CGM.getIntrinsic(Intrinsic::vector_reduce_and, Ops[0]->getType());
14069     return Builder.CreateCall(F, {Ops[0]});
14070   }
14071   case X86::BI__builtin_ia32_reduce_fadd_pd512:
14072   case X86::BI__builtin_ia32_reduce_fadd_ps512: {
14073     Function *F =
14074         CGM.getIntrinsic(Intrinsic::vector_reduce_fadd, Ops[1]->getType());
14075     Builder.getFastMathFlags().setAllowReassoc();
14076     return Builder.CreateCall(F, {Ops[0], Ops[1]});
14077   }
14078   case X86::BI__builtin_ia32_reduce_fmul_pd512:
14079   case X86::BI__builtin_ia32_reduce_fmul_ps512: {
14080     Function *F =
14081         CGM.getIntrinsic(Intrinsic::vector_reduce_fmul, Ops[1]->getType());
14082     Builder.getFastMathFlags().setAllowReassoc();
14083     return Builder.CreateCall(F, {Ops[0], Ops[1]});
14084   }
14085   case X86::BI__builtin_ia32_reduce_fmax_pd512:
14086   case X86::BI__builtin_ia32_reduce_fmax_ps512: {
14087     Function *F =
14088         CGM.getIntrinsic(Intrinsic::vector_reduce_fmax, Ops[0]->getType());
14089     Builder.getFastMathFlags().setNoNaNs();
14090     return Builder.CreateCall(F, {Ops[0]});
14091   }
14092   case X86::BI__builtin_ia32_reduce_fmin_pd512:
14093   case X86::BI__builtin_ia32_reduce_fmin_ps512: {
14094     Function *F =
14095         CGM.getIntrinsic(Intrinsic::vector_reduce_fmin, Ops[0]->getType());
14096     Builder.getFastMathFlags().setNoNaNs();
14097     return Builder.CreateCall(F, {Ops[0]});
14098   }
14099   case X86::BI__builtin_ia32_reduce_mul_d512:
14100   case X86::BI__builtin_ia32_reduce_mul_q512: {
14101     Function *F =
14102         CGM.getIntrinsic(Intrinsic::vector_reduce_mul, Ops[0]->getType());
14103     return Builder.CreateCall(F, {Ops[0]});
14104   }
14105   case X86::BI__builtin_ia32_reduce_or_d512:
14106   case X86::BI__builtin_ia32_reduce_or_q512: {
14107     Function *F =
14108         CGM.getIntrinsic(Intrinsic::vector_reduce_or, Ops[0]->getType());
14109     return Builder.CreateCall(F, {Ops[0]});
14110   }
14111   case X86::BI__builtin_ia32_reduce_smax_d512:
14112   case X86::BI__builtin_ia32_reduce_smax_q512: {
14113     Function *F =
14114         CGM.getIntrinsic(Intrinsic::vector_reduce_smax, Ops[0]->getType());
14115     return Builder.CreateCall(F, {Ops[0]});
14116   }
14117   case X86::BI__builtin_ia32_reduce_smin_d512:
14118   case X86::BI__builtin_ia32_reduce_smin_q512: {
14119     Function *F =
14120         CGM.getIntrinsic(Intrinsic::vector_reduce_smin, Ops[0]->getType());
14121     return Builder.CreateCall(F, {Ops[0]});
14122   }
14123   case X86::BI__builtin_ia32_reduce_umax_d512:
14124   case X86::BI__builtin_ia32_reduce_umax_q512: {
14125     Function *F =
14126         CGM.getIntrinsic(Intrinsic::vector_reduce_umax, Ops[0]->getType());
14127     return Builder.CreateCall(F, {Ops[0]});
14128   }
14129   case X86::BI__builtin_ia32_reduce_umin_d512:
14130   case X86::BI__builtin_ia32_reduce_umin_q512: {
14131     Function *F =
14132         CGM.getIntrinsic(Intrinsic::vector_reduce_umin, Ops[0]->getType());
14133     return Builder.CreateCall(F, {Ops[0]});
14134   }
14135 
14136   // 3DNow!
14137   case X86::BI__builtin_ia32_pswapdsf:
14138   case X86::BI__builtin_ia32_pswapdsi: {
14139     llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
14140     Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
14141     llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
14142     return Builder.CreateCall(F, Ops, "pswapd");
14143   }
14144   case X86::BI__builtin_ia32_rdrand16_step:
14145   case X86::BI__builtin_ia32_rdrand32_step:
14146   case X86::BI__builtin_ia32_rdrand64_step:
14147   case X86::BI__builtin_ia32_rdseed16_step:
14148   case X86::BI__builtin_ia32_rdseed32_step:
14149   case X86::BI__builtin_ia32_rdseed64_step: {
14150     Intrinsic::ID ID;
14151     switch (BuiltinID) {
14152     default: llvm_unreachable("Unsupported intrinsic!");
14153     case X86::BI__builtin_ia32_rdrand16_step:
14154       ID = Intrinsic::x86_rdrand_16;
14155       break;
14156     case X86::BI__builtin_ia32_rdrand32_step:
14157       ID = Intrinsic::x86_rdrand_32;
14158       break;
14159     case X86::BI__builtin_ia32_rdrand64_step:
14160       ID = Intrinsic::x86_rdrand_64;
14161       break;
14162     case X86::BI__builtin_ia32_rdseed16_step:
14163       ID = Intrinsic::x86_rdseed_16;
14164       break;
14165     case X86::BI__builtin_ia32_rdseed32_step:
14166       ID = Intrinsic::x86_rdseed_32;
14167       break;
14168     case X86::BI__builtin_ia32_rdseed64_step:
14169       ID = Intrinsic::x86_rdseed_64;
14170       break;
14171     }
14172 
14173     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
14174     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
14175                                       Ops[0]);
14176     return Builder.CreateExtractValue(Call, 1);
14177   }
14178   case X86::BI__builtin_ia32_addcarryx_u32:
14179   case X86::BI__builtin_ia32_addcarryx_u64:
14180   case X86::BI__builtin_ia32_subborrow_u32:
14181   case X86::BI__builtin_ia32_subborrow_u64: {
14182     Intrinsic::ID IID;
14183     switch (BuiltinID) {
14184     default: llvm_unreachable("Unsupported intrinsic!");
14185     case X86::BI__builtin_ia32_addcarryx_u32:
14186       IID = Intrinsic::x86_addcarry_32;
14187       break;
14188     case X86::BI__builtin_ia32_addcarryx_u64:
14189       IID = Intrinsic::x86_addcarry_64;
14190       break;
14191     case X86::BI__builtin_ia32_subborrow_u32:
14192       IID = Intrinsic::x86_subborrow_32;
14193       break;
14194     case X86::BI__builtin_ia32_subborrow_u64:
14195       IID = Intrinsic::x86_subborrow_64;
14196       break;
14197     }
14198 
14199     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
14200                                      { Ops[0], Ops[1], Ops[2] });
14201     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
14202                                       Ops[3]);
14203     return Builder.CreateExtractValue(Call, 0);
14204   }
14205 
14206   case X86::BI__builtin_ia32_fpclassps128_mask:
14207   case X86::BI__builtin_ia32_fpclassps256_mask:
14208   case X86::BI__builtin_ia32_fpclassps512_mask:
14209   case X86::BI__builtin_ia32_fpclasspd128_mask:
14210   case X86::BI__builtin_ia32_fpclasspd256_mask:
14211   case X86::BI__builtin_ia32_fpclasspd512_mask: {
14212     unsigned NumElts =
14213         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14214     Value *MaskIn = Ops[2];
14215     Ops.erase(&Ops[2]);
14216 
14217     Intrinsic::ID ID;
14218     switch (BuiltinID) {
14219     default: llvm_unreachable("Unsupported intrinsic!");
14220     case X86::BI__builtin_ia32_fpclassps128_mask:
14221       ID = Intrinsic::x86_avx512_fpclass_ps_128;
14222       break;
14223     case X86::BI__builtin_ia32_fpclassps256_mask:
14224       ID = Intrinsic::x86_avx512_fpclass_ps_256;
14225       break;
14226     case X86::BI__builtin_ia32_fpclassps512_mask:
14227       ID = Intrinsic::x86_avx512_fpclass_ps_512;
14228       break;
14229     case X86::BI__builtin_ia32_fpclasspd128_mask:
14230       ID = Intrinsic::x86_avx512_fpclass_pd_128;
14231       break;
14232     case X86::BI__builtin_ia32_fpclasspd256_mask:
14233       ID = Intrinsic::x86_avx512_fpclass_pd_256;
14234       break;
14235     case X86::BI__builtin_ia32_fpclasspd512_mask:
14236       ID = Intrinsic::x86_avx512_fpclass_pd_512;
14237       break;
14238     }
14239 
14240     Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14241     return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
14242   }
14243 
14244   case X86::BI__builtin_ia32_vp2intersect_q_512:
14245   case X86::BI__builtin_ia32_vp2intersect_q_256:
14246   case X86::BI__builtin_ia32_vp2intersect_q_128:
14247   case X86::BI__builtin_ia32_vp2intersect_d_512:
14248   case X86::BI__builtin_ia32_vp2intersect_d_256:
14249   case X86::BI__builtin_ia32_vp2intersect_d_128: {
14250     unsigned NumElts =
14251         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14252     Intrinsic::ID ID;
14253 
14254     switch (BuiltinID) {
14255     default: llvm_unreachable("Unsupported intrinsic!");
14256     case X86::BI__builtin_ia32_vp2intersect_q_512:
14257       ID = Intrinsic::x86_avx512_vp2intersect_q_512;
14258       break;
14259     case X86::BI__builtin_ia32_vp2intersect_q_256:
14260       ID = Intrinsic::x86_avx512_vp2intersect_q_256;
14261       break;
14262     case X86::BI__builtin_ia32_vp2intersect_q_128:
14263       ID = Intrinsic::x86_avx512_vp2intersect_q_128;
14264       break;
14265     case X86::BI__builtin_ia32_vp2intersect_d_512:
14266       ID = Intrinsic::x86_avx512_vp2intersect_d_512;
14267       break;
14268     case X86::BI__builtin_ia32_vp2intersect_d_256:
14269       ID = Intrinsic::x86_avx512_vp2intersect_d_256;
14270       break;
14271     case X86::BI__builtin_ia32_vp2intersect_d_128:
14272       ID = Intrinsic::x86_avx512_vp2intersect_d_128;
14273       break;
14274     }
14275 
14276     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
14277     Value *Result = Builder.CreateExtractValue(Call, 0);
14278     Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
14279     Builder.CreateDefaultAlignedStore(Result, Ops[2]);
14280 
14281     Result = Builder.CreateExtractValue(Call, 1);
14282     Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
14283     return Builder.CreateDefaultAlignedStore(Result, Ops[3]);
14284   }
14285 
14286   case X86::BI__builtin_ia32_vpmultishiftqb128:
14287   case X86::BI__builtin_ia32_vpmultishiftqb256:
14288   case X86::BI__builtin_ia32_vpmultishiftqb512: {
14289     Intrinsic::ID ID;
14290     switch (BuiltinID) {
14291     default: llvm_unreachable("Unsupported intrinsic!");
14292     case X86::BI__builtin_ia32_vpmultishiftqb128:
14293       ID = Intrinsic::x86_avx512_pmultishift_qb_128;
14294       break;
14295     case X86::BI__builtin_ia32_vpmultishiftqb256:
14296       ID = Intrinsic::x86_avx512_pmultishift_qb_256;
14297       break;
14298     case X86::BI__builtin_ia32_vpmultishiftqb512:
14299       ID = Intrinsic::x86_avx512_pmultishift_qb_512;
14300       break;
14301     }
14302 
14303     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14304   }
14305 
14306   case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
14307   case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
14308   case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
14309     unsigned NumElts =
14310         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14311     Value *MaskIn = Ops[2];
14312     Ops.erase(&Ops[2]);
14313 
14314     Intrinsic::ID ID;
14315     switch (BuiltinID) {
14316     default: llvm_unreachable("Unsupported intrinsic!");
14317     case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
14318       ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
14319       break;
14320     case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
14321       ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
14322       break;
14323     case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
14324       ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
14325       break;
14326     }
14327 
14328     Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14329     return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
14330   }
14331 
14332   // packed comparison intrinsics
14333   case X86::BI__builtin_ia32_cmpeqps:
14334   case X86::BI__builtin_ia32_cmpeqpd:
14335     return getVectorFCmpIR(CmpInst::FCMP_OEQ, /*IsSignaling*/false);
14336   case X86::BI__builtin_ia32_cmpltps:
14337   case X86::BI__builtin_ia32_cmpltpd:
14338     return getVectorFCmpIR(CmpInst::FCMP_OLT, /*IsSignaling*/true);
14339   case X86::BI__builtin_ia32_cmpleps:
14340   case X86::BI__builtin_ia32_cmplepd:
14341     return getVectorFCmpIR(CmpInst::FCMP_OLE, /*IsSignaling*/true);
14342   case X86::BI__builtin_ia32_cmpunordps:
14343   case X86::BI__builtin_ia32_cmpunordpd:
14344     return getVectorFCmpIR(CmpInst::FCMP_UNO, /*IsSignaling*/false);
14345   case X86::BI__builtin_ia32_cmpneqps:
14346   case X86::BI__builtin_ia32_cmpneqpd:
14347     return getVectorFCmpIR(CmpInst::FCMP_UNE, /*IsSignaling*/false);
14348   case X86::BI__builtin_ia32_cmpnltps:
14349   case X86::BI__builtin_ia32_cmpnltpd:
14350     return getVectorFCmpIR(CmpInst::FCMP_UGE, /*IsSignaling*/true);
14351   case X86::BI__builtin_ia32_cmpnleps:
14352   case X86::BI__builtin_ia32_cmpnlepd:
14353     return getVectorFCmpIR(CmpInst::FCMP_UGT, /*IsSignaling*/true);
14354   case X86::BI__builtin_ia32_cmpordps:
14355   case X86::BI__builtin_ia32_cmpordpd:
14356     return getVectorFCmpIR(CmpInst::FCMP_ORD, /*IsSignaling*/false);
14357   case X86::BI__builtin_ia32_cmpps128_mask:
14358   case X86::BI__builtin_ia32_cmpps256_mask:
14359   case X86::BI__builtin_ia32_cmpps512_mask:
14360   case X86::BI__builtin_ia32_cmppd128_mask:
14361   case X86::BI__builtin_ia32_cmppd256_mask:
14362   case X86::BI__builtin_ia32_cmppd512_mask:
14363     IsMaskFCmp = true;
14364     LLVM_FALLTHROUGH;
14365   case X86::BI__builtin_ia32_cmpps:
14366   case X86::BI__builtin_ia32_cmpps256:
14367   case X86::BI__builtin_ia32_cmppd:
14368   case X86::BI__builtin_ia32_cmppd256: {
14369     // Lowering vector comparisons to fcmp instructions, while
14370     // ignoring signalling behaviour requested
14371     // ignoring rounding mode requested
14372     // This is only possible if fp-model is not strict and FENV_ACCESS is off.
14373 
14374     // The third argument is the comparison condition, and integer in the
14375     // range [0, 31]
14376     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
14377 
14378     // Lowering to IR fcmp instruction.
14379     // Ignoring requested signaling behaviour,
14380     // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
14381     FCmpInst::Predicate Pred;
14382     bool IsSignaling;
14383     // Predicates for 16-31 repeat the 0-15 predicates. Only the signalling
14384     // behavior is inverted. We'll handle that after the switch.
14385     switch (CC & 0xf) {
14386     case 0x00: Pred = FCmpInst::FCMP_OEQ;   IsSignaling = false; break;
14387     case 0x01: Pred = FCmpInst::FCMP_OLT;   IsSignaling = true;  break;
14388     case 0x02: Pred = FCmpInst::FCMP_OLE;   IsSignaling = true;  break;
14389     case 0x03: Pred = FCmpInst::FCMP_UNO;   IsSignaling = false; break;
14390     case 0x04: Pred = FCmpInst::FCMP_UNE;   IsSignaling = false; break;
14391     case 0x05: Pred = FCmpInst::FCMP_UGE;   IsSignaling = true;  break;
14392     case 0x06: Pred = FCmpInst::FCMP_UGT;   IsSignaling = true;  break;
14393     case 0x07: Pred = FCmpInst::FCMP_ORD;   IsSignaling = false; break;
14394     case 0x08: Pred = FCmpInst::FCMP_UEQ;   IsSignaling = false; break;
14395     case 0x09: Pred = FCmpInst::FCMP_ULT;   IsSignaling = true;  break;
14396     case 0x0a: Pred = FCmpInst::FCMP_ULE;   IsSignaling = true;  break;
14397     case 0x0b: Pred = FCmpInst::FCMP_FALSE; IsSignaling = false; break;
14398     case 0x0c: Pred = FCmpInst::FCMP_ONE;   IsSignaling = false; break;
14399     case 0x0d: Pred = FCmpInst::FCMP_OGE;   IsSignaling = true;  break;
14400     case 0x0e: Pred = FCmpInst::FCMP_OGT;   IsSignaling = true;  break;
14401     case 0x0f: Pred = FCmpInst::FCMP_TRUE;  IsSignaling = false; break;
14402     default: llvm_unreachable("Unhandled CC");
14403     }
14404 
14405     // Invert the signalling behavior for 16-31.
14406     if (CC & 0x10)
14407       IsSignaling = !IsSignaling;
14408 
14409     // If the predicate is true or false and we're using constrained intrinsics,
14410     // we don't have a compare intrinsic we can use. Just use the legacy X86
14411     // specific intrinsic.
14412     // If the intrinsic is mask enabled and we're using constrained intrinsics,
14413     // use the legacy X86 specific intrinsic.
14414     if (Builder.getIsFPConstrained() &&
14415         (Pred == FCmpInst::FCMP_TRUE || Pred == FCmpInst::FCMP_FALSE ||
14416          IsMaskFCmp)) {
14417 
14418       Intrinsic::ID IID;
14419       switch (BuiltinID) {
14420       default: llvm_unreachable("Unexpected builtin");
14421       case X86::BI__builtin_ia32_cmpps:
14422         IID = Intrinsic::x86_sse_cmp_ps;
14423         break;
14424       case X86::BI__builtin_ia32_cmpps256:
14425         IID = Intrinsic::x86_avx_cmp_ps_256;
14426         break;
14427       case X86::BI__builtin_ia32_cmppd:
14428         IID = Intrinsic::x86_sse2_cmp_pd;
14429         break;
14430       case X86::BI__builtin_ia32_cmppd256:
14431         IID = Intrinsic::x86_avx_cmp_pd_256;
14432         break;
14433       case X86::BI__builtin_ia32_cmpps512_mask:
14434         IID = Intrinsic::x86_avx512_mask_cmp_ps_512;
14435         break;
14436       case X86::BI__builtin_ia32_cmppd512_mask:
14437         IID = Intrinsic::x86_avx512_mask_cmp_pd_512;
14438         break;
14439       case X86::BI__builtin_ia32_cmpps128_mask:
14440         IID = Intrinsic::x86_avx512_mask_cmp_ps_128;
14441         break;
14442       case X86::BI__builtin_ia32_cmpps256_mask:
14443         IID = Intrinsic::x86_avx512_mask_cmp_ps_256;
14444         break;
14445       case X86::BI__builtin_ia32_cmppd128_mask:
14446         IID = Intrinsic::x86_avx512_mask_cmp_pd_128;
14447         break;
14448       case X86::BI__builtin_ia32_cmppd256_mask:
14449         IID = Intrinsic::x86_avx512_mask_cmp_pd_256;
14450         break;
14451       }
14452 
14453       Function *Intr = CGM.getIntrinsic(IID);
14454       if (IsMaskFCmp) {
14455         unsigned NumElts =
14456             cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14457         Ops[3] = getMaskVecValue(*this, Ops[3], NumElts);
14458         Value *Cmp = Builder.CreateCall(Intr, Ops);
14459         return EmitX86MaskedCompareResult(*this, Cmp, NumElts, nullptr);
14460       }
14461 
14462       return Builder.CreateCall(Intr, Ops);
14463     }
14464 
14465     // Builtins without the _mask suffix return a vector of integers
14466     // of the same width as the input vectors
14467     if (IsMaskFCmp) {
14468       // We ignore SAE if strict FP is disabled. We only keep precise
14469       // exception behavior under strict FP.
14470       // NOTE: If strict FP does ever go through here a CGFPOptionsRAII
14471       // object will be required.
14472       unsigned NumElts =
14473           cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14474       Value *Cmp;
14475       if (IsSignaling)
14476         Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
14477       else
14478         Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
14479       return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
14480     }
14481 
14482     return getVectorFCmpIR(Pred, IsSignaling);
14483   }
14484 
14485   // SSE scalar comparison intrinsics
14486   case X86::BI__builtin_ia32_cmpeqss:
14487     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
14488   case X86::BI__builtin_ia32_cmpltss:
14489     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
14490   case X86::BI__builtin_ia32_cmpless:
14491     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
14492   case X86::BI__builtin_ia32_cmpunordss:
14493     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
14494   case X86::BI__builtin_ia32_cmpneqss:
14495     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
14496   case X86::BI__builtin_ia32_cmpnltss:
14497     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
14498   case X86::BI__builtin_ia32_cmpnless:
14499     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
14500   case X86::BI__builtin_ia32_cmpordss:
14501     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
14502   case X86::BI__builtin_ia32_cmpeqsd:
14503     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
14504   case X86::BI__builtin_ia32_cmpltsd:
14505     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
14506   case X86::BI__builtin_ia32_cmplesd:
14507     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
14508   case X86::BI__builtin_ia32_cmpunordsd:
14509     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
14510   case X86::BI__builtin_ia32_cmpneqsd:
14511     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
14512   case X86::BI__builtin_ia32_cmpnltsd:
14513     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
14514   case X86::BI__builtin_ia32_cmpnlesd:
14515     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
14516   case X86::BI__builtin_ia32_cmpordsd:
14517     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
14518 
14519   // f16c half2float intrinsics
14520   case X86::BI__builtin_ia32_vcvtph2ps:
14521   case X86::BI__builtin_ia32_vcvtph2ps256:
14522   case X86::BI__builtin_ia32_vcvtph2ps_mask:
14523   case X86::BI__builtin_ia32_vcvtph2ps256_mask:
14524   case X86::BI__builtin_ia32_vcvtph2ps512_mask: {
14525     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14526     return EmitX86CvtF16ToFloatExpr(*this, Ops, ConvertType(E->getType()));
14527   }
14528 
14529 // AVX512 bf16 intrinsics
14530   case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
14531     Ops[2] = getMaskVecValue(
14532         *this, Ops[2],
14533         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements());
14534     Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
14535     return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
14536   }
14537   case X86::BI__builtin_ia32_cvtsbf162ss_32:
14538     return EmitX86CvtBF16ToFloatExpr(*this, E, Ops);
14539 
14540   case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
14541   case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
14542     Intrinsic::ID IID;
14543     switch (BuiltinID) {
14544     default: llvm_unreachable("Unsupported intrinsic!");
14545     case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
14546       IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
14547       break;
14548     case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
14549       IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
14550       break;
14551     }
14552     Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
14553     return EmitX86Select(*this, Ops[2], Res, Ops[1]);
14554   }
14555 
14556   case X86::BI__emul:
14557   case X86::BI__emulu: {
14558     llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
14559     bool isSigned = (BuiltinID == X86::BI__emul);
14560     Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
14561     Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
14562     return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
14563   }
14564   case X86::BI__mulh:
14565   case X86::BI__umulh:
14566   case X86::BI_mul128:
14567   case X86::BI_umul128: {
14568     llvm::Type *ResType = ConvertType(E->getType());
14569     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
14570 
14571     bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
14572     Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
14573     Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
14574 
14575     Value *MulResult, *HigherBits;
14576     if (IsSigned) {
14577       MulResult = Builder.CreateNSWMul(LHS, RHS);
14578       HigherBits = Builder.CreateAShr(MulResult, 64);
14579     } else {
14580       MulResult = Builder.CreateNUWMul(LHS, RHS);
14581       HigherBits = Builder.CreateLShr(MulResult, 64);
14582     }
14583     HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
14584 
14585     if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
14586       return HigherBits;
14587 
14588     Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
14589     Builder.CreateStore(HigherBits, HighBitsAddress);
14590     return Builder.CreateIntCast(MulResult, ResType, IsSigned);
14591   }
14592 
14593   case X86::BI__faststorefence: {
14594     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
14595                                llvm::SyncScope::System);
14596   }
14597   case X86::BI__shiftleft128:
14598   case X86::BI__shiftright128: {
14599     llvm::Function *F = CGM.getIntrinsic(
14600         BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
14601         Int64Ty);
14602     // Flip low/high ops and zero-extend amount to matching type.
