1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a generalized class for OpenMP runtime code generation
10 // specialized by GPU targets NVPTX and AMDGCN.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CGOpenMPRuntimeGPU.h"
15 #include "CodeGenFunction.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/DeclOpenMP.h"
18 #include "clang/AST/OpenMPClause.h"
19 #include "clang/AST/StmtOpenMP.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "clang/Basic/Cuda.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/Frontend/OpenMP/OMPGridValues.h"
24 #include "llvm/Support/MathExtras.h"
25
26 using namespace clang;
27 using namespace CodeGen;
28 using namespace llvm::omp;
29
30 namespace {
31 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX.
32 class NVPTXActionTy final : public PrePostActionTy {
33 llvm::FunctionCallee EnterCallee = nullptr;
34 ArrayRef<llvm::Value *> EnterArgs;
35 llvm::FunctionCallee ExitCallee = nullptr;
36 ArrayRef<llvm::Value *> ExitArgs;
37 bool Conditional = false;
38 llvm::BasicBlock *ContBlock = nullptr;
39
40 public:
NVPTXActionTy(llvm::FunctionCallee EnterCallee,ArrayRef<llvm::Value * > EnterArgs,llvm::FunctionCallee ExitCallee,ArrayRef<llvm::Value * > ExitArgs,bool Conditional=false)41 NVPTXActionTy(llvm::FunctionCallee EnterCallee,
42 ArrayRef<llvm::Value *> EnterArgs,
43 llvm::FunctionCallee ExitCallee,
44 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
45 : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
46 ExitArgs(ExitArgs), Conditional(Conditional) {}
Enter(CodeGenFunction & CGF)47 void Enter(CodeGenFunction &CGF) override {
48 llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
49 if (Conditional) {
50 llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
51 auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
52 ContBlock = CGF.createBasicBlock("omp_if.end");
53 // Generate the branch (If-stmt)
54 CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
55 CGF.EmitBlock(ThenBlock);
56 }
57 }
Done(CodeGenFunction & CGF)58 void Done(CodeGenFunction &CGF) {
59 // Emit the rest of blocks/branches
60 CGF.EmitBranch(ContBlock);
61 CGF.EmitBlock(ContBlock, true);
62 }
Exit(CodeGenFunction & CGF)63 void Exit(CodeGenFunction &CGF) override {
64 CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
65 }
66 };
67
68 /// A class to track the execution mode when codegening directives within
69 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry
70 /// to the target region and used by containing directives such as 'parallel'
71 /// to emit optimized code.
72 class ExecutionRuntimeModesRAII {
73 private:
74 CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode =
75 CGOpenMPRuntimeGPU::EM_Unknown;
76 CGOpenMPRuntimeGPU::ExecutionMode &ExecMode;
77
78 public:
ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode & ExecMode,CGOpenMPRuntimeGPU::ExecutionMode EntryMode)79 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode,
80 CGOpenMPRuntimeGPU::ExecutionMode EntryMode)
81 : ExecMode(ExecMode) {
82 SavedExecMode = ExecMode;
83 ExecMode = EntryMode;
84 }
~ExecutionRuntimeModesRAII()85 ~ExecutionRuntimeModesRAII() { ExecMode = SavedExecMode; }
86 };
87
88 /// GPU Configuration: This information can be derived from cuda registers,
89 /// however, providing compile time constants helps generate more efficient
90 /// code. For all practical purposes this is fine because the configuration
91 /// is the same for all known NVPTX architectures.
92 enum MachineConfiguration : unsigned {
93 /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target
94 /// specific Grid Values like GV_Warp_Size, GV_Slot_Size
95
96 /// Global memory alignment for performance.
97 GlobalMemoryAlignment = 128,
98 };
99
getPrivateItem(const Expr * RefExpr)100 static const ValueDecl *getPrivateItem(const Expr *RefExpr) {
101 RefExpr = RefExpr->IgnoreParens();
102 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) {
103 const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
104 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
105 Base = TempASE->getBase()->IgnoreParenImpCasts();
106 RefExpr = Base;
107 } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) {
108 const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
109 while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
110 Base = TempOASE->getBase()->IgnoreParenImpCasts();
111 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
112 Base = TempASE->getBase()->IgnoreParenImpCasts();
113 RefExpr = Base;
114 }
115 RefExpr = RefExpr->IgnoreParenImpCasts();
116 if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr))
117 return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl());
118 const auto *ME = cast<MemberExpr>(RefExpr);
119 return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
120 }
121
122
buildRecordForGlobalizedVars(ASTContext & C,ArrayRef<const ValueDecl * > EscapedDecls,ArrayRef<const ValueDecl * > EscapedDeclsForTeams,llvm::SmallDenseMap<const ValueDecl *,const FieldDecl * > & MappedDeclsFields,int BufSize)123 static RecordDecl *buildRecordForGlobalizedVars(
124 ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls,
125 ArrayRef<const ValueDecl *> EscapedDeclsForTeams,
126 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
127 &MappedDeclsFields, int BufSize) {
128 using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>;
129 if (EscapedDecls.empty() && EscapedDeclsForTeams.empty())
130 return nullptr;
131 SmallVector<VarsDataTy, 4> GlobalizedVars;
132 for (const ValueDecl *D : EscapedDecls)
133 GlobalizedVars.emplace_back(
134 CharUnits::fromQuantity(std::max(
135 C.getDeclAlign(D).getQuantity(),
136 static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))),
137 D);
138 for (const ValueDecl *D : EscapedDeclsForTeams)
139 GlobalizedVars.emplace_back(C.getDeclAlign(D), D);
140 llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) {
141 return L.first > R.first;
142 });
143
144 // Build struct _globalized_locals_ty {
145 // /* globalized vars */[WarSize] align (max(decl_align,
146 // GlobalMemoryAlignment))
147 // /* globalized vars */ for EscapedDeclsForTeams
148 // };
149 RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty");
150 GlobalizedRD->startDefinition();
151 llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped(
152 EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end());
153 for (const auto &Pair : GlobalizedVars) {
154 const ValueDecl *VD = Pair.second;
155 QualType Type = VD->getType();
156 if (Type->isLValueReferenceType())
157 Type = C.getPointerType(Type.getNonReferenceType());
158 else
159 Type = Type.getNonReferenceType();
160 SourceLocation Loc = VD->getLocation();
161 FieldDecl *Field;
162 if (SingleEscaped.count(VD)) {
163 Field = FieldDecl::Create(
164 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
165 C.getTrivialTypeSourceInfo(Type, SourceLocation()),
166 /*BW=*/nullptr, /*Mutable=*/false,
167 /*InitStyle=*/ICIS_NoInit);
168 Field->setAccess(AS_public);
169 if (VD->hasAttrs()) {
170 for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
171 E(VD->getAttrs().end());
172 I != E; ++I)
173 Field->addAttr(*I);
174 }
175 } else {
176 llvm::APInt ArraySize(32, BufSize);
177 Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal,
178 0);
179 Field = FieldDecl::Create(
180 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
181 C.getTrivialTypeSourceInfo(Type, SourceLocation()),
182 /*BW=*/nullptr, /*Mutable=*/false,
183 /*InitStyle=*/ICIS_NoInit);
184 Field->setAccess(AS_public);
185 llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(),
186 static_cast<CharUnits::QuantityType>(
187 GlobalMemoryAlignment)));
188 Field->addAttr(AlignedAttr::CreateImplicit(
189 C, /*IsAlignmentExpr=*/true,
190 IntegerLiteral::Create(C, Align,
191 C.getIntTypeForBitwidth(32, /*Signed=*/0),
192 SourceLocation()),
193 {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned));
194 }
195 GlobalizedRD->addDecl(Field);
196 MappedDeclsFields.try_emplace(VD, Field);
197 }
198 GlobalizedRD->completeDefinition();
199 return GlobalizedRD;
200 }
201
202 /// Get the list of variables that can escape their declaration context.
203 class CheckVarsEscapingDeclContext final
204 : public ConstStmtVisitor<CheckVarsEscapingDeclContext> {
205 CodeGenFunction &CGF;
206 llvm::SetVector<const ValueDecl *> EscapedDecls;
207 llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls;
208 llvm::SmallPtrSet<const Decl *, 4> EscapedParameters;
209 RecordDecl *GlobalizedRD = nullptr;
210 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
211 bool AllEscaped = false;
212 bool IsForCombinedParallelRegion = false;
213
markAsEscaped(const ValueDecl * VD)214 void markAsEscaped(const ValueDecl *VD) {
215 // Do not globalize declare target variables.
216 if (!isa<VarDecl>(VD) ||
217 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
218 return;
219 VD = cast<ValueDecl>(VD->getCanonicalDecl());
220 // Use user-specified allocation.
221 if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>())
222 return;
223 // Variables captured by value must be globalized.
224 if (auto *CSI = CGF.CapturedStmtInfo) {
225 if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) {
226 // Check if need to capture the variable that was already captured by
227 // value in the outer region.
228 if (!IsForCombinedParallelRegion) {
229 if (!FD->hasAttrs())
230 return;
231 const auto *Attr = FD->getAttr<OMPCaptureKindAttr>();
232 if (!Attr)
233 return;
234 if (((Attr->getCaptureKind() != OMPC_map) &&
235 !isOpenMPPrivate(Attr->getCaptureKind())) ||
236 ((Attr->getCaptureKind() == OMPC_map) &&
237 !FD->getType()->isAnyPointerType()))
238 return;
239 }
240 if (!FD->getType()->isReferenceType()) {
241 assert(!VD->getType()->isVariablyModifiedType() &&
242 "Parameter captured by value with variably modified type");
243 EscapedParameters.insert(VD);
244 } else if (!IsForCombinedParallelRegion) {
245 return;
246 }
247 }
248 }
249 if ((!CGF.CapturedStmtInfo ||
250 (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) &&
251 VD->getType()->isReferenceType())
252 // Do not globalize variables with reference type.
253 return;
254 if (VD->getType()->isVariablyModifiedType())
255 EscapedVariableLengthDecls.insert(VD);
256 else
257 EscapedDecls.insert(VD);
258 }
259
VisitValueDecl(const ValueDecl * VD)260 void VisitValueDecl(const ValueDecl *VD) {
261 if (VD->getType()->isLValueReferenceType())
262 markAsEscaped(VD);
263 if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
264 if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) {
265 const bool SavedAllEscaped = AllEscaped;
266 AllEscaped = VD->getType()->isLValueReferenceType();
267 Visit(VarD->getInit());
268 AllEscaped = SavedAllEscaped;
269 }
270 }
271 }
VisitOpenMPCapturedStmt(const CapturedStmt * S,ArrayRef<OMPClause * > Clauses,bool IsCombinedParallelRegion)272 void VisitOpenMPCapturedStmt(const CapturedStmt *S,
273 ArrayRef<OMPClause *> Clauses,
274 bool IsCombinedParallelRegion) {
275 if (!S)
276 return;
277 for (const CapturedStmt::Capture &C : S->captures()) {
278 if (C.capturesVariable() && !C.capturesVariableByCopy()) {
279 const ValueDecl *VD = C.getCapturedVar();
280 bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion;
281 if (IsCombinedParallelRegion) {
282 // Check if the variable is privatized in the combined construct and
283 // those private copies must be shared in the inner parallel
284 // directive.
285 IsForCombinedParallelRegion = false;
286 for (const OMPClause *C : Clauses) {
287 if (!isOpenMPPrivate(C->getClauseKind()) ||
288 C->getClauseKind() == OMPC_reduction ||
289 C->getClauseKind() == OMPC_linear ||
290 C->getClauseKind() == OMPC_private)
291 continue;
292 ArrayRef<const Expr *> Vars;
293 if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C))
294 Vars = PC->getVarRefs();
295 else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C))
296 Vars = PC->getVarRefs();
297 else
298 llvm_unreachable("Unexpected clause.");
299 for (const auto *E : Vars) {
300 const Decl *D =
301 cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
302 if (D == VD->getCanonicalDecl()) {
303 IsForCombinedParallelRegion = true;
304 break;
305 }
306 }
307 if (IsForCombinedParallelRegion)
308 break;
309 }
310 }
311 markAsEscaped(VD);
312 if (isa<OMPCapturedExprDecl>(VD))
313 VisitValueDecl(VD);
314 IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion;
315 }
316 }
317 }
318
buildRecordForGlobalizedVars(bool IsInTTDRegion)319 void buildRecordForGlobalizedVars(bool IsInTTDRegion) {
320 assert(!GlobalizedRD &&
321 "Record for globalized variables is built already.");
322 ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams;
323 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
324 if (IsInTTDRegion)
325 EscapedDeclsForTeams = EscapedDecls.getArrayRef();
326 else
327 EscapedDeclsForParallel = EscapedDecls.getArrayRef();
328 GlobalizedRD = ::buildRecordForGlobalizedVars(
329 CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams,
330 MappedDeclsFields, WarpSize);
331 }
332
333 public:
CheckVarsEscapingDeclContext(CodeGenFunction & CGF,ArrayRef<const ValueDecl * > TeamsReductions)334 CheckVarsEscapingDeclContext(CodeGenFunction &CGF,
335 ArrayRef<const ValueDecl *> TeamsReductions)
336 : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) {
337 }
338 virtual ~CheckVarsEscapingDeclContext() = default;
VisitDeclStmt(const DeclStmt * S)339 void VisitDeclStmt(const DeclStmt *S) {
340 if (!S)
341 return;
342 for (const Decl *D : S->decls())
343 if (const auto *VD = dyn_cast_or_null<ValueDecl>(D))
344 VisitValueDecl(VD);
345 }
VisitOMPExecutableDirective(const OMPExecutableDirective * D)346 void VisitOMPExecutableDirective(const OMPExecutableDirective *D) {
347 if (!D)
348 return;
349 if (!D->hasAssociatedStmt())
350 return;
351 if (const auto *S =
352 dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) {
353 // Do not analyze directives that do not actually require capturing,
354 // like `omp for` or `omp simd` directives.
355 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
356 getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind());
357 if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) {
358 VisitStmt(S->getCapturedStmt());
359 return;
360 }
361 VisitOpenMPCapturedStmt(
362 S, D->clauses(),
363 CaptureRegions.back() == OMPD_parallel &&
364 isOpenMPDistributeDirective(D->getDirectiveKind()));
365 }
366 }
VisitCapturedStmt(const CapturedStmt * S)367 void VisitCapturedStmt(const CapturedStmt *S) {
368 if (!S)
369 return;
370 for (const CapturedStmt::Capture &C : S->captures()) {
371 if (C.capturesVariable() && !C.capturesVariableByCopy()) {
372 const ValueDecl *VD = C.getCapturedVar();
373 markAsEscaped(VD);
374 if (isa<OMPCapturedExprDecl>(VD))
375 VisitValueDecl(VD);
376 }
377 }
378 }
VisitLambdaExpr(const LambdaExpr * E)379 void VisitLambdaExpr(const LambdaExpr *E) {
380 if (!E)
381 return;
382 for (const LambdaCapture &C : E->captures()) {
383 if (C.capturesVariable()) {
384 if (C.getCaptureKind() == LCK_ByRef) {
385 const ValueDecl *VD = C.getCapturedVar();
386 markAsEscaped(VD);
387 if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD))
388 VisitValueDecl(VD);
389 }
390 }
391 }
392 }
VisitBlockExpr(const BlockExpr * E)393 void VisitBlockExpr(const BlockExpr *E) {
394 if (!E)
395 return;
396 for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) {
397 if (C.isByRef()) {
398 const VarDecl *VD = C.getVariable();
399 markAsEscaped(VD);
400 if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture())
401 VisitValueDecl(VD);
402 }
403 }
404 }
VisitCallExpr(const CallExpr * E)405 void VisitCallExpr(const CallExpr *E) {
406 if (!E)
407 return;
408 for (const Expr *Arg : E->arguments()) {
409 if (!Arg)
410 continue;
411 if (Arg->isLValue()) {
412 const bool SavedAllEscaped = AllEscaped;
413 AllEscaped = true;
414 Visit(Arg);
415 AllEscaped = SavedAllEscaped;
416 } else {
417 Visit(Arg);
418 }
419 }
420 Visit(E->getCallee());
421 }
VisitDeclRefExpr(const DeclRefExpr * E)422 void VisitDeclRefExpr(const DeclRefExpr *E) {
423 if (!E)
424 return;
425 const ValueDecl *VD = E->getDecl();
426 if (AllEscaped)
427 markAsEscaped(VD);
428 if (isa<OMPCapturedExprDecl>(VD))
429 VisitValueDecl(VD);
430 else if (VD->isInitCapture())
431 VisitValueDecl(VD);
432 }
VisitUnaryOperator(const UnaryOperator * E)433 void VisitUnaryOperator(const UnaryOperator *E) {
434 if (!E)
435 return;
436 if (E->getOpcode() == UO_AddrOf) {
437 const bool SavedAllEscaped = AllEscaped;
438 AllEscaped = true;
439 Visit(E->getSubExpr());
440 AllEscaped = SavedAllEscaped;
441 } else {
442 Visit(E->getSubExpr());
443 }
444 }
VisitImplicitCastExpr(const ImplicitCastExpr * E)445 void VisitImplicitCastExpr(const ImplicitCastExpr *E) {
446 if (!E)
447 return;
448 if (E->getCastKind() == CK_ArrayToPointerDecay) {
449 const bool SavedAllEscaped = AllEscaped;
450 AllEscaped = true;
451 Visit(E->getSubExpr());
452 AllEscaped = SavedAllEscaped;
453 } else {
454 Visit(E->getSubExpr());
455 }
456 }
VisitExpr(const Expr * E)457 void VisitExpr(const Expr *E) {
458 if (!E)
459 return;
460 bool SavedAllEscaped = AllEscaped;
461 if (!E->isLValue())
462 AllEscaped = false;
463 for (const Stmt *Child : E->children())
464 if (Child)
465 Visit(Child);
466 AllEscaped = SavedAllEscaped;
467 }
VisitStmt(const Stmt * S)468 void VisitStmt(const Stmt *S) {
469 if (!S)
470 return;
471 for (const Stmt *Child : S->children())
472 if (Child)
473 Visit(Child);
474 }
475
476 /// Returns the record that handles all the escaped local variables and used
477 /// instead of their original storage.
getGlobalizedRecord(bool IsInTTDRegion)478 const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) {
479 if (!GlobalizedRD)
480 buildRecordForGlobalizedVars(IsInTTDRegion);
481 return GlobalizedRD;
482 }
483
484 /// Returns the field in the globalized record for the escaped variable.
getFieldForGlobalizedVar(const ValueDecl * VD) const485 const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const {
486 assert(GlobalizedRD &&
487 "Record for globalized variables must be generated already.");
488 auto I = MappedDeclsFields.find(VD);
489 if (I == MappedDeclsFields.end())
490 return nullptr;
491 return I->getSecond();
492 }
493
494 /// Returns the list of the escaped local variables/parameters.
getEscapedDecls() const495 ArrayRef<const ValueDecl *> getEscapedDecls() const {
496 return EscapedDecls.getArrayRef();
497 }
498
499 /// Checks if the escaped local variable is actually a parameter passed by
500 /// value.
getEscapedParameters() const501 const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const {
502 return EscapedParameters;
503 }
504
505 /// Returns the list of the escaped variables with the variably modified
506 /// types.
getEscapedVariableLengthDecls() const507 ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const {
508 return EscapedVariableLengthDecls.getArrayRef();
509 }
510 };
511 } // anonymous namespace
512
513 /// Get the id of the warp in the block.
