1 //===- ConstantRange.cpp - ConstantRange implementation -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Represent a range of possible values that may occur when the program is run
10 // for an integral value. This keeps track of a lower and upper bound for the
11 // constant, which MAY wrap around the end of the numeric range. To do this, it
12 // keeps track of a [lower, upper) bound, which specifies an interval just like
13 // STL iterators. When used with boolean values, the following are important
14 // ranges (other integral ranges use min/max values for special range values):
15 //
16 // [F, F) = {} = Empty set
17 // [T, F) = {T}
18 // [F, T) = {F}
19 // [T, T) = {F, T} = Full set
20 //
21 //===----------------------------------------------------------------------===//
22
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/Support/Compiler.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm>
38 #include <cassert>
39 #include <cstdint>
40 #include <optional>
41
42 using namespace llvm;
43
ConstantRange(uint32_t BitWidth,bool Full)44 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full)
45 : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)),
46 Upper(Lower) {}
47
ConstantRange(APInt V)48 ConstantRange::ConstantRange(APInt V)
49 : Lower(std::move(V)), Upper(Lower + 1) {}
50
ConstantRange(APInt L,APInt U)51 ConstantRange::ConstantRange(APInt L, APInt U)
52 : Lower(std::move(L)), Upper(std::move(U)) {
53 assert(Lower.getBitWidth() == Upper.getBitWidth() &&
54 "ConstantRange with unequal bit widths");
55 assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
56 "Lower == Upper, but they aren't min or max value!");
57 }
58
fromKnownBits(const KnownBits & Known,bool IsSigned)59 ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known,
60 bool IsSigned) {
61 assert(!Known.hasConflict() && "Expected valid KnownBits");
62
63 if (Known.isUnknown())
64 return getFull(Known.getBitWidth());
65
66 // For unsigned ranges, or signed ranges with known sign bit, create a simple
67 // range between the smallest and largest possible value.
68 if (!IsSigned || Known.isNegative() || Known.isNonNegative())
69 return ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1);
70
71 // If we don't know the sign bit, pick the lower bound as a negative number
72 // and the upper bound as a non-negative one.
73 APInt Lower = Known.getMinValue(), Upper = Known.getMaxValue();
74 Lower.setSignBit();
75 Upper.clearSignBit();
76 return ConstantRange(Lower, Upper + 1);
77 }
78
toKnownBits() const79 KnownBits ConstantRange::toKnownBits() const {
80 // TODO: We could return conflicting known bits here, but consumers are
81 // likely not prepared for that.
82 if (isEmptySet())
83 return KnownBits(getBitWidth());
84
85 // We can only retain the top bits that are the same between min and max.
86 APInt Min = getUnsignedMin();
87 APInt Max = getUnsignedMax();
88 KnownBits Known = KnownBits::makeConstant(Min);
89 if (std::optional<unsigned> DifferentBit =
90 APIntOps::GetMostSignificantDifferentBit(Min, Max)) {
91 Known.Zero.clearLowBits(*DifferentBit + 1);
92 Known.One.clearLowBits(*DifferentBit + 1);
93 }
94 return Known;
95 }
96
makeAllowedICmpRegion(CmpInst::Predicate Pred,const ConstantRange & CR)97 ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
98 const ConstantRange &CR) {
99 if (CR.isEmptySet())
100 return CR;
101
102 uint32_t W = CR.getBitWidth();
103 switch (Pred) {
104 default:
105 llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
106 case CmpInst::ICMP_EQ:
107 return CR;
108 case CmpInst::ICMP_NE:
109 if (CR.isSingleElement())
110 return ConstantRange(CR.getUpper(), CR.getLower());
111 return getFull(W);
112 case CmpInst::ICMP_ULT: {
113 APInt UMax(CR.getUnsignedMax());
114 if (UMax.isMinValue())
115 return getEmpty(W);
116 return ConstantRange(APInt::getMinValue(W), std::move(UMax));
117 }
118 case CmpInst::ICMP_SLT: {
119 APInt SMax(CR.getSignedMax());
120 if (SMax.isMinSignedValue())
121 return getEmpty(W);
122 return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax));
123 }
124 case CmpInst::ICMP_ULE:
125 return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1);
126 case CmpInst::ICMP_SLE:
127 return getNonEmpty(APInt::getSignedMinValue(W), CR.getSignedMax() + 1);
128 case CmpInst::ICMP_UGT: {
129 APInt UMin(CR.getUnsignedMin());
130 if (UMin.isMaxValue())
131 return getEmpty(W);
132 return ConstantRange(std::move(UMin) + 1, APInt::getZero(W));
133 }
134 case CmpInst::ICMP_SGT: {
135 APInt SMin(CR.getSignedMin());
136 if (SMin.isMaxSignedValue())
137 return getEmpty(W);
138 return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W));
139 }
140 case CmpInst::ICMP_UGE:
141 return getNonEmpty(CR.getUnsignedMin(), APInt::getZero(W));
142 case CmpInst::ICMP_SGE:
143 return getNonEmpty(CR.getSignedMin(), APInt::getSignedMinValue(W));
144 }
145 }
146
makeSatisfyingICmpRegion(CmpInst::Predicate Pred,const ConstantRange & CR)147 ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
148 const ConstantRange &CR) {
149 // Follows from De-Morgan's laws:
150 //
151 // ~(~A union ~B) == A intersect B.
152 //
153 return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR)
154 .inverse();
155 }
156
makeExactICmpRegion(CmpInst::Predicate Pred,const APInt & C)157 ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred,
158 const APInt &C) {
159 // Computes the exact range that is equal to both the constant ranges returned
160 // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
161 // when RHS is a singleton such as an APInt and so the assert is valid.
162 // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
163 // returns [0,4) but makeSatisfyICmpRegion returns [0,2).
164 //
165 assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C));
166 return makeAllowedICmpRegion(Pred, C);
167 }
168
areInsensitiveToSignednessOfICmpPredicate(const ConstantRange & CR1,const ConstantRange & CR2)169 bool ConstantRange::areInsensitiveToSignednessOfICmpPredicate(
170 const ConstantRange &CR1, const ConstantRange &CR2) {
171 if (CR1.isEmptySet() || CR2.isEmptySet())
172 return true;
173
174 return (CR1.isAllNonNegative() && CR2.isAllNonNegative()) ||
175 (CR1.isAllNegative() && CR2.isAllNegative());
176 }
177
areInsensitiveToSignednessOfInvertedICmpPredicate(const ConstantRange & CR1,const ConstantRange & CR2)178 bool ConstantRange::areInsensitiveToSignednessOfInvertedICmpPredicate(
179 const ConstantRange &CR1, const ConstantRange &CR2) {
180 if (CR1.isEmptySet() || CR2.isEmptySet())
181 return true;
182
183 return (CR1.isAllNonNegative() && CR2.isAllNegative()) ||
184 (CR1.isAllNegative() && CR2.isAllNonNegative());
185 }
186
getEquivalentPredWithFlippedSignedness(CmpInst::Predicate Pred,const ConstantRange & CR1,const ConstantRange & CR2)187 CmpInst::Predicate ConstantRange::getEquivalentPredWithFlippedSignedness(
188 CmpInst::Predicate Pred, const ConstantRange &CR1,
189 const ConstantRange &CR2) {
190 assert(CmpInst::isIntPredicate(Pred) && CmpInst::isRelational(Pred) &&
191 "Only for relational integer predicates!");
192
193 CmpInst::Predicate FlippedSignednessPred =
194 CmpInst::getFlippedSignednessPredicate(Pred);
195
196 if (areInsensitiveToSignednessOfICmpPredicate(CR1, CR2))
197 return FlippedSignednessPred;
198
199 if (areInsensitiveToSignednessOfInvertedICmpPredicate(CR1, CR2))
200 return CmpInst::getInversePredicate(FlippedSignednessPred);
201
202 return CmpInst::Predicate::BAD_ICMP_PREDICATE;
203 }
204
getEquivalentICmp(CmpInst::Predicate & Pred,APInt & RHS,APInt & Offset) const205 void ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
206 APInt &RHS, APInt &Offset) const {
207 Offset = APInt(getBitWidth(), 0);
208 if (isFullSet() || isEmptySet()) {
209 Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
210 RHS = APInt(getBitWidth(), 0);
211 } else if (auto *OnlyElt = getSingleElement()) {
212 Pred = CmpInst::ICMP_EQ;
213 RHS = *OnlyElt;
214 } else if (auto *OnlyMissingElt = getSingleMissingElement()) {
215 Pred = CmpInst::ICMP_NE;
216 RHS = *OnlyMissingElt;
217 } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
218 Pred =
219 getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
220 RHS = getUpper();
221 } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
222 Pred =
223 getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE;
224 RHS = getLower();
225 } else {
226 Pred = CmpInst::ICMP_ULT;
227 RHS = getUpper() - getLower();
228 Offset = -getLower();
229 }
230
231 assert(ConstantRange::makeExactICmpRegion(Pred, RHS) == add(Offset) &&
232 "Bad result!");
233 }
234
getEquivalentICmp(CmpInst::Predicate & Pred,APInt & RHS) const235 bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
236 APInt &RHS) const {
237 APInt Offset;
238 getEquivalentICmp(Pred, RHS, Offset);
239 return Offset.isZero();
240 }
241
icmp(CmpInst::Predicate Pred,const ConstantRange & Other) const242 bool ConstantRange::icmp(CmpInst::Predicate Pred,
243 const ConstantRange &Other) const {
244 return makeSatisfyingICmpRegion(Pred, Other).contains(*this);
245 }
246
247 /// Exact mul nuw region for single element RHS.