14603     // shiftleft128(Low, High, Amt) -> fshl(High, Low, Amt)
14604     // shiftright128(Low, High, Amt) -> fshr(High, Low, Amt)
14605     std::swap(Ops[0], Ops[1]);
14606     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
14607     return Builder.CreateCall(F, Ops);
14608   }
14609   case X86::BI_ReadWriteBarrier:
14610   case X86::BI_ReadBarrier:
14611   case X86::BI_WriteBarrier: {
14612     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
14613                                llvm::SyncScope::SingleThread);
14614   }
14615 
14616   case X86::BI_AddressOfReturnAddress: {
14617     Function *F =
14618         CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
14619     return Builder.CreateCall(F);
14620   }
14621   case X86::BI__stosb: {
14622     // We treat __stosb as a volatile memset - it may not generate "rep stosb"
14623     // instruction, but it will create a memset that won't be optimized away.
14624     return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], Align(1), true);
14625   }
14626   case X86::BI__ud2:
14627     // llvm.trap makes a ud2a instruction on x86.
14628     return EmitTrapCall(Intrinsic::trap);
14629   case X86::BI__int2c: {
14630     // This syscall signals a driver assertion failure in x86 NT kernels.
14631     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
14632     llvm::InlineAsm *IA =
14633         llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true);
14634     llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
14635         getLLVMContext(), llvm::AttributeList::FunctionIndex,
14636         llvm::Attribute::NoReturn);
14637     llvm::CallInst *CI = Builder.CreateCall(IA);
14638     CI->setAttributes(NoReturnAttr);
14639     return CI;
14640   }
14641   case X86::BI__readfsbyte:
14642   case X86::BI__readfsword:
14643   case X86::BI__readfsdword:
14644   case X86::BI__readfsqword: {
14645     llvm::Type *IntTy = ConvertType(E->getType());
14646     Value *Ptr =
14647         Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257));
14648     LoadInst *Load = Builder.CreateAlignedLoad(
14649         IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
14650     Load->setVolatile(true);
14651     return Load;
14652   }
14653   case X86::BI__readgsbyte:
14654   case X86::BI__readgsword:
14655   case X86::BI__readgsdword:
14656   case X86::BI__readgsqword: {
14657     llvm::Type *IntTy = ConvertType(E->getType());
14658     Value *Ptr =
14659         Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256));
14660     LoadInst *Load = Builder.CreateAlignedLoad(
14661         IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
14662     Load->setVolatile(true);
14663     return Load;
14664   }
14665   case X86::BI__builtin_ia32_paddsb512:
14666   case X86::BI__builtin_ia32_paddsw512:
14667   case X86::BI__builtin_ia32_paddsb256:
14668   case X86::BI__builtin_ia32_paddsw256:
14669   case X86::BI__builtin_ia32_paddsb128:
14670   case X86::BI__builtin_ia32_paddsw128:
14671     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::sadd_sat);
14672   case X86::BI__builtin_ia32_paddusb512:
14673   case X86::BI__builtin_ia32_paddusw512:
14674   case X86::BI__builtin_ia32_paddusb256:
14675   case X86::BI__builtin_ia32_paddusw256:
14676   case X86::BI__builtin_ia32_paddusb128:
14677   case X86::BI__builtin_ia32_paddusw128:
14678     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::uadd_sat);
14679   case X86::BI__builtin_ia32_psubsb512:
14680   case X86::BI__builtin_ia32_psubsw512:
14681   case X86::BI__builtin_ia32_psubsb256:
14682   case X86::BI__builtin_ia32_psubsw256:
14683   case X86::BI__builtin_ia32_psubsb128:
14684   case X86::BI__builtin_ia32_psubsw128:
14685     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::ssub_sat);
14686   case X86::BI__builtin_ia32_psubusb512:
14687   case X86::BI__builtin_ia32_psubusw512:
14688   case X86::BI__builtin_ia32_psubusb256:
14689   case X86::BI__builtin_ia32_psubusw256:
14690   case X86::BI__builtin_ia32_psubusb128:
14691   case X86::BI__builtin_ia32_psubusw128:
14692     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::usub_sat);
14693   case X86::BI__builtin_ia32_encodekey128_u32: {
14694     Intrinsic::ID IID = Intrinsic::x86_encodekey128;
14695 
14696     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1]});
14697 
14698     for (int i = 0; i < 6; ++i) {
14699       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
14700       Value *Ptr = Builder.CreateConstGEP1_32(Ops[2], i * 16);
14701       Ptr = Builder.CreateBitCast(
14702           Ptr, llvm::PointerType::getUnqual(Extract->getType()));
14703       Builder.CreateAlignedStore(Extract, Ptr, Align(1));
14704     }
14705 
14706     return Builder.CreateExtractValue(Call, 0);
14707   }
14708   case X86::BI__builtin_ia32_encodekey256_u32: {
14709     Intrinsic::ID IID = Intrinsic::x86_encodekey256;
14710 
14711     Value *Call =
14712         Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1], Ops[2]});
14713 
14714     for (int i = 0; i < 7; ++i) {
14715       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
14716       Value *Ptr = Builder.CreateConstGEP1_32(Ops[3], i * 16);
14717       Ptr = Builder.CreateBitCast(
14718           Ptr, llvm::PointerType::getUnqual(Extract->getType()));
14719       Builder.CreateAlignedStore(Extract, Ptr, Align(1));
14720     }
14721 
14722     return Builder.CreateExtractValue(Call, 0);
14723   }
14724   case X86::BI__builtin_ia32_aesenc128kl_u8:
14725   case X86::BI__builtin_ia32_aesdec128kl_u8:
14726   case X86::BI__builtin_ia32_aesenc256kl_u8:
14727   case X86::BI__builtin_ia32_aesdec256kl_u8: {
14728     Intrinsic::ID IID;
14729     switch (BuiltinID) {
14730     default: llvm_unreachable("Unexpected builtin");
14731     case X86::BI__builtin_ia32_aesenc128kl_u8:
14732       IID = Intrinsic::x86_aesenc128kl;
14733       break;
14734     case X86::BI__builtin_ia32_aesdec128kl_u8:
14735       IID = Intrinsic::x86_aesdec128kl;
14736       break;
14737     case X86::BI__builtin_ia32_aesenc256kl_u8:
14738       IID = Intrinsic::x86_aesenc256kl;
14739       break;
14740     case X86::BI__builtin_ia32_aesdec256kl_u8:
14741       IID = Intrinsic::x86_aesdec256kl;
14742       break;
14743     }
14744 
14745     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[1], Ops[2]});
14746 
14747     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
14748                                       Ops[0]);
14749 
14750     return Builder.CreateExtractValue(Call, 0);
14751   }
14752   case X86::BI__builtin_ia32_aesencwide128kl_u8:
14753   case X86::BI__builtin_ia32_aesdecwide128kl_u8:
14754   case X86::BI__builtin_ia32_aesencwide256kl_u8:
14755   case X86::BI__builtin_ia32_aesdecwide256kl_u8: {
14756     Intrinsic::ID IID;
14757     switch (BuiltinID) {
14758     case X86::BI__builtin_ia32_aesencwide128kl_u8:
14759       IID = Intrinsic::x86_aesencwide128kl;
14760       break;
14761     case X86::BI__builtin_ia32_aesdecwide128kl_u8:
14762       IID = Intrinsic::x86_aesdecwide128kl;
14763       break;
14764     case X86::BI__builtin_ia32_aesencwide256kl_u8:
14765       IID = Intrinsic::x86_aesencwide256kl;
14766       break;
14767     case X86::BI__builtin_ia32_aesdecwide256kl_u8:
14768       IID = Intrinsic::x86_aesdecwide256kl;
14769       break;
14770     }
14771 
14772     llvm::Type *Ty = FixedVectorType::get(Builder.getInt64Ty(), 2);
14773     Value *InOps[9];
14774     InOps[0] = Ops[2];
14775     for (int i = 0; i != 8; ++i) {
14776       Value *Ptr = Builder.CreateConstGEP1_32(Ops[1], i);
14777       InOps[i + 1] = Builder.CreateAlignedLoad(Ty, Ptr, Align(16));
14778     }
14779 
14780     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), InOps);
14781 
14782     for (int i = 0; i != 8; ++i) {
14783       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
14784       Value *Ptr = Builder.CreateConstGEP1_32(Ops[0], i);
14785       Builder.CreateAlignedStore(Extract, Ptr, Align(16));
14786     }
14787 
14788     return Builder.CreateExtractValue(Call, 0);
14789   }
14790   }
14791 }
14792 
EmitPPCBuiltinExpr(unsigned BuiltinID,const CallExpr * E)14793 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
14794                                            const CallExpr *E) {
14795   SmallVector<Value*, 4> Ops;
14796 
14797   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
14798     Ops.push_back(EmitScalarExpr(E->getArg(i)));
14799 
14800   Intrinsic::ID ID = Intrinsic::not_intrinsic;
14801 
14802   switch (BuiltinID) {
14803   default: return nullptr;
14804 
14805   // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
14806   // call __builtin_readcyclecounter.
14807   case PPC::BI__builtin_ppc_get_timebase:
14808     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
14809 
14810   // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
14811   case PPC::BI__builtin_altivec_lvx:
14812   case PPC::BI__builtin_altivec_lvxl:
14813   case PPC::BI__builtin_altivec_lvebx:
14814   case PPC::BI__builtin_altivec_lvehx:
14815   case PPC::BI__builtin_altivec_lvewx:
14816   case PPC::BI__builtin_altivec_lvsl:
14817   case PPC::BI__builtin_altivec_lvsr:
14818   case PPC::BI__builtin_vsx_lxvd2x:
14819   case PPC::BI__builtin_vsx_lxvw4x:
14820   case PPC::BI__builtin_vsx_lxvd2x_be:
14821   case PPC::BI__builtin_vsx_lxvw4x_be:
14822   case PPC::BI__builtin_vsx_lxvl:
14823   case PPC::BI__builtin_vsx_lxvll:
14824   {
14825     if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
14826        BuiltinID == PPC::BI__builtin_vsx_lxvll){
14827       Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
14828     }else {
14829       Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
14830       Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
14831       Ops.pop_back();
14832     }
14833 
14834     switch (BuiltinID) {
14835     default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
14836     case PPC::BI__builtin_altivec_lvx:
14837       ID = Intrinsic::ppc_altivec_lvx;
14838       break;
14839     case PPC::BI__builtin_altivec_lvxl:
14840       ID = Intrinsic::ppc_altivec_lvxl;
14841       break;
14842     case PPC::BI__builtin_altivec_lvebx:
14843       ID = Intrinsic::ppc_altivec_lvebx;
14844       break;
14845     case PPC::BI__builtin_altivec_lvehx:
14846       ID = Intrinsic::ppc_altivec_lvehx;
14847       break;
14848     case PPC::BI__builtin_altivec_lvewx:
14849       ID = Intrinsic::ppc_altivec_lvewx;
14850       break;
14851     case PPC::BI__builtin_altivec_lvsl:
14852       ID = Intrinsic::ppc_altivec_lvsl;
14853       break;
14854     case PPC::BI__builtin_altivec_lvsr:
14855       ID = Intrinsic::ppc_altivec_lvsr;
14856       break;
14857     case PPC::BI__builtin_vsx_lxvd2x:
14858       ID = Intrinsic::ppc_vsx_lxvd2x;
14859       break;
14860     case PPC::BI__builtin_vsx_lxvw4x:
14861       ID = Intrinsic::ppc_vsx_lxvw4x;
14862       break;
14863     case PPC::BI__builtin_vsx_lxvd2x_be:
14864       ID = Intrinsic::ppc_vsx_lxvd2x_be;
14865       break;
14866     case PPC::BI__builtin_vsx_lxvw4x_be:
14867       ID = Intrinsic::ppc_vsx_lxvw4x_be;
14868       break;
14869     case PPC::BI__builtin_vsx_lxvl:
14870       ID = Intrinsic::ppc_vsx_lxvl;
14871       break;
14872     case PPC::BI__builtin_vsx_lxvll:
14873       ID = Intrinsic::ppc_vsx_lxvll;
14874       break;
14875     }
14876     llvm::Function *F = CGM.getIntrinsic(ID);
14877     return Builder.CreateCall(F, Ops, "");
14878   }
14879 
14880   // vec_st, vec_xst_be
14881   case PPC::BI__builtin_altivec_stvx:
14882   case PPC::BI__builtin_altivec_stvxl:
14883   case PPC::BI__builtin_altivec_stvebx:
14884   case PPC::BI__builtin_altivec_stvehx:
14885   case PPC::BI__builtin_altivec_stvewx:
14886   case PPC::BI__builtin_vsx_stxvd2x:
14887   case PPC::BI__builtin_vsx_stxvw4x:
14888   case PPC::BI__builtin_vsx_stxvd2x_be:
14889   case PPC::BI__builtin_vsx_stxvw4x_be:
14890   case PPC::BI__builtin_vsx_stxvl:
14891   case PPC::BI__builtin_vsx_stxvll:
14892   {
14893     if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
14894       BuiltinID == PPC::BI__builtin_vsx_stxvll ){
14895       Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
14896     }else {
14897       Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
14898       Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
14899       Ops.pop_back();
14900     }
14901 
14902     switch (BuiltinID) {
14903     default: llvm_unreachable("Unsupported st intrinsic!");
14904     case PPC::BI__builtin_altivec_stvx:
14905       ID = Intrinsic::ppc_altivec_stvx;
14906       break;
14907     case PPC::BI__builtin_altivec_stvxl:
14908       ID = Intrinsic::ppc_altivec_stvxl;
14909       break;
14910     case PPC::BI__builtin_altivec_stvebx:
14911       ID = Intrinsic::ppc_altivec_stvebx;
14912       break;
14913     case PPC::BI__builtin_altivec_stvehx:
14914       ID = Intrinsic::ppc_altivec_stvehx;
14915       break;
14916     case PPC::BI__builtin_altivec_stvewx:
14917       ID = Intrinsic::ppc_altivec_stvewx;
14918       break;
14919     case PPC::BI__builtin_vsx_stxvd2x:
14920       ID = Intrinsic::ppc_vsx_stxvd2x;
14921       break;
14922     case PPC::BI__builtin_vsx_stxvw4x:
14923       ID = Intrinsic::ppc_vsx_stxvw4x;
14924       break;
14925     case PPC::BI__builtin_vsx_stxvd2x_be:
14926       ID = Intrinsic::ppc_vsx_stxvd2x_be;
14927       break;
14928     case PPC::BI__builtin_vsx_stxvw4x_be:
14929       ID = Intrinsic::ppc_vsx_stxvw4x_be;
14930       break;
14931     case PPC::BI__builtin_vsx_stxvl:
14932       ID = Intrinsic::ppc_vsx_stxvl;
14933       break;
14934     case PPC::BI__builtin_vsx_stxvll:
14935       ID = Intrinsic::ppc_vsx_stxvll;
14936       break;
14937     }
14938     llvm::Function *F = CGM.getIntrinsic(ID);
14939     return Builder.CreateCall(F, Ops, "");
14940   }
14941   // Square root
14942   case PPC::BI__builtin_vsx_xvsqrtsp:
14943   case PPC::BI__builtin_vsx_xvsqrtdp: {
14944     llvm::Type *ResultType = ConvertType(E->getType());
14945     Value *X = EmitScalarExpr(E->getArg(0));
14946     if (Builder.getIsFPConstrained()) {
14947       llvm::Function *F = CGM.getIntrinsic(
14948           Intrinsic::experimental_constrained_sqrt, ResultType);
14949       return Builder.CreateConstrainedFPCall(F, X);
14950     } else {
14951       llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
14952       return Builder.CreateCall(F, X);
14953     }
14954   }
14955   // Count leading zeros
14956   case PPC::BI__builtin_altivec_vclzb:
14957   case PPC::BI__builtin_altivec_vclzh:
14958   case PPC::BI__builtin_altivec_vclzw:
14959   case PPC::BI__builtin_altivec_vclzd: {
14960     llvm::Type *ResultType = ConvertType(E->getType());
14961     Value *X = EmitScalarExpr(E->getArg(0));
14962     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
14963     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
14964     return Builder.CreateCall(F, {X, Undef});
14965   }
14966   case PPC::BI__builtin_altivec_vctzb:
14967   case PPC::BI__builtin_altivec_vctzh:
14968   case PPC::BI__builtin_altivec_vctzw:
14969   case PPC::BI__builtin_altivec_vctzd: {
14970     llvm::Type *ResultType = ConvertType(E->getType());
14971     Value *X = EmitScalarExpr(E->getArg(0));
14972     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
14973     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
14974     return Builder.CreateCall(F, {X, Undef});
14975   }
14976   case PPC::BI__builtin_altivec_vec_replace_elt:
14977   case PPC::BI__builtin_altivec_vec_replace_unaligned: {
14978     // The third argument of vec_replace_elt and vec_replace_unaligned must
14979     // be a compile time constant and will be emitted either to the vinsw
14980     // or vinsd instruction.
14981     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
14982     assert(ArgCI &&
14983            "Third Arg to vinsw/vinsd intrinsic must be a constant integer!");
14984     llvm::Type *ResultType = ConvertType(E->getType());
14985     llvm::Function *F = nullptr;
14986     Value *Call = nullptr;
14987     int64_t ConstArg = ArgCI->getSExtValue();
14988     unsigned ArgWidth = Ops[1]->getType()->getPrimitiveSizeInBits();
14989     bool Is32Bit = false;
14990     assert((ArgWidth == 32 || ArgWidth == 64) && "Invalid argument width");
14991     // The input to vec_replace_elt is an element index, not a byte index.
14992     if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt)
14993       ConstArg *= ArgWidth / 8;
14994     if (ArgWidth == 32) {
14995       Is32Bit = true;
14996       // When the second argument is 32 bits, it can either be an integer or
14997       // a float. The vinsw intrinsic is used in this case.
14998       F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsw);
14999       // Fix the constant according to endianess.
15000       if (getTarget().isLittleEndian())
15001         ConstArg = 12 - ConstArg;
15002     } else {
15003       // When the second argument is 64 bits, it can either be a long long or
15004       // a double. The vinsd intrinsic is used in this case.
15005       F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsd);
15006       // Fix the constant for little endian.
15007       if (getTarget().isLittleEndian())
15008         ConstArg = 8 - ConstArg;
15009     }
15010     Ops[2] = ConstantInt::getSigned(Int32Ty, ConstArg);
15011     // Depending on ArgWidth, the input vector could be a float or a double.
15012     // If the input vector is a float type, bitcast the inputs to integers. Or,
15013     // if the input vector is a double, bitcast the inputs to 64-bit integers.
15014     if (!Ops[1]->getType()->isIntegerTy(ArgWidth)) {
15015       Ops[0] = Builder.CreateBitCast(
15016           Ops[0], Is32Bit ? llvm::FixedVectorType::get(Int32Ty, 4)
15017                           : llvm::FixedVectorType::get(Int64Ty, 2));
15018       Ops[1] = Builder.CreateBitCast(Ops[1], Is32Bit ? Int32Ty : Int64Ty);
15019     }
15020     // Emit the call to vinsw or vinsd.
15021     Call = Builder.CreateCall(F, Ops);
15022     // Depending on the builtin, bitcast to the approriate result type.