514 /// We assume that the warp size is 32, which is always the case
515 /// on the NVPTX device, to generate more efficient code.
getNVPTXWarpID(CodeGenFunction & CGF)516 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) {
517 CGBuilderTy &Bld = CGF.Builder;
518 unsigned LaneIDBits =
519 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
520 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
521 return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id");
522 }
523
524 /// Get the id of the current lane in the Warp.
525 /// We assume that the warp size is 32, which is always the case
526 /// on the NVPTX device, to generate more efficient code.
getNVPTXLaneID(CodeGenFunction & CGF)527 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) {
528 CGBuilderTy &Bld = CGF.Builder;
529 unsigned LaneIDBits =
530 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
531 unsigned LaneIDMask = ~0u >> (32u - LaneIDBits);
532 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
533 return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask),
534 "nvptx_lane_id");
535 }
536
537 CGOpenMPRuntimeGPU::ExecutionMode
getExecutionMode() const538 CGOpenMPRuntimeGPU::getExecutionMode() const {
539 return CurrentExecutionMode;
540 }
541
542 static CGOpenMPRuntimeGPU::DataSharingMode
getDataSharingMode(CodeGenModule & CGM)543 getDataSharingMode(CodeGenModule &CGM) {
544 return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA
545 : CGOpenMPRuntimeGPU::Generic;
546 }
547
548 /// Check for inner (nested) SPMD construct, if any
hasNestedSPMDDirective(ASTContext & Ctx,const OMPExecutableDirective & D)549 static bool hasNestedSPMDDirective(ASTContext &Ctx,
550 const OMPExecutableDirective &D) {
551 const auto *CS = D.getInnermostCapturedStmt();
552 const auto *Body =
553 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
554 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
555
556 if (const auto *NestedDir =
557 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
558 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
559 switch (D.getDirectiveKind()) {
560 case OMPD_target:
561 if (isOpenMPParallelDirective(DKind))
562 return true;
563 if (DKind == OMPD_teams) {
564 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
565 /*IgnoreCaptured=*/true);
566 if (!Body)
567 return false;
568 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
569 if (const auto *NND =
570 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
571 DKind = NND->getDirectiveKind();
572 if (isOpenMPParallelDirective(DKind))
573 return true;
574 }
575 }
576 return false;
577 case OMPD_target_teams:
578 return isOpenMPParallelDirective(DKind);
579 case OMPD_target_simd:
580 case OMPD_target_parallel:
581 case OMPD_target_parallel_for:
582 case OMPD_target_parallel_for_simd:
583 case OMPD_target_teams_distribute:
584 case OMPD_target_teams_distribute_simd:
585 case OMPD_target_teams_distribute_parallel_for:
586 case OMPD_target_teams_distribute_parallel_for_simd:
587 case OMPD_parallel:
588 case OMPD_for:
589 case OMPD_parallel_for:
590 case OMPD_parallel_master:
591 case OMPD_parallel_sections:
592 case OMPD_for_simd:
593 case OMPD_parallel_for_simd:
594 case OMPD_cancel:
595 case OMPD_cancellation_point:
596 case OMPD_ordered:
597 case OMPD_threadprivate:
598 case OMPD_allocate:
599 case OMPD_task:
600 case OMPD_simd:
601 case OMPD_sections:
602 case OMPD_section:
603 case OMPD_single:
604 case OMPD_master:
605 case OMPD_critical:
606 case OMPD_taskyield:
607 case OMPD_barrier:
608 case OMPD_taskwait:
609 case OMPD_taskgroup:
610 case OMPD_atomic:
611 case OMPD_flush:
612 case OMPD_depobj:
613 case OMPD_scan:
614 case OMPD_teams:
615 case OMPD_target_data:
616 case OMPD_target_exit_data:
617 case OMPD_target_enter_data:
618 case OMPD_distribute:
619 case OMPD_distribute_simd:
620 case OMPD_distribute_parallel_for:
621 case OMPD_distribute_parallel_for_simd:
622 case OMPD_teams_distribute:
623 case OMPD_teams_distribute_simd:
624 case OMPD_teams_distribute_parallel_for:
625 case OMPD_teams_distribute_parallel_for_simd:
626 case OMPD_target_update:
627 case OMPD_declare_simd:
628 case OMPD_declare_variant:
629 case OMPD_begin_declare_variant:
630 case OMPD_end_declare_variant:
631 case OMPD_declare_target:
632 case OMPD_end_declare_target:
633 case OMPD_declare_reduction:
634 case OMPD_declare_mapper:
635 case OMPD_taskloop:
636 case OMPD_taskloop_simd:
637 case OMPD_master_taskloop:
638 case OMPD_master_taskloop_simd:
639 case OMPD_parallel_master_taskloop:
640 case OMPD_parallel_master_taskloop_simd:
641 case OMPD_requires:
642 case OMPD_unknown:
643 default:
644 llvm_unreachable("Unexpected directive.");
645 }
646 }
647
648 return false;
649 }
650
supportsSPMDExecutionMode(ASTContext & Ctx,const OMPExecutableDirective & D)651 static bool supportsSPMDExecutionMode(ASTContext &Ctx,
652 const OMPExecutableDirective &D) {
653 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
654 switch (DirectiveKind) {
655 case OMPD_target:
656 case OMPD_target_teams:
657 return hasNestedSPMDDirective(Ctx, D);
658 case OMPD_target_parallel:
659 case OMPD_target_parallel_for:
660 case OMPD_target_parallel_for_simd:
661 case OMPD_target_teams_distribute_parallel_for:
662 case OMPD_target_teams_distribute_parallel_for_simd:
663 case OMPD_target_simd:
664 case OMPD_target_teams_distribute_simd:
665 return true;
666 case OMPD_target_teams_distribute:
667 return false;
668 case OMPD_parallel:
669 case OMPD_for:
670 case OMPD_parallel_for:
671 case OMPD_parallel_master:
672 case OMPD_parallel_sections:
673 case OMPD_for_simd:
674 case OMPD_parallel_for_simd:
675 case OMPD_cancel:
676 case OMPD_cancellation_point:
677 case OMPD_ordered:
678 case OMPD_threadprivate:
679 case OMPD_allocate:
680 case OMPD_task:
681 case OMPD_simd:
682 case OMPD_sections:
683 case OMPD_section:
684 case OMPD_single:
685 case OMPD_master:
686 case OMPD_critical:
687 case OMPD_taskyield:
688 case OMPD_barrier:
689 case OMPD_taskwait:
690 case OMPD_taskgroup:
691 case OMPD_atomic:
692 case OMPD_flush:
693 case OMPD_depobj:
694 case OMPD_scan:
695 case OMPD_teams:
696 case OMPD_target_data:
697 case OMPD_target_exit_data:
698 case OMPD_target_enter_data:
699 case OMPD_distribute:
700 case OMPD_distribute_simd:
701 case OMPD_distribute_parallel_for:
702 case OMPD_distribute_parallel_for_simd:
703 case OMPD_teams_distribute:
704 case OMPD_teams_distribute_simd:
705 case OMPD_teams_distribute_parallel_for:
706 case OMPD_teams_distribute_parallel_for_simd:
707 case OMPD_target_update:
708 case OMPD_declare_simd:
709 case OMPD_declare_variant:
710 case OMPD_begin_declare_variant:
711 case OMPD_end_declare_variant:
712 case OMPD_declare_target:
713 case OMPD_end_declare_target:
714 case OMPD_declare_reduction:
715 case OMPD_declare_mapper:
716 case OMPD_taskloop:
717 case OMPD_taskloop_simd:
718 case OMPD_master_taskloop:
719 case OMPD_master_taskloop_simd:
720 case OMPD_parallel_master_taskloop:
721 case OMPD_parallel_master_taskloop_simd:
722 case OMPD_requires:
723 case OMPD_unknown:
724 default:
725 break;
726 }
727 llvm_unreachable(
728 "Unknown programming model for OpenMP directive on NVPTX target.");
729 }
730
emitNonSPMDKernel(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)731 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D,
732 StringRef ParentName,
733 llvm::Function *&OutlinedFn,
734 llvm::Constant *&OutlinedFnID,
735 bool IsOffloadEntry,
736 const RegionCodeGenTy &CodeGen) {
737 ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode, EM_NonSPMD);
738 EntryFunctionState EST;
739 WrapperFunctionsMap.clear();
740
741 // Emit target region as a standalone region.
742 class NVPTXPrePostActionTy : public PrePostActionTy {
743 CGOpenMPRuntimeGPU::EntryFunctionState &EST;
744
745 public:
746 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST)
747 : EST(EST) {}
748 void Enter(CodeGenFunction &CGF) override {
749 auto &RT =
750 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
751 RT.emitKernelInit(CGF, EST, /* IsSPMD */ false);
752 // Skip target region initialization.
753 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
754 }
755 void Exit(CodeGenFunction &CGF) override {
756 auto &RT =
757 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
758 RT.clearLocThreadIdInsertPt(CGF);
759 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false);
760 }
761 } Action(EST);
762 CodeGen.setAction(Action);
763 IsInTTDRegion = true;
764 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
765 IsOffloadEntry, CodeGen);
766 IsInTTDRegion = false;
767 }
768
emitKernelInit(CodeGenFunction & CGF,EntryFunctionState & EST,bool IsSPMD)769 void CGOpenMPRuntimeGPU::emitKernelInit(CodeGenFunction &CGF,
770 EntryFunctionState &EST, bool IsSPMD) {
771 CGBuilderTy &Bld = CGF.Builder;
772 Bld.restoreIP(OMPBuilder.createTargetInit(Bld, IsSPMD));
773 if (!IsSPMD)
774 emitGenericVarsProlog(CGF, EST.Loc);
775 }
776
emitKernelDeinit(CodeGenFunction & CGF,EntryFunctionState & EST,bool IsSPMD)777 void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF,
778 EntryFunctionState &EST,
779 bool IsSPMD) {
780 if (!IsSPMD)
781 emitGenericVarsEpilog(CGF);
782
783 CGBuilderTy &Bld = CGF.Builder;
784 OMPBuilder.createTargetDeinit(Bld, IsSPMD);
785 }
786
emitSPMDKernel(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)787 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D,
788 StringRef ParentName,
789 llvm::Function *&OutlinedFn,
790 llvm::Constant *&OutlinedFnID,
791 bool IsOffloadEntry,
792 const RegionCodeGenTy &CodeGen) {
793 ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode, EM_SPMD);
794 EntryFunctionState EST;
795
796 // Emit target region as a standalone region.
797 class NVPTXPrePostActionTy : public PrePostActionTy {
798 CGOpenMPRuntimeGPU &RT;
799 CGOpenMPRuntimeGPU::EntryFunctionState &EST;
800
801 public:
802 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT,
803 CGOpenMPRuntimeGPU::EntryFunctionState &EST)
804 : RT(RT), EST(EST) {}
805 void Enter(CodeGenFunction &CGF) override {
806 RT.emitKernelInit(CGF, EST, /* IsSPMD */ true);
807 // Skip target region initialization.
808 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
809 }
810 void Exit(CodeGenFunction &CGF) override {
811 RT.clearLocThreadIdInsertPt(CGF);
812 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true);
813 }
814 } Action(*this, EST);
815 CodeGen.setAction(Action);
816 IsInTTDRegion = true;
817 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
818 IsOffloadEntry, CodeGen);
819 IsInTTDRegion = false;
820 }
821
822 // Create a unique global variable to indicate the execution mode of this target
823 // region. The execution mode is either 'generic', or 'spmd' depending on the
824 // target directive. This variable is picked up by the offload library to setup
825 // the device appropriately before kernel launch. If the execution mode is
826 // 'generic', the runtime reserves one warp for the master, otherwise, all
827 // warps participate in parallel work.
setPropertyExecutionMode(CodeGenModule & CGM,StringRef Name,bool Mode)828 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name,
829 bool Mode) {
830 auto *GVMode = new llvm::GlobalVariable(
831 CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
832 llvm::GlobalValue::WeakAnyLinkage,
833 llvm::ConstantInt::get(CGM.Int8Ty, Mode ? OMP_TGT_EXEC_MODE_SPMD
834 : OMP_TGT_EXEC_MODE_GENERIC),
835 Twine(Name, "_exec_mode"));
836 GVMode->setVisibility(llvm::GlobalVariable::ProtectedVisibility);
837 CGM.addCompilerUsedGlobal(GVMode);
838 }
839
emitTargetOutlinedFunction(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)840 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction(
841 const OMPExecutableDirective &D, StringRef ParentName,
842 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
843 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
844 if (!IsOffloadEntry) // Nothing to do.
845 return;
846
847 assert(!ParentName.empty() && "Invalid target region parent name!");
848
849 bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D);
850 if (Mode)
851 emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
852 CodeGen);
853 else
854 emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
855 CodeGen);
856
857 setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode);
858 }
859
CGOpenMPRuntimeGPU(CodeGenModule & CGM)860 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM)
861 : CGOpenMPRuntime(CGM) {
862 llvm::OpenMPIRBuilderConfig Config(CGM.getLangOpts().OpenMPIsDevice, true,
863 hasRequiresUnifiedSharedMemory(),
864 CGM.getLangOpts().OpenMPOffloadMandatory);
865 OMPBuilder.setConfig(Config);
866 OffloadEntriesInfoManager.setConfig(Config);
867
868 if (!CGM.getLangOpts().OpenMPIsDevice)
869 llvm_unreachable("OpenMP can only handle device code.");
870
871 llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder();
872 if (CGM.getLangOpts().NoGPULib || CGM.getLangOpts().OMPHostIRFile.empty())
873 return;
874
875 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTargetDebug,
876 "__omp_rtl_debug_kind");
877 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTeamSubscription,
878 "__omp_rtl_assume_teams_oversubscription");
879 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPThreadSubscription,
880 "__omp_rtl_assume_threads_oversubscription");
881 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPNoThreadState,
882 "__omp_rtl_assume_no_thread_state");
883 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPNoNestedParallelism,
884 "__omp_rtl_assume_no_nested_parallelism");
885 }
886
emitProcBindClause(CodeGenFunction & CGF,ProcBindKind ProcBind,SourceLocation Loc)887 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF,
888 ProcBindKind ProcBind,
889 SourceLocation Loc) {
890 // Do nothing in case of SPMD mode and L0 parallel.
891 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
892 return;
893
894 CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc);
895 }
896
emitNumThreadsClause(CodeGenFunction & CGF,llvm::Value * NumThreads,SourceLocation Loc)897 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF,
898 llvm::Value *NumThreads,
899 SourceLocation Loc) {
900 // Nothing to do.
901 }
902
emitNumTeamsClause(CodeGenFunction & CGF,const Expr * NumTeams,const Expr * ThreadLimit,SourceLocation Loc)903 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF,
904 const Expr *NumTeams,
905 const Expr *ThreadLimit,
906 SourceLocation Loc) {}
907
emitParallelOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)908 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction(
909 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
910 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
911 // Emit target region as a standalone region.
912 bool PrevIsInTTDRegion = IsInTTDRegion;
913 IsInTTDRegion = false;
914 auto *OutlinedFun =
915 cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction(
916 D, ThreadIDVar, InnermostKind, CodeGen));
917 IsInTTDRegion = PrevIsInTTDRegion;
918 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) {
919 llvm::Function *WrapperFun =
920 createParallelDataSharingWrapper(OutlinedFun, D);
921 WrapperFunctionsMap[OutlinedFun] = WrapperFun;
922 }
923
924 return OutlinedFun;
925 }
926
927 /// Get list of lastprivate variables from the teams distribute ... or
928 /// teams {distribute ...} directives.