makeExactMulNUWRegion(const APInt & V)248 static ConstantRange makeExactMulNUWRegion(const APInt &V) {
249 unsigned BitWidth = V.getBitWidth();
250 if (V == 0)
251 return ConstantRange::getFull(V.getBitWidth());
252
253 return ConstantRange::getNonEmpty(
254 APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth), V,
255 APInt::Rounding::UP),
256 APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth), V,
257 APInt::Rounding::DOWN) + 1);
258 }
259
260 /// Exact mul nsw region for single element RHS.
makeExactMulNSWRegion(const APInt & V)261 static ConstantRange makeExactMulNSWRegion(const APInt &V) {
262 // Handle 0 and -1 separately to avoid division by zero or overflow.
263 unsigned BitWidth = V.getBitWidth();
264 if (V == 0)
265 return ConstantRange::getFull(BitWidth);
266
267 APInt MinValue = APInt::getSignedMinValue(BitWidth);
268 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
269 // e.g. Returning [-127, 127], represented as [-127, -128).
270 if (V.isAllOnes())
271 return ConstantRange(-MaxValue, MinValue);
272
273 APInt Lower, Upper;
274 if (V.isNegative()) {
275 Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP);
276 Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN);
277 } else {
278 Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP);
279 Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN);
280 }
281 return ConstantRange::getNonEmpty(Lower, Upper + 1);
282 }
283
284 ConstantRange
makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,const ConstantRange & Other,unsigned NoWrapKind)285 ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
286 const ConstantRange &Other,
287 unsigned NoWrapKind) {
288 using OBO = OverflowingBinaryOperator;
289
290 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
291
292 assert((NoWrapKind == OBO::NoSignedWrap ||
293 NoWrapKind == OBO::NoUnsignedWrap) &&
294 "NoWrapKind invalid!");
295
296 bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap;
297 unsigned BitWidth = Other.getBitWidth();
298
299 switch (BinOp) {
300 default:
301 llvm_unreachable("Unsupported binary op");
302
303 case Instruction::Add: {
304 if (Unsigned)
305 return getNonEmpty(APInt::getZero(BitWidth), -Other.getUnsignedMax());
306
307 APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
308 APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
309 return getNonEmpty(
310 SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal,
311 SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal);
312 }
313
314 case Instruction::Sub: {
315 if (Unsigned)
316 return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth));
317
318 APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
319 APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
320 return getNonEmpty(
321 SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal,
322 SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal);
323 }
324
325 case Instruction::Mul:
326 if (Unsigned)
327 return makeExactMulNUWRegion(Other.getUnsignedMax());
328
329 return makeExactMulNSWRegion(Other.getSignedMin())
330 .intersectWith(makeExactMulNSWRegion(Other.getSignedMax()));
331
332 case Instruction::Shl: {
333 // For given range of shift amounts, if we ignore all illegal shift amounts
334 // (that always produce poison), what shift amount range is left?
335 ConstantRange ShAmt = Other.intersectWith(
336 ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, (BitWidth - 1) + 1)));
337 if (ShAmt.isEmptySet()) {
338 // If the entire range of shift amounts is already poison-producing,
339 // then we can freely add more poison-producing flags ontop of that.
340 return getFull(BitWidth);
341 }
342 // There are some legal shift amounts, we can compute conservatively-correct
343 // range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax
344 // to be at most bitwidth-1, which results in most conservative range.
345 APInt ShAmtUMax = ShAmt.getUnsignedMax();
346 if (Unsigned)
347 return getNonEmpty(APInt::getZero(BitWidth),
348 APInt::getMaxValue(BitWidth).lshr(ShAmtUMax) + 1);
349 return getNonEmpty(APInt::getSignedMinValue(BitWidth).ashr(ShAmtUMax),
350 APInt::getSignedMaxValue(BitWidth).ashr(ShAmtUMax) + 1);
351 }
352 }
353 }
354
makeExactNoWrapRegion(Instruction::BinaryOps BinOp,const APInt & Other,unsigned NoWrapKind)355 ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
356 const APInt &Other,
357 unsigned NoWrapKind) {
358 // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as
359 // "for all" and "for any" coincide in this case.
360 return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind);
361 }
362
isFullSet() const363 bool ConstantRange::isFullSet() const {
364 return Lower == Upper && Lower.isMaxValue();
365 }
366
isEmptySet() const367 bool ConstantRange::isEmptySet() const {
368 return Lower == Upper && Lower.isMinValue();
369 }
370
isWrappedSet() const371 bool ConstantRange::isWrappedSet() const {
372 return Lower.ugt(Upper) && !Upper.isZero();
373 }
374
isUpperWrapped() const375 bool ConstantRange::isUpperWrapped() const {
376 return Lower.ugt(Upper);
377 }
378
isSignWrappedSet() const379 bool ConstantRange::isSignWrappedSet() const {
380 return Lower.sgt(Upper) && !Upper.isMinSignedValue();
381 }
382
isUpperSignWrapped() const383 bool ConstantRange::isUpperSignWrapped() const {
384 return Lower.sgt(Upper);
385 }
386
387 bool
isSizeStrictlySmallerThan(const ConstantRange & Other) const388 ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const {
389 assert(getBitWidth() == Other.getBitWidth());
390 if (isFullSet())
391 return false;
392 if (Other.isFullSet())
393 return true;
394 return (Upper - Lower).ult(Other.Upper - Other.Lower);
395 }
396
397 bool
isSizeLargerThan(uint64_t MaxSize) const398 ConstantRange::isSizeLargerThan(uint64_t MaxSize) const {
399 // If this a full set, we need special handling to avoid needing an extra bit
400 // to represent the size.
401 if (isFullSet())
402 return MaxSize == 0 || APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1);
403
404 return (Upper - Lower).ugt(MaxSize);
405 }
406
isAllNegative() const407 bool ConstantRange::isAllNegative() const {
408 // Empty set is all negative, full set is not.
409 if (isEmptySet())
410 return true;
411 if (isFullSet())
412 return false;
413
414 return !isUpperSignWrapped() && !Upper.isStrictlyPositive();
415 }
416
isAllNonNegative() const417 bool ConstantRange::isAllNonNegative() const {
418 // Empty and full set are automatically treated correctly.
419 return !isSignWrappedSet() && Lower.isNonNegative();
420 }
421
getUnsignedMax() const422 APInt ConstantRange::getUnsignedMax() const {
423 if (isFullSet() || isUpperWrapped())
424 return APInt::getMaxValue(getBitWidth());
425 return getUpper() - 1;
426 }
427
getUnsignedMin() const428 APInt ConstantRange::getUnsignedMin() const {
429 if (isFullSet() || isWrappedSet())
430 return APInt::getMinValue(getBitWidth());
431 return getLower();
432 }
433
getSignedMax() const434 APInt ConstantRange::getSignedMax() const {
435 if (isFullSet() || isUpperSignWrapped())
436 return APInt::getSignedMaxValue(getBitWidth());
437 return getUpper() - 1;
438 }
439
getSignedMin() const440 APInt ConstantRange::getSignedMin() const {
441 if (isFullSet() || isSignWrappedSet())
442 return APInt::getSignedMinValue(getBitWidth());
443 return getLower();
444 }
445
contains(const APInt & V) const446 bool ConstantRange::contains(const APInt &V) const {
447 if (Lower == Upper)
448 return isFullSet();
449
450 if (!isUpperWrapped())
451 return Lower.ule(V) && V.ult(Upper);
452 return Lower.ule(V) || V.ult(Upper);
453 }
454
contains(const ConstantRange & Other) const455 bool ConstantRange::contains(const ConstantRange &Other) const {
456 if (isFullSet() || Other.isEmptySet()) return true;
457 if (isEmptySet() || Other.isFullSet()) return false;
458
459 if (!isUpperWrapped()) {
460 if (Other.isUpperWrapped())
461 return false;
462
463 return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
464 }
465
466 if (!Other.isUpperWrapped())
467 return Other.getUpper().ule(Upper) ||
468 Lower.ule(Other.getLower());
469
470 return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
471 }
472
getActiveBits() const473 unsigned ConstantRange::getActiveBits() const {
474 if (isEmptySet())
475 return 0;
476
477 return getUnsignedMax().getActiveBits();
478 }
479
getMinSignedBits() const480 unsigned ConstantRange::getMinSignedBits() const {
481 if (isEmptySet())
482 return 0;
483
484 return std::max(getSignedMin().getMinSignedBits(),
485 getSignedMax().getMinSignedBits());
486 }
487
subtract(const APInt & Val) const488 ConstantRange ConstantRange::subtract(const APInt &Val) const {
489 assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
490 // If the set is empty or full, don't modify the endpoints.