15023     if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt &&
15024         !Ops[1]->getType()->isIntegerTy())
15025       return Builder.CreateBitCast(Call, ResultType);
15026     else if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt &&
15027              Ops[1]->getType()->isIntegerTy())
15028       return Call;
15029     else
15030       return Builder.CreateBitCast(Call,
15031                                    llvm::FixedVectorType::get(Int8Ty, 16));
15032   }
15033   case PPC::BI__builtin_altivec_vpopcntb:
15034   case PPC::BI__builtin_altivec_vpopcnth:
15035   case PPC::BI__builtin_altivec_vpopcntw:
15036   case PPC::BI__builtin_altivec_vpopcntd: {
15037     llvm::Type *ResultType = ConvertType(E->getType());
15038     Value *X = EmitScalarExpr(E->getArg(0));
15039     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
15040     return Builder.CreateCall(F, X);
15041   }
15042   case PPC::BI__builtin_altivec_vadduqm:
15043   case PPC::BI__builtin_altivec_vsubuqm: {
15044     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
15045     Ops[0] =
15046         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int128Ty, 1));
15047     Ops[1] =
15048         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int128Ty, 1));
15049     if (BuiltinID == PPC::BI__builtin_altivec_vadduqm)
15050       return Builder.CreateAdd(Ops[0], Ops[1], "vadduqm");
15051     else
15052       return Builder.CreateSub(Ops[0], Ops[1], "vsubuqm");
15053   }
15054   // Copy sign
15055   case PPC::BI__builtin_vsx_xvcpsgnsp:
15056   case PPC::BI__builtin_vsx_xvcpsgndp: {
15057     llvm::Type *ResultType = ConvertType(E->getType());
15058     Value *X = EmitScalarExpr(E->getArg(0));
15059     Value *Y = EmitScalarExpr(E->getArg(1));
15060     ID = Intrinsic::copysign;
15061     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
15062     return Builder.CreateCall(F, {X, Y});
15063   }
15064   // Rounding/truncation
15065   case PPC::BI__builtin_vsx_xvrspip:
15066   case PPC::BI__builtin_vsx_xvrdpip:
15067   case PPC::BI__builtin_vsx_xvrdpim:
15068   case PPC::BI__builtin_vsx_xvrspim:
15069   case PPC::BI__builtin_vsx_xvrdpi:
15070   case PPC::BI__builtin_vsx_xvrspi:
15071   case PPC::BI__builtin_vsx_xvrdpic:
15072   case PPC::BI__builtin_vsx_xvrspic:
15073   case PPC::BI__builtin_vsx_xvrdpiz:
15074   case PPC::BI__builtin_vsx_xvrspiz: {
15075     llvm::Type *ResultType = ConvertType(E->getType());
15076     Value *X = EmitScalarExpr(E->getArg(0));
15077     if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
15078         BuiltinID == PPC::BI__builtin_vsx_xvrspim)
15079       ID = Builder.getIsFPConstrained()
15080                ? Intrinsic::experimental_constrained_floor
15081                : Intrinsic::floor;
15082     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
15083              BuiltinID == PPC::BI__builtin_vsx_xvrspi)
15084       ID = Builder.getIsFPConstrained()
15085                ? Intrinsic::experimental_constrained_round
15086                : Intrinsic::round;
15087     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
15088              BuiltinID == PPC::BI__builtin_vsx_xvrspic)
15089       ID = Builder.getIsFPConstrained()
15090                ? Intrinsic::experimental_constrained_rint
15091                : Intrinsic::rint;
15092     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
15093              BuiltinID == PPC::BI__builtin_vsx_xvrspip)
15094       ID = Builder.getIsFPConstrained()
15095                ? Intrinsic::experimental_constrained_ceil
15096                : Intrinsic::ceil;
15097     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
15098              BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
15099       ID = Builder.getIsFPConstrained()
15100                ? Intrinsic::experimental_constrained_trunc
15101                : Intrinsic::trunc;
15102     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
15103     return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X)
15104                                         : Builder.CreateCall(F, X);
15105   }
15106 
15107   // Absolute value
15108   case PPC::BI__builtin_vsx_xvabsdp:
15109   case PPC::BI__builtin_vsx_xvabssp: {
15110     llvm::Type *ResultType = ConvertType(E->getType());
15111     Value *X = EmitScalarExpr(E->getArg(0));
15112     llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
15113     return Builder.CreateCall(F, X);
15114   }
15115 
15116   // Fastmath by default
15117   case PPC::BI__builtin_ppc_recipdivf:
15118   case PPC::BI__builtin_ppc_recipdivd:
15119   case PPC::BI__builtin_ppc_rsqrtf:
15120   case PPC::BI__builtin_ppc_rsqrtd: {
15121     Builder.getFastMathFlags().setFast();
15122     llvm::Type *ResultType = ConvertType(E->getType());
15123     Value *X = EmitScalarExpr(E->getArg(0));
15124 
15125     if (BuiltinID == PPC::BI__builtin_ppc_recipdivf ||
15126         BuiltinID == PPC::BI__builtin_ppc_recipdivd) {
15127       Value *Y = EmitScalarExpr(E->getArg(1));
15128       return Builder.CreateFDiv(X, Y, "recipdiv");
15129     }
15130     auto *One = ConstantFP::get(ResultType, 1.0);
15131     llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
15132     return Builder.CreateFDiv(One, Builder.CreateCall(F, X), "rsqrt");
15133   }
15134 
15135   // FMA variations
15136   case PPC::BI__builtin_vsx_xvmaddadp:
15137   case PPC::BI__builtin_vsx_xvmaddasp:
15138   case PPC::BI__builtin_vsx_xvnmaddadp:
15139   case PPC::BI__builtin_vsx_xvnmaddasp:
15140   case PPC::BI__builtin_vsx_xvmsubadp:
15141   case PPC::BI__builtin_vsx_xvmsubasp:
15142   case PPC::BI__builtin_vsx_xvnmsubadp:
15143   case PPC::BI__builtin_vsx_xvnmsubasp: {
15144     llvm::Type *ResultType = ConvertType(E->getType());
15145     Value *X = EmitScalarExpr(E->getArg(0));
15146     Value *Y = EmitScalarExpr(E->getArg(1));
15147     Value *Z = EmitScalarExpr(E->getArg(2));
15148     llvm::Function *F;
15149     if (Builder.getIsFPConstrained())
15150       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15151     else
15152       F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15153     switch (BuiltinID) {
15154       case PPC::BI__builtin_vsx_xvmaddadp:
15155       case PPC::BI__builtin_vsx_xvmaddasp:
15156         if (Builder.getIsFPConstrained())
15157           return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
15158         else
15159           return Builder.CreateCall(F, {X, Y, Z});
15160       case PPC::BI__builtin_vsx_xvnmaddadp:
15161       case PPC::BI__builtin_vsx_xvnmaddasp:
15162         if (Builder.getIsFPConstrained())
15163           return Builder.CreateFNeg(
15164               Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
15165         else
15166           return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
15167       case PPC::BI__builtin_vsx_xvmsubadp:
15168       case PPC::BI__builtin_vsx_xvmsubasp:
15169         if (Builder.getIsFPConstrained())
15170           return Builder.CreateConstrainedFPCall(
15171               F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15172         else
15173           return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15174       case PPC::BI__builtin_vsx_xvnmsubadp:
15175       case PPC::BI__builtin_vsx_xvnmsubasp:
15176         if (Builder.getIsFPConstrained())
15177           return Builder.CreateFNeg(
15178               Builder.CreateConstrainedFPCall(
15179                   F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
15180               "neg");
15181         else
15182           return Builder.CreateFNeg(
15183               Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
15184               "neg");
15185     }
15186     llvm_unreachable("Unknown FMA operation");
15187     return nullptr; // Suppress no-return warning
15188   }
15189 
15190   case PPC::BI__builtin_vsx_insertword: {
15191     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
15192 
15193     // Third argument is a compile time constant int. It must be clamped to
15194     // to the range [0, 12].
15195     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
15196     assert(ArgCI &&
15197            "Third arg to xxinsertw intrinsic must be constant integer");
15198     const int64_t MaxIndex = 12;
15199     int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
15200 
15201     // The builtin semantics don't exactly match the xxinsertw instructions
15202     // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
15203     // word from the first argument, and inserts it in the second argument. The
15204     // instruction extracts the word from its second input register and inserts
15205     // it into its first input register, so swap the first and second arguments.
15206     std::swap(Ops[0], Ops[1]);
15207 
15208     // Need to cast the second argument from a vector of unsigned int to a
15209     // vector of long long.
15210     Ops[1] =
15211         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2));
15212 
15213     if (getTarget().isLittleEndian()) {
15214       // Reverse the double words in the vector we will extract from.
15215       Ops[0] =
15216           Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
15217       Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ArrayRef<int>{1, 0});
15218 
15219       // Reverse the index.
15220       Index = MaxIndex - Index;
15221     }
15222 
15223     // Intrinsic expects the first arg to be a vector of int.
15224     Ops[0] =
15225         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
15226     Ops[2] = ConstantInt::getSigned(Int32Ty, Index);
15227     return Builder.CreateCall(F, Ops);
15228   }
15229 
15230   case PPC::BI__builtin_vsx_extractuword: {
15231     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
15232 
15233     // Intrinsic expects the first argument to be a vector of doublewords.
15234     Ops[0] =
15235         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
15236 
15237     // The second argument is a compile time constant int that needs to
15238     // be clamped to the range [0, 12].
15239     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]);
15240     assert(ArgCI &&
15241            "Second Arg to xxextractuw intrinsic must be a constant integer!");
15242     const int64_t MaxIndex = 12;
15243     int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
15244 
15245     if (getTarget().isLittleEndian()) {
15246       // Reverse the index.
15247       Index = MaxIndex - Index;
15248       Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
15249 
15250       // Emit the call, then reverse the double words of the results vector.
15251       Value *Call = Builder.CreateCall(F, Ops);
15252 
15253       Value *ShuffleCall =
15254           Builder.CreateShuffleVector(Call, Call, ArrayRef<int>{1, 0});
15255       return ShuffleCall;
15256     } else {
15257       Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
15258       return Builder.CreateCall(F, Ops);
15259     }
15260   }
15261 
15262   case PPC::BI__builtin_vsx_xxpermdi: {
15263     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
15264     assert(ArgCI && "Third arg must be constant integer!");
15265 
15266     unsigned Index = ArgCI->getZExtValue();
15267     Ops[0] =
15268         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
15269     Ops[1] =
15270         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2));
15271 
15272     // Account for endianness by treating this as just a shuffle. So we use the
15273     // same indices for both LE and BE in order to produce expected results in
15274     // both cases.
15275     int ElemIdx0 = (Index & 2) >> 1;
15276     int ElemIdx1 = 2 + (Index & 1);
15277 
15278     int ShuffleElts[2] = {ElemIdx0, ElemIdx1};
15279     Value *ShuffleCall =
15280         Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts);
15281     QualType BIRetType = E->getType();
15282     auto RetTy = ConvertType(BIRetType);
15283     return Builder.CreateBitCast(ShuffleCall, RetTy);
15284   }
15285 
15286   case PPC::BI__builtin_vsx_xxsldwi: {
15287     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
15288     assert(ArgCI && "Third argument must be a compile time constant");
15289     unsigned Index = ArgCI->getZExtValue() & 0x3;
15290     Ops[0] =
15291         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
15292     Ops[1] =
15293         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int32Ty, 4));
15294 
15295     // Create a shuffle mask
15296     int ElemIdx0;
15297     int ElemIdx1;
15298     int ElemIdx2;
15299     int ElemIdx3;
15300     if (getTarget().isLittleEndian()) {
15301       // Little endian element N comes from element 8+N-Index of the
15302       // concatenated wide vector (of course, using modulo arithmetic on
15303       // the total number of elements).
15304       ElemIdx0 = (8 - Index) % 8;
15305       ElemIdx1 = (9 - Index) % 8;
15306       ElemIdx2 = (10 - Index) % 8;
15307       ElemIdx3 = (11 - Index) % 8;
15308     } else {
15309       // Big endian ElemIdx<N> = Index + N
15310       ElemIdx0 = Index;
15311       ElemIdx1 = Index + 1;
15312       ElemIdx2 = Index + 2;
15313       ElemIdx3 = Index + 3;
15314     }
15315 
15316     int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3};
15317     Value *ShuffleCall =
15318         Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts);
15319     QualType BIRetType = E->getType();
15320     auto RetTy = ConvertType(BIRetType);
15321     return Builder.CreateBitCast(ShuffleCall, RetTy);
15322   }
15323 
15324   case PPC::BI__builtin_pack_vector_int128: {
15325     bool isLittleEndian = getTarget().isLittleEndian();
15326     Value *UndefValue =
15327         llvm::UndefValue::get(llvm::FixedVectorType::get(Ops[0]->getType(), 2));
15328     Value *Res = Builder.CreateInsertElement(
15329         UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0));
15330     Res = Builder.CreateInsertElement(Res, Ops[1],
15331                                       (uint64_t)(isLittleEndian ? 0 : 1));
15332     return Builder.CreateBitCast(Res, ConvertType(E->getType()));
15333   }
15334 
15335   case PPC::BI__builtin_unpack_vector_int128: {
15336     ConstantInt *Index = cast<ConstantInt>(Ops[1]);
15337     Value *Unpacked = Builder.CreateBitCast(
15338         Ops[0], llvm::FixedVectorType::get(ConvertType(E->getType()), 2));
15339 
15340     if (getTarget().isLittleEndian())
15341       Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue());
15342 
15343     return Builder.CreateExtractElement(Unpacked, Index);
15344   }
15345 
15346   // The PPC MMA builtins take a pointer to a __vector_quad as an argument.
15347   // Some of the MMA instructions accumulate their result into an existing
15348   // accumulator whereas the others generate a new accumulator. So we need to
15349   // use custom code generation to expand a builtin call with a pointer to a
15350   // load (if the corresponding instruction accumulates its result) followed by
15351   // the call to the intrinsic and a store of the result.
15352 #define CUSTOM_BUILTIN(Name, Intr, Types, Accumulate) \
15353   case PPC::BI__builtin_##Name:
15354 #include "clang/Basic/BuiltinsPPC.def"
15355   {
15356     // The first argument of these two builtins is a pointer used to store their
15357     // result. However, the llvm intrinsics return their result in multiple
15358     // return values. So, here we emit code extracting these values from the
15359     // intrinsic results and storing them using that pointer.
15360     if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc ||
15361         BuiltinID == PPC::BI__builtin_vsx_disassemble_pair ||
15362         BuiltinID == PPC::BI__builtin_mma_disassemble_pair) {
15363       unsigned NumVecs = 2;
15364       auto Intrinsic = Intrinsic::ppc_vsx_disassemble_pair;
15365       if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc) {
15366         NumVecs = 4;
15367         Intrinsic = Intrinsic::ppc_mma_disassemble_acc;
15368       }
15369       llvm::Function *F = CGM.getIntrinsic(Intrinsic);
15370       Address Addr = EmitPointerWithAlignment(E->getArg(1));
15371       Value *Vec = Builder.CreateLoad(Addr);
15372       Value *Call = Builder.CreateCall(F, {Vec});
15373       llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, 16);
15374       Value *Ptr = Builder.CreateBitCast(Ops[0], VTy->getPointerTo());
15375       for (unsigned i=0; i<NumVecs; i++) {
15376         Value *Vec = Builder.CreateExtractValue(Call, i);
15377         llvm::ConstantInt* Index = llvm::ConstantInt::get(IntTy, i);
15378         Value *GEP = Builder.CreateInBoundsGEP(VTy, Ptr, Index);
15379         Builder.CreateAlignedStore(Vec, GEP, MaybeAlign(16));
15380       }
15381       return Call;
15382     }
15383     bool Accumulate;
15384     switch (BuiltinID) {
15385   #define CUSTOM_BUILTIN(Name, Intr, Types, Acc) \
15386     case PPC::BI__builtin_##Name: \
15387       ID = Intrinsic::ppc_##Intr; \
15388       Accumulate = Acc; \
15389       break;
15390   #include "clang/Basic/BuiltinsPPC.def"
15391     }
15392     if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
15393         BuiltinID == PPC::BI__builtin_vsx_stxvp ||
15394         BuiltinID == PPC::BI__builtin_mma_lxvp ||
15395         BuiltinID == PPC::BI__builtin_mma_stxvp) {
15396       if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
15397           BuiltinID == PPC::BI__builtin_mma_lxvp) {
15398         Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
15399         Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
15400       } else {
15401         Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
15402         Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
15403       }
15404       Ops.pop_back();
15405       llvm::Function *F = CGM.getIntrinsic(ID);
15406       return Builder.CreateCall(F, Ops, "");
15407     }
15408     SmallVector<Value*, 4> CallOps;
15409     if (Accumulate) {
15410       Address Addr = EmitPointerWithAlignment(E->getArg(0));
15411       Value *Acc = Builder.CreateLoad(Addr);
15412       CallOps.push_back(Acc);
15413     }
15414     for (unsigned i=1; i<Ops.size(); i++)
15415       CallOps.push_back(Ops[i]);
15416     llvm::Function *F = CGM.getIntrinsic(ID);
15417     Value *Call = Builder.CreateCall(F, CallOps);
15418     return Builder.CreateAlignedStore(Call, Ops[0], MaybeAlign(64));
15419   }
15420   }
15421 }
15422 
15423 namespace {
15424 // If \p E is not null pointer, insert address space cast to match return
15425 // type of \p E if necessary.
EmitAMDGPUDispatchPtr(CodeGenFunction & CGF,const CallExpr * E=nullptr)15426 Value *EmitAMDGPUDispatchPtr(CodeGenFunction &CGF,
15427                              const CallExpr *E = nullptr) {
15428   auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_dispatch_ptr);
15429   auto *Call = CGF.Builder.CreateCall(F);
15430   Call->addAttribute(
15431       AttributeList::ReturnIndex,
15432       Attribute::getWithDereferenceableBytes(Call->getContext(), 64));
15433   Call->addAttribute(AttributeList::ReturnIndex,
15434                      Attribute::getWithAlignment(Call->getContext(), Align(4)));
15435   if (!E)
15436     return Call;
15437   QualType BuiltinRetType = E->getType();
15438   auto *RetTy = cast<llvm::PointerType>(CGF.ConvertType(BuiltinRetType));
15439   if (RetTy == Call->getType())
15440     return Call;
15441   return CGF.Builder.CreateAddrSpaceCast(Call, RetTy);
15442 }
15443 
15444 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
EmitAMDGPUWorkGroupSize(CodeGenFunction & CGF,unsigned Index)15445 Value *EmitAMDGPUWorkGroupSize(CodeGenFunction &CGF, unsigned Index) {
15446   const unsigned XOffset = 4;
15447   auto *DP = EmitAMDGPUDispatchPtr(CGF);
15448   // Indexing the HSA kernel_dispatch_packet struct.
15449   auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 2);
15450   auto *GEP = CGF.Builder.CreateGEP(DP, Offset);
15451   auto *DstTy =
15452       CGF.Int16Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
15453   auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
15454   auto *LD = CGF.Builder.CreateLoad(Address(Cast, CharUnits::fromQuantity(2)));
15455   llvm::MDBuilder MDHelper(CGF.getLLVMContext());
15456   llvm::MDNode *RNode = MDHelper.createRange(APInt(16, 1),
15457       APInt(16, CGF.getTarget().getMaxOpenCLWorkGroupSize() + 1));
15458   LD->setMetadata(llvm::LLVMContext::MD_range, RNode);
15459   LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
15460       llvm::MDNode::get(CGF.getLLVMContext(), None));
15461   return LD;
15462 }
15463 
15464 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
EmitAMDGPUGridSize(CodeGenFunction & CGF,unsigned Index)15465 Value *EmitAMDGPUGridSize(CodeGenFunction &CGF, unsigned Index) {
15466   const unsigned XOffset = 12;
15467   auto *DP = EmitAMDGPUDispatchPtr(CGF);
15468   // Indexing the HSA kernel_dispatch_packet struct.
15469   auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 4);
15470   auto *GEP = CGF.Builder.CreateGEP(DP, Offset);
15471   auto *DstTy =
15472       CGF.Int32Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
15473   auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
15474   auto *LD = CGF.Builder.CreateLoad(Address(Cast, CharUnits::fromQuantity(4)));
15475   LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
15476                   llvm::MDNode::get(CGF.getLLVMContext(), None));
15477   return LD;
15478 }
15479 } // namespace
15480 
15481 // For processing memory ordering and memory scope arguments of various
15482 // amdgcn builtins.
15483 // \p Order takes a C++11 comptabile memory-ordering specifier and converts
15484 // it into LLVM's memory ordering specifier using atomic C ABI, and writes
15485 // to \p AO. \p Scope takes a const char * and converts it into AMDGCN
15486 // specific SyncScopeID and writes it to \p SSID.
ProcessOrderScopeAMDGCN(Value * Order,Value * Scope,llvm::AtomicOrdering & AO,llvm::SyncScope::ID & SSID)15487 bool CodeGenFunction::ProcessOrderScopeAMDGCN(Value *Order, Value *Scope,
15488                                               llvm::AtomicOrdering &AO,
15489                                               llvm::SyncScope::ID &SSID) {
15490   if (isa<llvm::ConstantInt>(Order)) {
15491     int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
15492 
15493     // Map C11/C++11 memory ordering to LLVM memory ordering
15494     assert(llvm::isValidAtomicOrderingCABI(ord));
15495     switch (static_cast<llvm::AtomicOrderingCABI>(ord)) {
15496     case llvm::AtomicOrderingCABI::acquire:
15497     case llvm::AtomicOrderingCABI::consume:
15498       AO = llvm::AtomicOrdering::Acquire;
15499       break;
15500     case llvm::AtomicOrderingCABI::release:
15501       AO = llvm::AtomicOrdering::Release;
15502       break;
15503     case llvm::AtomicOrderingCABI::acq_rel:
15504       AO = llvm::AtomicOrdering::AcquireRelease;
15505       break;
15506     case llvm::AtomicOrderingCABI::seq_cst:
15507       AO = llvm::AtomicOrdering::SequentiallyConsistent;
15508       break;
15509     case llvm::AtomicOrderingCABI::relaxed:
15510       AO = llvm::AtomicOrdering::Monotonic;
15511       break;
15512     }
15513 
15514     StringRef scp;
15515     llvm::getConstantStringInfo(Scope, scp);
15516     SSID = getLLVMContext().getOrInsertSyncScopeID(scp);
15517     return true;
15518   }
15519   return false;
15520 }
15521 
EmitAMDGPUBuiltinExpr(unsigned BuiltinID,const CallExpr * E)15522 Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
15523                                               const CallExpr *E) {
15524   llvm::AtomicOrdering AO = llvm::AtomicOrdering::SequentiallyConsistent;
15525   llvm::SyncScope::ID SSID;
15526   switch (BuiltinID) {
15527   case AMDGPU::BI__builtin_amdgcn_div_scale:
15528   case AMDGPU::BI__builtin_amdgcn_div_scalef: {
15529     // Translate from the intrinsics's struct return to the builtin's out
15530     // argument.