929 static void
getDistributeLastprivateVars(ASTContext & Ctx,const OMPExecutableDirective & D,llvm::SmallVectorImpl<const ValueDecl * > & Vars)930 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D,
931 llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
932 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
933 "expected teams directive.");
934 const OMPExecutableDirective *Dir = &D;
935 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
936 if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild(
937 Ctx,
938 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(
939 /*IgnoreCaptured=*/true))) {
940 Dir = dyn_cast_or_null<OMPExecutableDirective>(S);
941 if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind()))
942 Dir = nullptr;
943 }
944 }
945 if (!Dir)
946 return;
947 for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) {
948 for (const Expr *E : C->getVarRefs())
949 Vars.push_back(getPrivateItem(E));
950 }
951 }
952
953 /// Get list of reduction variables from the teams ... directives.
954 static void
getTeamsReductionVars(ASTContext & Ctx,const OMPExecutableDirective & D,llvm::SmallVectorImpl<const ValueDecl * > & Vars)955 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D,
956 llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
957 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
958 "expected teams directive.");
959 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
960 for (const Expr *E : C->privates())
961 Vars.push_back(getPrivateItem(E));
962 }
963 }
964
emitTeamsOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)965 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction(
966 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
967 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
968 SourceLocation Loc = D.getBeginLoc();
969
970 const RecordDecl *GlobalizedRD = nullptr;
971 llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions;
972 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
973 unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size;
974 // Globalize team reductions variable unconditionally in all modes.
975 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
976 getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions);
977 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
978 getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions);
979 if (!LastPrivatesReductions.empty()) {
980 GlobalizedRD = ::buildRecordForGlobalizedVars(
981 CGM.getContext(), std::nullopt, LastPrivatesReductions,
982 MappedDeclsFields, WarpSize);
983 }
984 } else if (!LastPrivatesReductions.empty()) {
985 assert(!TeamAndReductions.first &&
986 "Previous team declaration is not expected.");
987 TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl();
988 std::swap(TeamAndReductions.second, LastPrivatesReductions);
989 }
990
991 // Emit target region as a standalone region.
992 class NVPTXPrePostActionTy : public PrePostActionTy {
993 SourceLocation &Loc;
994 const RecordDecl *GlobalizedRD;
995 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
996 &MappedDeclsFields;
997
998 public:
999 NVPTXPrePostActionTy(
1000 SourceLocation &Loc, const RecordDecl *GlobalizedRD,
1001 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1002 &MappedDeclsFields)
1003 : Loc(Loc), GlobalizedRD(GlobalizedRD),
1004 MappedDeclsFields(MappedDeclsFields) {}
1005 void Enter(CodeGenFunction &CGF) override {
1006 auto &Rt =
1007 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1008 if (GlobalizedRD) {
1009 auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
1010 I->getSecond().MappedParams =
1011 std::make_unique<CodeGenFunction::OMPMapVars>();
1012 DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
1013 for (const auto &Pair : MappedDeclsFields) {
1014 assert(Pair.getFirst()->isCanonicalDecl() &&
1015 "Expected canonical declaration");
1016 Data.insert(std::make_pair(Pair.getFirst(), MappedVarData()));
1017 }
1018 }
1019 Rt.emitGenericVarsProlog(CGF, Loc);
1020 }
1021 void Exit(CodeGenFunction &CGF) override {
1022 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
1023 .emitGenericVarsEpilog(CGF);
1024 }
1025 } Action(Loc, GlobalizedRD, MappedDeclsFields);
1026 CodeGen.setAction(Action);
1027 llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction(
1028 D, ThreadIDVar, InnermostKind, CodeGen);
1029
1030 return OutlinedFun;
1031 }
1032
emitGenericVarsProlog(CodeGenFunction & CGF,SourceLocation Loc,bool WithSPMDCheck)1033 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF,
1034 SourceLocation Loc,
1035 bool WithSPMDCheck) {
1036 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
1037 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1038 return;
1039
1040 CGBuilderTy &Bld = CGF.Builder;
1041
1042 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1043 if (I == FunctionGlobalizedDecls.end())
1044 return;
1045
1046 for (auto &Rec : I->getSecond().LocalVarData) {
1047 const auto *VD = cast<VarDecl>(Rec.first);
1048 bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first);
1049 QualType VarTy = VD->getType();
1050
1051 // Get the local allocation of a firstprivate variable before sharing
1052 llvm::Value *ParValue;
1053 if (EscapedParam) {
1054 LValue ParLVal =
1055 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
1056 ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc);
1057 }
1058
1059 // Allocate space for the variable to be globalized
1060 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
1061 llvm::CallBase *VoidPtr =
1062 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1063 CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1064 AllocArgs, VD->getName());
1065 // FIXME: We should use the variables actual alignment as an argument.
1066 VoidPtr->addRetAttr(llvm::Attribute::get(
1067 CGM.getLLVMContext(), llvm::Attribute::Alignment,
1068 CGM.getContext().getTargetInfo().getNewAlign() / 8));
1069
1070 // Cast the void pointer and get the address of the globalized variable.
1071 llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo();
1072 llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1073 VoidPtr, VarPtrTy, VD->getName() + "_on_stack");
1074 LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy);
1075 Rec.second.PrivateAddr = VarAddr.getAddress(CGF);
1076 Rec.second.GlobalizedVal = VoidPtr;
1077
1078 // Assign the local allocation to the newly globalized location.
1079 if (EscapedParam) {
1080 CGF.EmitStoreOfScalar(ParValue, VarAddr);
1081 I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF));
1082 }
1083 if (auto *DI = CGF.getDebugInfo())
1084 VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation()));
1085 }
1086 for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) {
1087 // Use actual memory size of the VLA object including the padding
1088 // for alignment purposes.
1089 llvm::Value *Size = CGF.getTypeSize(VD->getType());
1090 CharUnits Align = CGM.getContext().getDeclAlign(VD);
1091 Size = Bld.CreateNUWAdd(
1092 Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1));
1093 llvm::Value *AlignVal =
1094 llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity());
1095
1096 Size = Bld.CreateUDiv(Size, AlignVal);
1097 Size = Bld.CreateNUWMul(Size, AlignVal);
1098
1099 // Allocate space for this VLA object to be globalized.
1100 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
1101 llvm::CallBase *VoidPtr =
1102 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1103 CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1104 AllocArgs, VD->getName());
1105 VoidPtr->addRetAttr(
1106 llvm::Attribute::get(CGM.getLLVMContext(), llvm::Attribute::Alignment,
1107 CGM.getContext().getTargetInfo().getNewAlign()));
1108
1109 I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(
1110 std::pair<llvm::Value *, llvm::Value *>(
1111 {VoidPtr, CGF.getTypeSize(VD->getType())}));
1112 LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(),
1113 CGM.getContext().getDeclAlign(VD),
1114 AlignmentSource::Decl);
1115 I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD),
1116 Base.getAddress(CGF));
1117 }
1118 I->getSecond().MappedParams->apply(CGF);
1119 }
1120
emitGenericVarsEpilog(CodeGenFunction & CGF,bool WithSPMDCheck)1121 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF,
1122 bool WithSPMDCheck) {
1123 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
1124 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1125 return;
1126
1127 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1128 if (I != FunctionGlobalizedDecls.end()) {
1129 // Deallocate the memory for each globalized VLA object
1130 for (auto AddrSizePair :
1131 llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) {
1132 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1133 CGM.getModule(), OMPRTL___kmpc_free_shared),
1134 {AddrSizePair.first, AddrSizePair.second});
1135 }
1136 // Deallocate the memory for each globalized value
1137 for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) {
1138 const auto *VD = cast<VarDecl>(Rec.first);
1139 I->getSecond().MappedParams->restore(CGF);
1140
1141 llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal,
1142 CGF.getTypeSize(VD->getType())};
1143 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1144 CGM.getModule(), OMPRTL___kmpc_free_shared),
1145 FreeArgs);
1146 }
1147 }
1148 }
1149
emitTeamsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars)1150 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF,
1151 const OMPExecutableDirective &D,
1152 SourceLocation Loc,
1153 llvm::Function *OutlinedFn,
1154 ArrayRef<llvm::Value *> CapturedVars) {
1155 if (!CGF.HaveInsertPoint())
1156 return;
1157
1158 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
1159 /*Name=*/".zero.addr");
1160 CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
1161 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
1162 OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer());
1163 OutlinedFnArgs.push_back(ZeroAddr.getPointer());
1164 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
1165 emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
1166 }
1167
emitParallelCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars,const Expr * IfCond,llvm::Value * NumThreads)1168 void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF,
1169 SourceLocation Loc,
1170 llvm::Function *OutlinedFn,
1171 ArrayRef<llvm::Value *> CapturedVars,
1172 const Expr *IfCond,
1173 llvm::Value *NumThreads) {
1174 if (!CGF.HaveInsertPoint())
1175 return;
1176
1177 auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, IfCond,
1178 NumThreads](CodeGenFunction &CGF,
1179 PrePostActionTy &Action) {
1180 CGBuilderTy &Bld = CGF.Builder;
1181 llvm::Value *NumThreadsVal = NumThreads;
1182 llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn];
1183 llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
1184 if (WFn)
1185 ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy);
1186 llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy);
1187
1188 // Create a private scope that will globalize the arguments
1189 // passed from the outside of the target region.
1190 // TODO: Is that needed?
1191 CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF);
1192
1193 Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca(
1194 llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()),
1195 "captured_vars_addrs");
1196 // There's something to share.
1197 if (!CapturedVars.empty()) {
1198 // Prepare for parallel region. Indicate the outlined function.
1199 ASTContext &Ctx = CGF.getContext();
1200 unsigned Idx = 0;
1201 for (llvm::Value *V : CapturedVars) {
1202 Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx);
1203 llvm::Value *PtrV;
1204 if (V->getType()->isIntegerTy())
1205 PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy);
1206 else
1207 PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy);
1208 CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false,
1209 Ctx.getPointerType(Ctx.VoidPtrTy));
1210 ++Idx;
1211 }
1212 }
1213
1214 llvm::Value *IfCondVal = nullptr;
1215 if (IfCond)
1216 IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty,
1217 /* isSigned */ false);
1218 else
1219 IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1);
1220
1221 if (!NumThreadsVal)
1222 NumThreadsVal = llvm::ConstantInt::get(CGF.Int32Ty, -1);
1223 else
1224 NumThreadsVal = Bld.CreateZExtOrTrunc(NumThreadsVal, CGF.Int32Ty),
1225
1226 assert(IfCondVal && "Expected a value");
1227 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
1228 llvm::Value *Args[] = {
1229 RTLoc,
1230 getThreadID(CGF, Loc),
1231 IfCondVal,
1232 NumThreadsVal,
1233 llvm::ConstantInt::get(CGF.Int32Ty, -1),
1234 FnPtr,
1235 ID,
1236 Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(),
1237 CGF.VoidPtrPtrTy),
1238 llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())};
1239 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1240 CGM.getModule(), OMPRTL___kmpc_parallel_51),
1241 Args);
1242 };
1243
1244 RegionCodeGenTy RCG(ParallelGen);
1245 RCG(CGF);
1246 }
1247
syncCTAThreads(CodeGenFunction & CGF)1248 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) {
1249 // Always emit simple barriers!
1250 if (!CGF.HaveInsertPoint())
1251 return;
1252 // Build call __kmpc_barrier_simple_spmd(nullptr, 0);
1253 // This function does not use parameters, so we can emit just default values.
1254 llvm::Value *Args[] = {
1255 llvm::ConstantPointerNull::get(
1256 cast<llvm::PointerType>(getIdentTyPointerTy())),
1257 llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)};
1258 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1259 CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd),
1260 Args);
1261 }
1262
emitBarrierCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind Kind,bool,bool)1263 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF,
1264 SourceLocation Loc,
1265 OpenMPDirectiveKind Kind, bool,
1266 bool) {
1267 // Always emit simple barriers!
1268 if (!CGF.HaveInsertPoint())
1269 return;
1270 // Build call __kmpc_cancel_barrier(loc, thread_id);
1271 unsigned Flags = getDefaultFlagsForBarriers(Kind);
1272 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
1273 getThreadID(CGF, Loc)};
1274
1275 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1276 CGM.getModule(), OMPRTL___kmpc_barrier),
1277 Args);
1278 }
1279
emitCriticalRegion(CodeGenFunction & CGF,StringRef CriticalName,const RegionCodeGenTy & CriticalOpGen,SourceLocation Loc,const Expr * Hint)1280 void CGOpenMPRuntimeGPU::emitCriticalRegion(
1281 CodeGenFunction &CGF, StringRef CriticalName,
1282 const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
1283 const Expr *Hint) {
1284 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop");
1285 llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test");
1286 llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync");
1287 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body");
1288 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit");
1289
1290 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1291
1292 // Get the mask of active threads in the warp.
1293 llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1294 CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask));
1295 // Fetch team-local id of the thread.
1296 llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
1297
1298 // Get the width of the team.
1299 llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF);
1300
1301 // Initialize the counter variable for the loop.
1302 QualType Int32Ty =
1303 CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0);
1304 Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter");
1305 LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty);
1306 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal,
1307 /*isInit=*/true);
1308
1309 // Block checks if loop counter exceeds upper bound.
1310 CGF.EmitBlock(LoopBB);
1311 llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1312 llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth);
1313 CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB);
1314
1315 // Block tests which single thread should execute region, and which threads
1316 // should go straight to synchronisation point.
1317 CGF.EmitBlock(TestBB);
1318 CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1319 llvm::Value *CmpThreadToCounter =
1320 CGF.Builder.CreateICmpEQ(ThreadID, CounterVal);
1321 CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB);
1322
1323 // Block emits the body of the critical region.
1324 CGF.EmitBlock(BodyBB);
1325
1326 // Output the critical statement.
1327 CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc,
1328 Hint);
1329
1330 // After the body surrounded by the critical region, the single executing
1331 // thread will jump to the synchronisation point.
1332 // Block waits for all threads in current team to finish then increments the
1333 // counter variable and returns to the loop.
1334 CGF.EmitBlock(SyncBB);
1335 // Reconverge active threads in the warp.
1336 (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1337 CGM.getModule(), OMPRTL___kmpc_syncwarp),
1338 Mask);
1339
1340 llvm::Value *IncCounterVal =
1341 CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1));
1342 CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal);
1343 CGF.EmitBranch(LoopBB);
1344
1345 // Block that is reached when all threads in the team complete the region.
1346 CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1347 }
1348
1349 /// Cast value to the specified type.
castValueToType(CodeGenFunction & CGF,llvm::Value * Val,QualType ValTy,QualType CastTy,SourceLocation Loc)1350 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val,
1351 QualType ValTy, QualType CastTy,
1352 SourceLocation Loc) {
1353 assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() &&
1354 "Cast type must sized.");
1355 assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() &&
1356 "Val type must sized.");
1357 llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy);
1358 if (ValTy == CastTy)
1359 return Val;
1360 if (CGF.getContext().getTypeSizeInChars(ValTy) ==
1361 CGF.getContext().getTypeSizeInChars(CastTy))
1362 return CGF.Builder.CreateBitCast(Val, LLVMCastTy);
1363 if (CastTy->isIntegerType() && ValTy->isIntegerType())
1364 return CGF.Builder.CreateIntCast(Val, LLVMCastTy,
1365 CastTy->hasSignedIntegerRepresentation());
1366 Address CastItem = CGF.CreateMemTemp(CastTy);
1367 Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
1368 CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace()),
1369 Val->getType());
1370 CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy,
1371 LValueBaseInfo(AlignmentSource::Type),
1372 TBAAAccessInfo());
1373 return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc,
1374 LValueBaseInfo(AlignmentSource::Type),
1375 TBAAAccessInfo());
1376 }
1377
1378 /// This function creates calls to one of two shuffle functions to copy
1379 /// variables between lanes in a warp.
createRuntimeShuffleFunction(CodeGenFunction & CGF,llvm::Value * Elem,QualType ElemType,llvm::Value * Offset,SourceLocation Loc)1380 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF,
1381 llvm::Value *Elem,
1382 QualType ElemType,
1383 llvm::Value *Offset,
1384 SourceLocation Loc) {
1385 CodeGenModule &CGM = CGF.CGM;
1386 CGBuilderTy &Bld = CGF.Builder;
1387 CGOpenMPRuntimeGPU &RT =
1388 *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime()));
1389 llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder();
1390
1391 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
1392 assert(Size.getQuantity() <= 8 &&
1393 "Unsupported bitwidth in shuffle instruction.");
1394
1395 RuntimeFunction ShuffleFn = Size.getQuantity() <= 4
1396 ? OMPRTL___kmpc_shuffle_int32
1397 : OMPRTL___kmpc_shuffle_int64;
1398
1399 // Cast all types to 32- or 64-bit values before calling shuffle routines.
1400 QualType CastTy = CGF.getContext().getIntTypeForBitwidth(
1401 Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1);
1402 llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc);
1403 llvm::Value *WarpSize =
1404 Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true);
1405
1406 llvm::Value *ShuffledVal = CGF.EmitRuntimeCall(
1407 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn),
1408 {ElemCast, Offset, WarpSize});
1409
1410 return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc);
1411 }
1412
shuffleAndStore(CodeGenFunction & CGF,Address SrcAddr,Address DestAddr,QualType ElemType,llvm::Value * Offset,SourceLocation Loc)1413 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr,
1414 Address DestAddr, QualType ElemType,
1415 llvm::Value *Offset, SourceLocation Loc) {
1416 CGBuilderTy &Bld = CGF.Builder;
1417
1418 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
1419 // Create the loop over the big sized data.