491 if (Lower == Upper)
492 return *this;
493 return ConstantRange(Lower - Val, Upper - Val);
494 }
495
difference(const ConstantRange & CR) const496 ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
497 return intersectWith(CR.inverse());
498 }
499
getPreferredRange(const ConstantRange & CR1,const ConstantRange & CR2,ConstantRange::PreferredRangeType Type)500 static ConstantRange getPreferredRange(
501 const ConstantRange &CR1, const ConstantRange &CR2,
502 ConstantRange::PreferredRangeType Type) {
503 if (Type == ConstantRange::Unsigned) {
504 if (!CR1.isWrappedSet() && CR2.isWrappedSet())
505 return CR1;
506 if (CR1.isWrappedSet() && !CR2.isWrappedSet())
507 return CR2;
508 } else if (Type == ConstantRange::Signed) {
509 if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet())
510 return CR1;
511 if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet())
512 return CR2;
513 }
514
515 if (CR1.isSizeStrictlySmallerThan(CR2))
516 return CR1;
517 return CR2;
518 }
519
intersectWith(const ConstantRange & CR,PreferredRangeType Type) const520 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
521 PreferredRangeType Type) const {
522 assert(getBitWidth() == CR.getBitWidth() &&
523 "ConstantRange types don't agree!");
524
525 // Handle common cases.
526 if ( isEmptySet() || CR.isFullSet()) return *this;
527 if (CR.isEmptySet() || isFullSet()) return CR;
528
529 if (!isUpperWrapped() && CR.isUpperWrapped())
530 return CR.intersectWith(*this, Type);
531
532 if (!isUpperWrapped() && !CR.isUpperWrapped()) {
533 if (Lower.ult(CR.Lower)) {
534 // L---U : this
535 // L---U : CR
536 if (Upper.ule(CR.Lower))
537 return getEmpty();
538
539 // L---U : this
540 // L---U : CR
541 if (Upper.ult(CR.Upper))
542 return ConstantRange(CR.Lower, Upper);
543
544 // L-------U : this
545 // L---U : CR
546 return CR;
547 }
548 // L---U : this
549 // L-------U : CR
550 if (Upper.ult(CR.Upper))
551 return *this;
552
553 // L-----U : this
554 // L-----U : CR
555 if (Lower.ult(CR.Upper))
556 return ConstantRange(Lower, CR.Upper);
557
558 // L---U : this
559 // L---U : CR
560 return getEmpty();
561 }
562
563 if (isUpperWrapped() && !CR.isUpperWrapped()) {
564 if (CR.Lower.ult(Upper)) {
565 // ------U L--- : this
566 // L--U : CR
567 if (CR.Upper.ult(Upper))
568 return CR;
569
570 // ------U L--- : this
571 // L------U : CR
572 if (CR.Upper.ule(Lower))
573 return ConstantRange(CR.Lower, Upper);
574
575 // ------U L--- : this
576 // L----------U : CR
577 return getPreferredRange(*this, CR, Type);
578 }
579 if (CR.Lower.ult(Lower)) {
580 // --U L---- : this
581 // L--U : CR
582 if (CR.Upper.ule(Lower))
583 return getEmpty();
584
585 // --U L---- : this
586 // L------U : CR
587 return ConstantRange(Lower, CR.Upper);
588 }
589
590 // --U L------ : this
591 // L--U : CR
592 return CR;
593 }
594
595 if (CR.Upper.ult(Upper)) {
596 // ------U L-- : this
597 // --U L------ : CR
598 if (CR.Lower.ult(Upper))
599 return getPreferredRange(*this, CR, Type);
600
601 // ----U L-- : this
602 // --U L---- : CR
603 if (CR.Lower.ult(Lower))
604 return ConstantRange(Lower, CR.Upper);
605
606 // ----U L---- : this
607 // --U L-- : CR
608 return CR;
609 }
610 if (CR.Upper.ule(Lower)) {
611 // --U L-- : this
612 // ----U L---- : CR
613 if (CR.Lower.ult(Lower))
614 return *this;
615
616 // --U L---- : this
617 // ----U L-- : CR
618 return ConstantRange(CR.Lower, Upper);
619 }
620
621 // --U L------ : this
622 // ------U L-- : CR
623 return getPreferredRange(*this, CR, Type);
624 }
625
unionWith(const ConstantRange & CR,PreferredRangeType Type) const626 ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
627 PreferredRangeType Type) const {
628 assert(getBitWidth() == CR.getBitWidth() &&
629 "ConstantRange types don't agree!");
630
631 if ( isFullSet() || CR.isEmptySet()) return *this;
632 if (CR.isFullSet() || isEmptySet()) return CR;
633
634 if (!isUpperWrapped() && CR.isUpperWrapped())
635 return CR.unionWith(*this, Type);
636
637 if (!isUpperWrapped() && !CR.isUpperWrapped()) {
638 // L---U and L---U : this
639 // L---U L---U : CR
640 // result in one of
641 // L---------U
642 // -----U L-----
643 if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower))
644 return getPreferredRange(
645 ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
646
647 APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
648 APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper;
649
650 if (L.isZero() && U.isZero())
651 return getFull();
652
653 return ConstantRange(std::move(L), std::move(U));
654 }
655
656 if (!CR.isUpperWrapped()) {
657 // ------U L----- and ------U L----- : this
658 // L--U L--U : CR
659 if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
660 return *this;
661
662 // ------U L----- : this
663 // L---------U : CR
664 if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
665 return getFull();
666
667 // ----U L---- : this
668 // L---U : CR
669 // results in one of
670 // ----------U L----
671 // ----U L----------
672 if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower))
673 return getPreferredRange(
674 ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
675
676 // ----U L----- : this
677 // L----U : CR
678 if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper))
679 return ConstantRange(CR.Lower, Upper);
680
681 // ------U L---- : this
682 // L-----U : CR
683 assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) &&
684 "ConstantRange::unionWith missed a case with one range wrapped");
685 return ConstantRange(Lower, CR.Upper);
686 }
687
688 // ------U L---- and ------U L---- : this
689 // -U L----------- and ------------U L : CR
690 if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
691 return getFull();
692
693 APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
694 APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper;
695
696 return ConstantRange(std::move(L), std::move(U));
697 }
698
699 std::optional<ConstantRange>
exactIntersectWith(const ConstantRange & CR) const700 ConstantRange::exactIntersectWith(const ConstantRange &CR) const {
701 // TODO: This can be implemented more efficiently.
702 ConstantRange Result = intersectWith(CR);
703 if (Result == inverse().unionWith(CR.inverse()).inverse())
704 return Result;
705 return std::nullopt;
706 }
707
708 std::optional<ConstantRange>
exactUnionWith(const ConstantRange & CR) const709 ConstantRange::exactUnionWith(const ConstantRange &CR) const {
710 // TODO: This can be implemented more efficiently.