15531 
15532     Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
15533 
15534     llvm::Value *X = EmitScalarExpr(E->getArg(0));
15535     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
15536     llvm::Value *Z = EmitScalarExpr(E->getArg(2));
15537 
15538     llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
15539                                            X->getType());
15540 
15541     llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
15542 
15543     llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
15544     llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
15545 
15546     llvm::Type *RealFlagType
15547       = FlagOutPtr.getPointer()->getType()->getPointerElementType();
15548 
15549     llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
15550     Builder.CreateStore(FlagExt, FlagOutPtr);
15551     return Result;
15552   }
15553   case AMDGPU::BI__builtin_amdgcn_div_fmas:
15554   case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
15555     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15556     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15557     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15558     llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
15559 
15560     llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
15561                                       Src0->getType());
15562     llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
15563     return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
15564   }
15565 
15566   case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
15567     return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
15568   case AMDGPU::BI__builtin_amdgcn_mov_dpp8:
15569     return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8);
15570   case AMDGPU::BI__builtin_amdgcn_mov_dpp:
15571   case AMDGPU::BI__builtin_amdgcn_update_dpp: {
15572     llvm::SmallVector<llvm::Value *, 6> Args;
15573     for (unsigned I = 0; I != E->getNumArgs(); ++I)
15574       Args.push_back(EmitScalarExpr(E->getArg(I)));
15575     assert(Args.size() == 5 || Args.size() == 6);
15576     if (Args.size() == 5)
15577       Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType()));
15578     Function *F =
15579         CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
15580     return Builder.CreateCall(F, Args);
15581   }
15582   case AMDGPU::BI__builtin_amdgcn_div_fixup:
15583   case AMDGPU::BI__builtin_amdgcn_div_fixupf:
15584   case AMDGPU::BI__builtin_amdgcn_div_fixuph:
15585     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
15586   case AMDGPU::BI__builtin_amdgcn_trig_preop:
15587   case AMDGPU::BI__builtin_amdgcn_trig_preopf:
15588     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
15589   case AMDGPU::BI__builtin_amdgcn_rcp:
15590   case AMDGPU::BI__builtin_amdgcn_rcpf:
15591   case AMDGPU::BI__builtin_amdgcn_rcph:
15592     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
15593   case AMDGPU::BI__builtin_amdgcn_sqrt:
15594   case AMDGPU::BI__builtin_amdgcn_sqrtf:
15595   case AMDGPU::BI__builtin_amdgcn_sqrth:
15596     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sqrt);
15597   case AMDGPU::BI__builtin_amdgcn_rsq:
15598   case AMDGPU::BI__builtin_amdgcn_rsqf:
15599   case AMDGPU::BI__builtin_amdgcn_rsqh:
15600     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
15601   case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
15602   case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
15603     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
15604   case AMDGPU::BI__builtin_amdgcn_sinf:
15605   case AMDGPU::BI__builtin_amdgcn_sinh:
15606     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
15607   case AMDGPU::BI__builtin_amdgcn_cosf:
15608   case AMDGPU::BI__builtin_amdgcn_cosh:
15609     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
15610   case AMDGPU::BI__builtin_amdgcn_dispatch_ptr:
15611     return EmitAMDGPUDispatchPtr(*this, E);
15612   case AMDGPU::BI__builtin_amdgcn_log_clampf:
15613     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
15614   case AMDGPU::BI__builtin_amdgcn_ldexp:
15615   case AMDGPU::BI__builtin_amdgcn_ldexpf:
15616   case AMDGPU::BI__builtin_amdgcn_ldexph:
15617     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
15618   case AMDGPU::BI__builtin_amdgcn_frexp_mant:
15619   case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
15620   case AMDGPU::BI__builtin_amdgcn_frexp_manth:
15621     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
15622   case AMDGPU::BI__builtin_amdgcn_frexp_exp:
15623   case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
15624     Value *Src0 = EmitScalarExpr(E->getArg(0));
15625     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
15626                                 { Builder.getInt32Ty(), Src0->getType() });
15627     return Builder.CreateCall(F, Src0);
15628   }
15629   case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
15630     Value *Src0 = EmitScalarExpr(E->getArg(0));
15631     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
15632                                 { Builder.getInt16Ty(), Src0->getType() });
15633     return Builder.CreateCall(F, Src0);
15634   }
15635   case AMDGPU::BI__builtin_amdgcn_fract:
15636   case AMDGPU::BI__builtin_amdgcn_fractf:
15637   case AMDGPU::BI__builtin_amdgcn_fracth:
15638     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
15639   case AMDGPU::BI__builtin_amdgcn_lerp:
15640     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
15641   case AMDGPU::BI__builtin_amdgcn_ubfe:
15642     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe);
15643   case AMDGPU::BI__builtin_amdgcn_sbfe:
15644     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe);
15645   case AMDGPU::BI__builtin_amdgcn_uicmp:
15646   case AMDGPU::BI__builtin_amdgcn_uicmpl:
15647   case AMDGPU::BI__builtin_amdgcn_sicmp:
15648   case AMDGPU::BI__builtin_amdgcn_sicmpl: {
15649     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15650     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15651     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15652 
15653     // FIXME-GFX10: How should 32 bit mask be handled?
15654     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp,
15655       { Builder.getInt64Ty(), Src0->getType() });
15656     return Builder.CreateCall(F, { Src0, Src1, Src2 });
15657   }
15658   case AMDGPU::BI__builtin_amdgcn_fcmp:
15659   case AMDGPU::BI__builtin_amdgcn_fcmpf: {
15660     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15661     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15662     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15663 
15664     // FIXME-GFX10: How should 32 bit mask be handled?
15665     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp,
15666       { Builder.getInt64Ty(), Src0->getType() });
15667     return Builder.CreateCall(F, { Src0, Src1, Src2 });
15668   }
15669   case AMDGPU::BI__builtin_amdgcn_class:
15670   case AMDGPU::BI__builtin_amdgcn_classf:
15671   case AMDGPU::BI__builtin_amdgcn_classh:
15672     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
15673   case AMDGPU::BI__builtin_amdgcn_fmed3f:
15674   case AMDGPU::BI__builtin_amdgcn_fmed3h:
15675     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
15676   case AMDGPU::BI__builtin_amdgcn_ds_append:
15677   case AMDGPU::BI__builtin_amdgcn_ds_consume: {
15678     Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
15679       Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
15680     Value *Src0 = EmitScalarExpr(E->getArg(0));
15681     Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
15682     return Builder.CreateCall(F, { Src0, Builder.getFalse() });
15683   }
15684   case AMDGPU::BI__builtin_amdgcn_ds_faddf:
15685   case AMDGPU::BI__builtin_amdgcn_ds_fminf:
15686   case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: {
15687     Intrinsic::ID Intrin;
15688     switch (BuiltinID) {
15689     case AMDGPU::BI__builtin_amdgcn_ds_faddf:
15690       Intrin = Intrinsic::amdgcn_ds_fadd;
15691       break;
15692     case AMDGPU::BI__builtin_amdgcn_ds_fminf:
15693       Intrin = Intrinsic::amdgcn_ds_fmin;
15694       break;
15695     case AMDGPU::BI__builtin_amdgcn_ds_fmaxf:
15696       Intrin = Intrinsic::amdgcn_ds_fmax;
15697       break;
15698     }
15699     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15700     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15701     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15702     llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
15703     llvm::Value *Src4 = EmitScalarExpr(E->getArg(4));
15704     llvm::Function *F = CGM.getIntrinsic(Intrin, { Src1->getType() });
15705     llvm::FunctionType *FTy = F->getFunctionType();
15706     llvm::Type *PTy = FTy->getParamType(0);
15707     Src0 = Builder.CreatePointerBitCastOrAddrSpaceCast(Src0, PTy);
15708     return Builder.CreateCall(F, { Src0, Src1, Src2, Src3, Src4 });
15709   }
15710   case AMDGPU::BI__builtin_amdgcn_read_exec: {
15711     CallInst *CI = cast<CallInst>(
15712       EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, NormalRead, "exec"));
15713     CI->setConvergent();
15714     return CI;
15715   }
15716   case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
15717   case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
15718     StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
15719       "exec_lo" : "exec_hi";
15720     CallInst *CI = cast<CallInst>(
15721       EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, NormalRead, RegName));
15722     CI->setConvergent();
15723     return CI;
15724   }
15725   // amdgcn workitem
15726   case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
15727     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
15728   case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
15729     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
15730   case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
15731     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
15732 
15733   // amdgcn workgroup size
15734   case AMDGPU::BI__builtin_amdgcn_workgroup_size_x:
15735     return EmitAMDGPUWorkGroupSize(*this, 0);
15736   case AMDGPU::BI__builtin_amdgcn_workgroup_size_y:
15737     return EmitAMDGPUWorkGroupSize(*this, 1);
15738   case AMDGPU::BI__builtin_amdgcn_workgroup_size_z:
15739     return EmitAMDGPUWorkGroupSize(*this, 2);
15740 
15741   // amdgcn grid size
15742   case AMDGPU::BI__builtin_amdgcn_grid_size_x:
15743     return EmitAMDGPUGridSize(*this, 0);
15744   case AMDGPU::BI__builtin_amdgcn_grid_size_y:
15745     return EmitAMDGPUGridSize(*this, 1);
15746   case AMDGPU::BI__builtin_amdgcn_grid_size_z:
15747     return EmitAMDGPUGridSize(*this, 2);
15748 
15749   // r600 intrinsics
15750   case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
15751   case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
15752     return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
15753   case AMDGPU::BI__builtin_r600_read_tidig_x:
15754     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
15755   case AMDGPU::BI__builtin_r600_read_tidig_y:
15756     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
15757   case AMDGPU::BI__builtin_r600_read_tidig_z:
15758     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
15759   case AMDGPU::BI__builtin_amdgcn_alignbit: {
15760     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15761     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15762     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15763     Function *F = CGM.getIntrinsic(Intrinsic::fshr, Src0->getType());
15764     return Builder.CreateCall(F, { Src0, Src1, Src2 });
15765   }
15766 
15767   case AMDGPU::BI__builtin_amdgcn_fence: {
15768     if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(0)),
15769                                 EmitScalarExpr(E->getArg(1)), AO, SSID))
15770       return Builder.CreateFence(AO, SSID);
15771     LLVM_FALLTHROUGH;
15772   }
15773   case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
15774   case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
15775   case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
15776   case AMDGPU::BI__builtin_amdgcn_atomic_dec64: {
15777     unsigned BuiltinAtomicOp;
15778     llvm::Type *ResultType = ConvertType(E->getType());
15779 
15780     switch (BuiltinID) {
15781     case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
15782     case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
15783       BuiltinAtomicOp = Intrinsic::amdgcn_atomic_inc;
15784       break;
15785     case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
15786     case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
15787       BuiltinAtomicOp = Intrinsic::amdgcn_atomic_dec;
15788       break;
15789     }
15790 
15791     Value *Ptr = EmitScalarExpr(E->getArg(0));
15792     Value *Val = EmitScalarExpr(E->getArg(1));
15793 
15794     llvm::Function *F =
15795         CGM.getIntrinsic(BuiltinAtomicOp, {ResultType, Ptr->getType()});
15796 
15797     if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(2)),
15798                                 EmitScalarExpr(E->getArg(3)), AO, SSID)) {
15799 
15800       // llvm.amdgcn.atomic.inc and llvm.amdgcn.atomic.dec expects ordering and
15801       // scope as unsigned values
15802       Value *MemOrder = Builder.getInt32(static_cast<int>(AO));
15803       Value *MemScope = Builder.getInt32(static_cast<int>(SSID));
15804 
15805       QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
15806       bool Volatile =
15807           PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
15808       Value *IsVolatile = Builder.getInt1(static_cast<bool>(Volatile));
15809 
15810       return Builder.CreateCall(F, {Ptr, Val, MemOrder, MemScope, IsVolatile});
15811     }
15812     LLVM_FALLTHROUGH;
15813   }
15814   default:
15815     return nullptr;
15816   }
15817 }
15818 
15819 /// Handle a SystemZ function in which the final argument is a pointer
15820 /// to an int that receives the post-instruction CC value.  At the LLVM level
15821 /// this is represented as a function that returns a {result, cc} pair.
EmitSystemZIntrinsicWithCC(CodeGenFunction & CGF,unsigned IntrinsicID,const CallExpr * E)15822 static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
15823                                          unsigned IntrinsicID,
15824                                          const CallExpr *E) {
15825   unsigned NumArgs = E->getNumArgs() - 1;
15826   SmallVector<Value *, 8> Args(NumArgs);
15827   for (unsigned I = 0; I < NumArgs; ++I)
15828     Args[I] = CGF.EmitScalarExpr(E->getArg(I));
15829   Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
15830   Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
15831   Value *Call = CGF.Builder.CreateCall(F, Args);
15832   Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
15833   CGF.Builder.CreateStore(CC, CCPtr);
15834   return CGF.Builder.CreateExtractValue(Call, 0);
15835 }
15836 
EmitSystemZBuiltinExpr(unsigned BuiltinID,const CallExpr * E)15837 Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
15838                                                const CallExpr *E) {
15839   switch (BuiltinID) {
15840   case SystemZ::BI__builtin_tbegin: {
15841     Value *TDB = EmitScalarExpr(E->getArg(0));
15842     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
15843     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
15844     return Builder.CreateCall(F, {TDB, Control});
15845   }
15846   case SystemZ::BI__builtin_tbegin_nofloat: {
15847     Value *TDB = EmitScalarExpr(E->getArg(0));
15848     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
15849     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
15850     return Builder.CreateCall(F, {TDB, Control});
15851   }
15852   case SystemZ::BI__builtin_tbeginc: {
15853     Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
15854     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
15855     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
15856     return Builder.CreateCall(F, {TDB, Control});
15857   }
15858   case SystemZ::BI__builtin_tabort: {
15859     Value *Data = EmitScalarExpr(E->getArg(0));
15860     Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
15861     return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
15862   }
15863   case SystemZ::BI__builtin_non_tx_store: {
15864     Value *Address = EmitScalarExpr(E->getArg(0));
15865     Value *Data = EmitScalarExpr(E->getArg(1));
15866     Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
15867     return Builder.CreateCall(F, {Data, Address});
15868   }
15869 
15870   // Vector builtins.  Note that most vector builtins are mapped automatically
15871   // to target-specific LLVM intrinsics.  The ones handled specially here can
15872   // be represented via standard LLVM IR, which is preferable to enable common
15873   // LLVM optimizations.
15874 
15875   case SystemZ::BI__builtin_s390_vpopctb:
15876   case SystemZ::BI__builtin_s390_vpopcth:
15877   case SystemZ::BI__builtin_s390_vpopctf:
15878   case SystemZ::BI__builtin_s390_vpopctg: {
15879     llvm::Type *ResultType = ConvertType(E->getType());
15880     Value *X = EmitScalarExpr(E->getArg(0));
15881     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
15882     return Builder.CreateCall(F, X);
15883   }
15884 
15885   case SystemZ::BI__builtin_s390_vclzb:
15886   case SystemZ::BI__builtin_s390_vclzh:
15887   case SystemZ::BI__builtin_s390_vclzf:
15888   case SystemZ::BI__builtin_s390_vclzg: {
15889     llvm::Type *ResultType = ConvertType(E->getType());
15890     Value *X = EmitScalarExpr(E->getArg(0));
15891     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15892     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
15893     return Builder.CreateCall(F, {X, Undef});
15894   }
15895 
15896   case SystemZ::BI__builtin_s390_vctzb:
15897   case SystemZ::BI__builtin_s390_vctzh:
15898   case SystemZ::BI__builtin_s390_vctzf:
15899   case SystemZ::BI__builtin_s390_vctzg: {
15900     llvm::Type *ResultType = ConvertType(E->getType());
15901     Value *X = EmitScalarExpr(E->getArg(0));
15902     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15903     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
15904     return Builder.CreateCall(F, {X, Undef});
15905   }
15906 
15907   case SystemZ::BI__builtin_s390_vfsqsb:
15908   case SystemZ::BI__builtin_s390_vfsqdb: {
15909     llvm::Type *ResultType = ConvertType(E->getType());
15910     Value *X = EmitScalarExpr(E->getArg(0));
15911     if (Builder.getIsFPConstrained()) {
15912       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, ResultType);
15913       return Builder.CreateConstrainedFPCall(F, { X });
15914     } else {
15915       Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
15916       return Builder.CreateCall(F, X);
15917     }
15918   }
15919   case SystemZ::BI__builtin_s390_vfmasb:
15920   case SystemZ::BI__builtin_s390_vfmadb: {
15921     llvm::Type *ResultType = ConvertType(E->getType());
15922     Value *X = EmitScalarExpr(E->getArg(0));
15923     Value *Y = EmitScalarExpr(E->getArg(1));
15924     Value *Z = EmitScalarExpr(E->getArg(2));
15925     if (Builder.getIsFPConstrained()) {
15926       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15927       return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
15928     } else {
15929       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15930       return Builder.CreateCall(F, {X, Y, Z});
15931     }
15932   }
15933   case SystemZ::BI__builtin_s390_vfmssb:
15934   case SystemZ::BI__builtin_s390_vfmsdb: {
15935     llvm::Type *ResultType = ConvertType(E->getType());
15936     Value *X = EmitScalarExpr(E->getArg(0));
15937     Value *Y = EmitScalarExpr(E->getArg(1));
15938     Value *Z = EmitScalarExpr(E->getArg(2));
15939     if (Builder.getIsFPConstrained()) {
15940       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15941       return Builder.CreateConstrainedFPCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15942     } else {
15943       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15944       return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15945     }
15946   }
15947   case SystemZ::BI__builtin_s390_vfnmasb:
15948   case SystemZ::BI__builtin_s390_vfnmadb: {
15949     llvm::Type *ResultType = ConvertType(E->getType());
15950     Value *X = EmitScalarExpr(E->getArg(0));
15951     Value *Y = EmitScalarExpr(E->getArg(1));
15952     Value *Z = EmitScalarExpr(E->getArg(2));
15953     if (Builder.getIsFPConstrained()) {
15954       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15955       return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y,  Z}), "neg");
15956     } else {
15957       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15958       return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
15959     }
15960   }
15961   case SystemZ::BI__builtin_s390_vfnmssb:
15962   case SystemZ::BI__builtin_s390_vfnmsdb: {
15963     llvm::Type *ResultType = ConvertType(E->getType());
15964     Value *X = EmitScalarExpr(E->getArg(0));
15965     Value *Y = EmitScalarExpr(E->getArg(1));
15966     Value *Z = EmitScalarExpr(E->getArg(2));
15967     if (Builder.getIsFPConstrained()) {
15968       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15969       Value *NegZ = Builder.CreateFNeg(Z, "sub");
15970       return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, NegZ}));
15971     } else {
15972       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15973       Value *NegZ = Builder.CreateFNeg(Z, "neg");
15974       return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, NegZ}));
15975     }
15976   }
15977   case SystemZ::BI__builtin_s390_vflpsb:
15978   case SystemZ::BI__builtin_s390_vflpdb: {
15979     llvm::Type *ResultType = ConvertType(E->getType());
15980     Value *X = EmitScalarExpr(E->getArg(0));
15981     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
15982     return Builder.CreateCall(F, X);
15983   }
15984   case SystemZ::BI__builtin_s390_vflnsb:
15985   case SystemZ::BI__builtin_s390_vflndb: {
15986     llvm::Type *ResultType = ConvertType(E->getType());
15987     Value *X = EmitScalarExpr(E->getArg(0));
15988     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
15989     return Builder.CreateFNeg(Builder.CreateCall(F, X), "neg");
15990   }
15991   case SystemZ::BI__builtin_s390_vfisb:
15992   case SystemZ::BI__builtin_s390_vfidb: {
15993     llvm::Type *ResultType = ConvertType(E->getType());
15994     Value *X = EmitScalarExpr(E->getArg(0));
15995     // Constant-fold the M4 and M5 mask arguments.
15996     llvm::APSInt M4 = *E->getArg(1)->getIntegerConstantExpr(getContext());
15997     llvm::APSInt M5 = *E->getArg(2)->getIntegerConstantExpr(getContext());
15998     // Check whether this instance can be represented via a LLVM standard
15999     // intrinsic.  We only support some combinations of M4 and M5.
16000     Intrinsic::ID ID = Intrinsic::not_intrinsic;
16001     Intrinsic::ID CI;
16002     switch (M4.getZExtValue()) {
16003     default: break;
16004     case 0:  // IEEE-inexact exception allowed
16005       switch (M5.getZExtValue()) {
16006       default: break;
16007       case 0: ID = Intrinsic::rint;
16008               CI = Intrinsic::experimental_constrained_rint; break;
16009       }
16010       break;
16011     case 4:  // IEEE-inexact exception suppressed
16012       switch (M5.getZExtValue()) {
16013       default: break;
16014       case 0: ID = Intrinsic::nearbyint;
16015               CI = Intrinsic::experimental_constrained_nearbyint; break;
16016       case 1: ID = Intrinsic::round;
16017               CI = Intrinsic::experimental_constrained_round; break;
16018       case 5: ID = Intrinsic::trunc;
16019               CI = Intrinsic::experimental_constrained_trunc; break;
16020       case 6: ID = Intrinsic::ceil;
16021               CI = Intrinsic::experimental_constrained_ceil; break;
16022       case 7: ID = Intrinsic::floor;
16023               CI = Intrinsic::experimental_constrained_floor; break;
16024       }
16025       break;
16026     }
16027     if (ID != Intrinsic::not_intrinsic) {
16028       if (Builder.getIsFPConstrained()) {
16029         Function *F = CGM.getIntrinsic(CI, ResultType);
16030         return Builder.CreateConstrainedFPCall(F, X);
16031       } else {
16032         Function *F = CGM.getIntrinsic(ID, ResultType);
16033         return Builder.CreateCall(F, X);
16034       }
16035     }
16036     switch (BuiltinID) { // FIXME: constrained version?
16037       case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
16038       case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
16039       default: llvm_unreachable("Unknown BuiltinID");
16040     }
16041     Function *F = CGM.getIntrinsic(ID);
16042     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
16043     Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
16044     return Builder.CreateCall(F, {X, M4Value, M5Value});
16045   }
16046   case SystemZ::BI__builtin_s390_vfmaxsb:
16047   case SystemZ::BI__builtin_s390_vfmaxdb: {
16048     llvm::Type *ResultType = ConvertType(E->getType());
16049     Value *X = EmitScalarExpr(E->getArg(0));
16050     Value *Y = EmitScalarExpr(E->getArg(1));
16051     // Constant-fold the M4 mask argument.
16052     llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
16053     // Check whether this instance can be represented via a LLVM standard
16054     // intrinsic.  We only support some values of M4.
16055     Intrinsic::ID ID = Intrinsic::not_intrinsic;
16056     Intrinsic::ID CI;
16057     switch (M4.getZExtValue()) {
16058     default: break;
16059     case 4: ID = Intrinsic::maxnum;
16060             CI = Intrinsic::experimental_constrained_maxnum; break;
16061     }
16062     if (ID != Intrinsic::not_intrinsic) {
16063       if (Builder.getIsFPConstrained()) {
16064         Function *F = CGM.getIntrinsic(CI, ResultType);
16065         return Builder.CreateConstrainedFPCall(F, {X, Y});
16066       } else {
16067         Function *F = CGM.getIntrinsic(ID, ResultType);
16068         return Builder.CreateCall(F, {X, Y});
16069       }
16070     }
16071     switch (BuiltinID) {
16072       case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
16073       case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
16074       default: llvm_unreachable("Unknown BuiltinID");
16075     }
16076     Function *F = CGM.getIntrinsic(ID);
16077     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
16078     return Builder.CreateCall(F, {X, Y, M4Value});
16079   }
16080   case SystemZ::BI__builtin_s390_vfminsb:
16081   case SystemZ::BI__builtin_s390_vfmindb: {
16082     llvm::Type *ResultType = ConvertType(E->getType());
16083     Value *X = EmitScalarExpr(E->getArg(0));
16084     Value *Y = EmitScalarExpr(E->getArg(1));
16085     // Constant-fold the M4 mask argument.