1420 // ptr = (void*)Elem;
1421 // ptrEnd = (void*) Elem + 1;
1422 // Step = 8;
1423 // while (ptr + Step < ptrEnd)
1424 // shuffle((int64_t)*ptr);
1425 // Step = 4;
1426 // while (ptr + Step < ptrEnd)
1427 // shuffle((int32_t)*ptr);
1428 // ...
1429 Address ElemPtr = DestAddr;
1430 Address Ptr = SrcAddr;
1431 Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast(
1432 Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy, CGF.Int8Ty);
1433 for (int IntSize = 8; IntSize >= 1; IntSize /= 2) {
1434 if (Size < CharUnits::fromQuantity(IntSize))
1435 continue;
1436 QualType IntType = CGF.getContext().getIntTypeForBitwidth(
1437 CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)),
1438 /*Signed=*/1);
1439 llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType);
1440 Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo(),
1441 IntTy);
1442 ElemPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1443 ElemPtr, IntTy->getPointerTo(), IntTy);
1444 if (Size.getQuantity() / IntSize > 1) {
1445 llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond");
1446 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then");
1447 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit");
1448 llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock();
1449 CGF.EmitBlock(PreCondBB);
1450 llvm::PHINode *PhiSrc =
1451 Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2);
1452 PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB);
1453 llvm::PHINode *PhiDest =
1454 Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2);
1455 PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB);
1456 Ptr = Address(PhiSrc, Ptr.getElementType(), Ptr.getAlignment());
1457 ElemPtr =
1458 Address(PhiDest, ElemPtr.getElementType(), ElemPtr.getAlignment());
1459 llvm::Value *PtrDiff = Bld.CreatePtrDiff(
1460 CGF.Int8Ty, PtrEnd.getPointer(),
1461 Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr.getPointer(),
1462 CGF.VoidPtrTy));
1463 Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)),
1464 ThenBB, ExitBB);
1465 CGF.EmitBlock(ThenBB);
1466 llvm::Value *Res = createRuntimeShuffleFunction(
1467 CGF,
1468 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
1469 LValueBaseInfo(AlignmentSource::Type),
1470 TBAAAccessInfo()),
1471 IntType, Offset, Loc);
1472 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
1473 LValueBaseInfo(AlignmentSource::Type),
1474 TBAAAccessInfo());
1475 Address LocalPtr = Bld.CreateConstGEP(Ptr, 1);
1476 Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
1477 PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB);
1478 PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB);
1479 CGF.EmitBranch(PreCondBB);
1480 CGF.EmitBlock(ExitBB);
1481 } else {
1482 llvm::Value *Res = createRuntimeShuffleFunction(
1483 CGF,
1484 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
1485 LValueBaseInfo(AlignmentSource::Type),
1486 TBAAAccessInfo()),
1487 IntType, Offset, Loc);
1488 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
1489 LValueBaseInfo(AlignmentSource::Type),
1490 TBAAAccessInfo());
1491 Ptr = Bld.CreateConstGEP(Ptr, 1);
1492 ElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
1493 }
1494 Size = Size % IntSize;
1495 }
1496 }
1497
1498 namespace {
1499 enum CopyAction : unsigned {
1500 // RemoteLaneToThread: Copy over a Reduce list from a remote lane in
1501 // the warp using shuffle instructions.
1502 RemoteLaneToThread,
1503 // ThreadCopy: Make a copy of a Reduce list on the thread's stack.
1504 ThreadCopy,
1505 // ThreadToScratchpad: Copy a team-reduced array to the scratchpad.
1506 ThreadToScratchpad,
1507 // ScratchpadToThread: Copy from a scratchpad array in global memory
1508 // containing team-reduced data to a thread's stack.
1509 ScratchpadToThread,
1510 };
1511 } // namespace
1512
1513 struct CopyOptionsTy {
1514 llvm::Value *RemoteLaneOffset;
1515 llvm::Value *ScratchpadIndex;
1516 llvm::Value *ScratchpadWidth;
1517 };
1518
1519 /// Emit instructions to copy a Reduce list, which contains partially
1520 /// aggregated values, in the specified direction.
emitReductionListCopy(CopyAction Action,CodeGenFunction & CGF,QualType ReductionArrayTy,ArrayRef<const Expr * > Privates,Address SrcBase,Address DestBase,CopyOptionsTy CopyOptions={nullptr, nullptr, nullptr})1521 static void emitReductionListCopy(
1522 CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy,
1523 ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase,
1524 CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) {
1525
1526 CodeGenModule &CGM = CGF.CGM;
1527 ASTContext &C = CGM.getContext();
1528 CGBuilderTy &Bld = CGF.Builder;
1529
1530 llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset;
1531 llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex;
1532 llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth;
1533
1534 // Iterates, element-by-element, through the source Reduce list and
1535 // make a copy.
1536 unsigned Idx = 0;
1537 unsigned Size = Privates.size();
1538 for (const Expr *Private : Privates) {
1539 Address SrcElementAddr = Address::invalid();
1540 Address DestElementAddr = Address::invalid();
1541 Address DestElementPtrAddr = Address::invalid();
1542 // Should we shuffle in an element from a remote lane?
1543 bool ShuffleInElement = false;
1544 // Set to true to update the pointer in the dest Reduce list to a
1545 // newly created element.
1546 bool UpdateDestListPtr = false;
1547 // Increment the src or dest pointer to the scratchpad, for each
1548 // new element.
1549 bool IncrScratchpadSrc = false;
1550 bool IncrScratchpadDest = false;
1551 QualType PrivatePtrType = C.getPointerType(Private->getType());
1552 llvm::Type *PrivateLlvmPtrType = CGF.ConvertType(PrivatePtrType);
1553
1554 switch (Action) {
1555 case RemoteLaneToThread: {
1556 // Step 1.1: Get the address for the src element in the Reduce list.
1557 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1558 SrcElementAddr =
1559 CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast(
1560 SrcElementPtrAddr, PrivateLlvmPtrType),
1561 PrivatePtrType->castAs<PointerType>());
1562
1563 // Step 1.2: Create a temporary to store the element in the destination
1564 // Reduce list.
1565 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1566 DestElementAddr =
1567 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
1568 ShuffleInElement = true;
1569 UpdateDestListPtr = true;
1570 break;
1571 }
1572 case ThreadCopy: {
1573 // Step 1.1: Get the address for the src element in the Reduce list.
1574 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1575 SrcElementAddr =
1576 CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast(
1577 SrcElementPtrAddr, PrivateLlvmPtrType),
1578 PrivatePtrType->castAs<PointerType>());
1579
1580 // Step 1.2: Get the address for dest element. The destination
1581 // element has already been created on the thread's stack.
1582 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1583 DestElementAddr =
1584 CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast(
1585 DestElementPtrAddr, PrivateLlvmPtrType),
1586 PrivatePtrType->castAs<PointerType>());
1587 break;
1588 }
1589 case ThreadToScratchpad: {
1590 // Step 1.1: Get the address for the src element in the Reduce list.
1591 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1592 SrcElementAddr =
1593 CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast(
1594 SrcElementPtrAddr, PrivateLlvmPtrType),
1595 PrivatePtrType->castAs<PointerType>());
1596
1597 // Step 1.2: Get the address for dest element:
1598 // address = base + index * ElementSizeInChars.
1599 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
1600 llvm::Value *CurrentOffset =
1601 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
1602 llvm::Value *ScratchPadElemAbsolutePtrVal =
1603 Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset);
1604 ScratchPadElemAbsolutePtrVal =
1605 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
1606 DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, CGF.Int8Ty,
1607 C.getTypeAlignInChars(Private->getType()));
1608 IncrScratchpadDest = true;
1609 break;
1610 }
1611 case ScratchpadToThread: {
1612 // Step 1.1: Get the address for the src element in the scratchpad.
1613 // address = base + index * ElementSizeInChars.
1614 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
1615 llvm::Value *CurrentOffset =
1616 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
1617 llvm::Value *ScratchPadElemAbsolutePtrVal =
1618 Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset);
1619 ScratchPadElemAbsolutePtrVal =
1620 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
1621 SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, CGF.Int8Ty,
1622 C.getTypeAlignInChars(Private->getType()));
1623 IncrScratchpadSrc = true;
1624
1625 // Step 1.2: Create a temporary to store the element in the destination
1626 // Reduce list.
1627 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1628 DestElementAddr =
1629 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
1630 UpdateDestListPtr = true;
1631 break;
1632 }
1633 }
1634
1635 // Regardless of src and dest of copy, we emit the load of src
1636 // element as this is required in all directions
1637 SrcElementAddr = Bld.CreateElementBitCast(
1638 SrcElementAddr, CGF.ConvertTypeForMem(Private->getType()));
1639 DestElementAddr = Bld.CreateElementBitCast(DestElementAddr,
1640 SrcElementAddr.getElementType());
1641
1642 // Now that all active lanes have read the element in the
1643 // Reduce list, shuffle over the value from the remote lane.
1644 if (ShuffleInElement) {
1645 shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(),
1646 RemoteLaneOffset, Private->getExprLoc());
1647 } else {
1648 switch (CGF.getEvaluationKind(Private->getType())) {
1649 case TEK_Scalar: {
1650 llvm::Value *Elem = CGF.EmitLoadOfScalar(
1651 SrcElementAddr, /*Volatile=*/false, Private->getType(),
1652 Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type),
1653 TBAAAccessInfo());
1654 // Store the source element value to the dest element address.
1655 CGF.EmitStoreOfScalar(
1656 Elem, DestElementAddr, /*Volatile=*/false, Private->getType(),
1657 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
1658 break;
1659 }
1660 case TEK_Complex: {
1661 CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex(
1662 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
1663 Private->getExprLoc());
1664 CGF.EmitStoreOfComplex(
1665 Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
1666 /*isInit=*/false);
1667 break;
1668 }
1669 case TEK_Aggregate:
1670 CGF.EmitAggregateCopy(
1671 CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
1672 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
1673 Private->getType(), AggValueSlot::DoesNotOverlap);
1674 break;
1675 }
1676 }
1677
1678 // Step 3.1: Modify reference in dest Reduce list as needed.
1679 // Modifying the reference in Reduce list to point to the newly
1680 // created element. The element is live in the current function
1681 // scope and that of functions it invokes (i.e., reduce_function).
1682 // RemoteReduceData[i] = (void*)&RemoteElem
1683 if (UpdateDestListPtr) {
1684 CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast(
1685 DestElementAddr.getPointer(), CGF.VoidPtrTy),
1686 DestElementPtrAddr, /*Volatile=*/false,
1687 C.VoidPtrTy);
1688 }
1689
1690 // Step 4.1: Increment SrcBase/DestBase so that it points to the starting
1691 // address of the next element in scratchpad memory, unless we're currently
1692 // processing the last one. Memory alignment is also taken care of here.
1693 if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) {
1694 // FIXME: This code doesn't make any sense, it's trying to perform
1695 // integer arithmetic on pointers.
1696 llvm::Value *ScratchpadBasePtr =
1697 IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer();
1698 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
1699 ScratchpadBasePtr = Bld.CreateNUWAdd(
1700 ScratchpadBasePtr,
1701 Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars));
1702
1703 // Take care of global memory alignment for performance
1704 ScratchpadBasePtr = Bld.CreateNUWSub(
1705 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
1706 ScratchpadBasePtr = Bld.CreateUDiv(
1707 ScratchpadBasePtr,
1708 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
1709 ScratchpadBasePtr = Bld.CreateNUWAdd(
1710 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
1711 ScratchpadBasePtr = Bld.CreateNUWMul(
1712 ScratchpadBasePtr,
1713 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
1714
1715 if (IncrScratchpadDest)
1716 DestBase =
1717 Address(ScratchpadBasePtr, CGF.VoidPtrTy, CGF.getPointerAlign());
1718 else /* IncrScratchpadSrc = true */
1719 SrcBase =
1720 Address(ScratchpadBasePtr, CGF.VoidPtrTy, CGF.getPointerAlign());
1721 }
1722
1723 ++Idx;
1724 }
1725 }
1726
1727 /// This function emits a helper that gathers Reduce lists from the first
1728 /// lane of every active warp to lanes in the first warp.
1729 ///
1730 /// void inter_warp_copy_func(void* reduce_data, num_warps)
1731 /// shared smem[warp_size];
1732 /// For all data entries D in reduce_data:
1733 /// sync
1734 /// If (I am the first lane in each warp)
1735 /// Copy my local D to smem[warp_id]
1736 /// sync
1737 /// if (I am the first warp)
1738 /// Copy smem[thread_id] to my local D
emitInterWarpCopyFunction(CodeGenModule & CGM,ArrayRef<const Expr * > Privates,QualType ReductionArrayTy,SourceLocation Loc)1739 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM,
1740 ArrayRef<const Expr *> Privates,
1741 QualType ReductionArrayTy,
1742 SourceLocation Loc) {
1743 ASTContext &C = CGM.getContext();
1744 llvm::Module &M = CGM.getModule();
1745
1746 // ReduceList: thread local Reduce list.
1747 // At the stage of the computation when this function is called, partially
1748 // aggregated values reside in the first lane of every active warp.
1749 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
1750 C.VoidPtrTy, ImplicitParamDecl::Other);
1751 // NumWarps: number of warps active in the parallel region. This could
1752 // be smaller than 32 (max warps in a CTA) for partial block reduction.
1753 ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
1754 C.getIntTypeForBitwidth(32, /* Signed */ true),
1755 ImplicitParamDecl::Other);
1756 FunctionArgList Args;
1757 Args.push_back(&ReduceListArg);
1758 Args.push_back(&NumWarpsArg);
1759
1760 const CGFunctionInfo &CGFI =
1761 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
1762 auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
1763 llvm::GlobalValue::InternalLinkage,
1764 "_omp_reduction_inter_warp_copy_func", &M);
1765 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
1766 Fn->setDoesNotRecurse();
1767 CodeGenFunction CGF(CGM);
1768 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
1769
1770 CGBuilderTy &Bld = CGF.Builder;
1771
1772 // This array is used as a medium to transfer, one reduce element at a time,
1773 // the data from the first lane of every warp to lanes in the first warp
1774 // in order to perform the final step of a reduction in a parallel region
1775 // (reduction across warps). The array is placed in NVPTX __shared__ memory
1776 // for reduced latency, as well as to have a distinct copy for concurrently
1777 // executing target regions. The array is declared with common linkage so
1778 // as to be shared across compilation units.
1779 StringRef TransferMediumName =
1780 "__openmp_nvptx_data_transfer_temporary_storage";
1781 llvm::GlobalVariable *TransferMedium =
1782 M.getGlobalVariable(TransferMediumName);
1783 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
1784 if (!TransferMedium) {
1785 auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize);
1786 unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared);
1787 TransferMedium = new llvm::GlobalVariable(
1788 M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage,
1789 llvm::UndefValue::get(Ty), TransferMediumName,
1790 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
1791 SharedAddressSpace);
1792 CGM.addCompilerUsedGlobal(TransferMedium);
1793 }
1794
1795 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1796 // Get the CUDA thread id of the current OpenMP thread on the GPU.
1797 llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
1798 // nvptx_lane_id = nvptx_id % warpsize
1799 llvm::Value *LaneID = getNVPTXLaneID(CGF);
1800 // nvptx_warp_id = nvptx_id / warpsize
1801 llvm::Value *WarpID = getNVPTXWarpID(CGF);
1802
1803 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
1804 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
1805 Address LocalReduceList(
1806 Bld.CreatePointerBitCastOrAddrSpaceCast(
1807 CGF.EmitLoadOfScalar(
1808 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc,
1809 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()),
1810 ElemTy->getPointerTo()),
1811 ElemTy, CGF.getPointerAlign());
1812
1813 unsigned Idx = 0;
1814 for (const Expr *Private : Privates) {
1815 //
1816 // Warp master copies reduce element to transfer medium in __shared__
1817 // memory.
1818 //
1819 unsigned RealTySize =
1820 C.getTypeSizeInChars(Private->getType())
1821 .alignTo(C.getTypeAlignInChars(Private->getType()))
1822 .getQuantity();
1823 for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) {
1824 unsigned NumIters = RealTySize / TySize;
1825 if (NumIters == 0)
1826 continue;
1827 QualType CType = C.getIntTypeForBitwidth(
1828 C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1);
1829 llvm::Type *CopyType = CGF.ConvertTypeForMem(CType);
1830 CharUnits Align = CharUnits::fromQuantity(TySize);
1831 llvm::Value *Cnt = nullptr;
1832 Address CntAddr = Address::invalid();
1833 llvm::BasicBlock *PrecondBB = nullptr;
1834 llvm::BasicBlock *ExitBB = nullptr;
1835 if (NumIters > 1) {
1836 CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr");
1837 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr,
1838 /*Volatile=*/false, C.IntTy);
1839 PrecondBB = CGF.createBasicBlock("precond");
1840 ExitBB = CGF.createBasicBlock("exit");
1841 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body");
1842 // There is no need to emit line number for unconditional branch.
1843 (void)ApplyDebugLocation::CreateEmpty(CGF);
1844 CGF.EmitBlock(PrecondBB);
1845 Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc);
1846 llvm::Value *Cmp =
1847 Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters));
1848 Bld.CreateCondBr(Cmp, BodyBB, ExitBB);
1849 CGF.EmitBlock(BodyBB);
1850 }
1851 // kmpc_barrier.