711 ConstantRange Result = unionWith(CR);
712 if (Result == inverse().intersectWith(CR.inverse()).inverse())
713 return Result;
714 return std::nullopt;
715 }
716
castOp(Instruction::CastOps CastOp,uint32_t ResultBitWidth) const717 ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp,
718 uint32_t ResultBitWidth) const {
719 switch (CastOp) {
720 default:
721 llvm_unreachable("unsupported cast type");
722 case Instruction::Trunc:
723 return truncate(ResultBitWidth);
724 case Instruction::SExt:
725 return signExtend(ResultBitWidth);
726 case Instruction::ZExt:
727 return zeroExtend(ResultBitWidth);
728 case Instruction::BitCast:
729 return *this;
730 case Instruction::FPToUI:
731 case Instruction::FPToSI:
732 if (getBitWidth() == ResultBitWidth)
733 return *this;
734 else
735 return getFull(ResultBitWidth);
736 case Instruction::UIToFP: {
737 // TODO: use input range if available
738 auto BW = getBitWidth();
739 APInt Min = APInt::getMinValue(BW);
740 APInt Max = APInt::getMaxValue(BW);
741 if (ResultBitWidth > BW) {
742 Min = Min.zext(ResultBitWidth);
743 Max = Max.zext(ResultBitWidth);
744 }
745 return ConstantRange(std::move(Min), std::move(Max));
746 }
747 case Instruction::SIToFP: {
748 // TODO: use input range if available
749 auto BW = getBitWidth();
750 APInt SMin = APInt::getSignedMinValue(BW);
751 APInt SMax = APInt::getSignedMaxValue(BW);
752 if (ResultBitWidth > BW) {
753 SMin = SMin.sext(ResultBitWidth);
754 SMax = SMax.sext(ResultBitWidth);
755 }
756 return ConstantRange(std::move(SMin), std::move(SMax));
757 }
758 case Instruction::FPTrunc:
759 case Instruction::FPExt:
760 case Instruction::IntToPtr:
761 case Instruction::PtrToInt:
762 case Instruction::AddrSpaceCast:
763 // Conservatively return getFull set.
764 return getFull(ResultBitWidth);
765 };
766 }
767
zeroExtend(uint32_t DstTySize) const768 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
769 if (isEmptySet()) return getEmpty(DstTySize);
770
771 unsigned SrcTySize = getBitWidth();
772 assert(SrcTySize < DstTySize && "Not a value extension");
773 if (isFullSet() || isUpperWrapped()) {
774 // Change into [0, 1 << src bit width)
775 APInt LowerExt(DstTySize, 0);
776 if (!Upper) // special case: [X, 0) -- not really wrapping around
777 LowerExt = Lower.zext(DstTySize);
778 return ConstantRange(std::move(LowerExt),
779 APInt::getOneBitSet(DstTySize, SrcTySize));
780 }
781
782 return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
783 }
784
signExtend(uint32_t DstTySize) const785 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
786 if (isEmptySet()) return getEmpty(DstTySize);
787
788 unsigned SrcTySize = getBitWidth();
789 assert(SrcTySize < DstTySize && "Not a value extension");
790
791 // special case: [X, INT_MIN) -- not really wrapping around
792 if (Upper.isMinSignedValue())
793 return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
794
795 if (isFullSet() || isSignWrappedSet()) {
796 return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
797 APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
798 }
799
800 return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
801 }
802
truncate(uint32_t DstTySize) const803 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
804 assert(getBitWidth() > DstTySize && "Not a value truncation");
805 if (isEmptySet())
806 return getEmpty(DstTySize);
807 if (isFullSet())
808 return getFull(DstTySize);
809
810 APInt LowerDiv(Lower), UpperDiv(Upper);
811 ConstantRange Union(DstTySize, /*isFullSet=*/false);
812
813 // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
814 // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
815 // then we do the union with [MaxValue, Upper)
816 if (isUpperWrapped()) {
817 // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
818 // truncated range.
819 if (Upper.getActiveBits() > DstTySize ||
820 Upper.countTrailingOnes() == DstTySize)
821 return getFull(DstTySize);
822
823 Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
824 UpperDiv.setAllBits();
825
826 // Union covers the MaxValue case, so return if the remaining range is just
827 // MaxValue(DstTy).
828 if (LowerDiv == UpperDiv)
829 return Union;
830 }
831
832 // Chop off the most significant bits that are past the destination bitwidth.
833 if (LowerDiv.getActiveBits() > DstTySize) {
834 // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
835 APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize);
836 LowerDiv -= Adjust;
837 UpperDiv -= Adjust;
838 }
839
840 unsigned UpperDivWidth = UpperDiv.getActiveBits();
841 if (UpperDivWidth <= DstTySize)
842 return ConstantRange(LowerDiv.trunc(DstTySize),
843 UpperDiv.trunc(DstTySize)).unionWith(Union);
844
845 // The truncated value wraps around. Check if we can do better than fullset.
846 if (UpperDivWidth == DstTySize + 1) {
847 // Clear the MSB so that UpperDiv wraps around.
848 UpperDiv.clearBit(DstTySize);
849 if (UpperDiv.ult(LowerDiv))
850 return ConstantRange(LowerDiv.trunc(DstTySize),
851 UpperDiv.trunc(DstTySize)).unionWith(Union);
852 }
853
854 return getFull(DstTySize);
855 }
856
zextOrTrunc(uint32_t DstTySize) const857 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
858 unsigned SrcTySize = getBitWidth();
859 if (SrcTySize > DstTySize)
860 return truncate(DstTySize);
861 if (SrcTySize < DstTySize)
862 return zeroExtend(DstTySize);
863 return *this;
864 }
865
sextOrTrunc(uint32_t DstTySize) const866 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
867 unsigned SrcTySize = getBitWidth();
868 if (SrcTySize > DstTySize)
869 return truncate(DstTySize);
870 if (SrcTySize < DstTySize)
871 return signExtend(DstTySize);
872 return *this;
873 }
874
binaryOp(Instruction::BinaryOps BinOp,const ConstantRange & Other) const875 ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp,
876 const ConstantRange &Other) const {
877 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
878
879 switch (BinOp) {
880 case Instruction::Add:
881 return add(Other);
882 case Instruction::Sub:
883 return sub(Other);
884 case Instruction::Mul:
885 return multiply(Other);
886 case Instruction::UDiv:
887 return udiv(Other);
888 case Instruction::SDiv:
889 return sdiv(Other);
890 case Instruction::URem:
891 return urem(Other);
892 case Instruction::SRem:
893 return srem(Other);
894 case Instruction::Shl:
895 return shl(Other);
896 case Instruction::LShr:
897 return lshr(Other);
898 case Instruction::AShr:
899 return ashr(Other);
900 case Instruction::And:
901 return binaryAnd(Other);
902 case Instruction::Or:
903 return binaryOr(Other);
904 case Instruction::Xor:
905 return binaryXor(Other);
906 // Note: floating point operations applied to abstract ranges are just
907 // ideal integer operations with a lossy representation
908 case Instruction::FAdd:
909 return add(Other);
910 case Instruction::FSub:
911 return sub(Other);
912 case Instruction::FMul:
913 return multiply(Other);
914 default:
915 // Conservatively return getFull set.
916 return getFull();
917 }
918 }
919
overflowingBinaryOp(Instruction::BinaryOps BinOp,const ConstantRange & Other,unsigned NoWrapKind) const920 ConstantRange ConstantRange::overflowingBinaryOp(Instruction::BinaryOps BinOp,
921 const ConstantRange &Other,
922 unsigned NoWrapKind) const {
923 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
924
925 switch (BinOp) {
926 case Instruction::Add:
927 return addWithNoWrap(Other, NoWrapKind);
928 case Instruction::Sub:
929 return subWithNoWrap(Other, NoWrapKind);
930 default:
931 // Don't know about this Overflowing Binary Operation.
932 // Conservatively fallback to plain binop handling.
933 return binaryOp(BinOp, Other);
934 }
935 }
936
isIntrinsicSupported(Intrinsic::ID IntrinsicID)937 bool ConstantRange::isIntrinsicSupported(Intrinsic::ID IntrinsicID) {
938 switch (IntrinsicID) {
939 case Intrinsic::uadd_sat:
940 case Intrinsic::usub_sat:
941 case Intrinsic::sadd_sat:
942 case Intrinsic::ssub_sat:
943 case Intrinsic::umin:
944 case Intrinsic::umax:
945 case Intrinsic::smin:
946 case Intrinsic::smax:
947 case Intrinsic::abs:
948 return true;
949 default:
950 return false;
951 }
952 }
953
intrinsic(Intrinsic::ID IntrinsicID,ArrayRef<ConstantRange> Ops)954 ConstantRange ConstantRange::intrinsic(Intrinsic::ID IntrinsicID,
955 ArrayRef<ConstantRange> Ops) {
956 switch (IntrinsicID) {
957 case Intrinsic::uadd_sat:
958 return Ops[0].uadd_sat(Ops[1]);
959 case Intrinsic::usub_sat:
960 return Ops[0].usub_sat(Ops[1]);
961 case Intrinsic::sadd_sat:
962 return Ops[0].sadd_sat(Ops[1]);
963 case Intrinsic::ssub_sat:
964 return Ops[0].ssub_sat(Ops[1]);
965 case Intrinsic::umin:
966 return Ops[0].umin(Ops[1]);
967 case Intrinsic::umax:
968 return Ops[0].umax(Ops[1]);
969 case Intrinsic::smin:
970 return Ops[0].smin(Ops[1]);
971 case Intrinsic::smax:
972 return Ops[0].smax(Ops[1]);
973 case Intrinsic::abs: {
974 const APInt *IntMinIsPoison = Ops[1].getSingleElement();
975 assert(IntMinIsPoison && "Must be known (immarg)");
976 assert(IntMinIsPoison->getBitWidth() == 1 && "Must be boolean");
977 return Ops[0].abs(IntMinIsPoison->getBoolValue());
978 }
979 default:
980 assert(!isIntrinsicSupported(IntrinsicID) && "Shouldn't be supported");
981 llvm_unreachable("Unsupported intrinsic");
982 }
983 }
984
985 ConstantRange
add(const ConstantRange & Other) const986 ConstantRange::add(const ConstantRange &Other) const {
987 if (isEmptySet() || Other.isEmptySet())
988 return getEmpty();
989 if (isFullSet() || Other.isFullSet())
990 return getFull();
991
992 APInt NewLower = getLower() + Other.getLower();
993 APInt NewUpper = getUpper() + Other.getUpper() - 1;
994 if (NewLower == NewUpper)
995 return getFull();
996
997 ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
998 if (X.isSizeStrictlySmallerThan(*this) ||
999 X.isSizeStrictlySmallerThan(Other))
1000 // We've wrapped, therefore, full set.