16086     llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
16087     // Check whether this instance can be represented via a LLVM standard
16088     // intrinsic.  We only support some values of M4.
16089     Intrinsic::ID ID = Intrinsic::not_intrinsic;
16090     Intrinsic::ID CI;
16091     switch (M4.getZExtValue()) {
16092     default: break;
16093     case 4: ID = Intrinsic::minnum;
16094             CI = Intrinsic::experimental_constrained_minnum; break;
16095     }
16096     if (ID != Intrinsic::not_intrinsic) {
16097       if (Builder.getIsFPConstrained()) {
16098         Function *F = CGM.getIntrinsic(CI, ResultType);
16099         return Builder.CreateConstrainedFPCall(F, {X, Y});
16100       } else {
16101         Function *F = CGM.getIntrinsic(ID, ResultType);
16102         return Builder.CreateCall(F, {X, Y});
16103       }
16104     }
16105     switch (BuiltinID) {
16106       case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
16107       case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
16108       default: llvm_unreachable("Unknown BuiltinID");
16109     }
16110     Function *F = CGM.getIntrinsic(ID);
16111     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
16112     return Builder.CreateCall(F, {X, Y, M4Value});
16113   }
16114 
16115   case SystemZ::BI__builtin_s390_vlbrh:
16116   case SystemZ::BI__builtin_s390_vlbrf:
16117   case SystemZ::BI__builtin_s390_vlbrg: {
16118     llvm::Type *ResultType = ConvertType(E->getType());
16119     Value *X = EmitScalarExpr(E->getArg(0));
16120     Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType);
16121     return Builder.CreateCall(F, X);
16122   }
16123 
16124   // Vector intrinsics that output the post-instruction CC value.
16125 
16126 #define INTRINSIC_WITH_CC(NAME) \
16127     case SystemZ::BI__builtin_##NAME: \
16128       return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
16129 
16130   INTRINSIC_WITH_CC(s390_vpkshs);
16131   INTRINSIC_WITH_CC(s390_vpksfs);
16132   INTRINSIC_WITH_CC(s390_vpksgs);
16133 
16134   INTRINSIC_WITH_CC(s390_vpklshs);
16135   INTRINSIC_WITH_CC(s390_vpklsfs);
16136   INTRINSIC_WITH_CC(s390_vpklsgs);
16137 
16138   INTRINSIC_WITH_CC(s390_vceqbs);
16139   INTRINSIC_WITH_CC(s390_vceqhs);
16140   INTRINSIC_WITH_CC(s390_vceqfs);
16141   INTRINSIC_WITH_CC(s390_vceqgs);
16142 
16143   INTRINSIC_WITH_CC(s390_vchbs);
16144   INTRINSIC_WITH_CC(s390_vchhs);
16145   INTRINSIC_WITH_CC(s390_vchfs);
16146   INTRINSIC_WITH_CC(s390_vchgs);
16147 
16148   INTRINSIC_WITH_CC(s390_vchlbs);
16149   INTRINSIC_WITH_CC(s390_vchlhs);
16150   INTRINSIC_WITH_CC(s390_vchlfs);
16151   INTRINSIC_WITH_CC(s390_vchlgs);
16152 
16153   INTRINSIC_WITH_CC(s390_vfaebs);
16154   INTRINSIC_WITH_CC(s390_vfaehs);
16155   INTRINSIC_WITH_CC(s390_vfaefs);
16156 
16157   INTRINSIC_WITH_CC(s390_vfaezbs);
16158   INTRINSIC_WITH_CC(s390_vfaezhs);
16159   INTRINSIC_WITH_CC(s390_vfaezfs);
16160 
16161   INTRINSIC_WITH_CC(s390_vfeebs);
16162   INTRINSIC_WITH_CC(s390_vfeehs);
16163   INTRINSIC_WITH_CC(s390_vfeefs);
16164 
16165   INTRINSIC_WITH_CC(s390_vfeezbs);
16166   INTRINSIC_WITH_CC(s390_vfeezhs);
16167   INTRINSIC_WITH_CC(s390_vfeezfs);
16168 
16169   INTRINSIC_WITH_CC(s390_vfenebs);
16170   INTRINSIC_WITH_CC(s390_vfenehs);
16171   INTRINSIC_WITH_CC(s390_vfenefs);
16172 
16173   INTRINSIC_WITH_CC(s390_vfenezbs);
16174   INTRINSIC_WITH_CC(s390_vfenezhs);
16175   INTRINSIC_WITH_CC(s390_vfenezfs);
16176 
16177   INTRINSIC_WITH_CC(s390_vistrbs);
16178   INTRINSIC_WITH_CC(s390_vistrhs);
16179   INTRINSIC_WITH_CC(s390_vistrfs);
16180 
16181   INTRINSIC_WITH_CC(s390_vstrcbs);
16182   INTRINSIC_WITH_CC(s390_vstrchs);
16183   INTRINSIC_WITH_CC(s390_vstrcfs);
16184 
16185   INTRINSIC_WITH_CC(s390_vstrczbs);
16186   INTRINSIC_WITH_CC(s390_vstrczhs);
16187   INTRINSIC_WITH_CC(s390_vstrczfs);
16188 
16189   INTRINSIC_WITH_CC(s390_vfcesbs);
16190   INTRINSIC_WITH_CC(s390_vfcedbs);
16191   INTRINSIC_WITH_CC(s390_vfchsbs);
16192   INTRINSIC_WITH_CC(s390_vfchdbs);
16193   INTRINSIC_WITH_CC(s390_vfchesbs);
16194   INTRINSIC_WITH_CC(s390_vfchedbs);
16195 
16196   INTRINSIC_WITH_CC(s390_vftcisb);
16197   INTRINSIC_WITH_CC(s390_vftcidb);
16198 
16199   INTRINSIC_WITH_CC(s390_vstrsb);
16200   INTRINSIC_WITH_CC(s390_vstrsh);
16201   INTRINSIC_WITH_CC(s390_vstrsf);
16202 
16203   INTRINSIC_WITH_CC(s390_vstrszb);
16204   INTRINSIC_WITH_CC(s390_vstrszh);
16205   INTRINSIC_WITH_CC(s390_vstrszf);
16206 
16207 #undef INTRINSIC_WITH_CC
16208 
16209   default:
16210     return nullptr;
16211   }
16212 }
16213 
16214 namespace {
16215 // Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
16216 struct NVPTXMmaLdstInfo {
16217   unsigned NumResults;  // Number of elements to load/store
16218   // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
16219   unsigned IID_col;
16220   unsigned IID_row;
16221 };
16222 
16223 #define MMA_INTR(geom_op_type, layout) \
16224   Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
16225 #define MMA_LDST(n, geom_op_type)                                              \
16226   { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
16227 
getNVPTXMmaLdstInfo(unsigned BuiltinID)16228 static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
16229   switch (BuiltinID) {
16230   // FP MMA loads
16231   case NVPTX::BI__hmma_m16n16k16_ld_a:
16232     return MMA_LDST(8, m16n16k16_load_a_f16);
16233   case NVPTX::BI__hmma_m16n16k16_ld_b:
16234     return MMA_LDST(8, m16n16k16_load_b_f16);
16235   case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
16236     return MMA_LDST(4, m16n16k16_load_c_f16);
16237   case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
16238     return MMA_LDST(8, m16n16k16_load_c_f32);
16239   case NVPTX::BI__hmma_m32n8k16_ld_a:
16240     return MMA_LDST(8, m32n8k16_load_a_f16);
16241   case NVPTX::BI__hmma_m32n8k16_ld_b:
16242     return MMA_LDST(8, m32n8k16_load_b_f16);
16243   case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
16244     return MMA_LDST(4, m32n8k16_load_c_f16);
16245   case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
16246     return MMA_LDST(8, m32n8k16_load_c_f32);
16247   case NVPTX::BI__hmma_m8n32k16_ld_a:
16248     return MMA_LDST(8, m8n32k16_load_a_f16);
16249   case NVPTX::BI__hmma_m8n32k16_ld_b:
16250     return MMA_LDST(8, m8n32k16_load_b_f16);
16251   case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
16252     return MMA_LDST(4, m8n32k16_load_c_f16);
16253   case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
16254     return MMA_LDST(8, m8n32k16_load_c_f32);
16255 
16256   // Integer MMA loads
16257   case NVPTX::BI__imma_m16n16k16_ld_a_s8:
16258     return MMA_LDST(2, m16n16k16_load_a_s8);
16259   case NVPTX::BI__imma_m16n16k16_ld_a_u8:
16260     return MMA_LDST(2, m16n16k16_load_a_u8);
16261   case NVPTX::BI__imma_m16n16k16_ld_b_s8:
16262     return MMA_LDST(2, m16n16k16_load_b_s8);
16263   case NVPTX::BI__imma_m16n16k16_ld_b_u8:
16264     return MMA_LDST(2, m16n16k16_load_b_u8);
16265   case NVPTX::BI__imma_m16n16k16_ld_c:
16266     return MMA_LDST(8, m16n16k16_load_c_s32);
16267   case NVPTX::BI__imma_m32n8k16_ld_a_s8:
16268     return MMA_LDST(4, m32n8k16_load_a_s8);
16269   case NVPTX::BI__imma_m32n8k16_ld_a_u8:
16270     return MMA_LDST(4, m32n8k16_load_a_u8);
16271   case NVPTX::BI__imma_m32n8k16_ld_b_s8:
16272     return MMA_LDST(1, m32n8k16_load_b_s8);
16273   case NVPTX::BI__imma_m32n8k16_ld_b_u8:
16274     return MMA_LDST(1, m32n8k16_load_b_u8);
16275   case NVPTX::BI__imma_m32n8k16_ld_c:
16276     return MMA_LDST(8, m32n8k16_load_c_s32);
16277   case NVPTX::BI__imma_m8n32k16_ld_a_s8:
16278     return MMA_LDST(1, m8n32k16_load_a_s8);
16279   case NVPTX::BI__imma_m8n32k16_ld_a_u8:
16280     return MMA_LDST(1, m8n32k16_load_a_u8);
16281   case NVPTX::BI__imma_m8n32k16_ld_b_s8:
16282     return MMA_LDST(4, m8n32k16_load_b_s8);
16283   case NVPTX::BI__imma_m8n32k16_ld_b_u8:
16284     return MMA_LDST(4, m8n32k16_load_b_u8);
16285   case NVPTX::BI__imma_m8n32k16_ld_c:
16286     return MMA_LDST(8, m8n32k16_load_c_s32);
16287 
16288   // Sub-integer MMA loads.
16289   // Only row/col layout is supported by A/B fragments.
16290   case NVPTX::BI__imma_m8n8k32_ld_a_s4:
16291     return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
16292   case NVPTX::BI__imma_m8n8k32_ld_a_u4:
16293     return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
16294   case NVPTX::BI__imma_m8n8k32_ld_b_s4:
16295     return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
16296   case NVPTX::BI__imma_m8n8k32_ld_b_u4:
16297     return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
16298   case NVPTX::BI__imma_m8n8k32_ld_c:
16299     return MMA_LDST(2, m8n8k32_load_c_s32);
16300   case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
16301     return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
16302   case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
16303     return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
16304   case NVPTX::BI__bmma_m8n8k128_ld_c:
16305     return MMA_LDST(2, m8n8k128_load_c_s32);
16306 
16307   // NOTE: We need to follow inconsitent naming scheme used by NVCC.  Unlike
16308   // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
16309   // use fragment C for both loads and stores.
16310   // FP MMA stores.
16311   case NVPTX::BI__hmma_m16n16k16_st_c_f16:
16312     return MMA_LDST(4, m16n16k16_store_d_f16);
16313   case NVPTX::BI__hmma_m16n16k16_st_c_f32:
16314     return MMA_LDST(8, m16n16k16_store_d_f32);
16315   case NVPTX::BI__hmma_m32n8k16_st_c_f16:
16316     return MMA_LDST(4, m32n8k16_store_d_f16);
16317   case NVPTX::BI__hmma_m32n8k16_st_c_f32:
16318     return MMA_LDST(8, m32n8k16_store_d_f32);
16319   case NVPTX::BI__hmma_m8n32k16_st_c_f16:
16320     return MMA_LDST(4, m8n32k16_store_d_f16);
16321   case NVPTX::BI__hmma_m8n32k16_st_c_f32:
16322     return MMA_LDST(8, m8n32k16_store_d_f32);
16323 
16324   // Integer and sub-integer MMA stores.
16325   // Another naming quirk. Unlike other MMA builtins that use PTX types in the
16326   // name, integer loads/stores use LLVM's i32.
16327   case NVPTX::BI__imma_m16n16k16_st_c_i32:
16328     return MMA_LDST(8, m16n16k16_store_d_s32);
16329   case NVPTX::BI__imma_m32n8k16_st_c_i32:
16330     return MMA_LDST(8, m32n8k16_store_d_s32);
16331   case NVPTX::BI__imma_m8n32k16_st_c_i32:
16332     return MMA_LDST(8, m8n32k16_store_d_s32);
16333   case NVPTX::BI__imma_m8n8k32_st_c_i32:
16334     return MMA_LDST(2, m8n8k32_store_d_s32);
16335   case NVPTX::BI__bmma_m8n8k128_st_c_i32:
16336     return MMA_LDST(2, m8n8k128_store_d_s32);
16337 
16338   default:
16339     llvm_unreachable("Unknown MMA builtin");
16340   }
16341 }
16342 #undef MMA_LDST
16343 #undef MMA_INTR
16344 
16345 
16346 struct NVPTXMmaInfo {
16347   unsigned NumEltsA;
16348   unsigned NumEltsB;
16349   unsigned NumEltsC;
16350   unsigned NumEltsD;
16351   std::array<unsigned, 8> Variants;
16352 
getMMAIntrinsic__anond87beae00e11::NVPTXMmaInfo16353   unsigned getMMAIntrinsic(int Layout, bool Satf) {
16354     unsigned Index = Layout * 2 + Satf;
16355     if (Index >= Variants.size())
16356       return 0;
16357     return Variants[Index];
16358   }
16359 };
16360 
16361   // Returns an intrinsic that matches Layout and Satf for valid combinations of
16362   // Layout and Satf, 0 otherwise.
getNVPTXMmaInfo(unsigned BuiltinID)16363 static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
16364   // clang-format off
16365 #define MMA_VARIANTS(geom, type) {{                                 \
16366       Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type,             \
16367       Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
16368       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
16369       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
16370       Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type,             \
16371       Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
16372       Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type,             \
16373       Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite  \
16374     }}
16375 // Sub-integer MMA only supports row.col layout.
16376 #define MMA_VARIANTS_I4(geom, type) {{ \
16377       0, \
16378       0, \
16379       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
16380       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
16381       0, \
16382       0, \
16383       0, \
16384       0  \
16385     }}
16386 // b1 MMA does not support .satfinite.
16387 #define MMA_VARIANTS_B1(geom, type) {{ \
16388       0, \
16389       0, \
16390       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
16391       0, \
16392       0, \
16393       0, \
16394       0, \
16395       0  \
16396     }}
16397     // clang-format on
16398     switch (BuiltinID) {
16399     // FP MMA
16400     // Note that 'type' argument of MMA_VARIANT uses D_C notation, while
16401     // NumEltsN of return value are ordered as A,B,C,D.
16402     case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
16403       return {8, 8, 4, 4, MMA_VARIANTS(m16n16k16, f16_f16)};
16404     case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
16405       return {8, 8, 4, 8, MMA_VARIANTS(m16n16k16, f32_f16)};
16406     case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
16407       return {8, 8, 8, 4, MMA_VARIANTS(m16n16k16, f16_f32)};
16408     case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
16409       return {8, 8, 8, 8, MMA_VARIANTS(m16n16k16, f32_f32)};
16410     case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
16411       return {8, 8, 4, 4, MMA_VARIANTS(m32n8k16, f16_f16)};
16412     case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
16413       return {8, 8, 4, 8, MMA_VARIANTS(m32n8k16, f32_f16)};
16414     case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
16415       return {8, 8, 8, 4, MMA_VARIANTS(m32n8k16, f16_f32)};
16416     case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
16417       return {8, 8, 8, 8, MMA_VARIANTS(m32n8k16, f32_f32)};
16418     case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
16419       return {8, 8, 4, 4, MMA_VARIANTS(m8n32k16, f16_f16)};
16420     case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
16421       return {8, 8, 4, 8, MMA_VARIANTS(m8n32k16, f32_f16)};
16422     case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
16423       return {8, 8, 8, 4, MMA_VARIANTS(m8n32k16, f16_f32)};
16424     case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
16425       return {8, 8, 8, 8, MMA_VARIANTS(m8n32k16, f32_f32)};
16426 
16427     // Integer MMA
16428     case NVPTX::BI__imma_m16n16k16_mma_s8:
16429       return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, s8)};
16430     case NVPTX::BI__imma_m16n16k16_mma_u8:
16431       return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, u8)};
16432     case NVPTX::BI__imma_m32n8k16_mma_s8:
16433       return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, s8)};
16434     case NVPTX::BI__imma_m32n8k16_mma_u8:
16435       return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, u8)};
16436     case NVPTX::BI__imma_m8n32k16_mma_s8:
16437       return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, s8)};
16438     case NVPTX::BI__imma_m8n32k16_mma_u8:
16439       return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, u8)};
16440 
16441     // Sub-integer MMA
16442     case NVPTX::BI__imma_m8n8k32_mma_s4:
16443       return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, s4)};
16444     case NVPTX::BI__imma_m8n8k32_mma_u4:
16445       return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, u4)};
16446     case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
16447       return {1, 1, 2, 2, MMA_VARIANTS_B1(m8n8k128, b1)};
16448     default:
16449       llvm_unreachable("Unexpected builtin ID.");
16450     }
16451 #undef MMA_VARIANTS
16452 #undef MMA_VARIANTS_I4
16453 #undef MMA_VARIANTS_B1
16454 }
16455 
16456 } // namespace
16457 
16458 Value *
EmitNVPTXBuiltinExpr(unsigned BuiltinID,const CallExpr * E)16459 CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) {
16460   auto MakeLdg = [&](unsigned IntrinsicID) {
16461     Value *Ptr = EmitScalarExpr(E->getArg(0));
16462     clang::CharUnits Align =
16463         CGM.getNaturalPointeeTypeAlignment(E->getArg(0)->getType());
16464     return Builder.CreateCall(
16465         CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
16466                                        Ptr->getType()}),
16467         {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
16468   };
16469   auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
16470     Value *Ptr = EmitScalarExpr(E->getArg(0));
16471     return Builder.CreateCall(
16472         CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
16473                                        Ptr->getType()}),
16474         {Ptr, EmitScalarExpr(E->getArg(1))});
16475   };
16476   switch (BuiltinID) {
16477   case NVPTX::BI__nvvm_atom_add_gen_i:
16478   case NVPTX::BI__nvvm_atom_add_gen_l:
16479   case NVPTX::BI__nvvm_atom_add_gen_ll:
16480     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
16481 
16482   case NVPTX::BI__nvvm_atom_sub_gen_i:
16483   case NVPTX::BI__nvvm_atom_sub_gen_l:
16484   case NVPTX::BI__nvvm_atom_sub_gen_ll:
16485     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
16486 
16487   case NVPTX::BI__nvvm_atom_and_gen_i:
16488   case NVPTX::BI__nvvm_atom_and_gen_l:
16489   case NVPTX::BI__nvvm_atom_and_gen_ll:
16490     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
16491 
16492   case NVPTX::BI__nvvm_atom_or_gen_i:
16493   case NVPTX::BI__nvvm_atom_or_gen_l:
16494   case NVPTX::BI__nvvm_atom_or_gen_ll:
16495     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
16496 
16497   case NVPTX::BI__nvvm_atom_xor_gen_i:
16498   case NVPTX::BI__nvvm_atom_xor_gen_l:
16499   case NVPTX::BI__nvvm_atom_xor_gen_ll:
16500     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
16501 
16502   case NVPTX::BI__nvvm_atom_xchg_gen_i:
16503   case NVPTX::BI__nvvm_atom_xchg_gen_l:
16504   case NVPTX::BI__nvvm_atom_xchg_gen_ll:
16505     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
16506 
16507   case NVPTX::BI__nvvm_atom_max_gen_i:
16508   case NVPTX::BI__nvvm_atom_max_gen_l:
16509   case NVPTX::BI__nvvm_atom_max_gen_ll:
16510     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
16511 
16512   case NVPTX::BI__nvvm_atom_max_gen_ui:
16513   case NVPTX::BI__nvvm_atom_max_gen_ul:
16514   case NVPTX::BI__nvvm_atom_max_gen_ull:
16515     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
16516 
16517   case NVPTX::BI__nvvm_atom_min_gen_i:
16518   case NVPTX::BI__nvvm_atom_min_gen_l:
16519   case NVPTX::BI__nvvm_atom_min_gen_ll:
16520     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
16521 
16522   case NVPTX::BI__nvvm_atom_min_gen_ui:
16523   case NVPTX::BI__nvvm_atom_min_gen_ul:
16524   case NVPTX::BI__nvvm_atom_min_gen_ull:
16525     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
16526 
16527   case NVPTX::BI__nvvm_atom_cas_gen_i:
16528   case NVPTX::BI__nvvm_atom_cas_gen_l:
16529   case NVPTX::BI__nvvm_atom_cas_gen_ll:
16530     // __nvvm_atom_cas_gen_* should return the old value rather than the
16531     // success flag.