1852 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
1853 /*EmitChecks=*/false,
1854 /*ForceSimpleCall=*/true);
1855 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
1856 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
1857 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
1858
1859 // if (lane_id == 0)
1860 llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master");
1861 Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
1862 CGF.EmitBlock(ThenBB);
1863
1864 // Reduce element = LocalReduceList[i]
1865 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
1866 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
1867 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
1868 // elemptr = ((CopyType*)(elemptrptr)) + I
1869 Address ElemPtr(ElemPtrPtr, CGF.Int8Ty, Align);
1870 ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType);
1871 if (NumIters > 1)
1872 ElemPtr = Bld.CreateGEP(ElemPtr, Cnt);
1873
1874 // Get pointer to location in transfer medium.
1875 // MediumPtr = &medium[warp_id]
1876 llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP(
1877 TransferMedium->getValueType(), TransferMedium,
1878 {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID});
1879 // Casting to actual data type.
1880 // MediumPtr = (CopyType*)MediumPtrAddr;
1881 Address MediumPtr(
1882 Bld.CreateBitCast(
1883 MediumPtrVal,
1884 CopyType->getPointerTo(
1885 MediumPtrVal->getType()->getPointerAddressSpace())),
1886 CopyType, Align);
1887
1888 // elem = *elemptr
1889 //*MediumPtr = elem
1890 llvm::Value *Elem = CGF.EmitLoadOfScalar(
1891 ElemPtr, /*Volatile=*/false, CType, Loc,
1892 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
1893 // Store the source element value to the dest element address.
1894 CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType,
1895 LValueBaseInfo(AlignmentSource::Type),
1896 TBAAAccessInfo());
1897
1898 Bld.CreateBr(MergeBB);
1899
1900 CGF.EmitBlock(ElseBB);
1901 Bld.CreateBr(MergeBB);
1902
1903 CGF.EmitBlock(MergeBB);
1904
1905 // kmpc_barrier.
1906 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
1907 /*EmitChecks=*/false,
1908 /*ForceSimpleCall=*/true);
1909
1910 //
1911 // Warp 0 copies reduce element from transfer medium.
1912 //
1913 llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then");
1914 llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else");
1915 llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont");
1916
1917 Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg);
1918 llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar(
1919 AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc);
1920
1921 // Up to 32 threads in warp 0 are active.
1922 llvm::Value *IsActiveThread =
1923 Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread");
1924 Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);
1925
1926 CGF.EmitBlock(W0ThenBB);
1927
1928 // SrcMediumPtr = &medium[tid]
1929 llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP(
1930 TransferMedium->getValueType(), TransferMedium,
1931 {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID});
1932 // SrcMediumVal = *SrcMediumPtr;
1933 Address SrcMediumPtr(
1934 Bld.CreateBitCast(
1935 SrcMediumPtrVal,
1936 CopyType->getPointerTo(
1937 SrcMediumPtrVal->getType()->getPointerAddressSpace())),
1938 CopyType, Align);
1939
1940 // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I
1941 Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
1942 llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar(
1943 TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc);
1944 Address TargetElemPtr(TargetElemPtrVal, CGF.Int8Ty, Align);
1945 TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType);
1946 if (NumIters > 1)
1947 TargetElemPtr = Bld.CreateGEP(TargetElemPtr, Cnt);
1948
1949 // *TargetElemPtr = SrcMediumVal;
1950 llvm::Value *SrcMediumValue =
1951 CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc);
1952 CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false,
1953 CType);
1954 Bld.CreateBr(W0MergeBB);
1955
1956 CGF.EmitBlock(W0ElseBB);
1957 Bld.CreateBr(W0MergeBB);
1958
1959 CGF.EmitBlock(W0MergeBB);
1960
1961 if (NumIters > 1) {
1962 Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1));
1963 CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy);
1964 CGF.EmitBranch(PrecondBB);
1965 (void)ApplyDebugLocation::CreateEmpty(CGF);
1966 CGF.EmitBlock(ExitBB);
1967 }
1968 RealTySize %= TySize;
1969 }
1970 ++Idx;
1971 }
1972
1973 CGF.FinishFunction();
1974 return Fn;
1975 }
1976
1977 /// Emit a helper that reduces data across two OpenMP threads (lanes)
1978 /// in the same warp. It uses shuffle instructions to copy over data from
1979 /// a remote lane's stack. The reduction algorithm performed is specified
1980 /// by the fourth parameter.
1981 ///
1982 /// Algorithm Versions.
1983 /// Full Warp Reduce (argument value 0):
1984 /// This algorithm assumes that all 32 lanes are active and gathers
1985 /// data from these 32 lanes, producing a single resultant value.
1986 /// Contiguous Partial Warp Reduce (argument value 1):
1987 /// This algorithm assumes that only a *contiguous* subset of lanes
1988 /// are active. This happens for the last warp in a parallel region
1989 /// when the user specified num_threads is not an integer multiple of
1990 /// 32. This contiguous subset always starts with the zeroth lane.
1991 /// Partial Warp Reduce (argument value 2):
1992 /// This algorithm gathers data from any number of lanes at any position.
1993 /// All reduced values are stored in the lowest possible lane. The set
1994 /// of problems every algorithm addresses is a super set of those
1995 /// addressable by algorithms with a lower version number. Overhead
1996 /// increases as algorithm version increases.
1997 ///
1998 /// Terminology
1999 /// Reduce element:
2000 /// Reduce element refers to the individual data field with primitive
2001 /// data types to be combined and reduced across threads.
2002 /// Reduce list:
2003 /// Reduce list refers to a collection of local, thread-private
2004 /// reduce elements.
2005 /// Remote Reduce list:
2006 /// Remote Reduce list refers to a collection of remote (relative to
2007 /// the current thread) reduce elements.
2008 ///
2009 /// We distinguish between three states of threads that are important to
2010 /// the implementation of this function.
2011 /// Alive threads:
2012 /// Threads in a warp executing the SIMT instruction, as distinguished from
2013 /// threads that are inactive due to divergent control flow.
2014 /// Active threads:
2015 /// The minimal set of threads that has to be alive upon entry to this
2016 /// function. The computation is correct iff active threads are alive.
2017 /// Some threads are alive but they are not active because they do not
2018 /// contribute to the computation in any useful manner. Turning them off
2019 /// may introduce control flow overheads without any tangible benefits.
2020 /// Effective threads:
2021 /// In order to comply with the argument requirements of the shuffle
2022 /// function, we must keep all lanes holding data alive. But at most
2023 /// half of them perform value aggregation; we refer to this half of
2024 /// threads as effective. The other half is simply handing off their
2025 /// data.
2026 ///
2027 /// Procedure
2028 /// Value shuffle:
2029 /// In this step active threads transfer data from higher lane positions
2030 /// in the warp to lower lane positions, creating Remote Reduce list.
2031 /// Value aggregation:
2032 /// In this step, effective threads combine their thread local Reduce list
2033 /// with Remote Reduce list and store the result in the thread local
2034 /// Reduce list.
2035 /// Value copy:
2036 /// In this step, we deal with the assumption made by algorithm 2
2037 /// (i.e. contiguity assumption). When we have an odd number of lanes
2038 /// active, say 2k+1, only k threads will be effective and therefore k
2039 /// new values will be produced. However, the Reduce list owned by the
2040 /// (2k+1)th thread is ignored in the value aggregation. Therefore
2041 /// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so
2042 /// that the contiguity assumption still holds.
emitShuffleAndReduceFunction(CodeGenModule & CGM,ArrayRef<const Expr * > Privates,QualType ReductionArrayTy,llvm::Function * ReduceFn,SourceLocation Loc)2043 static llvm::Function *emitShuffleAndReduceFunction(
2044 CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2045 QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) {
2046 ASTContext &C = CGM.getContext();
2047
2048 // Thread local Reduce list used to host the values of data to be reduced.
2049 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2050 C.VoidPtrTy, ImplicitParamDecl::Other);
2051 // Current lane id; could be logical.
2052 ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy,
2053 ImplicitParamDecl::Other);
2054 // Offset of the remote source lane relative to the current lane.
2055 ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2056 C.ShortTy, ImplicitParamDecl::Other);
2057 // Algorithm version. This is expected to be known at compile time.
2058 ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2059 C.ShortTy, ImplicitParamDecl::Other);
2060 FunctionArgList Args;
2061 Args.push_back(&ReduceListArg);
2062 Args.push_back(&LaneIDArg);
2063 Args.push_back(&RemoteLaneOffsetArg);
2064 Args.push_back(&AlgoVerArg);
2065
2066 const CGFunctionInfo &CGFI =
2067 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2068 auto *Fn = llvm::Function::Create(
2069 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2070 "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule());
2071 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2072 Fn->setDoesNotRecurse();
2073
2074 CodeGenFunction CGF(CGM);
2075 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2076
2077 CGBuilderTy &Bld = CGF.Builder;
2078
2079 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2080 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2081 Address LocalReduceList(
2082 Bld.CreatePointerBitCastOrAddrSpaceCast(
2083 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2084 C.VoidPtrTy, SourceLocation()),
2085 ElemTy->getPointerTo()),
2086 ElemTy, CGF.getPointerAlign());
2087
2088 Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg);
2089 llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar(
2090 AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2091
2092 Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg);
2093 llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar(
2094 AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2095
2096 Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg);
2097 llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar(
2098 AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2099
2100 // Create a local thread-private variable to host the Reduce list
2101 // from a remote lane.
2102 Address RemoteReduceList =
2103 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list");
2104
2105 // This loop iterates through the list of reduce elements and copies,
2106 // element by element, from a remote lane in the warp to RemoteReduceList,
2107 // hosted on the thread's stack.
2108 emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates,
2109 LocalReduceList, RemoteReduceList,
2110 {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal,
2111 /*ScratchpadIndex=*/nullptr,
2112 /*ScratchpadWidth=*/nullptr});
2113
2114 // The actions to be performed on the Remote Reduce list is dependent
2115 // on the algorithm version.
2116 //
2117 // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
2118 // LaneId % 2 == 0 && Offset > 0):
2119 // do the reduction value aggregation
2120 //
2121 // The thread local variable Reduce list is mutated in place to host the
2122 // reduced data, which is the aggregated value produced from local and
2123 // remote lanes.
2124 //
2125 // Note that AlgoVer is expected to be a constant integer known at compile
2126 // time.
2127 // When AlgoVer==0, the first conjunction evaluates to true, making
2128 // the entire predicate true during compile time.
2129 // When AlgoVer==1, the second conjunction has only the second part to be
2130 // evaluated during runtime. Other conjunctions evaluates to false
2131 // during compile time.
2132 // When AlgoVer==2, the third conjunction has only the second part to be
2133 // evaluated during runtime. Other conjunctions evaluates to false
2134 // during compile time.
2135 llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal);
2136
2137 llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
2138 llvm::Value *CondAlgo1 = Bld.CreateAnd(
2139 Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal));
2140
2141 llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2));
2142 llvm::Value *CondAlgo2 = Bld.CreateAnd(
2143 Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1))));
2144 CondAlgo2 = Bld.CreateAnd(
2145 CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0)));
2146
2147 llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1);
2148 CondReduce = Bld.CreateOr(CondReduce, CondAlgo2);
2149
2150 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
2151 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
2152 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
2153 Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
2154
2155 CGF.EmitBlock(ThenBB);
2156 // reduce_function(LocalReduceList, RemoteReduceList)
2157 llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2158 LocalReduceList.getPointer(), CGF.VoidPtrTy);
2159 llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2160 RemoteReduceList.getPointer(), CGF.VoidPtrTy);
2161 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2162 CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr});
2163 Bld.CreateBr(MergeBB);
2164
2165 CGF.EmitBlock(ElseBB);
2166 Bld.CreateBr(MergeBB);
2167
2168 CGF.EmitBlock(MergeBB);
2169
2170 // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
2171 // Reduce list.
2172 Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
2173 llvm::Value *CondCopy = Bld.CreateAnd(
2174 Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal));
2175
2176 llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then");
2177 llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else");
2178 llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont");
2179 Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);
2180
2181 CGF.EmitBlock(CpyThenBB);
2182 emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
2183 RemoteReduceList, LocalReduceList);
2184 Bld.CreateBr(CpyMergeBB);
2185
2186 CGF.EmitBlock(CpyElseBB);
2187 Bld.CreateBr(CpyMergeBB);
2188
2189 CGF.EmitBlock(CpyMergeBB);
2190
2191 CGF.FinishFunction();
2192 return Fn;
2193 }
2194
2195 /// This function emits a helper that copies all the reduction variables from
2196 /// the team into the provided global buffer for the reduction variables.
2197 ///
2198 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
2199 /// For all data entries D in reduce_data:
2200 /// Copy local D to buffer.D[Idx]
emitListToGlobalCopyFunction(CodeGenModule & CGM,ArrayRef<const Expr * > Privates,QualType ReductionArrayTy,SourceLocation Loc,const RecordDecl * TeamReductionRec,const llvm::SmallDenseMap<const ValueDecl *,const FieldDecl * > & VarFieldMap)2201 static llvm::Value *emitListToGlobalCopyFunction(
2202 CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2203 QualType ReductionArrayTy, SourceLocation Loc,
2204 const RecordDecl *TeamReductionRec,
2205 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2206 &VarFieldMap) {
2207 ASTContext &C = CGM.getContext();
2208
2209 // Buffer: global reduction buffer.
2210 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2211 C.VoidPtrTy, ImplicitParamDecl::Other);
2212 // Idx: index of the buffer.
2213 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2214 ImplicitParamDecl::Other);
2215 // ReduceList: thread local Reduce list.
2216 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2217 C.VoidPtrTy, ImplicitParamDecl::Other);
2218 FunctionArgList Args;
2219 Args.push_back(&BufferArg);
2220 Args.push_back(&IdxArg);
2221 Args.push_back(&ReduceListArg);
2222
2223 const CGFunctionInfo &CGFI =
2224 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2225 auto *Fn = llvm::Function::Create(
2226 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2227 "_omp_reduction_list_to_global_copy_func", &CGM.getModule());
2228 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2229 Fn->setDoesNotRecurse();
2230 CodeGenFunction CGF(CGM);
2231 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2232
2233 CGBuilderTy &Bld = CGF.Builder;
2234
2235 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2236 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2237 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2238 Address LocalReduceList(
2239 Bld.CreatePointerBitCastOrAddrSpaceCast(
2240 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2241 C.VoidPtrTy, Loc),
2242 ElemTy->getPointerTo()),
2243 ElemTy, CGF.getPointerAlign());
2244 QualType StaticTy = C.getRecordType(TeamReductionRec);
2245 llvm::Type *LLVMReductionsBufferTy =
2246 CGM.getTypes().ConvertTypeForMem(StaticTy);
2247 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2248 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2249 LLVMReductionsBufferTy->getPointerTo());
2250 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2251 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2252 /*Volatile=*/false, C.IntTy,
2253 Loc)};
2254 unsigned Idx = 0;
2255 for (const Expr *Private : Privates) {
2256 // Reduce element = LocalReduceList[i]
2257 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2258 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2259 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2260 // elemptr = ((CopyType*)(elemptrptr)) + I
2261 ElemTy = CGF.ConvertTypeForMem(Private->getType());
2262 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2263 ElemPtrPtr, ElemTy->getPointerTo());
2264 Address ElemPtr =
2265 Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType()));
2266 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
2267 // Global = Buffer.VD[Idx];
2268 const FieldDecl *FD = VarFieldMap.lookup(VD);
2269 LValue GlobLVal = CGF.EmitLValueForField(
2270 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2271 Address GlobAddr = GlobLVal.getAddress(CGF);
2272 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(GlobAddr.getElementType(),
2273 GlobAddr.getPointer(), Idxs);
2274 GlobLVal.setAddress(Address(BufferPtr,
2275 CGF.ConvertTypeForMem(Private->getType()),
2276 GlobAddr.getAlignment()));
2277 switch (CGF.getEvaluationKind(Private->getType())) {
2278 case TEK_Scalar: {
2279 llvm::Value *V = CGF.EmitLoadOfScalar(
2280 ElemPtr, /*Volatile=*/false, Private->getType(), Loc,
2281 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2282 CGF.EmitStoreOfScalar(V, GlobLVal);
2283 break;
2284 }
2285 case TEK_Complex: {
2286 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(
2287 CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc);
2288 CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false);
2289 break;
2290 }
2291 case TEK_Aggregate:
2292 CGF.EmitAggregateCopy(GlobLVal,
2293 CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2294 Private->getType(), AggValueSlot::DoesNotOverlap);
2295 break;
2296 }
2297 ++Idx;
2298 }
2299
2300 CGF.FinishFunction();
2301 return Fn;
2302 }
2303
2304 /// This function emits a helper that reduces all the reduction variables from
2305 /// the team into the provided global buffer for the reduction variables.
2306 ///
2307 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data)
2308 /// void *GlobPtrs[];
2309 /// GlobPtrs[0] = (void*)&buffer.D0[Idx];
2310 /// ...
2311 /// GlobPtrs[N] = (void*)&buffer.DN[Idx];
2312 /// reduce_function(GlobPtrs, reduce_data);
emitListToGlobalReduceFunction(CodeGenModule & CGM,ArrayRef<const Expr * > Privates,QualType ReductionArrayTy,SourceLocation Loc,const RecordDecl * TeamReductionRec,const llvm::SmallDenseMap<const ValueDecl *,const FieldDecl * > & VarFieldMap,llvm::Function * ReduceFn)2313 static llvm::Value *emitListToGlobalReduceFunction(
2314 CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2315 QualType ReductionArrayTy, SourceLocation Loc,
2316 const RecordDecl *TeamReductionRec,
2317 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2318 &VarFieldMap,
2319 llvm::Function *ReduceFn) {
2320 ASTContext &C = CGM.getContext();
2321
2322 // Buffer: global reduction buffer.