1001 return getFull();
1002 return X;
1003 }
1004
addWithNoWrap(const ConstantRange & Other,unsigned NoWrapKind,PreferredRangeType RangeType) const1005 ConstantRange ConstantRange::addWithNoWrap(const ConstantRange &Other,
1006 unsigned NoWrapKind,
1007 PreferredRangeType RangeType) const {
1008 // Calculate the range for "X + Y" which is guaranteed not to wrap(overflow).
1009 // (X is from this, and Y is from Other)
1010 if (isEmptySet() || Other.isEmptySet())
1011 return getEmpty();
1012 if (isFullSet() && Other.isFullSet())
1013 return getFull();
1014
1015 using OBO = OverflowingBinaryOperator;
1016 ConstantRange Result = add(Other);
1017
1018 // If an overflow happens for every value pair in these two constant ranges,
1019 // we must return Empty set. In this case, we get that for free, because we
1020 // get lucky that intersection of add() with uadd_sat()/sadd_sat() results
1021 // in an empty set.
1022
1023 if (NoWrapKind & OBO::NoSignedWrap)
1024 Result = Result.intersectWith(sadd_sat(Other), RangeType);
1025
1026 if (NoWrapKind & OBO::NoUnsignedWrap)
1027 Result = Result.intersectWith(uadd_sat(Other), RangeType);
1028
1029 return Result;
1030 }
1031
1032 ConstantRange
sub(const ConstantRange & Other) const1033 ConstantRange::sub(const ConstantRange &Other) const {
1034 if (isEmptySet() || Other.isEmptySet())
1035 return getEmpty();
1036 if (isFullSet() || Other.isFullSet())
1037 return getFull();
1038
1039 APInt NewLower = getLower() - Other.getUpper() + 1;
1040 APInt NewUpper = getUpper() - Other.getLower();
1041 if (NewLower == NewUpper)
1042 return getFull();
1043
1044 ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
1045 if (X.isSizeStrictlySmallerThan(*this) ||
1046 X.isSizeStrictlySmallerThan(Other))
1047 // We've wrapped, therefore, full set.
1048 return getFull();
1049 return X;
1050 }
1051
subWithNoWrap(const ConstantRange & Other,unsigned NoWrapKind,PreferredRangeType RangeType) const1052 ConstantRange ConstantRange::subWithNoWrap(const ConstantRange &Other,
1053 unsigned NoWrapKind,
1054 PreferredRangeType RangeType) const {
1055 // Calculate the range for "X - Y" which is guaranteed not to wrap(overflow).
1056 // (X is from this, and Y is from Other)
1057 if (isEmptySet() || Other.isEmptySet())
1058 return getEmpty();
1059 if (isFullSet() && Other.isFullSet())
1060 return getFull();
1061
1062 using OBO = OverflowingBinaryOperator;
1063 ConstantRange Result = sub(Other);
1064
1065 // If an overflow happens for every value pair in these two constant ranges,
1066 // we must return Empty set. In signed case, we get that for free, because we
1067 // get lucky that intersection of sub() with ssub_sat() results in an
1068 // empty set. But for unsigned we must perform the overflow check manually.
1069
1070 if (NoWrapKind & OBO::NoSignedWrap)
1071 Result = Result.intersectWith(ssub_sat(Other), RangeType);
1072
1073 if (NoWrapKind & OBO::NoUnsignedWrap) {
1074 if (getUnsignedMax().ult(Other.getUnsignedMin()))
1075 return getEmpty(); // Always overflows.
1076 Result = Result.intersectWith(usub_sat(Other), RangeType);
1077 }
1078
1079 return Result;
1080 }
1081
1082 ConstantRange
multiply(const ConstantRange & Other) const1083 ConstantRange::multiply(const ConstantRange &Other) const {
1084 // TODO: If either operand is a single element and the multiply is known to
1085 // be non-wrapping, round the result min and max value to the appropriate
1086 // multiple of that element. If wrapping is possible, at least adjust the
1087 // range according to the greatest power-of-two factor of the single element.
1088
1089 if (isEmptySet() || Other.isEmptySet())
1090 return getEmpty();
1091
1092 // Multiplication is signedness-independent. However different ranges can be
1093 // obtained depending on how the input ranges are treated. These different
1094 // ranges are all conservatively correct, but one might be better than the
1095 // other. We calculate two ranges; one treating the inputs as unsigned
1096 // and the other signed, then return the smallest of these ranges.
1097
1098 // Unsigned range first.
1099 APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
1100 APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
1101 APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
1102 APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
1103
1104 ConstantRange Result_zext = ConstantRange(this_min * Other_min,
1105 this_max * Other_max + 1);
1106 ConstantRange UR = Result_zext.truncate(getBitWidth());
1107
1108 // If the unsigned range doesn't wrap, and isn't negative then it's a range
1109 // from one positive number to another which is as good as we can generate.
1110 // In this case, skip the extra work of generating signed ranges which aren't
1111 // going to be better than this range.
1112 if (!UR.isUpperWrapped() &&
1113 (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue()))
1114 return UR;
1115
1116 // Now the signed range. Because we could be dealing with negative numbers
1117 // here, the lower bound is the smallest of the cartesian product of the
1118 // lower and upper ranges; for example:
1119 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
1120 // Similarly for the upper bound, swapping min for max.
1121
1122 this_min = getSignedMin().sext(getBitWidth() * 2);
1123 this_max = getSignedMax().sext(getBitWidth() * 2);
1124 Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
1125 Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
1126
1127 auto L = {this_min * Other_min, this_min * Other_max,
1128 this_max * Other_min, this_max * Other_max};
1129 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
1130 ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
1131 ConstantRange SR = Result_sext.truncate(getBitWidth());
1132
1133 return UR.isSizeStrictlySmallerThan(SR) ? UR : SR;
1134 }
1135
smul_fast(const ConstantRange & Other) const1136 ConstantRange ConstantRange::smul_fast(const ConstantRange &Other) const {
1137 if (isEmptySet() || Other.isEmptySet())
1138 return getEmpty();
1139
1140 APInt Min = getSignedMin();
1141 APInt Max = getSignedMax();
1142 APInt OtherMin = Other.getSignedMin();
1143 APInt OtherMax = Other.getSignedMax();
1144
1145 bool O1, O2, O3, O4;
1146 auto Muls = {Min.smul_ov(OtherMin, O1), Min.smul_ov(OtherMax, O2),
1147 Max.smul_ov(OtherMin, O3), Max.smul_ov(OtherMax, O4)};
1148 if (O1 || O2 || O3 || O4)
1149 return getFull();
1150
1151 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
1152 return getNonEmpty(std::min(Muls, Compare), std::max(Muls, Compare) + 1);
1153 }
1154
1155 ConstantRange
smax(const ConstantRange & Other) const1156 ConstantRange::smax(const ConstantRange &Other) const {
1157 // X smax Y is: range(smax(X_smin, Y_smin),
1158 // smax(X_smax, Y_smax))
1159 if (isEmptySet() || Other.isEmptySet())
1160 return getEmpty();
1161 APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
1162 APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
1163 ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1164 if (isSignWrappedSet() || Other.isSignWrappedSet())
1165 return Res.intersectWith(unionWith(Other, Signed), Signed);
1166 return Res;
1167 }
1168
1169 ConstantRange
umax(const ConstantRange & Other) const1170 ConstantRange::umax(const ConstantRange &Other) const {
1171 // X umax Y is: range(umax(X_umin, Y_umin),
1172 // umax(X_umax, Y_umax))
1173 if (isEmptySet() || Other.isEmptySet())
1174 return getEmpty();
1175 APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
1176 APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
1177 ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1178 if (isWrappedSet() || Other.isWrappedSet())
1179 return Res.intersectWith(unionWith(Other, Unsigned), Unsigned);
1180 return Res;
1181 }
1182
1183 ConstantRange
smin(const ConstantRange & Other) const1184 ConstantRange::smin(const ConstantRange &Other) const {
1185 // X smin Y is: range(smin(X_smin, Y_smin),
1186 // smin(X_smax, Y_smax))
1187 if (isEmptySet() || Other.isEmptySet())
1188 return getEmpty();
1189 APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
1190 APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
1191 ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1192 if (isSignWrappedSet() || Other.isSignWrappedSet())
1193 return Res.intersectWith(unionWith(Other, Signed), Signed);
1194 return Res;
1195 }
1196
1197 ConstantRange
umin(const ConstantRange & Other) const1198 ConstantRange::umin(const ConstantRange &Other) const {
1199 // X umin Y is: range(umin(X_umin, Y_umin),
1200 // umin(X_umax, Y_umax))
1201 if (isEmptySet() || Other.isEmptySet())
1202 return getEmpty();
1203 APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
1204 APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
1205 ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1206 if (isWrappedSet() || Other.isWrappedSet())
1207 return Res.intersectWith(unionWith(Other, Unsigned), Unsigned);
1208 return Res;
1209 }
1210
1211 ConstantRange
udiv(const ConstantRange & RHS) const1212 ConstantRange::udiv(const ConstantRange &RHS) const {
1213 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isZero())
1214 return getEmpty();
1215
1216 APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
1217
1218 APInt RHS_umin = RHS.getUnsignedMin();
1219 if (RHS_umin.isZero()) {
1220 // We want the lowest value in RHS excluding zero. Usually that would be 1
1221 // except for a range in the form of [X, 1) in which case it would be X.