16532     return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
16533 
16534   case NVPTX::BI__nvvm_atom_add_gen_f:
16535   case NVPTX::BI__nvvm_atom_add_gen_d: {
16536     Value *Ptr = EmitScalarExpr(E->getArg(0));
16537     Value *Val = EmitScalarExpr(E->getArg(1));
16538     return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val,
16539                                    AtomicOrdering::SequentiallyConsistent);
16540   }
16541 
16542   case NVPTX::BI__nvvm_atom_inc_gen_ui: {
16543     Value *Ptr = EmitScalarExpr(E->getArg(0));
16544     Value *Val = EmitScalarExpr(E->getArg(1));
16545     Function *FnALI32 =
16546         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
16547     return Builder.CreateCall(FnALI32, {Ptr, Val});
16548   }
16549 
16550   case NVPTX::BI__nvvm_atom_dec_gen_ui: {
16551     Value *Ptr = EmitScalarExpr(E->getArg(0));
16552     Value *Val = EmitScalarExpr(E->getArg(1));
16553     Function *FnALD32 =
16554         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
16555     return Builder.CreateCall(FnALD32, {Ptr, Val});
16556   }
16557 
16558   case NVPTX::BI__nvvm_ldg_c:
16559   case NVPTX::BI__nvvm_ldg_c2:
16560   case NVPTX::BI__nvvm_ldg_c4:
16561   case NVPTX::BI__nvvm_ldg_s:
16562   case NVPTX::BI__nvvm_ldg_s2:
16563   case NVPTX::BI__nvvm_ldg_s4:
16564   case NVPTX::BI__nvvm_ldg_i:
16565   case NVPTX::BI__nvvm_ldg_i2:
16566   case NVPTX::BI__nvvm_ldg_i4:
16567   case NVPTX::BI__nvvm_ldg_l:
16568   case NVPTX::BI__nvvm_ldg_ll:
16569   case NVPTX::BI__nvvm_ldg_ll2:
16570   case NVPTX::BI__nvvm_ldg_uc:
16571   case NVPTX::BI__nvvm_ldg_uc2:
16572   case NVPTX::BI__nvvm_ldg_uc4:
16573   case NVPTX::BI__nvvm_ldg_us:
16574   case NVPTX::BI__nvvm_ldg_us2:
16575   case NVPTX::BI__nvvm_ldg_us4:
16576   case NVPTX::BI__nvvm_ldg_ui:
16577   case NVPTX::BI__nvvm_ldg_ui2:
16578   case NVPTX::BI__nvvm_ldg_ui4:
16579   case NVPTX::BI__nvvm_ldg_ul:
16580   case NVPTX::BI__nvvm_ldg_ull:
16581   case NVPTX::BI__nvvm_ldg_ull2:
16582     // PTX Interoperability section 2.2: "For a vector with an even number of
16583     // elements, its alignment is set to number of elements times the alignment
16584     // of its member: n*alignof(t)."
16585     return MakeLdg(Intrinsic::nvvm_ldg_global_i);
16586   case NVPTX::BI__nvvm_ldg_f:
16587   case NVPTX::BI__nvvm_ldg_f2:
16588   case NVPTX::BI__nvvm_ldg_f4:
16589   case NVPTX::BI__nvvm_ldg_d:
16590   case NVPTX::BI__nvvm_ldg_d2:
16591     return MakeLdg(Intrinsic::nvvm_ldg_global_f);
16592 
16593   case NVPTX::BI__nvvm_atom_cta_add_gen_i:
16594   case NVPTX::BI__nvvm_atom_cta_add_gen_l:
16595   case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
16596     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
16597   case NVPTX::BI__nvvm_atom_sys_add_gen_i:
16598   case NVPTX::BI__nvvm_atom_sys_add_gen_l:
16599   case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
16600     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
16601   case NVPTX::BI__nvvm_atom_cta_add_gen_f:
16602   case NVPTX::BI__nvvm_atom_cta_add_gen_d:
16603     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
16604   case NVPTX::BI__nvvm_atom_sys_add_gen_f:
16605   case NVPTX::BI__nvvm_atom_sys_add_gen_d:
16606     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
16607   case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
16608   case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
16609   case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
16610     return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
16611   case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
16612   case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
16613   case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
16614     return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
16615   case NVPTX::BI__nvvm_atom_cta_max_gen_i:
16616   case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
16617   case NVPTX::BI__nvvm_atom_cta_max_gen_l:
16618   case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
16619   case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
16620   case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
16621     return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
16622   case NVPTX::BI__nvvm_atom_sys_max_gen_i:
16623   case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
16624   case NVPTX::BI__nvvm_atom_sys_max_gen_l:
16625   case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
16626   case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
16627   case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
16628     return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
16629   case NVPTX::BI__nvvm_atom_cta_min_gen_i:
16630   case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
16631   case NVPTX::BI__nvvm_atom_cta_min_gen_l:
16632   case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
16633   case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
16634   case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
16635     return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
16636   case NVPTX::BI__nvvm_atom_sys_min_gen_i:
16637   case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
16638   case NVPTX::BI__nvvm_atom_sys_min_gen_l:
16639   case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
16640   case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
16641   case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
16642     return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
16643   case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
16644     return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
16645   case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
16646     return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
16647   case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
16648     return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
16649   case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
16650     return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
16651   case NVPTX::BI__nvvm_atom_cta_and_gen_i:
16652   case NVPTX::BI__nvvm_atom_cta_and_gen_l:
16653   case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
16654     return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
16655   case NVPTX::BI__nvvm_atom_sys_and_gen_i:
16656   case NVPTX::BI__nvvm_atom_sys_and_gen_l:
16657   case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
16658     return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
16659   case NVPTX::BI__nvvm_atom_cta_or_gen_i:
16660   case NVPTX::BI__nvvm_atom_cta_or_gen_l:
16661   case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
16662     return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
16663   case NVPTX::BI__nvvm_atom_sys_or_gen_i:
16664   case NVPTX::BI__nvvm_atom_sys_or_gen_l:
16665   case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
16666     return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
16667   case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
16668   case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
16669   case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
16670     return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
16671   case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
16672   case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
16673   case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
16674     return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
16675   case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
16676   case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
16677   case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
16678     Value *Ptr = EmitScalarExpr(E->getArg(0));
16679     return Builder.CreateCall(
16680         CGM.getIntrinsic(
16681             Intrinsic::nvvm_atomic_cas_gen_i_cta,
16682             {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
16683         {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
16684   }
16685   case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
16686   case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
16687   case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
16688     Value *Ptr = EmitScalarExpr(E->getArg(0));
16689     return Builder.CreateCall(
16690         CGM.getIntrinsic(
16691             Intrinsic::nvvm_atomic_cas_gen_i_sys,
16692             {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
16693         {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
16694   }
16695   case NVPTX::BI__nvvm_match_all_sync_i32p:
16696   case NVPTX::BI__nvvm_match_all_sync_i64p: {
16697     Value *Mask = EmitScalarExpr(E->getArg(0));
16698     Value *Val = EmitScalarExpr(E->getArg(1));
16699     Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
16700     Value *ResultPair = Builder.CreateCall(
16701         CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
16702                              ? Intrinsic::nvvm_match_all_sync_i32p
16703                              : Intrinsic::nvvm_match_all_sync_i64p),
16704         {Mask, Val});
16705     Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
16706                                      PredOutPtr.getElementType());
16707     Builder.CreateStore(Pred, PredOutPtr);
16708     return Builder.CreateExtractValue(ResultPair, 0);
16709   }
16710 
16711   // FP MMA loads
16712   case NVPTX::BI__hmma_m16n16k16_ld_a:
16713   case NVPTX::BI__hmma_m16n16k16_ld_b:
16714   case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
16715   case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
16716   case NVPTX::BI__hmma_m32n8k16_ld_a:
16717   case NVPTX::BI__hmma_m32n8k16_ld_b:
16718   case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
16719   case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
16720   case NVPTX::BI__hmma_m8n32k16_ld_a:
16721   case NVPTX::BI__hmma_m8n32k16_ld_b:
16722   case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
16723   case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
16724   // Integer MMA loads.
16725   case NVPTX::BI__imma_m16n16k16_ld_a_s8:
16726   case NVPTX::BI__imma_m16n16k16_ld_a_u8:
16727   case NVPTX::BI__imma_m16n16k16_ld_b_s8:
16728   case NVPTX::BI__imma_m16n16k16_ld_b_u8:
16729   case NVPTX::BI__imma_m16n16k16_ld_c:
16730   case NVPTX::BI__imma_m32n8k16_ld_a_s8:
16731   case NVPTX::BI__imma_m32n8k16_ld_a_u8:
16732   case NVPTX::BI__imma_m32n8k16_ld_b_s8:
16733   case NVPTX::BI__imma_m32n8k16_ld_b_u8:
16734   case NVPTX::BI__imma_m32n8k16_ld_c:
16735   case NVPTX::BI__imma_m8n32k16_ld_a_s8:
16736   case NVPTX::BI__imma_m8n32k16_ld_a_u8:
16737   case NVPTX::BI__imma_m8n32k16_ld_b_s8:
16738   case NVPTX::BI__imma_m8n32k16_ld_b_u8:
16739   case NVPTX::BI__imma_m8n32k16_ld_c:
16740   // Sub-integer MMA loads.
16741   case NVPTX::BI__imma_m8n8k32_ld_a_s4:
16742   case NVPTX::BI__imma_m8n8k32_ld_a_u4:
16743   case NVPTX::BI__imma_m8n8k32_ld_b_s4:
16744   case NVPTX::BI__imma_m8n8k32_ld_b_u4:
16745   case NVPTX::BI__imma_m8n8k32_ld_c:
16746   case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
16747   case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
16748   case NVPTX::BI__bmma_m8n8k128_ld_c:
16749   {
16750     Address Dst = EmitPointerWithAlignment(E->getArg(0));
16751     Value *Src = EmitScalarExpr(E->getArg(1));
16752     Value *Ldm = EmitScalarExpr(E->getArg(2));
16753     Optional<llvm::APSInt> isColMajorArg =
16754         E->getArg(3)->getIntegerConstantExpr(getContext());
16755     if (!isColMajorArg)
16756       return nullptr;
16757     bool isColMajor = isColMajorArg->getSExtValue();
16758     NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
16759     unsigned IID = isColMajor ? II.IID_col : II.IID_row;
16760     if (IID == 0)
16761       return nullptr;
16762 
16763     Value *Result =
16764         Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
16765 
16766     // Save returned values.
16767     assert(II.NumResults);
16768     if (II.NumResults == 1) {
16769       Builder.CreateAlignedStore(Result, Dst.getPointer(),
16770                                  CharUnits::fromQuantity(4));
16771     } else {
16772       for (unsigned i = 0; i < II.NumResults; ++i) {
16773         Builder.CreateAlignedStore(
16774             Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
16775                                   Dst.getElementType()),
16776             Builder.CreateGEP(Dst.getPointer(),
16777                               llvm::ConstantInt::get(IntTy, i)),
16778             CharUnits::fromQuantity(4));
16779       }
16780     }
16781     return Result;
16782   }
16783 
16784   case NVPTX::BI__hmma_m16n16k16_st_c_f16:
16785   case NVPTX::BI__hmma_m16n16k16_st_c_f32:
16786   case NVPTX::BI__hmma_m32n8k16_st_c_f16:
16787   case NVPTX::BI__hmma_m32n8k16_st_c_f32:
16788   case NVPTX::BI__hmma_m8n32k16_st_c_f16:
16789   case NVPTX::BI__hmma_m8n32k16_st_c_f32:
16790   case NVPTX::BI__imma_m16n16k16_st_c_i32:
16791   case NVPTX::BI__imma_m32n8k16_st_c_i32:
16792   case NVPTX::BI__imma_m8n32k16_st_c_i32:
16793   case NVPTX::BI__imma_m8n8k32_st_c_i32:
16794   case NVPTX::BI__bmma_m8n8k128_st_c_i32: {
16795     Value *Dst = EmitScalarExpr(E->getArg(0));
16796     Address Src = EmitPointerWithAlignment(E->getArg(1));
16797     Value *Ldm = EmitScalarExpr(E->getArg(2));
16798     Optional<llvm::APSInt> isColMajorArg =
16799         E->getArg(3)->getIntegerConstantExpr(getContext());
16800     if (!isColMajorArg)
16801       return nullptr;
16802     bool isColMajor = isColMajorArg->getSExtValue();
16803     NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
16804     unsigned IID = isColMajor ? II.IID_col : II.IID_row;
16805     if (IID == 0)
16806       return nullptr;
16807     Function *Intrinsic =
16808         CGM.getIntrinsic(IID, Dst->getType());
16809     llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
16810     SmallVector<Value *, 10> Values = {Dst};
16811     for (unsigned i = 0; i < II.NumResults; ++i) {
16812       Value *V = Builder.CreateAlignedLoad(
16813           Src.getElementType(),
16814           Builder.CreateGEP(Src.getElementType(), Src.getPointer(),
16815                             llvm::ConstantInt::get(IntTy, i)),
16816           CharUnits::fromQuantity(4));
16817       Values.push_back(Builder.CreateBitCast(V, ParamType));
16818     }
16819     Values.push_back(Ldm);
16820     Value *Result = Builder.CreateCall(Intrinsic, Values);
16821     return Result;
16822   }
16823 
16824   // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
16825   // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
16826   case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
16827   case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
16828   case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
16829   case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
16830   case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
16831   case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
16832   case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
16833   case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
16834   case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
16835   case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
16836   case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
16837   case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
16838   case NVPTX::BI__imma_m16n16k16_mma_s8:
16839   case NVPTX::BI__imma_m16n16k16_mma_u8:
16840   case NVPTX::BI__imma_m32n8k16_mma_s8:
16841   case NVPTX::BI__imma_m32n8k16_mma_u8:
16842   case NVPTX::BI__imma_m8n32k16_mma_s8:
16843   case NVPTX::BI__imma_m8n32k16_mma_u8:
16844   case NVPTX::BI__imma_m8n8k32_mma_s4:
16845   case NVPTX::BI__imma_m8n8k32_mma_u4:
16846   case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: {
16847     Address Dst = EmitPointerWithAlignment(E->getArg(0));
16848     Address SrcA = EmitPointerWithAlignment(E->getArg(1));
16849     Address SrcB = EmitPointerWithAlignment(E->getArg(2));
16850     Address SrcC = EmitPointerWithAlignment(E->getArg(3));
16851     Optional<llvm::APSInt> LayoutArg =
16852         E->getArg(4)->getIntegerConstantExpr(getContext());
16853     if (!LayoutArg)
16854       return nullptr;
16855     int Layout = LayoutArg->getSExtValue();
16856     if (Layout < 0 || Layout > 3)
16857       return nullptr;
16858     llvm::APSInt SatfArg;
16859     if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1)
16860       SatfArg = 0;  // .b1 does not have satf argument.
16861     else if (Optional<llvm::APSInt> OptSatfArg =
16862                  E->getArg(5)->getIntegerConstantExpr(getContext()))
16863       SatfArg = *OptSatfArg;
16864     else
16865       return nullptr;
16866     bool Satf = SatfArg.getSExtValue();
16867     NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
16868     unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
16869     if (IID == 0)  // Unsupported combination of Layout/Satf.
16870       return nullptr;
16871 
16872     SmallVector<Value *, 24> Values;
16873     Function *Intrinsic = CGM.getIntrinsic(IID);
16874     llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
16875     // Load A
16876     for (unsigned i = 0; i < MI.NumEltsA; ++i) {
16877       Value *V = Builder.CreateAlignedLoad(
16878           SrcA.getElementType(),
16879           Builder.CreateGEP(SrcA.getElementType(), SrcA.getPointer(),
16880                             llvm::ConstantInt::get(IntTy, i)),
16881           CharUnits::fromQuantity(4));
16882       Values.push_back(Builder.CreateBitCast(V, AType));
16883     }
16884     // Load B
16885     llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
16886     for (unsigned i = 0; i < MI.NumEltsB; ++i) {
16887       Value *V = Builder.CreateAlignedLoad(
16888           SrcB.getElementType(),
16889           Builder.CreateGEP(SrcB.getElementType(), SrcB.getPointer(),
16890                             llvm::ConstantInt::get(IntTy, i)),
16891           CharUnits::fromQuantity(4));
16892       Values.push_back(Builder.CreateBitCast(V, BType));
16893     }
16894     // Load C
16895     llvm::Type *CType =
16896         Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
16897     for (unsigned i = 0; i < MI.NumEltsC; ++i) {
16898       Value *V = Builder.CreateAlignedLoad(
16899           SrcC.getElementType(),
16900           Builder.CreateGEP(SrcC.getElementType(), SrcC.getPointer(),
16901                             llvm::ConstantInt::get(IntTy, i)),
16902           CharUnits::fromQuantity(4));
16903       Values.push_back(Builder.CreateBitCast(V, CType));
16904     }
16905     Value *Result = Builder.CreateCall(Intrinsic, Values);
16906     llvm::Type *DType = Dst.getElementType();
16907     for (unsigned i = 0; i < MI.NumEltsD; ++i)
16908       Builder.CreateAlignedStore(
16909           Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
16910           Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)),
16911           CharUnits::fromQuantity(4));
16912     return Result;
16913   }
16914   default:
16915     return nullptr;
16916   }
16917 }
16918 
16919 namespace {
16920 struct BuiltinAlignArgs {
16921   llvm::Value *Src = nullptr;
16922   llvm::Type *SrcType = nullptr;
16923   llvm::Value *Alignment = nullptr;
16924   llvm::Value *Mask = nullptr;
16925   llvm::IntegerType *IntType = nullptr;
16926 
BuiltinAlignArgs__anond87beae01111::BuiltinAlignArgs16927   BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) {
16928     QualType AstType = E->getArg(0)->getType();
16929     if (AstType->isArrayType())
16930       Src = CGF.EmitArrayToPointerDecay(E->getArg(0)).getPointer();
16931     else
16932       Src = CGF.EmitScalarExpr(E->getArg(0));
16933     SrcType = Src->getType();
16934     if (SrcType->isPointerTy()) {
16935       IntType = IntegerType::get(
16936           CGF.getLLVMContext(),
16937           CGF.CGM.getDataLayout().getIndexTypeSizeInBits(SrcType));
16938     } else {
16939       assert(SrcType->isIntegerTy());
16940       IntType = cast<llvm::IntegerType>(SrcType);
16941     }
16942     Alignment = CGF.EmitScalarExpr(E->getArg(1));
16943     Alignment = CGF.Builder.CreateZExtOrTrunc(Alignment, IntType, "alignment");
16944     auto *One = llvm::ConstantInt::get(IntType, 1);
16945     Mask = CGF.Builder.CreateSub(Alignment, One, "mask");
16946   }
16947 };
16948 } // namespace
16949 
16950 /// Generate (x & (y-1)) == 0.
EmitBuiltinIsAligned(const CallExpr * E)16951 RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) {
16952   BuiltinAlignArgs Args(E, *this);
16953   llvm::Value *SrcAddress = Args.Src;
16954   if (Args.SrcType->isPointerTy())
16955     SrcAddress =
16956         Builder.CreateBitOrPointerCast(Args.Src, Args.IntType, "src_addr");
16957   return RValue::get(Builder.CreateICmpEQ(
16958       Builder.CreateAnd(SrcAddress, Args.Mask, "set_bits"),
16959       llvm::Constant::getNullValue(Args.IntType), "is_aligned"));
16960 }
16961 
16962 /// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up.
16963 /// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the
16964 /// llvm.ptrmask instrinsic (with a GEP before in the align_up case).
16965 /// TODO: actually use ptrmask once most optimization passes know about it.
EmitBuiltinAlignTo(const CallExpr * E,bool AlignUp)16966 RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) {
16967   BuiltinAlignArgs Args(E, *this);
16968   llvm::Value *SrcAddr = Args.Src;
16969   if (Args.Src->getType()->isPointerTy())
16970     SrcAddr = Builder.CreatePtrToInt(Args.Src, Args.IntType, "intptr");
16971   llvm::Value *SrcForMask = SrcAddr;
16972   if (AlignUp) {
16973     // When aligning up we have to first add the mask to ensure we go over the
16974     // next alignment value and then align down to the next valid multiple.
16975     // By adding the mask, we ensure that align_up on an already aligned
16976     // value will not change the value.
16977     SrcForMask = Builder.CreateAdd(SrcForMask, Args.Mask, "over_boundary");
16978   }
16979   // Invert the mask to only clear the lower bits.
16980   llvm::Value *InvertedMask = Builder.CreateNot(Args.Mask, "inverted_mask");
16981   llvm::Value *Result =
16982       Builder.CreateAnd(SrcForMask, InvertedMask, "aligned_result");
16983   if (Args.Src->getType()->isPointerTy()) {
16984     /// TODO: Use ptrmask instead of ptrtoint+gep once it is optimized well.
16985     // Result = Builder.CreateIntrinsic(
16986     //  Intrinsic::ptrmask, {Args.SrcType, SrcForMask->getType(), Args.IntType},
16987     //  {SrcForMask, NegatedMask}, nullptr, "aligned_result");
16988     Result->setName("aligned_intptr");
16989     llvm::Value *Difference = Builder.CreateSub(Result, SrcAddr, "diff");
16990     // The result must point to the same underlying allocation. This means we
16991     // can use an inbounds GEP to enable better optimization.
16992     Value *Base = EmitCastToVoidPtr(Args.Src);
16993     if (getLangOpts().isSignedOverflowDefined())
16994       Result = Builder.CreateGEP(Base, Difference, "aligned_result");
16995     else
16996       Result = EmitCheckedInBoundsGEP(Base, Difference,
16997                                       /*SignedIndices=*/true,
16998                                       /*isSubtraction=*/!AlignUp,
16999                                       E->getExprLoc(), "aligned_result");
17000     Result = Builder.CreatePointerCast(Result, Args.SrcType);
17001     // Emit an alignment assumption to ensure that the new alignment is
17002     // propagated to loads/stores, etc.