2323 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2324 C.VoidPtrTy, ImplicitParamDecl::Other);
2325 // Idx: index of the buffer.
2326 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2327 ImplicitParamDecl::Other);
2328 // ReduceList: thread local Reduce list.
2329 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2330 C.VoidPtrTy, ImplicitParamDecl::Other);
2331 FunctionArgList Args;
2332 Args.push_back(&BufferArg);
2333 Args.push_back(&IdxArg);
2334 Args.push_back(&ReduceListArg);
2335
2336 const CGFunctionInfo &CGFI =
2337 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2338 auto *Fn = llvm::Function::Create(
2339 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2340 "_omp_reduction_list_to_global_reduce_func", &CGM.getModule());
2341 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2342 Fn->setDoesNotRecurse();
2343 CodeGenFunction CGF(CGM);
2344 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2345
2346 CGBuilderTy &Bld = CGF.Builder;
2347
2348 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2349 QualType StaticTy = C.getRecordType(TeamReductionRec);
2350 llvm::Type *LLVMReductionsBufferTy =
2351 CGM.getTypes().ConvertTypeForMem(StaticTy);
2352 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2353 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2354 LLVMReductionsBufferTy->getPointerTo());
2355
2356 // 1. Build a list of reduction variables.
2357 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2358 Address ReductionList =
2359 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2360 auto IPriv = Privates.begin();
2361 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2362 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2363 /*Volatile=*/false, C.IntTy,
2364 Loc)};
2365 unsigned Idx = 0;
2366 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
2367 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2368 // Global = Buffer.VD[Idx];
2369 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
2370 const FieldDecl *FD = VarFieldMap.lookup(VD);
2371 LValue GlobLVal = CGF.EmitLValueForField(
2372 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2373 Address GlobAddr = GlobLVal.getAddress(CGF);
2374 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2375 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2376 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
2377 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
2378 if ((*IPriv)->getType()->isVariablyModifiedType()) {
2379 // Store array size.
2380 ++Idx;
2381 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2382 llvm::Value *Size = CGF.Builder.CreateIntCast(
2383 CGF.getVLASize(
2384 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2385 .NumElts,
2386 CGF.SizeTy, /*isSigned=*/false);
2387 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2388 Elem);
2389 }
2390 }
2391
2392 // Call reduce_function(GlobalReduceList, ReduceList)
2393 llvm::Value *GlobalReduceList =
2394 CGF.EmitCastToVoidPtr(ReductionList.getPointer());
2395 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2396 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
2397 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
2398 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2399 CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr});
2400 CGF.FinishFunction();
2401 return Fn;
2402 }
2403
2404 /// This function emits a helper that copies all the reduction variables from
2405 /// the team into the provided global buffer for the reduction variables.
2406 ///
2407 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
2408 /// For all data entries D in reduce_data:
2409 /// Copy buffer.D[Idx] to local D;
emitGlobalToListCopyFunction(CodeGenModule & CGM,ArrayRef<const Expr * > Privates,QualType ReductionArrayTy,SourceLocation Loc,const RecordDecl * TeamReductionRec,const llvm::SmallDenseMap<const ValueDecl *,const FieldDecl * > & VarFieldMap)2410 static llvm::Value *emitGlobalToListCopyFunction(
2411 CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2412 QualType ReductionArrayTy, SourceLocation Loc,
2413 const RecordDecl *TeamReductionRec,
2414 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2415 &VarFieldMap) {
2416 ASTContext &C = CGM.getContext();
2417
2418 // Buffer: global reduction buffer.
2419 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2420 C.VoidPtrTy, ImplicitParamDecl::Other);
2421 // Idx: index of the buffer.
2422 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2423 ImplicitParamDecl::Other);
2424 // ReduceList: thread local Reduce list.
2425 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2426 C.VoidPtrTy, ImplicitParamDecl::Other);
2427 FunctionArgList Args;
2428 Args.push_back(&BufferArg);
2429 Args.push_back(&IdxArg);
2430 Args.push_back(&ReduceListArg);
2431
2432 const CGFunctionInfo &CGFI =
2433 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2434 auto *Fn = llvm::Function::Create(
2435 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2436 "_omp_reduction_global_to_list_copy_func", &CGM.getModule());
2437 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2438 Fn->setDoesNotRecurse();
2439 CodeGenFunction CGF(CGM);
2440 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2441
2442 CGBuilderTy &Bld = CGF.Builder;
2443
2444 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2445 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2446 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2447 Address LocalReduceList(
2448 Bld.CreatePointerBitCastOrAddrSpaceCast(
2449 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2450 C.VoidPtrTy, Loc),
2451 ElemTy->getPointerTo()),
2452 ElemTy, CGF.getPointerAlign());
2453 QualType StaticTy = C.getRecordType(TeamReductionRec);
2454 llvm::Type *LLVMReductionsBufferTy =
2455 CGM.getTypes().ConvertTypeForMem(StaticTy);
2456 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2457 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2458 LLVMReductionsBufferTy->getPointerTo());
2459
2460 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2461 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2462 /*Volatile=*/false, C.IntTy,
2463 Loc)};
2464 unsigned Idx = 0;
2465 for (const Expr *Private : Privates) {
2466 // Reduce element = LocalReduceList[i]
2467 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2468 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2469 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2470 // elemptr = ((CopyType*)(elemptrptr)) + I
2471 ElemTy = CGF.ConvertTypeForMem(Private->getType());
2472 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2473 ElemPtrPtr, ElemTy->getPointerTo());
2474 Address ElemPtr =
2475 Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType()));
2476 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
2477 // Global = Buffer.VD[Idx];
2478 const FieldDecl *FD = VarFieldMap.lookup(VD);
2479 LValue GlobLVal = CGF.EmitLValueForField(
2480 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2481 Address GlobAddr = GlobLVal.getAddress(CGF);
2482 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(GlobAddr.getElementType(),
2483 GlobAddr.getPointer(), Idxs);
2484 GlobLVal.setAddress(Address(BufferPtr,
2485 CGF.ConvertTypeForMem(Private->getType()),
2486 GlobAddr.getAlignment()));
2487 switch (CGF.getEvaluationKind(Private->getType())) {
2488 case TEK_Scalar: {
2489 llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc);
2490 CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(),
2491 LValueBaseInfo(AlignmentSource::Type),
2492 TBAAAccessInfo());
2493 break;
2494 }
2495 case TEK_Complex: {
2496 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc);
2497 CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2498 /*isInit=*/false);
2499 break;
2500 }
2501 case TEK_Aggregate:
2502 CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2503 GlobLVal, Private->getType(),
2504 AggValueSlot::DoesNotOverlap);
2505 break;
2506 }
2507 ++Idx;
2508 }
2509
2510 CGF.FinishFunction();
2511 return Fn;
2512 }
2513
2514 /// This function emits a helper that reduces all the reduction variables from
2515 /// the team into the provided global buffer for the reduction variables.
2516 ///
2517 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data)
2518 /// void *GlobPtrs[];
2519 /// GlobPtrs[0] = (void*)&buffer.D0[Idx];
2520 /// ...
2521 /// GlobPtrs[N] = (void*)&buffer.DN[Idx];
2522 /// reduce_function(reduce_data, GlobPtrs);
emitGlobalToListReduceFunction(CodeGenModule & CGM,ArrayRef<const Expr * > Privates,QualType ReductionArrayTy,SourceLocation Loc,const RecordDecl * TeamReductionRec,const llvm::SmallDenseMap<const ValueDecl *,const FieldDecl * > & VarFieldMap,llvm::Function * ReduceFn)2523 static llvm::Value *emitGlobalToListReduceFunction(
2524 CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2525 QualType ReductionArrayTy, SourceLocation Loc,
2526 const RecordDecl *TeamReductionRec,
2527 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2528 &VarFieldMap,
2529 llvm::Function *ReduceFn) {
2530 ASTContext &C = CGM.getContext();
2531
2532 // Buffer: global reduction buffer.
2533 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2534 C.VoidPtrTy, ImplicitParamDecl::Other);
2535 // Idx: index of the buffer.
2536 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2537 ImplicitParamDecl::Other);
2538 // ReduceList: thread local Reduce list.
2539 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2540 C.VoidPtrTy, ImplicitParamDecl::Other);
2541 FunctionArgList Args;
2542 Args.push_back(&BufferArg);
2543 Args.push_back(&IdxArg);
2544 Args.push_back(&ReduceListArg);
2545
2546 const CGFunctionInfo &CGFI =
2547 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2548 auto *Fn = llvm::Function::Create(
2549 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2550 "_omp_reduction_global_to_list_reduce_func", &CGM.getModule());
2551 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2552 Fn->setDoesNotRecurse();
2553 CodeGenFunction CGF(CGM);
2554 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2555
2556 CGBuilderTy &Bld = CGF.Builder;
2557
2558 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2559 QualType StaticTy = C.getRecordType(TeamReductionRec);
2560 llvm::Type *LLVMReductionsBufferTy =
2561 CGM.getTypes().ConvertTypeForMem(StaticTy);
2562 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2563 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2564 LLVMReductionsBufferTy->getPointerTo());
2565
2566 // 1. Build a list of reduction variables.
2567 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2568 Address ReductionList =
2569 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2570 auto IPriv = Privates.begin();
2571 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2572 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2573 /*Volatile=*/false, C.IntTy,
2574 Loc)};
2575 unsigned Idx = 0;
2576 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
2577 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2578 // Global = Buffer.VD[Idx];
2579 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
2580 const FieldDecl *FD = VarFieldMap.lookup(VD);
2581 LValue GlobLVal = CGF.EmitLValueForField(
2582 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2583 Address GlobAddr = GlobLVal.getAddress(CGF);
2584 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2585 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2586 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
2587 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
2588 if ((*IPriv)->getType()->isVariablyModifiedType()) {
2589 // Store array size.
2590 ++Idx;
2591 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2592 llvm::Value *Size = CGF.Builder.CreateIntCast(
2593 CGF.getVLASize(
2594 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2595 .NumElts,
2596 CGF.SizeTy, /*isSigned=*/false);
2597 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2598 Elem);
2599 }
2600 }
2601
2602 // Call reduce_function(ReduceList, GlobalReduceList)
2603 llvm::Value *GlobalReduceList =
2604 CGF.EmitCastToVoidPtr(ReductionList.getPointer());
2605 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2606 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
2607 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
2608 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2609 CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList});
2610 CGF.FinishFunction();
2611 return Fn;
2612 }
2613
2614 ///
2615 /// Design of OpenMP reductions on the GPU
2616 ///
2617 /// Consider a typical OpenMP program with one or more reduction
2618 /// clauses:
2619 ///
2620 /// float foo;
2621 /// double bar;
2622 /// #pragma omp target teams distribute parallel for \
2623 /// reduction(+:foo) reduction(*:bar)
2624 /// for (int i = 0; i < N; i++) {
2625 /// foo += A[i]; bar *= B[i];
2626 /// }
2627 ///
2628 /// where 'foo' and 'bar' are reduced across all OpenMP threads in
2629 /// all teams. In our OpenMP implementation on the NVPTX device an
2630 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
2631 /// within a team are mapped to CUDA threads within a threadblock.
2632 /// Our goal is to efficiently aggregate values across all OpenMP
2633 /// threads such that:
2634 ///
2635 /// - the compiler and runtime are logically concise, and
2636 /// - the reduction is performed efficiently in a hierarchical
2637 /// manner as follows: within OpenMP threads in the same warp,
2638 /// across warps in a threadblock, and finally across teams on
2639 /// the NVPTX device.
2640 ///
2641 /// Introduction to Decoupling
2642 ///
2643 /// We would like to decouple the compiler and the runtime so that the
2644 /// latter is ignorant of the reduction variables (number, data types)
2645 /// and the reduction operators. This allows a simpler interface
2646 /// and implementation while still attaining good performance.
2647 ///
2648 /// Pseudocode for the aforementioned OpenMP program generated by the
2649 /// compiler is as follows:
2650 ///
2651 /// 1. Create private copies of reduction variables on each OpenMP
2652 /// thread: 'foo_private', 'bar_private'
2653 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
2654 /// to it and writes the result in 'foo_private' and 'bar_private'
2655 /// respectively.
2656 /// 3. Call the OpenMP runtime on the GPU to reduce within a team
2657 /// and store the result on the team master:
2658 ///
2659 /// __kmpc_nvptx_parallel_reduce_nowait_v2(...,
2660 /// reduceData, shuffleReduceFn, interWarpCpyFn)
2661 ///
2662 /// where:
2663 /// struct ReduceData {
2664 /// double *foo;
2665 /// double *bar;
2666 /// } reduceData
2667 /// reduceData.foo = &foo_private
2668 /// reduceData.bar = &bar_private
2669 ///
2670 /// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
2671 /// auxiliary functions generated by the compiler that operate on
2672 /// variables of type 'ReduceData'. They aid the runtime perform
2673 /// algorithmic steps in a data agnostic manner.
2674 ///
2675 /// 'shuffleReduceFn' is a pointer to a function that reduces data
2676 /// of type 'ReduceData' across two OpenMP threads (lanes) in the
2677 /// same warp. It takes the following arguments as input:
2678 ///
2679 /// a. variable of type 'ReduceData' on the calling lane,
2680 /// b. its lane_id,
2681 /// c. an offset relative to the current lane_id to generate a
2682 /// remote_lane_id. The remote lane contains the second
2683 /// variable of type 'ReduceData' that is to be reduced.
2684 /// d. an algorithm version parameter determining which reduction
2685 /// algorithm to use.
2686 ///
2687 /// 'shuffleReduceFn' retrieves data from the remote lane using
2688 /// efficient GPU shuffle intrinsics and reduces, using the
2689 /// algorithm specified by the 4th parameter, the two operands
2690 /// element-wise. The result is written to the first operand.
2691 ///
2692 /// Different reduction algorithms are implemented in different
2693 /// runtime functions, all calling 'shuffleReduceFn' to perform
2694 /// the essential reduction step. Therefore, based on the 4th
2695 /// parameter, this function behaves slightly differently to
2696 /// cooperate with the runtime to ensure correctness under
2697 /// different circumstances.
2698 ///
2699 /// 'InterWarpCpyFn' is a pointer to a function that transfers
2700 /// reduced variables across warps. It tunnels, through CUDA
2701 /// shared memory, the thread-private data of type 'ReduceData'
2702 /// from lane 0 of each warp to a lane in the first warp.
2703 /// 4. Call the OpenMP runtime on the GPU to reduce across teams.
2704 /// The last team writes the global reduced value to memory.
2705 ///
2706 /// ret = __kmpc_nvptx_teams_reduce_nowait(...,
2707 /// reduceData, shuffleReduceFn, interWarpCpyFn,
2708 /// scratchpadCopyFn, loadAndReduceFn)
2709 ///
2710 /// 'scratchpadCopyFn' is a helper that stores reduced
2711 /// data from the team master to a scratchpad array in
2712 /// global memory.
2713 ///
2714 /// 'loadAndReduceFn' is a helper that loads data from
2715 /// the scratchpad array and reduces it with the input
2716 /// operand.
2717 ///
2718 /// These compiler generated functions hide address
2719 /// calculation and alignment information from the runtime.
2720 /// 5. if ret == 1:
2721 /// The team master of the last team stores the reduced
2722 /// result to the globals in memory.
2723 /// foo += reduceData.foo; bar *= reduceData.bar
2724 ///
2725 ///
2726 /// Warp Reduction Algorithms
2727 ///
2728 /// On the warp level, we have three algorithms implemented in the
2729 /// OpenMP runtime depending on the number of active lanes:
2730 ///
2731 /// Full Warp Reduction
2732 ///
2733 /// The reduce algorithm within a warp where all lanes are active
2734 /// is implemented in the runtime as follows:
2735 ///
2736 /// full_warp_reduce(void *reduce_data,
2737 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) {
2738 /// for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
2739 /// ShuffleReduceFn(reduce_data, 0, offset, 0);
2740 /// }
2741 ///
2742 /// The algorithm completes in log(2, WARPSIZE) steps.
2743 ///
2744 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
2745 /// not used therefore we save instructions by not retrieving lane_id
2746 /// from the corresponding special registers. The 4th parameter, which
2747 /// represents the version of the algorithm being used, is set to 0 to
2748 /// signify full warp reduction.
2749 ///
2750 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
2751 ///
2752 /// #reduce_elem refers to an element in the local lane's data structure
2753 /// #remote_elem is retrieved from a remote lane
2754 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
2755 /// reduce_elem = reduce_elem REDUCE_OP remote_elem;
2756 ///
2757 /// Contiguous Partial Warp Reduction
2758 ///
2759 /// This reduce algorithm is used within a warp where only the first
2760 /// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the
2761 /// number of OpenMP threads in a parallel region is not a multiple of
2762 /// WARPSIZE. The algorithm is implemented in the runtime as follows:
2763 ///
2764 /// void
2765 /// contiguous_partial_reduce(void *reduce_data,
2766 /// kmp_ShuffleReductFctPtr ShuffleReduceFn,
2767 /// int size, int lane_id) {
2768 /// int curr_size;
2769 /// int offset;
2770 /// curr_size = size;
2771 /// mask = curr_size/2;
2772 /// while (offset>0) {
2773 /// ShuffleReduceFn(reduce_data, lane_id, offset, 1);
2774 /// curr_size = (curr_size+1)/2;
2775 /// offset = curr_size/2;
2776 /// }
2777 /// }
2778 ///
2779 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
2780 ///
2781 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
2782 /// if (lane_id < offset)
2783 /// reduce_elem = reduce_elem REDUCE_OP remote_elem
2784 /// else
2785 /// reduce_elem = remote_elem
2786 ///
2787 /// This algorithm assumes that the data to be reduced are located in a
2788 /// contiguous subset of lanes starting from the first. When there is
2789 /// an odd number of active lanes, the data in the last lane is not
2790 /// aggregated with any other lane's dat but is instead copied over.