1222 if (RHS.getUpper() == 1)
1223 RHS_umin = RHS.getLower();
1224 else
1225 RHS_umin = 1;
1226 }
1227
1228 APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
1229 return getNonEmpty(std::move(Lower), std::move(Upper));
1230 }
1231
sdiv(const ConstantRange & RHS) const1232 ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const {
1233 // We split up the LHS and RHS into positive and negative components
1234 // and then also compute the positive and negative components of the result
1235 // separately by combining division results with the appropriate signs.
1236 APInt Zero = APInt::getZero(getBitWidth());
1237 APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1238 // There are no positive 1-bit values. The 1 would get interpreted as -1.
1239 ConstantRange PosFilter =
1240 getBitWidth() == 1 ? getEmpty()
1241 : ConstantRange(APInt(getBitWidth(), 1), SignedMin);
1242 ConstantRange NegFilter(SignedMin, Zero);
1243 ConstantRange PosL = intersectWith(PosFilter);
1244 ConstantRange NegL = intersectWith(NegFilter);
1245 ConstantRange PosR = RHS.intersectWith(PosFilter);
1246 ConstantRange NegR = RHS.intersectWith(NegFilter);
1247
1248 ConstantRange PosRes = getEmpty();
1249 if (!PosL.isEmptySet() && !PosR.isEmptySet())
1250 // pos / pos = pos.
1251 PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1),
1252 (PosL.Upper - 1).sdiv(PosR.Lower) + 1);
1253
1254 if (!NegL.isEmptySet() && !NegR.isEmptySet()) {
1255 // neg / neg = pos.
1256 //
1257 // We need to deal with one tricky case here: SignedMin / -1 is UB on the
1258 // IR level, so we'll want to exclude this case when calculating bounds.
1259 // (For APInts the operation is well-defined and yields SignedMin.) We
1260 // handle this by dropping either SignedMin from the LHS or -1 from the RHS.
1261 APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower);
1262 if (NegL.Lower.isMinSignedValue() && NegR.Upper.isZero()) {
1263 // Remove -1 from the LHS. Skip if it's the only element, as this would
1264 // leave us with an empty set.
1265 if (!NegR.Lower.isAllOnes()) {
1266 APInt AdjNegRUpper;
1267 if (RHS.Lower.isAllOnes())
1268 // Negative part of [-1, X] without -1 is [SignedMin, X].
1269 AdjNegRUpper = RHS.Upper;
1270 else
1271 // [X, -1] without -1 is [X, -2].
1272 AdjNegRUpper = NegR.Upper - 1;
1273
1274 PosRes = PosRes.unionWith(
1275 ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1));
1276 }
1277
1278 // Remove SignedMin from the RHS. Skip if it's the only element, as this
1279 // would leave us with an empty set.
1280 if (NegL.Upper != SignedMin + 1) {
1281 APInt AdjNegLLower;
1282 if (Upper == SignedMin + 1)
1283 // Negative part of [X, SignedMin] without SignedMin is [X, -1].
1284 AdjNegLLower = Lower;
1285 else
1286 // [SignedMin, X] without SignedMin is [SignedMin + 1, X].
1287 AdjNegLLower = NegL.Lower + 1;
1288
1289 PosRes = PosRes.unionWith(
1290 ConstantRange(std::move(Lo),
1291 AdjNegLLower.sdiv(NegR.Upper - 1) + 1));
1292 }
1293 } else {
1294 PosRes = PosRes.unionWith(
1295 ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1));
1296 }
1297 }
1298
1299 ConstantRange NegRes = getEmpty();
1300 if (!PosL.isEmptySet() && !NegR.isEmptySet())
1301 // pos / neg = neg.
1302 NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1),
1303 PosL.Lower.sdiv(NegR.Lower) + 1);
1304
1305 if (!NegL.isEmptySet() && !PosR.isEmptySet())
1306 // neg / pos = neg.
1307 NegRes = NegRes.unionWith(
1308 ConstantRange(NegL.Lower.sdiv(PosR.Lower),
1309 (NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1));
1310
1311 // Prefer a non-wrapping signed range here.
1312 ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed);
1313
1314 // Preserve the zero that we dropped when splitting the LHS by sign.
1315 if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet()))
1316 Res = Res.unionWith(ConstantRange(Zero));
1317 return Res;
1318 }
1319
urem(const ConstantRange & RHS) const1320 ConstantRange ConstantRange::urem(const ConstantRange &RHS) const {
1321 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isZero())
1322 return getEmpty();
1323
1324 if (const APInt *RHSInt = RHS.getSingleElement()) {
1325 // UREM by null is UB.
1326 if (RHSInt->isZero())
1327 return getEmpty();
1328 // Use APInt's implementation of UREM for single element ranges.
1329 if (const APInt *LHSInt = getSingleElement())
1330 return {LHSInt->urem(*RHSInt)};
1331 }
1332
1333 // L % R for L < R is L.
1334 if (getUnsignedMax().ult(RHS.getUnsignedMin()))
1335 return *this;
1336
1337 // L % R is <= L and < R.
1338 APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1;
1339 return getNonEmpty(APInt::getZero(getBitWidth()), std::move(Upper));
1340 }
1341
srem(const ConstantRange & RHS) const1342 ConstantRange ConstantRange::srem(const ConstantRange &RHS) const {
1343 if (isEmptySet() || RHS.isEmptySet())
1344 return getEmpty();
1345
1346 if (const APInt *RHSInt = RHS.getSingleElement()) {
1347 // SREM by null is UB.
1348 if (RHSInt->isZero())
1349 return getEmpty();
1350 // Use APInt's implementation of SREM for single element ranges.
1351 if (const APInt *LHSInt = getSingleElement())
1352 return {LHSInt->srem(*RHSInt)};
1353 }
1354
1355 ConstantRange AbsRHS = RHS.abs();
1356 APInt MinAbsRHS = AbsRHS.getUnsignedMin();
1357 APInt MaxAbsRHS = AbsRHS.getUnsignedMax();
1358
1359 // Modulus by zero is UB.
1360 if (MaxAbsRHS.isZero())
1361 return getEmpty();
1362
1363 if (MinAbsRHS.isZero())
1364 ++MinAbsRHS;
1365
1366 APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax();
1367
1368 if (MinLHS.isNonNegative()) {
1369 // L % R for L < R is L.
1370 if (MaxLHS.ult(MinAbsRHS))
1371 return *this;
1372
1373 // L % R is <= L and < R.
1374 APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
1375 return ConstantRange(APInt::getZero(getBitWidth()), std::move(Upper));
1376 }
1377
1378 // Same basic logic as above, but the result is negative.
1379 if (MaxLHS.isNegative()) {
1380 if (MinLHS.ugt(-MinAbsRHS))
1381 return *this;
1382
1383 APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
1384 return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1));
1385 }
1386
1387 // LHS range crosses zero.