17003     emitAlignmentAssumption(Result, E, E->getExprLoc(), Args.Alignment);
17004   }
17005   assert(Result->getType() == Args.SrcType);
17006   return RValue::get(Result);
17007 }
17008 
EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,const CallExpr * E)17009 Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
17010                                                    const CallExpr *E) {
17011   switch (BuiltinID) {
17012   case WebAssembly::BI__builtin_wasm_memory_size: {
17013     llvm::Type *ResultType = ConvertType(E->getType());
17014     Value *I = EmitScalarExpr(E->getArg(0));
17015     Function *Callee =
17016         CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
17017     return Builder.CreateCall(Callee, I);
17018   }
17019   case WebAssembly::BI__builtin_wasm_memory_grow: {
17020     llvm::Type *ResultType = ConvertType(E->getType());
17021     Value *Args[] = {EmitScalarExpr(E->getArg(0)),
17022                      EmitScalarExpr(E->getArg(1))};
17023     Function *Callee =
17024         CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
17025     return Builder.CreateCall(Callee, Args);
17026   }
17027   case WebAssembly::BI__builtin_wasm_tls_size: {
17028     llvm::Type *ResultType = ConvertType(E->getType());
17029     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType);
17030     return Builder.CreateCall(Callee);
17031   }
17032   case WebAssembly::BI__builtin_wasm_tls_align: {
17033     llvm::Type *ResultType = ConvertType(E->getType());
17034     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType);
17035     return Builder.CreateCall(Callee);
17036   }
17037   case WebAssembly::BI__builtin_wasm_tls_base: {
17038     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base);
17039     return Builder.CreateCall(Callee);
17040   }
17041   case WebAssembly::BI__builtin_wasm_throw: {
17042     Value *Tag = EmitScalarExpr(E->getArg(0));
17043     Value *Obj = EmitScalarExpr(E->getArg(1));
17044     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
17045     return Builder.CreateCall(Callee, {Tag, Obj});
17046   }
17047   case WebAssembly::BI__builtin_wasm_rethrow: {
17048     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow);
17049     return Builder.CreateCall(Callee);
17050   }
17051   case WebAssembly::BI__builtin_wasm_memory_atomic_wait32: {
17052     Value *Addr = EmitScalarExpr(E->getArg(0));
17053     Value *Expected = EmitScalarExpr(E->getArg(1));
17054     Value *Timeout = EmitScalarExpr(E->getArg(2));
17055     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait32);
17056     return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
17057   }
17058   case WebAssembly::BI__builtin_wasm_memory_atomic_wait64: {
17059     Value *Addr = EmitScalarExpr(E->getArg(0));
17060     Value *Expected = EmitScalarExpr(E->getArg(1));
17061     Value *Timeout = EmitScalarExpr(E->getArg(2));
17062     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait64);
17063     return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
17064   }
17065   case WebAssembly::BI__builtin_wasm_memory_atomic_notify: {
17066     Value *Addr = EmitScalarExpr(E->getArg(0));
17067     Value *Count = EmitScalarExpr(E->getArg(1));
17068     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_notify);
17069     return Builder.CreateCall(Callee, {Addr, Count});
17070   }
17071   case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32:
17072   case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64:
17073   case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32:
17074   case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: {
17075     Value *Src = EmitScalarExpr(E->getArg(0));
17076     llvm::Type *ResT = ConvertType(E->getType());
17077     Function *Callee =
17078         CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()});
17079     return Builder.CreateCall(Callee, {Src});
17080   }
17081   case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32:
17082   case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64:
17083   case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32:
17084   case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: {
17085     Value *Src = EmitScalarExpr(E->getArg(0));
17086     llvm::Type *ResT = ConvertType(E->getType());
17087     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned,
17088                                         {ResT, Src->getType()});
17089     return Builder.CreateCall(Callee, {Src});
17090   }
17091   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
17092   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
17093   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
17094   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
17095   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: {
17096     Value *Src = EmitScalarExpr(E->getArg(0));
17097     llvm::Type *ResT = ConvertType(E->getType());
17098     Function *Callee =
17099         CGM.getIntrinsic(Intrinsic::fptosi_sat, {ResT, Src->getType()});
17100     return Builder.CreateCall(Callee, {Src});
17101   }
17102   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
17103   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
17104   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
17105   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
17106   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: {
17107     Value *Src = EmitScalarExpr(E->getArg(0));
17108     llvm::Type *ResT = ConvertType(E->getType());
17109     Function *Callee =
17110         CGM.getIntrinsic(Intrinsic::fptoui_sat, {ResT, Src->getType()});
17111     return Builder.CreateCall(Callee, {Src});
17112   }
17113   case WebAssembly::BI__builtin_wasm_min_f32:
17114   case WebAssembly::BI__builtin_wasm_min_f64:
17115   case WebAssembly::BI__builtin_wasm_min_f32x4:
17116   case WebAssembly::BI__builtin_wasm_min_f64x2: {
17117     Value *LHS = EmitScalarExpr(E->getArg(0));
17118     Value *RHS = EmitScalarExpr(E->getArg(1));
17119     Function *Callee =
17120         CGM.getIntrinsic(Intrinsic::minimum, ConvertType(E->getType()));
17121     return Builder.CreateCall(Callee, {LHS, RHS});
17122   }
17123   case WebAssembly::BI__builtin_wasm_max_f32:
17124   case WebAssembly::BI__builtin_wasm_max_f64:
17125   case WebAssembly::BI__builtin_wasm_max_f32x4:
17126   case WebAssembly::BI__builtin_wasm_max_f64x2: {
17127     Value *LHS = EmitScalarExpr(E->getArg(0));
17128     Value *RHS = EmitScalarExpr(E->getArg(1));
17129     Function *Callee =
17130         CGM.getIntrinsic(Intrinsic::maximum, ConvertType(E->getType()));
17131     return Builder.CreateCall(Callee, {LHS, RHS});
17132   }
17133   case WebAssembly::BI__builtin_wasm_pmin_f32x4:
17134   case WebAssembly::BI__builtin_wasm_pmin_f64x2: {
17135     Value *LHS = EmitScalarExpr(E->getArg(0));
17136     Value *RHS = EmitScalarExpr(E->getArg(1));
17137     Function *Callee =
17138         CGM.getIntrinsic(Intrinsic::wasm_pmin, ConvertType(E->getType()));
17139     return Builder.CreateCall(Callee, {LHS, RHS});
17140   }
17141   case WebAssembly::BI__builtin_wasm_pmax_f32x4:
17142   case WebAssembly::BI__builtin_wasm_pmax_f64x2: {
17143     Value *LHS = EmitScalarExpr(E->getArg(0));
17144     Value *RHS = EmitScalarExpr(E->getArg(1));
17145     Function *Callee =
17146         CGM.getIntrinsic(Intrinsic::wasm_pmax, ConvertType(E->getType()));
17147     return Builder.CreateCall(Callee, {LHS, RHS});
17148   }
17149   case WebAssembly::BI__builtin_wasm_ceil_f32x4:
17150   case WebAssembly::BI__builtin_wasm_floor_f32x4:
17151   case WebAssembly::BI__builtin_wasm_trunc_f32x4:
17152   case WebAssembly::BI__builtin_wasm_nearest_f32x4:
17153   case WebAssembly::BI__builtin_wasm_ceil_f64x2:
17154   case WebAssembly::BI__builtin_wasm_floor_f64x2:
17155   case WebAssembly::BI__builtin_wasm_trunc_f64x2:
17156   case WebAssembly::BI__builtin_wasm_nearest_f64x2: {
17157     unsigned IntNo;
17158     switch (BuiltinID) {
17159     case WebAssembly::BI__builtin_wasm_ceil_f32x4:
17160     case WebAssembly::BI__builtin_wasm_ceil_f64x2:
17161       IntNo = Intrinsic::ceil;
17162       break;
17163     case WebAssembly::BI__builtin_wasm_floor_f32x4:
17164     case WebAssembly::BI__builtin_wasm_floor_f64x2:
17165       IntNo = Intrinsic::floor;
17166       break;
17167     case WebAssembly::BI__builtin_wasm_trunc_f32x4:
17168     case WebAssembly::BI__builtin_wasm_trunc_f64x2:
17169       IntNo = Intrinsic::trunc;
17170       break;
17171     case WebAssembly::BI__builtin_wasm_nearest_f32x4:
17172     case WebAssembly::BI__builtin_wasm_nearest_f64x2:
17173       IntNo = Intrinsic::nearbyint;
17174       break;
17175     default:
17176       llvm_unreachable("unexpected builtin ID");
17177     }
17178     Value *Value = EmitScalarExpr(E->getArg(0));
17179     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
17180     return Builder.CreateCall(Callee, Value);
17181   }
17182   case WebAssembly::BI__builtin_wasm_swizzle_i8x16: {
17183     Value *Src = EmitScalarExpr(E->getArg(0));
17184     Value *Indices = EmitScalarExpr(E->getArg(1));
17185     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle);
17186     return Builder.CreateCall(Callee, {Src, Indices});
17187   }
17188   case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
17189   case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
17190   case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
17191   case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
17192   case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
17193   case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
17194   case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
17195   case WebAssembly::BI__builtin_wasm_extract_lane_f64x2: {
17196     llvm::APSInt LaneConst =
17197         *E->getArg(1)->getIntegerConstantExpr(getContext());
17198     Value *Vec = EmitScalarExpr(E->getArg(0));
17199     Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
17200     Value *Extract = Builder.CreateExtractElement(Vec, Lane);
17201     switch (BuiltinID) {
17202     case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
17203     case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
17204       return Builder.CreateSExt(Extract, ConvertType(E->getType()));
17205     case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
17206     case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
17207       return Builder.CreateZExt(Extract, ConvertType(E->getType()));
17208     case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
17209     case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
17210     case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
17211     case WebAssembly::BI__builtin_wasm_extract_lane_f64x2:
17212       return Extract;
17213     default:
17214       llvm_unreachable("unexpected builtin ID");
17215     }
17216   }
17217   case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
17218   case WebAssembly::BI__builtin_wasm_replace_lane_i16x8:
17219   case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
17220   case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
17221   case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
17222   case WebAssembly::BI__builtin_wasm_replace_lane_f64x2: {
17223     llvm::APSInt LaneConst =
17224         *E->getArg(1)->getIntegerConstantExpr(getContext());
17225     Value *Vec = EmitScalarExpr(E->getArg(0));
17226     Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
17227     Value *Val = EmitScalarExpr(E->getArg(2));
17228     switch (BuiltinID) {
17229     case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
17230     case WebAssembly::BI__builtin_wasm_replace_lane_i16x8: {
17231       llvm::Type *ElemType =
17232           cast<llvm::VectorType>(ConvertType(E->getType()))->getElementType();
17233       Value *Trunc = Builder.CreateTrunc(Val, ElemType);
17234       return Builder.CreateInsertElement(Vec, Trunc, Lane);
17235     }
17236     case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
17237     case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
17238     case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
17239     case WebAssembly::BI__builtin_wasm_replace_lane_f64x2:
17240       return Builder.CreateInsertElement(Vec, Val, Lane);
17241     default:
17242       llvm_unreachable("unexpected builtin ID");
17243     }
17244   }
17245   case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
17246   case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
17247   case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
17248   case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
17249   case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
17250   case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
17251   case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
17252   case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8: {
17253     unsigned IntNo;
17254     switch (BuiltinID) {
17255     case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
17256     case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
17257       IntNo = Intrinsic::sadd_sat;
17258       break;
17259     case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
17260     case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
17261       IntNo = Intrinsic::uadd_sat;
17262       break;
17263     case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
17264     case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
17265       IntNo = Intrinsic::wasm_sub_sat_signed;
17266       break;
17267     case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
17268     case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8:
17269       IntNo = Intrinsic::wasm_sub_sat_unsigned;
17270       break;
17271     default:
17272       llvm_unreachable("unexpected builtin ID");
17273     }
17274     Value *LHS = EmitScalarExpr(E->getArg(0));
17275     Value *RHS = EmitScalarExpr(E->getArg(1));
17276     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
17277     return Builder.CreateCall(Callee, {LHS, RHS});
17278   }
17279   case WebAssembly::BI__builtin_wasm_abs_i8x16:
17280   case WebAssembly::BI__builtin_wasm_abs_i16x8:
17281   case WebAssembly::BI__builtin_wasm_abs_i32x4:
17282   case WebAssembly::BI__builtin_wasm_abs_i64x2: {
17283     Value *Vec = EmitScalarExpr(E->getArg(0));
17284     Value *Neg = Builder.CreateNeg(Vec, "neg");
17285     Constant *Zero = llvm::Constant::getNullValue(Vec->getType());
17286     Value *ICmp = Builder.CreateICmpSLT(Vec, Zero, "abscond");
17287     return Builder.CreateSelect(ICmp, Neg, Vec, "abs");
17288   }
17289   case WebAssembly::BI__builtin_wasm_min_s_i8x16:
17290   case WebAssembly::BI__builtin_wasm_min_u_i8x16:
17291   case WebAssembly::BI__builtin_wasm_max_s_i8x16:
17292   case WebAssembly::BI__builtin_wasm_max_u_i8x16:
17293   case WebAssembly::BI__builtin_wasm_min_s_i16x8:
17294   case WebAssembly::BI__builtin_wasm_min_u_i16x8:
17295   case WebAssembly::BI__builtin_wasm_max_s_i16x8:
17296   case WebAssembly::BI__builtin_wasm_max_u_i16x8:
17297   case WebAssembly::BI__builtin_wasm_min_s_i32x4:
17298   case WebAssembly::BI__builtin_wasm_min_u_i32x4:
17299   case WebAssembly::BI__builtin_wasm_max_s_i32x4:
17300   case WebAssembly::BI__builtin_wasm_max_u_i32x4: {
17301     Value *LHS = EmitScalarExpr(E->getArg(0));
17302     Value *RHS = EmitScalarExpr(E->getArg(1));
17303     Value *ICmp;
17304     switch (BuiltinID) {
17305     case WebAssembly::BI__builtin_wasm_min_s_i8x16:
17306     case WebAssembly::BI__builtin_wasm_min_s_i16x8:
17307     case WebAssembly::BI__builtin_wasm_min_s_i32x4:
17308       ICmp = Builder.CreateICmpSLT(LHS, RHS);
17309       break;
17310     case WebAssembly::BI__builtin_wasm_min_u_i8x16:
17311     case WebAssembly::BI__builtin_wasm_min_u_i16x8:
17312     case WebAssembly::BI__builtin_wasm_min_u_i32x4:
17313       ICmp = Builder.CreateICmpULT(LHS, RHS);
17314       break;
17315     case WebAssembly::BI__builtin_wasm_max_s_i8x16:
17316     case WebAssembly::BI__builtin_wasm_max_s_i16x8:
17317     case WebAssembly::BI__builtin_wasm_max_s_i32x4:
17318       ICmp = Builder.CreateICmpSGT(LHS, RHS);
17319       break;
17320     case WebAssembly::BI__builtin_wasm_max_u_i8x16:
17321     case WebAssembly::BI__builtin_wasm_max_u_i16x8:
17322     case WebAssembly::BI__builtin_wasm_max_u_i32x4:
17323       ICmp = Builder.CreateICmpUGT(LHS, RHS);
17324       break;
17325     default:
17326       llvm_unreachable("unexpected builtin ID");
17327     }
17328     return Builder.CreateSelect(ICmp, LHS, RHS);
17329   }
17330   case WebAssembly::BI__builtin_wasm_avgr_u_i8x16:
17331   case WebAssembly::BI__builtin_wasm_avgr_u_i16x8: {
17332     Value *LHS = EmitScalarExpr(E->getArg(0));
17333     Value *RHS = EmitScalarExpr(E->getArg(1));
17334     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_avgr_unsigned,
17335                                         ConvertType(E->getType()));
17336     return Builder.CreateCall(Callee, {LHS, RHS});
17337   }
17338   case WebAssembly::BI__builtin_wasm_q15mulr_sat_s_i16x8: {
17339     Value *LHS = EmitScalarExpr(E->getArg(0));
17340     Value *RHS = EmitScalarExpr(E->getArg(1));
17341     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_q15mulr_sat_signed);
17342     return Builder.CreateCall(Callee, {LHS, RHS});
17343   }
17344   case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_s_i16x8:
17345   case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_s_i16x8:
17346   case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_u_i16x8:
17347   case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_u_i16x8:
17348   case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_s_i32x4:
17349   case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_s_i32x4:
17350   case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_u_i32x4:
17351   case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_u_i32x4:
17352   case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_s_i64x2:
17353   case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_s_i64x2:
17354   case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_u_i64x2:
17355   case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_u_i64x2: {
17356     Value *LHS = EmitScalarExpr(E->getArg(0));
17357     Value *RHS = EmitScalarExpr(E->getArg(1));
17358     unsigned IntNo;
17359     switch (BuiltinID) {
17360     case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_s_i16x8:
17361     case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_s_i32x4:
17362     case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_s_i64x2:
17363       IntNo = Intrinsic::wasm_extmul_low_signed;
17364       break;
17365     case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_u_i16x8:
17366     case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_u_i32x4:
17367     case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_u_i64x2:
17368       IntNo = Intrinsic::wasm_extmul_low_unsigned;
17369       break;
17370     case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_s_i16x8:
17371     case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_s_i32x4:
17372     case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_s_i64x2:
17373       IntNo = Intrinsic::wasm_extmul_high_signed;
17374       break;
17375     case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_u_i16x8:
17376     case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_u_i32x4:
17377     case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_u_i64x2:
17378       IntNo = Intrinsic::wasm_extmul_high_unsigned;
17379       break;
17380     default:
17381       llvm_unreachable("unexptected builtin ID");
17382     }
17383 
17384     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
17385     return Builder.CreateCall(Callee, {LHS, RHS});
17386   }
17387   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
17388   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
17389   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
17390   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4: {
17391     Value *Vec = EmitScalarExpr(E->getArg(0));
17392     unsigned IntNo;
17393     switch (BuiltinID) {
17394     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
17395     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
17396       IntNo = Intrinsic::wasm_extadd_pairwise_signed;
17397       break;
17398     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
17399     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4:
17400       IntNo = Intrinsic::wasm_extadd_pairwise_unsigned;
17401       break;
17402     default:
17403       llvm_unreachable("unexptected builtin ID");
17404     }
17405 
17406     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
17407     return Builder.CreateCall(Callee, Vec);
17408   }
17409   case WebAssembly::BI__builtin_wasm_bitselect: {
17410     Value *V1 = EmitScalarExpr(E->getArg(0));
17411     Value *V2 = EmitScalarExpr(E->getArg(1));
17412     Value *C = EmitScalarExpr(E->getArg(2));
17413     Function *Callee =
17414         CGM.getIntrinsic(Intrinsic::wasm_bitselect, ConvertType(E->getType()));
17415     return Builder.CreateCall(Callee, {V1, V2, C});
17416   }
17417   case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: {
17418     Value *LHS = EmitScalarExpr(E->getArg(0));
17419     Value *RHS = EmitScalarExpr(E->getArg(1));
17420     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot);
17421     return Builder.CreateCall(Callee, {LHS, RHS});
17422   }
17423   case WebAssembly::BI__builtin_wasm_popcnt_i8x16: {
17424     Value *Vec = EmitScalarExpr(E->getArg(0));
17425     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_popcnt);
17426     return Builder.CreateCall(Callee, {Vec});
17427   }
17428   case WebAssembly::BI__builtin_wasm_any_true_v128:
17429   case WebAssembly::BI__builtin_wasm_all_true_i8x16:
17430   case WebAssembly::BI__builtin_wasm_all_true_i16x8:
17431   case WebAssembly::BI__builtin_wasm_all_true_i32x4:
17432   case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
17433     unsigned IntNo;
17434     switch (BuiltinID) {
17435     case WebAssembly::BI__builtin_wasm_any_true_v128:
17436       IntNo = Intrinsic::wasm_anytrue;
17437       break;
17438     case WebAssembly::BI__builtin_wasm_all_true_i8x16:
17439     case WebAssembly::BI__builtin_wasm_all_true_i16x8:
17440     case WebAssembly::BI__builtin_wasm_all_true_i32x4:
17441     case WebAssembly::BI__builtin_wasm_all_true_i64x2:
17442       IntNo = Intrinsic::wasm_alltrue;
17443       break;
17444     default:
17445       llvm_unreachable("unexpected builtin ID");
17446     }
17447     Value *Vec = EmitScalarExpr(E->getArg(0));
17448     Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
17449     return Builder.CreateCall(Callee, {Vec});
17450   }
17451   case WebAssembly::BI__builtin_wasm_bitmask_i8x16:
17452   case WebAssembly::BI__builtin_wasm_bitmask_i16x8:
17453   case WebAssembly::BI__builtin_wasm_bitmask_i32x4:
17454   case WebAssembly::BI__builtin_wasm_bitmask_i64x2: {
17455     Value *Vec = EmitScalarExpr(E->getArg(0));
17456     Function *Callee =
17457         CGM.getIntrinsic(Intrinsic::wasm_bitmask, Vec->getType());
17458     return Builder.CreateCall(Callee, {Vec});
17459   }
17460   case WebAssembly::BI__builtin_wasm_abs_f32x4:
17461   case WebAssembly::BI__builtin_wasm_abs_f64x2: {
17462     Value *Vec = EmitScalarExpr(E->getArg(0));
17463     Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
17464     return Builder.CreateCall(Callee, {Vec});
17465   }
17466   case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
17467   case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
17468     Value *Vec = EmitScalarExpr(E->getArg(0));
17469     Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
17470     return Builder.CreateCall(Callee, {Vec});
17471   }
17472   case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
17473   case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
17474   case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