2791 ///
2792 /// Dispersed Partial Warp Reduction
2793 ///
2794 /// This algorithm is used within a warp when any discontiguous subset of
2795 /// lanes are active. It is used to implement the reduction operation
2796 /// across lanes in an OpenMP simd region or in a nested parallel region.
2797 ///
2798 /// void
2799 /// dispersed_partial_reduce(void *reduce_data,
2800 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) {
2801 /// int size, remote_id;
2802 /// int logical_lane_id = number_of_active_lanes_before_me() * 2;
2803 /// do {
2804 /// remote_id = next_active_lane_id_right_after_me();
2805 /// # the above function returns 0 of no active lane
2806 /// # is present right after the current lane.
2807 /// size = number_of_active_lanes_in_this_warp();
2808 /// logical_lane_id /= 2;
2809 /// ShuffleReduceFn(reduce_data, logical_lane_id,
2810 /// remote_id-1-threadIdx.x, 2);
2811 /// } while (logical_lane_id % 2 == 0 && size > 1);
2812 /// }
2813 ///
2814 /// There is no assumption made about the initial state of the reduction.
2815 /// Any number of lanes (>=1) could be active at any position. The reduction
2816 /// result is returned in the first active lane.
2817 ///
2818 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
2819 ///
2820 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
2821 /// if (lane_id % 2 == 0 && offset > 0)
2822 /// reduce_elem = reduce_elem REDUCE_OP remote_elem
2823 /// else
2824 /// reduce_elem = remote_elem
2825 ///
2826 ///
2827 /// Intra-Team Reduction
2828 ///
2829 /// This function, as implemented in the runtime call
2830 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP
2831 /// threads in a team. It first reduces within a warp using the
2832 /// aforementioned algorithms. We then proceed to gather all such
2833 /// reduced values at the first warp.
2834 ///
2835 /// The runtime makes use of the function 'InterWarpCpyFn', which copies
2836 /// data from each of the "warp master" (zeroth lane of each warp, where
2837 /// warp-reduced data is held) to the zeroth warp. This step reduces (in
2838 /// a mathematical sense) the problem of reduction across warp masters in
2839 /// a block to the problem of warp reduction.
2840 ///
2841 ///
2842 /// Inter-Team Reduction
2843 ///
2844 /// Once a team has reduced its data to a single value, it is stored in
2845 /// a global scratchpad array. Since each team has a distinct slot, this
2846 /// can be done without locking.
2847 ///
2848 /// The last team to write to the scratchpad array proceeds to reduce the
2849 /// scratchpad array. One or more workers in the last team use the helper
2850 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e.,
2851 /// the k'th worker reduces every k'th element.
2852 ///
2853 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to
2854 /// reduce across workers and compute a globally reduced value.
2855 ///
emitReduction(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps,ReductionOptionsTy Options)2856 void CGOpenMPRuntimeGPU::emitReduction(
2857 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
2858 ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
2859 ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
2860 if (!CGF.HaveInsertPoint())
2861 return;
2862
2863 bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
2864 #ifndef NDEBUG
2865 bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind);
2866 #endif
2867
2868 if (Options.SimpleReduction) {
2869 assert(!TeamsReduction && !ParallelReduction &&
2870 "Invalid reduction selection in emitReduction.");
2871 CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
2872 ReductionOps, Options);
2873 return;
2874 }
2875
2876 assert((TeamsReduction || ParallelReduction) &&
2877 "Invalid reduction selection in emitReduction.");
2878
2879 // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
2880 // RedList, shuffle_reduce_func, interwarp_copy_func);
2881 // or
2882 // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>);
2883 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
2884 llvm::Value *ThreadId = getThreadID(CGF, Loc);
2885
2886 llvm::Value *Res;
2887 ASTContext &C = CGM.getContext();
2888 // 1. Build a list of reduction variables.
2889 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2890 auto Size = RHSExprs.size();
2891 for (const Expr *E : Privates) {
2892 if (E->getType()->isVariablyModifiedType())
2893 // Reserve place for array size.
2894 ++Size;
2895 }
2896 llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
2897 QualType ReductionArrayTy =
2898 C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
2899 /*IndexTypeQuals=*/0);
2900 Address ReductionList =
2901 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2902 auto IPriv = Privates.begin();
2903 unsigned Idx = 0;
2904 for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
2905 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2906 CGF.Builder.CreateStore(
2907 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2908 CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
2909 Elem);
2910 if ((*IPriv)->getType()->isVariablyModifiedType()) {
2911 // Store array size.
2912 ++Idx;
2913 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2914 llvm::Value *Size = CGF.Builder.CreateIntCast(
2915 CGF.getVLASize(
2916 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2917 .NumElts,
2918 CGF.SizeTy, /*isSigned=*/false);
2919 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2920 Elem);
2921 }
2922 }
2923
2924 llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2925 ReductionList.getPointer(), CGF.VoidPtrTy);
2926 llvm::Function *ReductionFn =
2927 emitReductionFunction(Loc, CGF.ConvertTypeForMem(ReductionArrayTy),
2928 Privates, LHSExprs, RHSExprs, ReductionOps);
2929 llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
2930 llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction(
2931 CGM, Privates, ReductionArrayTy, ReductionFn, Loc);
2932 llvm::Value *InterWarpCopyFn =
2933 emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc);
2934
2935 if (ParallelReduction) {
2936 llvm::Value *Args[] = {RTLoc,
2937 ThreadId,
2938 CGF.Builder.getInt32(RHSExprs.size()),
2939 ReductionArrayTySize,
2940 RL,
2941 ShuffleAndReduceFn,
2942 InterWarpCopyFn};
2943
2944 Res = CGF.EmitRuntimeCall(
2945 OMPBuilder.getOrCreateRuntimeFunction(
2946 CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2),
2947 Args);
2948 } else {
2949 assert(TeamsReduction && "expected teams reduction.");
2950 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap;
2951 llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size());
2952 int Cnt = 0;
2953 for (const Expr *DRE : Privates) {
2954 PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl();
2955 ++Cnt;
2956 }
2957 const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars(
2958 CGM.getContext(), PrivatesReductions, std::nullopt, VarFieldMap,
2959 C.getLangOpts().OpenMPCUDAReductionBufNum);
2960 TeamsReductions.push_back(TeamReductionRec);
2961 if (!KernelTeamsReductionPtr) {
2962 KernelTeamsReductionPtr = new llvm::GlobalVariable(
2963 CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true,
2964 llvm::GlobalValue::InternalLinkage, nullptr,
2965 "_openmp_teams_reductions_buffer_$_$ptr");
2966 }
2967 llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar(
2968 Address(KernelTeamsReductionPtr, CGF.VoidPtrTy, CGM.getPointerAlign()),
2969 /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
2970 llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction(
2971 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
2972 llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction(
2973 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
2974 ReductionFn);
2975 llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction(
2976 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
2977 llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction(
2978 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
2979 ReductionFn);
2980
2981 llvm::Value *Args[] = {
2982 RTLoc,
2983 ThreadId,
2984 GlobalBufferPtr,
2985 CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum),
2986 RL,
2987 ShuffleAndReduceFn,
2988 InterWarpCopyFn,
2989 GlobalToBufferCpyFn,
2990 GlobalToBufferRedFn,
2991 BufferToGlobalCpyFn,
2992 BufferToGlobalRedFn};
2993
2994 Res = CGF.EmitRuntimeCall(
2995 OMPBuilder.getOrCreateRuntimeFunction(
2996 CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2),
2997 Args);
2998 }
2999
3000 // 5. Build if (res == 1)
3001 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done");
3002 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then");
3003 llvm::Value *Cond = CGF.Builder.CreateICmpEQ(
3004 Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1));
3005 CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB);
3006
3007 // 6. Build then branch: where we have reduced values in the master
3008 // thread in each team.
3009 // __kmpc_end_reduce{_nowait}(<gtid>);
3010 // break;
3011 CGF.EmitBlock(ThenBB);
3012
3013 // Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
3014 auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps,
3015 this](CodeGenFunction &CGF, PrePostActionTy &Action) {
3016 auto IPriv = Privates.begin();
3017 auto ILHS = LHSExprs.begin();
3018 auto IRHS = RHSExprs.begin();
3019 for (const Expr *E : ReductionOps) {
3020 emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
3021 cast<DeclRefExpr>(*IRHS));
3022 ++IPriv;
3023 ++ILHS;
3024 ++IRHS;
3025 }
3026 };
3027 llvm::Value *EndArgs[] = {ThreadId};
3028 RegionCodeGenTy RCG(CodeGen);
3029 NVPTXActionTy Action(
3030 nullptr, std::nullopt,
3031 OMPBuilder.getOrCreateRuntimeFunction(
3032 CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait),
3033 EndArgs);
3034 RCG.setAction(Action);
3035 RCG(CGF);
3036 // There is no need to emit line number for unconditional branch.
3037 (void)ApplyDebugLocation::CreateEmpty(CGF);
3038 CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
3039 }
3040
3041 const VarDecl *
translateParameter(const FieldDecl * FD,const VarDecl * NativeParam) const3042 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD,
3043 const VarDecl *NativeParam) const {
3044 if (!NativeParam->getType()->isReferenceType())
3045 return NativeParam;
3046 QualType ArgType = NativeParam->getType();
3047 QualifierCollector QC;
3048 const Type *NonQualTy = QC.strip(ArgType);
3049 QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
3050 if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) {
3051 if (Attr->getCaptureKind() == OMPC_map) {
3052 PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
3053 LangAS::opencl_global);
3054 }
3055 }
3056 ArgType = CGM.getContext().getPointerType(PointeeTy);
3057 QC.addRestrict();
3058 enum { NVPTX_local_addr = 5 };
3059 QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr));
3060 ArgType = QC.apply(CGM.getContext(), ArgType);
3061 if (isa<ImplicitParamDecl>(NativeParam))
3062 return ImplicitParamDecl::Create(
3063 CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(),
3064 NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other);
3065 return ParmVarDecl::Create(
3066 CGM.getContext(),
3067 const_cast<DeclContext *>(NativeParam->getDeclContext()),
3068 NativeParam->getBeginLoc(), NativeParam->getLocation(),
3069 NativeParam->getIdentifier(), ArgType,
3070 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
3071 }
3072
3073 Address
getParameterAddress(CodeGenFunction & CGF,const VarDecl * NativeParam,const VarDecl * TargetParam) const3074 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF,
3075 const VarDecl *NativeParam,
3076 const VarDecl *TargetParam) const {
3077 assert(NativeParam != TargetParam &&
3078 NativeParam->getType()->isReferenceType() &&
3079 "Native arg must not be the same as target arg.");
3080 Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam);
3081 QualType NativeParamType = NativeParam->getType();
3082 QualifierCollector QC;
3083 const Type *NonQualTy = QC.strip(NativeParamType);
3084 QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
3085 unsigned NativePointeeAddrSpace =
3086 CGF.getTypes().getTargetAddressSpace(NativePointeeTy);
3087 QualType TargetTy = TargetParam->getType();
3088 llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(
3089 LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation());
3090 // First cast to generic.
3091 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3092 TargetAddr, llvm::PointerType::getWithSamePointeeType(
3093 cast<llvm::PointerType>(TargetAddr->getType()), /*AddrSpace=*/0));
3094 // Cast from generic to native address space.
3095 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3096 TargetAddr, llvm::PointerType::getWithSamePointeeType(
3097 cast<llvm::PointerType>(TargetAddr->getType()),
3098 NativePointeeAddrSpace));
3099 Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType);
3100 CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false,
3101 NativeParamType);
3102 return NativeParamAddr;
3103 }
3104
emitOutlinedFunctionCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::FunctionCallee OutlinedFn,ArrayRef<llvm::Value * > Args) const3105 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall(
3106 CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
3107 ArrayRef<llvm::Value *> Args) const {
3108 SmallVector<llvm::Value *, 4> TargetArgs;
3109 TargetArgs.reserve(Args.size());
3110 auto *FnType = OutlinedFn.getFunctionType();
3111 for (unsigned I = 0, E = Args.size(); I < E; ++I) {
3112 if (FnType->isVarArg() && FnType->getNumParams() <= I) {
3113 TargetArgs.append(std::next(Args.begin(), I), Args.end());
3114 break;
3115 }
3116 llvm::Type *TargetType = FnType->getParamType(I);
3117 llvm::Value *NativeArg = Args[I];
3118 if (!TargetType->isPointerTy()) {
3119 TargetArgs.emplace_back(NativeArg);
3120 continue;
3121 }
3122 llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3123 NativeArg, llvm::PointerType::getWithSamePointeeType(
3124 cast<llvm::PointerType>(NativeArg->getType()), /*AddrSpace*/ 0));
3125 TargetArgs.emplace_back(
3126 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType));
3127 }
3128 CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs);
3129 }
3130
3131 /// Emit function which wraps the outline parallel region
3132 /// and controls the arguments which are passed to this function.
3133 /// The wrapper ensures that the outlined function is called
3134 /// with the correct arguments when data is shared.
createParallelDataSharingWrapper(llvm::Function * OutlinedParallelFn,const OMPExecutableDirective & D)3135 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper(
3136 llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) {
3137 ASTContext &Ctx = CGM.getContext();
3138 const auto &CS = *D.getCapturedStmt(OMPD_parallel);
3139
3140 // Create a function that takes as argument the source thread.
3141 FunctionArgList WrapperArgs;
3142 QualType Int16QTy =
3143 Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false);
3144 QualType Int32QTy =
3145 Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false);
3146 ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
3147 /*Id=*/nullptr, Int16QTy,
3148 ImplicitParamDecl::Other);
3149 ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
3150 /*Id=*/nullptr, Int32QTy,
3151 ImplicitParamDecl::Other);
3152 WrapperArgs.emplace_back(&ParallelLevelArg);
3153 WrapperArgs.emplace_back(&WrapperArg);
3154
3155 const CGFunctionInfo &CGFI =
3156 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs);
3157
3158 auto *Fn = llvm::Function::Create(
3159 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
3160 Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule());
3161
3162 // Ensure we do not inline the function. This is trivially true for the ones
3163 // passed to __kmpc_fork_call but the ones calles in serialized regions
3164 // could be inlined. This is not a perfect but it is closer to the invariant
3165 // we want, namely, every data environment starts with a new function.
3166 // TODO: We should pass the if condition to the runtime function and do the
3167 // handling there. Much cleaner code.
3168 Fn->addFnAttr(llvm::Attribute::NoInline);
3169
3170 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3171 Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
3172 Fn->setDoesNotRecurse();
3173
3174 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
3175 CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs,
3176 D.getBeginLoc(), D.getBeginLoc());
3177
3178 const auto *RD = CS.getCapturedRecordDecl();
3179 auto CurField = RD->field_begin();
3180
3181 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
3182 /*Name=*/".zero.addr");
3183 CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
3184 // Get the array of arguments.
3185 SmallVector<llvm::Value *, 8> Args;
3186
3187 Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer());
3188 Args.emplace_back(ZeroAddr.getPointer());
3189
3190 CGBuilderTy &Bld = CGF.Builder;
3191 auto CI = CS.capture_begin();
3192
3193 // Use global memory for data sharing.
3194 // Handle passing of global args to workers.
3195 Address GlobalArgs =
3196 CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args");
3197 llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer();
3198 llvm::Value *DataSharingArgs[] = {GlobalArgsPtr};
3199 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
3200 CGM.getModule(), OMPRTL___kmpc_get_shared_variables),
3201 DataSharingArgs);
3202
3203 // Retrieve the shared variables from the list of references returned
3204 // by the runtime. Pass the variables to the outlined function.