1388 APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
1389 APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
1390 return ConstantRange(std::move(Lower), std::move(Upper));
1391 }
1392
binaryNot() const1393 ConstantRange ConstantRange::binaryNot() const {
1394 return ConstantRange(APInt::getAllOnes(getBitWidth())).sub(*this);
1395 }
1396
binaryAnd(const ConstantRange & Other) const1397 ConstantRange ConstantRange::binaryAnd(const ConstantRange &Other) const {
1398 if (isEmptySet() || Other.isEmptySet())
1399 return getEmpty();
1400
1401 ConstantRange KnownBitsRange =
1402 fromKnownBits(toKnownBits() & Other.toKnownBits(), false);
1403 ConstantRange UMinUMaxRange =
1404 getNonEmpty(APInt::getZero(getBitWidth()),
1405 APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax()) + 1);
1406 return KnownBitsRange.intersectWith(UMinUMaxRange);
1407 }
1408
binaryOr(const ConstantRange & Other) const1409 ConstantRange ConstantRange::binaryOr(const ConstantRange &Other) const {
1410 if (isEmptySet() || Other.isEmptySet())
1411 return getEmpty();
1412
1413 ConstantRange KnownBitsRange =
1414 fromKnownBits(toKnownBits() | Other.toKnownBits(), false);
1415 // Upper wrapped range.
1416 ConstantRange UMaxUMinRange =
1417 getNonEmpty(APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()),
1418 APInt::getZero(getBitWidth()));
1419 return KnownBitsRange.intersectWith(UMaxUMinRange);
1420 }
1421
binaryXor(const ConstantRange & Other) const1422 ConstantRange ConstantRange::binaryXor(const ConstantRange &Other) const {
1423 if (isEmptySet() || Other.isEmptySet())
1424 return getEmpty();
1425
1426 // Use APInt's implementation of XOR for single element ranges.
1427 if (isSingleElement() && Other.isSingleElement())
1428 return {*getSingleElement() ^ *Other.getSingleElement()};
1429
1430 // Special-case binary complement, since we can give a precise answer.
1431 if (Other.isSingleElement() && Other.getSingleElement()->isAllOnes())
1432 return binaryNot();
1433 if (isSingleElement() && getSingleElement()->isAllOnes())
1434 return Other.binaryNot();
1435
1436 return fromKnownBits(toKnownBits() ^ Other.toKnownBits(), /*IsSigned*/false);
1437 }
1438
1439 ConstantRange
shl(const ConstantRange & Other) const1440 ConstantRange::shl(const ConstantRange &Other) const {
1441 if (isEmptySet() || Other.isEmptySet())
1442 return getEmpty();
1443
1444 APInt Min = getUnsignedMin();
1445 APInt Max = getUnsignedMax();
1446 if (const APInt *RHS = Other.getSingleElement()) {
1447 unsigned BW = getBitWidth();
1448 if (RHS->uge(BW))
1449 return getEmpty();
1450
1451 unsigned EqualLeadingBits = (Min ^ Max).countLeadingZeros();
1452 if (RHS->ule(EqualLeadingBits))
1453 return getNonEmpty(Min << *RHS, (Max << *RHS) + 1);
1454
1455 return getNonEmpty(APInt::getZero(BW),
1456 APInt::getBitsSetFrom(BW, RHS->getZExtValue()) + 1);
1457 }
1458
1459 APInt OtherMax = Other.getUnsignedMax();
1460
1461 // There's overflow!
1462 if (OtherMax.ugt(Max.countLeadingZeros()))
1463 return getFull();
1464
1465 // FIXME: implement the other tricky cases
1466
1467 Min <<= Other.getUnsignedMin();
1468 Max <<= OtherMax;
1469
1470 return ConstantRange::getNonEmpty(std::move(Min), std::move(Max) + 1);
1471 }
1472
1473 ConstantRange
lshr(const ConstantRange & Other) const1474 ConstantRange::lshr(const ConstantRange &Other) const {
1475 if (isEmptySet() || Other.isEmptySet())
1476 return getEmpty();
1477
1478 APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1;
1479 APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
1480 return getNonEmpty(std::move(min), std::move(max));
1481 }
1482
1483 ConstantRange
ashr(const ConstantRange & Other) const1484 ConstantRange::ashr(const ConstantRange &Other) const {
1485 if (isEmptySet() || Other.isEmptySet())
1486 return getEmpty();
1487
1488 // May straddle zero, so handle both positive and negative cases.
1489 // 'PosMax' is the upper bound of the result of the ashr
1490 // operation, when Upper of the LHS of ashr is a non-negative.
1491 // number. Since ashr of a non-negative number will result in a
1492 // smaller number, the Upper value of LHS is shifted right with
1493 // the minimum value of 'Other' instead of the maximum value.
1494 APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1;
1495
1496 // 'PosMin' is the lower bound of the result of the ashr
1497 // operation, when Lower of the LHS is a non-negative number.
1498 // Since ashr of a non-negative number will result in a smaller
1499 // number, the Lower value of LHS is shifted right with the
1500 // maximum value of 'Other'.
1501 APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax());
1502
1503 // 'NegMax' is the upper bound of the result of the ashr
1504 // operation, when Upper of the LHS of ashr is a negative number.
1505 // Since 'ashr' of a negative number will result in a bigger
1506 // number, the Upper value of LHS is shifted right with the
1507 // maximum value of 'Other'.
1508 APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1;
1509
1510 // 'NegMin' is the lower bound of the result of the ashr
1511 // operation, when Lower of the LHS of ashr is a negative number.
1512 // Since 'ashr' of a negative number will result in a bigger
1513 // number, the Lower value of LHS is shifted right with the
1514 // minimum value of 'Other'.
1515 APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin());
1516
1517 APInt max, min;
1518 if (getSignedMin().isNonNegative()) {
1519 // Upper and Lower of LHS are non-negative.
1520 min = PosMin;
1521 max = PosMax;
1522 } else if (getSignedMax().isNegative()) {
1523 // Upper and Lower of LHS are negative.
1524 min = NegMin;
1525 max = NegMax;
1526 } else {
1527 // Upper is non-negative and Lower is negative.
1528 min = NegMin;
1529 max = PosMax;
1530 }
1531 return getNonEmpty(std::move(min), std::move(max));
1532 }
1533
uadd_sat(const ConstantRange & Other) const1534 ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const {
1535 if (isEmptySet() || Other.isEmptySet())
1536 return getEmpty();
1537
1538 APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin());
1539 APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1;
1540 return getNonEmpty(std::move(NewL), std::move(NewU));
1541 }
1542
sadd_sat(const ConstantRange & Other) const1543 ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const {
1544 if (isEmptySet() || Other.isEmptySet())
1545 return getEmpty();
1546
1547 APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin());
1548 APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1;
1549 return getNonEmpty(std::move(NewL), std::move(NewU));
1550 }
1551
usub_sat(const ConstantRange & Other) const1552 ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const {
1553 if (isEmptySet() || Other.isEmptySet())
1554 return getEmpty();
1555
1556 APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax());
1557 APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1;
1558 return getNonEmpty(std::move(NewL), std::move(NewU));
1559 }
1560
ssub_sat(const ConstantRange & Other) const1561 ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const {
1562 if (isEmptySet() || Other.isEmptySet())
1563 return getEmpty();
1564
1565 APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax());
1566 APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1;
1567 return getNonEmpty(std::move(NewL), std::move(NewU));
1568 }
1569
umul_sat(const ConstantRange & Other) const1570 ConstantRange ConstantRange::umul_sat(const ConstantRange &Other) const {
1571 if (isEmptySet() || Other.isEmptySet())
1572 return getEmpty();
1573
1574 APInt NewL = getUnsignedMin().umul_sat(Other.getUnsignedMin());
1575 APInt NewU = getUnsignedMax().umul_sat(Other.getUnsignedMax()) + 1;
1576 return getNonEmpty(std::move(NewL), std::move(NewU));
1577 }
1578
smul_sat(const ConstantRange & Other) const1579 ConstantRange ConstantRange::smul_sat(const ConstantRange &Other) const {
1580 if (isEmptySet() || Other.isEmptySet())
1581 return getEmpty();
1582
1583 // Because we could be dealing with negative numbers here, the lower bound is
1584 // the smallest of the cartesian product of the lower and upper ranges;
1585 // for example:
1586 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
1587 // Similarly for the upper bound, swapping min for max.