17475   case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: {
17476     Value *Low = EmitScalarExpr(E->getArg(0));
17477     Value *High = EmitScalarExpr(E->getArg(1));
17478     unsigned IntNo;
17479     switch (BuiltinID) {
17480     case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
17481     case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
17482       IntNo = Intrinsic::wasm_narrow_signed;
17483       break;
17484     case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
17485     case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4:
17486       IntNo = Intrinsic::wasm_narrow_unsigned;
17487       break;
17488     default:
17489       llvm_unreachable("unexpected builtin ID");
17490     }
17491     Function *Callee =
17492         CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()});
17493     return Builder.CreateCall(Callee, {Low, High});
17494   }
17495   case WebAssembly::BI__builtin_wasm_trunc_sat_zero_s_f64x2_i32x4:
17496   case WebAssembly::BI__builtin_wasm_trunc_sat_zero_u_f64x2_i32x4: {
17497     Value *Vec = EmitScalarExpr(E->getArg(0));
17498     unsigned IntNo;
17499     switch (BuiltinID) {
17500     case WebAssembly::BI__builtin_wasm_trunc_sat_zero_s_f64x2_i32x4:
17501       IntNo = Intrinsic::fptosi_sat;
17502       break;
17503     case WebAssembly::BI__builtin_wasm_trunc_sat_zero_u_f64x2_i32x4:
17504       IntNo = Intrinsic::fptoui_sat;
17505       break;
17506     default:
17507       llvm_unreachable("unexpected builtin ID");
17508     }
17509     llvm::Type *SrcT = Vec->getType();
17510     llvm::Type *TruncT =
17511         SrcT->getWithNewType(llvm::IntegerType::get(getLLVMContext(), 32));
17512     Function *Callee = CGM.getIntrinsic(IntNo, {TruncT, SrcT});
17513     Value *Trunc = Builder.CreateCall(Callee, Vec);
17514     Value *Splat = Builder.CreateVectorSplat(2, Builder.getInt32(0));
17515     Value *ConcatMask =
17516         llvm::ConstantVector::get({Builder.getInt32(0), Builder.getInt32(1),
17517                                    Builder.getInt32(2), Builder.getInt32(3)});
17518     return Builder.CreateShuffleVector(Trunc, Splat, ConcatMask);
17519   }
17520   case WebAssembly::BI__builtin_wasm_demote_zero_f64x2_f32x4: {
17521     Value *Vec = EmitScalarExpr(E->getArg(0));
17522     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_demote_zero);
17523     return Builder.CreateCall(Callee, Vec);
17524   }
17525   case WebAssembly::BI__builtin_wasm_promote_low_f32x4_f64x2: {
17526     Value *Vec = EmitScalarExpr(E->getArg(0));
17527     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_promote_low);
17528     return Builder.CreateCall(Callee, Vec);
17529   }
17530   case WebAssembly::BI__builtin_wasm_load32_zero: {
17531     Value *Ptr = EmitScalarExpr(E->getArg(0));
17532     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_load32_zero);
17533     return Builder.CreateCall(Callee, {Ptr});
17534   }
17535   case WebAssembly::BI__builtin_wasm_load64_zero: {
17536     Value *Ptr = EmitScalarExpr(E->getArg(0));
17537     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_load64_zero);
17538     return Builder.CreateCall(Callee, {Ptr});
17539   }
17540   case WebAssembly::BI__builtin_wasm_load8_lane:
17541   case WebAssembly::BI__builtin_wasm_load16_lane:
17542   case WebAssembly::BI__builtin_wasm_load32_lane:
17543   case WebAssembly::BI__builtin_wasm_load64_lane:
17544   case WebAssembly::BI__builtin_wasm_store8_lane:
17545   case WebAssembly::BI__builtin_wasm_store16_lane:
17546   case WebAssembly::BI__builtin_wasm_store32_lane:
17547   case WebAssembly::BI__builtin_wasm_store64_lane: {
17548     Value *Ptr = EmitScalarExpr(E->getArg(0));
17549     Value *Vec = EmitScalarExpr(E->getArg(1));
17550     Optional<llvm::APSInt> LaneIdxConst =
17551         E->getArg(2)->getIntegerConstantExpr(getContext());
17552     assert(LaneIdxConst && "Constant arg isn't actually constant?");
17553     Value *LaneIdx = llvm::ConstantInt::get(getLLVMContext(), *LaneIdxConst);
17554     unsigned IntNo;
17555     switch (BuiltinID) {
17556     case WebAssembly::BI__builtin_wasm_load8_lane:
17557       IntNo = Intrinsic::wasm_load8_lane;
17558       break;
17559     case WebAssembly::BI__builtin_wasm_load16_lane:
17560       IntNo = Intrinsic::wasm_load16_lane;
17561       break;
17562     case WebAssembly::BI__builtin_wasm_load32_lane:
17563       IntNo = Intrinsic::wasm_load32_lane;
17564       break;
17565     case WebAssembly::BI__builtin_wasm_load64_lane:
17566       IntNo = Intrinsic::wasm_load64_lane;
17567       break;
17568     case WebAssembly::BI__builtin_wasm_store8_lane:
17569       IntNo = Intrinsic::wasm_store8_lane;
17570       break;
17571     case WebAssembly::BI__builtin_wasm_store16_lane:
17572       IntNo = Intrinsic::wasm_store16_lane;
17573       break;
17574     case WebAssembly::BI__builtin_wasm_store32_lane:
17575       IntNo = Intrinsic::wasm_store32_lane;
17576       break;
17577     case WebAssembly::BI__builtin_wasm_store64_lane:
17578       IntNo = Intrinsic::wasm_store64_lane;
17579       break;
17580     default:
17581       llvm_unreachable("unexpected builtin ID");
17582     }
17583     Function *Callee = CGM.getIntrinsic(IntNo);
17584     return Builder.CreateCall(Callee, {Ptr, Vec, LaneIdx});
17585   }
17586   case WebAssembly::BI__builtin_wasm_shuffle_i8x16: {
17587     Value *Ops[18];
17588     size_t OpIdx = 0;
17589     Ops[OpIdx++] = EmitScalarExpr(E->getArg(0));
17590     Ops[OpIdx++] = EmitScalarExpr(E->getArg(1));
17591     while (OpIdx < 18) {
17592       Optional<llvm::APSInt> LaneConst =
17593           E->getArg(OpIdx)->getIntegerConstantExpr(getContext());
17594       assert(LaneConst && "Constant arg isn't actually constant?");
17595       Ops[OpIdx++] = llvm::ConstantInt::get(getLLVMContext(), *LaneConst);
17596     }
17597     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_shuffle);
17598     return Builder.CreateCall(Callee, Ops);
17599   }
17600   default:
17601     return nullptr;
17602   }
17603 }
17604 
17605 static std::pair<Intrinsic::ID, unsigned>
getIntrinsicForHexagonNonGCCBuiltin(unsigned BuiltinID)17606 getIntrinsicForHexagonNonGCCBuiltin(unsigned BuiltinID) {
17607   struct Info {
17608     unsigned BuiltinID;
17609     Intrinsic::ID IntrinsicID;
17610     unsigned VecLen;
17611   };
17612   Info Infos[] = {
17613 #define CUSTOM_BUILTIN_MAPPING(x,s) \
17614   { Hexagon::BI__builtin_HEXAGON_##x, Intrinsic::hexagon_##x, s },
17615     CUSTOM_BUILTIN_MAPPING(L2_loadrub_pci, 0)
17616     CUSTOM_BUILTIN_MAPPING(L2_loadrb_pci, 0)
17617     CUSTOM_BUILTIN_MAPPING(L2_loadruh_pci, 0)
17618     CUSTOM_BUILTIN_MAPPING(L2_loadrh_pci, 0)
17619     CUSTOM_BUILTIN_MAPPING(L2_loadri_pci, 0)
17620     CUSTOM_BUILTIN_MAPPING(L2_loadrd_pci, 0)
17621     CUSTOM_BUILTIN_MAPPING(L2_loadrub_pcr, 0)
17622     CUSTOM_BUILTIN_MAPPING(L2_loadrb_pcr, 0)
17623     CUSTOM_BUILTIN_MAPPING(L2_loadruh_pcr, 0)
17624     CUSTOM_BUILTIN_MAPPING(L2_loadrh_pcr, 0)
17625     CUSTOM_BUILTIN_MAPPING(L2_loadri_pcr, 0)
17626     CUSTOM_BUILTIN_MAPPING(L2_loadrd_pcr, 0)
17627     CUSTOM_BUILTIN_MAPPING(S2_storerb_pci, 0)
17628     CUSTOM_BUILTIN_MAPPING(S2_storerh_pci, 0)
17629     CUSTOM_BUILTIN_MAPPING(S2_storerf_pci, 0)
17630     CUSTOM_BUILTIN_MAPPING(S2_storeri_pci, 0)
17631     CUSTOM_BUILTIN_MAPPING(S2_storerd_pci, 0)
17632     CUSTOM_BUILTIN_MAPPING(S2_storerb_pcr, 0)
17633     CUSTOM_BUILTIN_MAPPING(S2_storerh_pcr, 0)
17634     CUSTOM_BUILTIN_MAPPING(S2_storerf_pcr, 0)
17635     CUSTOM_BUILTIN_MAPPING(S2_storeri_pcr, 0)
17636     CUSTOM_BUILTIN_MAPPING(S2_storerd_pcr, 0)
17637     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq, 64)
17638     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq, 64)
17639     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq, 64)
17640     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq, 64)
17641     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq_128B, 128)
17642     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq_128B, 128)
17643     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq_128B, 128)
17644     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq_128B, 128)
17645 #include "clang/Basic/BuiltinsHexagonMapCustomDep.def"
17646 #undef CUSTOM_BUILTIN_MAPPING
17647   };
17648 
17649   auto CmpInfo = [] (Info A, Info B) { return A.BuiltinID < B.BuiltinID; };
17650   static const bool SortOnce = (llvm::sort(Infos, CmpInfo), true);
17651   (void)SortOnce;
17652 
17653   const Info *F = std::lower_bound(std::begin(Infos), std::end(Infos),
17654                                    Info{BuiltinID, 0, 0}, CmpInfo);
17655   if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
17656     return {Intrinsic::not_intrinsic, 0};
17657 
17658   return {F->IntrinsicID, F->VecLen};
17659 }
17660 
EmitHexagonBuiltinExpr(unsigned BuiltinID,const CallExpr * E)17661 Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
17662                                                const CallExpr *E) {
17663   Intrinsic::ID ID;
17664   unsigned VecLen;
17665   std::tie(ID, VecLen) = getIntrinsicForHexagonNonGCCBuiltin(BuiltinID);
17666 
17667   auto MakeCircOp = [this, E](unsigned IntID, bool IsLoad) {
17668     // The base pointer is passed by address, so it needs to be loaded.
17669     Address A = EmitPointerWithAlignment(E->getArg(0));
17670     Address BP = Address(
17671         Builder.CreateBitCast(A.getPointer(), Int8PtrPtrTy), A.getAlignment());
17672     llvm::Value *Base = Builder.CreateLoad(BP);
17673     // The treatment of both loads and stores is the same: the arguments for
17674     // the builtin are the same as the arguments for the intrinsic.
17675     // Load:
17676     //   builtin(Base, Inc, Mod, Start) -> intr(Base, Inc, Mod, Start)
17677     //   builtin(Base, Mod, Start)      -> intr(Base, Mod, Start)
17678     // Store:
17679     //   builtin(Base, Inc, Mod, Val, Start) -> intr(Base, Inc, Mod, Val, Start)
17680     //   builtin(Base, Mod, Val, Start)      -> intr(Base, Mod, Val, Start)
17681     SmallVector<llvm::Value*,5> Ops = { Base };
17682     for (unsigned i = 1, e = E->getNumArgs(); i != e; ++i)
17683       Ops.push_back(EmitScalarExpr(E->getArg(i)));
17684 
17685     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
17686     // The load intrinsics generate two results (Value, NewBase), stores
17687     // generate one (NewBase). The new base address needs to be stored.
17688     llvm::Value *NewBase = IsLoad ? Builder.CreateExtractValue(Result, 1)
17689                                   : Result;
17690     llvm::Value *LV = Builder.CreateBitCast(
17691         EmitScalarExpr(E->getArg(0)), NewBase->getType()->getPointerTo());
17692     Address Dest = EmitPointerWithAlignment(E->getArg(0));
17693     llvm::Value *RetVal =
17694         Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
17695     if (IsLoad)
17696       RetVal = Builder.CreateExtractValue(Result, 0);
17697     return RetVal;
17698   };
17699 
17700   // Handle the conversion of bit-reverse load intrinsics to bit code.
17701   // The intrinsic call after this function only reads from memory and the
17702   // write to memory is dealt by the store instruction.
17703   auto MakeBrevLd = [this, E](unsigned IntID, llvm::Type *DestTy) {
17704     // The intrinsic generates one result, which is the new value for the base
17705     // pointer. It needs to be returned. The result of the load instruction is
17706     // passed to intrinsic by address, so the value needs to be stored.
17707     llvm::Value *BaseAddress =
17708         Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
17709 
17710     // Expressions like &(*pt++) will be incremented per evaluation.
17711     // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
17712     // per call.
17713     Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
17714     DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy),
17715                        DestAddr.getAlignment());
17716     llvm::Value *DestAddress = DestAddr.getPointer();
17717 
17718     // Operands are Base, Dest, Modifier.
17719     // The intrinsic format in LLVM IR is defined as
17720     // { ValueType, i8* } (i8*, i32).
17721     llvm::Value *Result = Builder.CreateCall(
17722         CGM.getIntrinsic(IntID), {BaseAddress, EmitScalarExpr(E->getArg(2))});
17723 
17724     // The value needs to be stored as the variable is passed by reference.
17725     llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
17726 
17727     // The store needs to be truncated to fit the destination type.
17728     // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
17729     // to be handled with stores of respective destination type.
17730     DestVal = Builder.CreateTrunc(DestVal, DestTy);
17731 
17732     llvm::Value *DestForStore =
17733         Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo());
17734     Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment());
17735     // The updated value of the base pointer is returned.
17736     return Builder.CreateExtractValue(Result, 1);
17737   };
17738 
17739   auto V2Q = [this, VecLen] (llvm::Value *Vec) {
17740     Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandvrt_128B
17741                                      : Intrinsic::hexagon_V6_vandvrt;
17742     return Builder.CreateCall(CGM.getIntrinsic(ID),
17743                               {Vec, Builder.getInt32(-1)});
17744   };
17745   auto Q2V = [this, VecLen] (llvm::Value *Pred) {
17746     Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandqrt_128B
17747                                      : Intrinsic::hexagon_V6_vandqrt;
17748     return Builder.CreateCall(CGM.getIntrinsic(ID),
17749                               {Pred, Builder.getInt32(-1)});
17750   };
17751 
17752   switch (BuiltinID) {
17753   // These intrinsics return a tuple {Vector, VectorPred} in LLVM IR,
17754   // and the corresponding C/C++ builtins use loads/stores to update
17755   // the predicate.
17756   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
17757   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B:
17758   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
17759   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
17760     // Get the type from the 0-th argument.
17761     llvm::Type *VecType = ConvertType(E->getArg(0)->getType());
17762     Address PredAddr = Builder.CreateBitCast(
17763         EmitPointerWithAlignment(E->getArg(2)), VecType->getPointerTo(0));
17764     llvm::Value *PredIn = V2Q(Builder.CreateLoad(PredAddr));
17765     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID),
17766         {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), PredIn});
17767 
17768     llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1);
17769     Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.getPointer(),
17770         PredAddr.getAlignment());
17771     return Builder.CreateExtractValue(Result, 0);
17772   }
17773 
17774   case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
17775   case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
17776   case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
17777   case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
17778   case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
17779   case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
17780   case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
17781   case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
17782   case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
17783   case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
17784   case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
17785   case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
17786     return MakeCircOp(ID, /*IsLoad=*/true);
17787   case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
17788   case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
17789   case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
17790   case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
17791   case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
17792   case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
17793   case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
17794   case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
17795   case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
17796   case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
17797     return MakeCircOp(ID, /*IsLoad=*/false);
17798   case Hexagon::BI__builtin_brev_ldub:
17799     return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
17800   case Hexagon::BI__builtin_brev_ldb:
17801     return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
17802   case Hexagon::BI__builtin_brev_lduh:
17803     return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
17804   case Hexagon::BI__builtin_brev_ldh:
17805     return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
17806   case Hexagon::BI__builtin_brev_ldw:
17807     return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
17808   case Hexagon::BI__builtin_brev_ldd:
17809     return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
17810 
17811   default: {
17812     if (ID == Intrinsic::not_intrinsic)
17813       return nullptr;
17814 
17815     auto IsVectorPredTy = [](llvm::Type *T) {
17816       return T->isVectorTy() &&
17817              cast<llvm::VectorType>(T)->getElementType()->isIntegerTy(1);
17818     };
17819 
17820     llvm::Function *IntrFn = CGM.getIntrinsic(ID);
17821     llvm::FunctionType *IntrTy = IntrFn->getFunctionType();
17822     SmallVector<llvm::Value*,4> Ops;
17823     for (unsigned i = 0, e = IntrTy->getNumParams(); i != e; ++i) {
17824       llvm::Type *T = IntrTy->getParamType(i);
17825       const Expr *A = E->getArg(i);
17826       if (IsVectorPredTy(T)) {
17827         // There will be an implicit cast to a boolean vector. Strip it.
17828         if (auto *Cast = dyn_cast<ImplicitCastExpr>(A)) {
17829           if (Cast->getCastKind() == CK_BitCast)
17830             A = Cast->getSubExpr();
17831         }
17832         Ops.push_back(V2Q(EmitScalarExpr(A)));
17833       } else {
17834         Ops.push_back(EmitScalarExpr(A));
17835       }
17836     }
17837 
17838     llvm::Value *Call = Builder.CreateCall(IntrFn, Ops);
17839     if (IsVectorPredTy(IntrTy->getReturnType()))
17840       Call = Q2V(Call);
17841 
17842     return Call;
17843   } // default
17844   } // switch
17845 
17846   return nullptr;
17847 }
17848 
EmitRISCVBuiltinExpr(unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue)17849 Value *CodeGenFunction::EmitRISCVBuiltinExpr(unsigned BuiltinID,
17850                                              const CallExpr *E,
17851                                              ReturnValueSlot ReturnValue) {
17852   SmallVector<Value *, 4> Ops;
17853   llvm::Type *ResultType = ConvertType(E->getType());
17854 
17855   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
17856     Ops.push_back(EmitScalarExpr(E->getArg(i)));
17857 
17858   Intrinsic::ID ID = Intrinsic::not_intrinsic;
17859 
17860   // Required for overloaded intrinsics.
17861   llvm::SmallVector<llvm::Type *, 2> IntrinsicTypes;
17862   switch (BuiltinID) {
17863   default: llvm_unreachable("unexpected builtin ID");
17864   case RISCV::BI__builtin_riscv_orc_b_32:
17865   case RISCV::BI__builtin_riscv_orc_b_64:
17866   case RISCV::BI__builtin_riscv_clmul:
17867   case RISCV::BI__builtin_riscv_clmulh:
17868   case RISCV::BI__builtin_riscv_clmulr:
17869   case RISCV::BI__builtin_riscv_bcompress_32:
17870   case RISCV::BI__builtin_riscv_bcompress_64:
17871   case RISCV::BI__builtin_riscv_bdecompress_32:
17872   case RISCV::BI__builtin_riscv_bdecompress_64:
17873   case RISCV::BI__builtin_riscv_grev_32:
17874   case RISCV::BI__builtin_riscv_grev_64:
17875   case RISCV::BI__builtin_riscv_gorc_32:
17876   case RISCV::BI__builtin_riscv_gorc_64:
17877   case RISCV::BI__builtin_riscv_shfl_32:
17878   case RISCV::BI__builtin_riscv_shfl_64:
17879   case RISCV::BI__builtin_riscv_unshfl_32:
17880   case RISCV::BI__builtin_riscv_unshfl_64:
17881   case RISCV::BI__builtin_riscv_xperm_n:
17882   case RISCV::BI__builtin_riscv_xperm_b:
17883   case RISCV::BI__builtin_riscv_xperm_h:
17884   case RISCV::BI__builtin_riscv_xperm_w:
17885   case RISCV::BI__builtin_riscv_crc32_b:
17886   case RISCV::BI__builtin_riscv_crc32_h:
17887   case RISCV::BI__builtin_riscv_crc32_w:
17888   case RISCV::BI__builtin_riscv_crc32_d:
17889   case RISCV::BI__builtin_riscv_crc32c_b:
17890   case RISCV::BI__builtin_riscv_crc32c_h:
17891   case RISCV::BI__builtin_riscv_crc32c_w:
17892   case RISCV::BI__builtin_riscv_crc32c_d: {
17893     switch (BuiltinID) {
17894     default: llvm_unreachable("unexpected builtin ID");
17895     // Zbb
17896     case RISCV::BI__builtin_riscv_orc_b_32:
17897     case RISCV::BI__builtin_riscv_orc_b_64:
17898       ID = Intrinsic::riscv_orc_b;
17899       break;
17900 
17901     // Zbc
17902     case RISCV::BI__builtin_riscv_clmul:
17903       ID = Intrinsic::riscv_clmul;
17904       break;
17905     case RISCV::BI__builtin_riscv_clmulh:
17906       ID = Intrinsic::riscv_clmulh;
17907       break;
17908     case RISCV::BI__builtin_riscv_clmulr:
17909       ID = Intrinsic::riscv_clmulr;
17910       break;
17911 
17912     // Zbe
17913     case RISCV::BI__builtin_riscv_bcompress_32:
17914     case RISCV::BI__builtin_riscv_bcompress_64:
17915       ID = Intrinsic::riscv_bcompress;
17916       break;
17917     case RISCV::BI__builtin_riscv_bdecompress_32:
17918     case RISCV::BI__builtin_riscv_bdecompress_64:
17919       ID = Intrinsic::riscv_bdecompress;
17920       break;
17921 
17922     // Zbp
17923     case RISCV::BI__builtin_riscv_grev_32:
17924     case RISCV::BI__builtin_riscv_grev_64:
17925       ID = Intrinsic::riscv_grev;
17926       break;
17927     case RISCV::BI__builtin_riscv_gorc_32:
17928     case RISCV::BI__builtin_riscv_gorc_64:
17929       ID = Intrinsic::riscv_gorc;
17930       break;
17931     case RISCV::BI__builtin_riscv_shfl_32:
17932     case RISCV::BI__builtin_riscv_shfl_64:
17933       ID = Intrinsic::riscv_shfl;
17934       break;
17935     case RISCV::BI__builtin_riscv_unshfl_32:
17936     case RISCV::BI__builtin_riscv_unshfl_64:
17937       ID = Intrinsic::riscv_unshfl;
17938       break;
17939     case RISCV::BI__builtin_riscv_xperm_n:
17940       ID = Intrinsic::riscv_xperm_n;
17941       break;
17942     case RISCV::BI__builtin_riscv_xperm_b:
17943       ID = Intrinsic::riscv_xperm_b;
17944       break;
17945     case RISCV::BI__builtin_riscv_xperm_h:
17946       ID = Intrinsic::riscv_xperm_h;
17947       break;
17948     case RISCV::BI__builtin_riscv_xperm_w:
17949       ID = Intrinsic::riscv_xperm_w;
17950       break;
17951 
17952     // Zbr
17953     case RISCV::BI__builtin_riscv_crc32_b:
17954       ID = Intrinsic::riscv_crc32_b;
17955       break;
17956     case RISCV::BI__builtin_riscv_crc32_h:
17957       ID = Intrinsic::riscv_crc32_h;
17958       break;
17959     case RISCV::BI__builtin_riscv_crc32_w:
17960       ID = Intrinsic::riscv_crc32_w;
17961       break;
17962     case RISCV::BI__builtin_riscv_crc32_d:
17963       ID = Intrinsic::riscv_crc32_d;
17964       break;
17965     case RISCV::BI__builtin_riscv_crc32c_b:
17966       ID = Intrinsic::riscv_crc32c_b;
17967       break;
17968     case RISCV::BI__builtin_riscv_crc32c_h:
17969       ID = Intrinsic::riscv_crc32c_h;
17970       break;
17971     case RISCV::BI__builtin_riscv_crc32c_w:
17972       ID = Intrinsic::riscv_crc32c_w;
17973       break;
17974     case RISCV::BI__builtin_riscv_crc32c_d:
17975       ID = Intrinsic::riscv_crc32c_d;
17976       break;
17977     }
17978 
17979     IntrinsicTypes = {ResultType};
17980     break;
17981   }
17982   // Vector builtins are handled from here.
17983 #include "clang/Basic/riscv_vector_builtin_cg.inc"
17984   }
17985 
17986   assert(ID != Intrinsic::not_intrinsic);
17987 
17988   llvm::Function *F = CGM.getIntrinsic(ID, IntrinsicTypes);
17989   return Builder.CreateCall(F, Ops, "");
17990 }
17991