3205 Address SharedArgListAddress = Address::invalid();
3206 if (CS.capture_size() > 0 ||
3207 isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
3208 SharedArgListAddress = CGF.EmitLoadOfPointer(
3209 GlobalArgs, CGF.getContext()
3210 .getPointerType(CGF.getContext().VoidPtrTy)
3211 .castAs<PointerType>());
3212 }
3213 unsigned Idx = 0;
3214 if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
3215 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
3216 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3217 Src, CGF.SizeTy->getPointerTo(), CGF.SizeTy);
3218 llvm::Value *LB = CGF.EmitLoadOfScalar(
3219 TypedAddress,
3220 /*Volatile=*/false,
3221 CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
3222 cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc());
3223 Args.emplace_back(LB);
3224 ++Idx;
3225 Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
3226 TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3227 Src, CGF.SizeTy->getPointerTo(), CGF.SizeTy);
3228 llvm::Value *UB = CGF.EmitLoadOfScalar(
3229 TypedAddress,
3230 /*Volatile=*/false,
3231 CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
3232 cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc());
3233 Args.emplace_back(UB);
3234 ++Idx;
3235 }
3236 if (CS.capture_size() > 0) {
3237 ASTContext &CGFContext = CGF.getContext();
3238 for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) {
3239 QualType ElemTy = CurField->getType();
3240 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx);
3241 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3242 Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy)),
3243 CGF.ConvertTypeForMem(ElemTy));
3244 llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress,
3245 /*Volatile=*/false,
3246 CGFContext.getPointerType(ElemTy),
3247 CI->getLocation());
3248 if (CI->capturesVariableByCopy() &&
3249 !CI->getCapturedVar()->getType()->isAnyPointerType()) {
3250 Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(),
3251 CI->getLocation());
3252 }
3253 Args.emplace_back(Arg);
3254 }
3255 }
3256
3257 emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args);
3258 CGF.FinishFunction();
3259 return Fn;
3260 }
3261
emitFunctionProlog(CodeGenFunction & CGF,const Decl * D)3262 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF,
3263 const Decl *D) {
3264 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
3265 return;
3266
3267 assert(D && "Expected function or captured|block decl.");
3268 assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 &&
3269 "Function is registered already.");
3270 assert((!TeamAndReductions.first || TeamAndReductions.first == D) &&
3271 "Team is set but not processed.");
3272 const Stmt *Body = nullptr;
3273 bool NeedToDelayGlobalization = false;
3274 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3275 Body = FD->getBody();
3276 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
3277 Body = BD->getBody();
3278 } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) {
3279 Body = CD->getBody();
3280 NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP;
3281 if (NeedToDelayGlobalization &&
3282 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
3283 return;
3284 }
3285 if (!Body)
3286 return;
3287 CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second);
3288 VarChecker.Visit(Body);
3289 const RecordDecl *GlobalizedVarsRecord =
3290 VarChecker.getGlobalizedRecord(IsInTTDRegion);
3291 TeamAndReductions.first = nullptr;
3292 TeamAndReductions.second.clear();
3293 ArrayRef<const ValueDecl *> EscapedVariableLengthDecls =
3294 VarChecker.getEscapedVariableLengthDecls();
3295 if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty())
3296 return;
3297 auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
3298 I->getSecond().MappedParams =
3299 std::make_unique<CodeGenFunction::OMPMapVars>();
3300 I->getSecond().EscapedParameters.insert(
3301 VarChecker.getEscapedParameters().begin(),
3302 VarChecker.getEscapedParameters().end());
3303 I->getSecond().EscapedVariableLengthDecls.append(
3304 EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end());
3305 DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
3306 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
3307 assert(VD->isCanonicalDecl() && "Expected canonical declaration");
3308 Data.insert(std::make_pair(VD, MappedVarData()));
3309 }
3310 if (!NeedToDelayGlobalization) {
3311 emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true);
3312 struct GlobalizationScope final : EHScopeStack::Cleanup {
3313 GlobalizationScope() = default;
3314
3315 void Emit(CodeGenFunction &CGF, Flags flags) override {
3316 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
3317 .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true);
3318 }
3319 };
3320 CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup);
3321 }
3322 }
3323
getAddressOfLocalVariable(CodeGenFunction & CGF,const VarDecl * VD)3324 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF,
3325 const VarDecl *VD) {
3326 if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) {
3327 const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3328 auto AS = LangAS::Default;
3329 switch (A->getAllocatorType()) {
3330 // Use the default allocator here as by default local vars are
3331 // threadlocal.
3332 case OMPAllocateDeclAttr::OMPNullMemAlloc:
3333 case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
3334 case OMPAllocateDeclAttr::OMPThreadMemAlloc:
3335 case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
3336 case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
3337 // Follow the user decision - use default allocation.
3338 return Address::invalid();
3339 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
3340 // TODO: implement aupport for user-defined allocators.
3341 return Address::invalid();
3342 case OMPAllocateDeclAttr::OMPConstMemAlloc:
3343 AS = LangAS::cuda_constant;
3344 break;
3345 case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
3346 AS = LangAS::cuda_shared;
3347 break;
3348 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
3349 case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
3350 break;
3351 }
3352 llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType());
3353 auto *GV = new llvm::GlobalVariable(
3354 CGM.getModule(), VarTy, /*isConstant=*/false,
3355 llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy),
3356 VD->getName(),
3357 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal,
3358 CGM.getContext().getTargetAddressSpace(AS));
3359 CharUnits Align = CGM.getContext().getDeclAlign(VD);
3360 GV->setAlignment(Align.getAsAlign());
3361 return Address(
3362 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3363 GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace(
3364 VD->getType().getAddressSpace()))),
3365 VarTy, Align);
3366 }
3367
3368 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
3369 return Address::invalid();
3370
3371 VD = VD->getCanonicalDecl();
3372 auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
3373 if (I == FunctionGlobalizedDecls.end())
3374 return Address::invalid();
3375 auto VDI = I->getSecond().LocalVarData.find(VD);
3376 if (VDI != I->getSecond().LocalVarData.end())
3377 return VDI->second.PrivateAddr;
3378 if (VD->hasAttrs()) {
3379 for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()),
3380 E(VD->attr_end());
3381 IT != E; ++IT) {
3382 auto VDI = I->getSecond().LocalVarData.find(
3383 cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl())
3384 ->getCanonicalDecl());
3385 if (VDI != I->getSecond().LocalVarData.end())
3386 return VDI->second.PrivateAddr;
3387 }
3388 }
3389
3390 return Address::invalid();
3391 }
3392
functionFinished(CodeGenFunction & CGF)3393 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) {
3394 FunctionGlobalizedDecls.erase(CGF.CurFn);
3395 CGOpenMPRuntime::functionFinished(CGF);
3396 }
3397
getDefaultDistScheduleAndChunk(CodeGenFunction & CGF,const OMPLoopDirective & S,OpenMPDistScheduleClauseKind & ScheduleKind,llvm::Value * & Chunk) const3398 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk(
3399 CodeGenFunction &CGF, const OMPLoopDirective &S,
3400 OpenMPDistScheduleClauseKind &ScheduleKind,
3401 llvm::Value *&Chunk) const {
3402 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
3403 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
3404 ScheduleKind = OMPC_DIST_SCHEDULE_static;
3405 Chunk = CGF.EmitScalarConversion(
3406 RT.getGPUNumThreads(CGF),
3407 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3408 S.getIterationVariable()->getType(), S.getBeginLoc());
3409 return;
3410 }
3411 CGOpenMPRuntime::getDefaultDistScheduleAndChunk(
3412 CGF, S, ScheduleKind, Chunk);
3413 }
3414
getDefaultScheduleAndChunk(CodeGenFunction & CGF,const OMPLoopDirective & S,OpenMPScheduleClauseKind & ScheduleKind,const Expr * & ChunkExpr) const3415 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk(
3416 CodeGenFunction &CGF, const OMPLoopDirective &S,
3417 OpenMPScheduleClauseKind &ScheduleKind,
3418 const Expr *&ChunkExpr) const {
3419 ScheduleKind = OMPC_SCHEDULE_static;
3420 // Chunk size is 1 in this case.
3421 llvm::APInt ChunkSize(32, 1);
3422 ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize,
3423 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3424 SourceLocation());
3425 }
3426
adjustTargetSpecificDataForLambdas(CodeGenFunction & CGF,const OMPExecutableDirective & D) const3427 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas(
3428 CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
3429 assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
3430 " Expected target-based directive.");
3431 const CapturedStmt *CS = D.getCapturedStmt(OMPD_target);
3432 for (const CapturedStmt::Capture &C : CS->captures()) {
3433 // Capture variables captured by reference in lambdas for target-based
3434 // directives.
3435 if (!C.capturesVariable())
3436 continue;
3437 const VarDecl *VD = C.getCapturedVar();
3438 const auto *RD = VD->getType()
3439 .getCanonicalType()
3440 .getNonReferenceType()
3441 ->getAsCXXRecordDecl();
3442 if (!RD || !RD->isLambda())
3443 continue;
3444 Address VDAddr = CGF.GetAddrOfLocalVar(VD);
3445 LValue VDLVal;
3446 if (VD->getType().getCanonicalType()->isReferenceType())
3447 VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType());
3448 else
3449 VDLVal = CGF.MakeAddrLValue(
3450 VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
3451 llvm::DenseMap<const ValueDecl *, FieldDecl *> Captures;
3452 FieldDecl *ThisCapture = nullptr;
3453 RD->getCaptureFields(Captures, ThisCapture);
3454 if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) {
3455 LValue ThisLVal =
3456 CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
3457 llvm::Value *CXXThis = CGF.LoadCXXThis();
3458 CGF.EmitStoreOfScalar(CXXThis, ThisLVal);
3459 }
3460 for (const LambdaCapture &LC : RD->captures()) {
3461 if (LC.getCaptureKind() != LCK_ByRef)
3462 continue;
3463 const ValueDecl *VD = LC.getCapturedVar();
3464 // FIXME: For now VD is always a VarDecl because OpenMP does not support
3465 // capturing structured bindings in lambdas yet.
3466 if (!CS->capturesVariable(cast<VarDecl>(VD)))
3467 continue;
3468 auto It = Captures.find(VD);
3469 assert(It != Captures.end() && "Found lambda capture without field.");
3470 LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
3471 Address VDAddr = CGF.GetAddrOfLocalVar(cast<VarDecl>(VD));
3472 if (VD->getType().getCanonicalType()->isReferenceType())
3473 VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr,
3474 VD->getType().getCanonicalType())
3475 .getAddress(CGF);
3476 CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal);
3477 }
3478 }
3479 }
3480
hasAllocateAttributeForGlobalVar(const VarDecl * VD,LangAS & AS)3481 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
3482 LangAS &AS) {
3483 if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
3484 return false;
3485 const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3486 switch(A->getAllocatorType()) {
3487 case OMPAllocateDeclAttr::OMPNullMemAlloc:
3488 case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
3489 // Not supported, fallback to the default mem space.
3490 case OMPAllocateDeclAttr::OMPThreadMemAlloc:
3491 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
3492 case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
3493 case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
3494 case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
3495 AS = LangAS::Default;
3496 return true;
3497 case OMPAllocateDeclAttr::OMPConstMemAlloc:
3498 AS = LangAS::cuda_constant;
3499 return true;
3500 case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
3501 AS = LangAS::cuda_shared;
3502 return true;
3503 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
3504 llvm_unreachable("Expected predefined allocator for the variables with the "
3505 "static storage.");
3506 }
3507 return false;
3508 }
3509
3510 // Get current CudaArch and ignore any unknown values
getCudaArch(CodeGenModule & CGM)3511 static CudaArch getCudaArch(CodeGenModule &CGM) {
3512 if (!CGM.getTarget().hasFeature("ptx"))
3513 return CudaArch::UNKNOWN;
3514 for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) {
3515 if (Feature.getValue()) {
3516 CudaArch Arch = StringToCudaArch(Feature.getKey());
3517 if (Arch != CudaArch::UNKNOWN)
3518 return Arch;
3519 }
3520 }
3521 return CudaArch::UNKNOWN;
3522 }
3523
3524 /// Check to see if target architecture supports unified addressing which is
3525 /// a restriction for OpenMP requires clause "unified_shared_memory".
processRequiresDirective(const OMPRequiresDecl * D)3526 void CGOpenMPRuntimeGPU::processRequiresDirective(
3527 const OMPRequiresDecl *D) {
3528 for (const OMPClause *Clause : D->clauselists()) {
3529 if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
3530 CudaArch Arch = getCudaArch(CGM);
3531 switch (Arch) {
3532 case CudaArch::SM_20:
3533 case CudaArch::SM_21:
3534 case CudaArch::SM_30:
3535 case CudaArch::SM_32:
3536 case CudaArch::SM_35:
3537 case CudaArch::SM_37:
3538 case CudaArch::SM_50:
3539 case CudaArch::SM_52:
3540 case CudaArch::SM_53: {
3541 SmallString<256> Buffer;
3542 llvm::raw_svector_ostream Out(Buffer);
3543 Out << "Target architecture " << CudaArchToString(Arch)
3544 << " does not support unified addressing";
3545 CGM.Error(Clause->getBeginLoc(), Out.str());
3546 return;
3547 }
3548 case CudaArch::SM_60:
3549 case CudaArch::SM_61:
3550 case CudaArch::SM_62:
3551 case CudaArch::SM_70:
3552 case CudaArch::SM_72:
3553 case CudaArch::SM_75:
3554 case CudaArch::SM_80:
3555 case CudaArch::SM_86:
3556 case CudaArch::SM_87:
3557 case CudaArch::SM_89:
3558 case CudaArch::SM_90:
3559 case CudaArch::GFX600:
3560 case CudaArch::GFX601:
3561 case CudaArch::GFX602:
3562 case CudaArch::GFX700:
3563 case CudaArch::GFX701:
3564 case CudaArch::GFX702:
3565 case CudaArch::GFX703:
3566 case CudaArch::GFX704:
3567 case CudaArch::GFX705:
3568 case CudaArch::GFX801:
3569 case CudaArch::GFX802:
3570 case CudaArch::GFX803:
3571 case CudaArch::GFX805:
3572 case CudaArch::GFX810:
3573 case CudaArch::GFX900:
3574 case CudaArch::GFX902:
3575 case CudaArch::GFX904:
3576 case CudaArch::GFX906:
3577 case CudaArch::GFX908:
3578 case CudaArch::GFX909:
3579 case CudaArch::GFX90a:
3580 case CudaArch::GFX90c:
3581 case CudaArch::GFX940:
3582 case CudaArch::GFX1010:
3583 case CudaArch::GFX1011:
3584 case CudaArch::GFX1012:
3585 case CudaArch::GFX1013:
3586 case CudaArch::GFX1030:
3587 case CudaArch::GFX1031:
3588 case CudaArch::GFX1032:
3589 case CudaArch::GFX1033:
3590 case CudaArch::GFX1034:
3591 case CudaArch::GFX1035:
3592 case CudaArch::GFX1036:
3593 case CudaArch::GFX1100:
3594 case CudaArch::GFX1101:
3595 case CudaArch::GFX1102:
3596 case CudaArch::GFX1103:
3597 case CudaArch::Generic:
3598 case CudaArch::UNUSED:
3599 case CudaArch::UNKNOWN:
3600 break;
3601 case CudaArch::LAST:
3602 llvm_unreachable("Unexpected Cuda arch.");
3603 }
3604 }
3605 }
3606 CGOpenMPRuntime::processRequiresDirective(D);
3607 }
3608
clear()3609 void CGOpenMPRuntimeGPU::clear() {
3610
3611 if (!TeamsReductions.empty()) {
3612 ASTContext &C = CGM.getContext();
3613 RecordDecl *StaticRD = C.buildImplicitRecord(
3614 "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union);
3615 StaticRD->startDefinition();
3616 for (const RecordDecl *TeamReductionRec : TeamsReductions) {
3617 QualType RecTy = C.getRecordType(TeamReductionRec);
3618 auto *Field = FieldDecl::Create(
3619 C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy,
3620 C.getTrivialTypeSourceInfo(RecTy, SourceLocation()),
3621 /*BW=*/nullptr, /*Mutable=*/false,
3622 /*InitStyle=*/ICIS_NoInit);
3623 Field->setAccess(AS_public);
3624 StaticRD->addDecl(Field);
3625 }
3626 StaticRD->completeDefinition();
3627 QualType StaticTy = C.getRecordType(StaticRD);
3628 llvm::Type *LLVMReductionsBufferTy =
3629 CGM.getTypes().ConvertTypeForMem(StaticTy);
3630 // FIXME: nvlink does not handle weak linkage correctly (object with the
3631 // different size are reported as erroneous).
3632 // Restore CommonLinkage as soon as nvlink is fixed.
3633 auto *GV = new llvm::GlobalVariable(
3634 CGM.getModule(), LLVMReductionsBufferTy,
3635 /*isConstant=*/false, llvm::GlobalValue::InternalLinkage,
3636 llvm::Constant::getNullValue(LLVMReductionsBufferTy),
3637 "_openmp_teams_reductions_buffer_$_");
3638 KernelTeamsReductionPtr->setInitializer(
3639 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
3640 CGM.VoidPtrTy));
3641 }
3642 CGOpenMPRuntime::clear();
3643 }
3644
getGPUNumThreads(CodeGenFunction & CGF)3645 llvm::Value *CGOpenMPRuntimeGPU::getGPUNumThreads(CodeGenFunction &CGF) {
3646 CGBuilderTy &Bld = CGF.Builder;
3647 llvm::Module *M = &CGF.CGM.getModule();
3648 const char *LocSize = "__kmpc_get_hardware_num_threads_in_block";
3649 llvm::Function *F = M->getFunction(LocSize);
3650 if (!F) {
3651 F = llvm::Function::Create(
3652 llvm::FunctionType::get(CGF.Int32Ty, std::nullopt, false),
3653 llvm::GlobalVariable::ExternalLinkage, LocSize, &CGF.CGM.getModule());
3654 }
3655 return Bld.CreateCall(F, std::nullopt, "nvptx_num_threads");
3656 }
3657
getGPUThreadID(CodeGenFunction & CGF)3658 llvm::Value *CGOpenMPRuntimeGPU::getGPUThreadID(CodeGenFunction &CGF) {
3659 ArrayRef<llvm::Value *> Args{};
3660 return CGF.EmitRuntimeCall(
3661 OMPBuilder.getOrCreateRuntimeFunction(
3662 CGM.getModule(), OMPRTL___kmpc_get_hardware_thread_id_in_block),
3663 Args);
3664 }
3665
getGPUWarpSize(CodeGenFunction & CGF)3666 llvm::Value *CGOpenMPRuntimeGPU::getGPUWarpSize(CodeGenFunction &CGF) {
3667 ArrayRef<llvm::Value *> Args{};
3668 return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
3669 CGM.getModule(), OMPRTL___kmpc_get_warp_size),
3670 Args);
3671 }
3672