1588
1589 APInt Min = getSignedMin();
1590 APInt Max = getSignedMax();
1591 APInt OtherMin = Other.getSignedMin();
1592 APInt OtherMax = Other.getSignedMax();
1593
1594 auto L = {Min.smul_sat(OtherMin), Min.smul_sat(OtherMax),
1595 Max.smul_sat(OtherMin), Max.smul_sat(OtherMax)};
1596 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
1597 return getNonEmpty(std::min(L, Compare), std::max(L, Compare) + 1);
1598 }
1599
ushl_sat(const ConstantRange & Other) const1600 ConstantRange ConstantRange::ushl_sat(const ConstantRange &Other) const {
1601 if (isEmptySet() || Other.isEmptySet())
1602 return getEmpty();
1603
1604 APInt NewL = getUnsignedMin().ushl_sat(Other.getUnsignedMin());
1605 APInt NewU = getUnsignedMax().ushl_sat(Other.getUnsignedMax()) + 1;
1606 return getNonEmpty(std::move(NewL), std::move(NewU));
1607 }
1608
sshl_sat(const ConstantRange & Other) const1609 ConstantRange ConstantRange::sshl_sat(const ConstantRange &Other) const {
1610 if (isEmptySet() || Other.isEmptySet())
1611 return getEmpty();
1612
1613 APInt Min = getSignedMin(), Max = getSignedMax();
1614 APInt ShAmtMin = Other.getUnsignedMin(), ShAmtMax = Other.getUnsignedMax();
1615 APInt NewL = Min.sshl_sat(Min.isNonNegative() ? ShAmtMin : ShAmtMax);
1616 APInt NewU = Max.sshl_sat(Max.isNegative() ? ShAmtMin : ShAmtMax) + 1;
1617 return getNonEmpty(std::move(NewL), std::move(NewU));
1618 }
1619
inverse() const1620 ConstantRange ConstantRange::inverse() const {
1621 if (isFullSet())
1622 return getEmpty();
1623 if (isEmptySet())
1624 return getFull();
1625 return ConstantRange(Upper, Lower);
1626 }
1627
abs(bool IntMinIsPoison) const1628 ConstantRange ConstantRange::abs(bool IntMinIsPoison) const {
1629 if (isEmptySet())
1630 return getEmpty();
1631
1632 if (isSignWrappedSet()) {
1633 APInt Lo;
1634 // Check whether the range crosses zero.
1635 if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive())
1636 Lo = APInt::getZero(getBitWidth());
1637 else
1638 Lo = APIntOps::umin(Lower, -Upper + 1);
1639
1640 // If SignedMin is not poison, then it is included in the result range.
1641 if (IntMinIsPoison)
1642 return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()));
1643 else
1644 return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()) + 1);
1645 }
1646
1647 APInt SMin = getSignedMin(), SMax = getSignedMax();
1648
1649 // Skip SignedMin if it is poison.
1650 if (IntMinIsPoison && SMin.isMinSignedValue()) {
1651 // The range may become empty if it *only* contains SignedMin.
1652 if (SMax.isMinSignedValue())
1653 return getEmpty();
1654 ++SMin;
1655 }
1656
1657 // All non-negative.
1658 if (SMin.isNonNegative())
1659 return ConstantRange(SMin, SMax + 1);
1660
1661 // All negative.
1662 if (SMax.isNegative())
1663 return ConstantRange(-SMax, -SMin + 1);
1664
1665 // Range crosses zero.
1666 return ConstantRange::getNonEmpty(APInt::getZero(getBitWidth()),
1667 APIntOps::umax(-SMin, SMax) + 1);
1668 }
1669
unsignedAddMayOverflow(const ConstantRange & Other) const1670 ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow(
1671 const ConstantRange &Other) const {
1672 if (isEmptySet() || Other.isEmptySet())
1673 return OverflowResult::MayOverflow;
1674
1675 APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1676 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1677
1678 // a u+ b overflows high iff a u> ~b.
1679 if (Min.ugt(~OtherMin))
1680 return OverflowResult::AlwaysOverflowsHigh;
1681 if (Max.ugt(~OtherMax))
1682 return OverflowResult::MayOverflow;
1683 return OverflowResult::NeverOverflows;
1684 }
1685
signedAddMayOverflow(const ConstantRange & Other) const1686 ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow(
1687 const ConstantRange &Other) const {
1688 if (isEmptySet() || Other.isEmptySet())
1689 return OverflowResult::MayOverflow;
1690
1691 APInt Min = getSignedMin(), Max = getSignedMax();
1692 APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1693
1694 APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1695 APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
1696
1697 // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b.
1698 // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b.
1699 if (Min.isNonNegative() && OtherMin.isNonNegative() &&
1700 Min.sgt(SignedMax - OtherMin))
1701 return OverflowResult::AlwaysOverflowsHigh;
1702 if (Max.isNegative() && OtherMax.isNegative() &&
1703 Max.slt(SignedMin - OtherMax))
1704 return OverflowResult::AlwaysOverflowsLow;
1705
1706 if (Max.isNonNegative() && OtherMax.isNonNegative() &&
1707 Max.sgt(SignedMax - OtherMax))
1708 return OverflowResult::MayOverflow;
1709 if (Min.isNegative() && OtherMin.isNegative() &&
1710 Min.slt(SignedMin - OtherMin))
1711 return OverflowResult::MayOverflow;
1712
1713 return OverflowResult::NeverOverflows;
1714 }
1715
unsignedSubMayOverflow(const ConstantRange & Other) const1716 ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow(
1717 const ConstantRange &Other) const {
1718 if (isEmptySet() || Other.isEmptySet())
1719 return OverflowResult::MayOverflow;
1720
1721 APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1722 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1723
1724 // a u- b overflows low iff a u< b.
1725 if (Max.ult(OtherMin))
1726 return OverflowResult::AlwaysOverflowsLow;
1727 if (Min.ult(OtherMax))
1728 return OverflowResult::MayOverflow;
1729 return OverflowResult::NeverOverflows;
1730 }
1731
signedSubMayOverflow(const ConstantRange & Other) const1732 ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow(
1733 const ConstantRange &Other) const {
1734 if (isEmptySet() || Other.isEmptySet())
1735 return OverflowResult::MayOverflow;
1736
1737 APInt Min = getSignedMin(), Max = getSignedMax();
1738 APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1739
1740 APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1741 APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
1742
1743 // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b.
1744 // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b.
1745 if (Min.isNonNegative() && OtherMax.isNegative() &&
1746 Min.sgt(SignedMax + OtherMax))
1747 return OverflowResult::AlwaysOverflowsHigh;
1748 if (Max.isNegative() && OtherMin.isNonNegative() &&
1749 Max.slt(SignedMin + OtherMin))
1750 return OverflowResult::AlwaysOverflowsLow;
1751
1752 if (Max.isNonNegative() && OtherMin.isNegative() &&
1753 Max.sgt(SignedMax + OtherMin))
1754 return OverflowResult::MayOverflow;
1755 if (Min.isNegative() && OtherMax.isNonNegative() &&
1756 Min.slt(SignedMin + OtherMax))
1757 return OverflowResult::MayOverflow;
1758
1759 return OverflowResult::NeverOverflows;
1760 }
1761
unsignedMulMayOverflow(const ConstantRange & Other) const1762 ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow(
1763 const ConstantRange &Other) const {
1764 if (isEmptySet() || Other.isEmptySet())
1765 return OverflowResult::MayOverflow;
1766
1767 APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1768 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1769 bool Overflow;
1770
1771 (void) Min.umul_ov(OtherMin, Overflow);
1772 if (Overflow)
1773 return OverflowResult::AlwaysOverflowsHigh;
1774
1775 (void) Max.umul_ov(OtherMax, Overflow);
1776 if (Overflow)
1777 return OverflowResult::MayOverflow;
1778
1779 return OverflowResult::NeverOverflows;
1780 }
1781
print(raw_ostream & OS) const1782 void ConstantRange::print(raw_ostream &OS) const {
1783 if (isFullSet())
1784 OS << "full-set";
1785 else if (isEmptySet())
1786 OS << "empty-set";
1787 else
1788 OS << "[" << Lower << "," << Upper << ")";
1789 }
1790
1791 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1792 LLVM_DUMP_METHOD void ConstantRange::dump() const {
1793 print(dbgs());
1794 }
1795 #endif
1796
getConstantRangeFromMetadata(const MDNode & Ranges)1797 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
1798 const unsigned NumRanges = Ranges.getNumOperands() / 2;
1799 assert(NumRanges >= 1 && "Must have at least one range!");
1800 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
1801
1802 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
1803 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
1804
1805 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
1806
1807 for (unsigned i = 1; i < NumRanges; ++i) {
1808 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
1809 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
1810
1811 // Note: unionWith will potentially create a range that contains values not
1812 // contained in any of the original N ranges.
1813 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
1814 }
1815
1816 return CR;
1817 }
1818