xref: /original-bsd/old/libm/libm/IEEE/atan2.c (revision 580f9db2)
1 /*
2  * Copyright (c) 1985 Regents of the University of California.
3  *
4  * Use and reproduction of this software are granted  in  accordance  with
5  * the terms and conditions specified in  the  Berkeley  Software  License
6  * Agreement (in particular, this entails acknowledgement of the programs'
7  * source, and inclusion of this notice) with the additional understanding
8  * that  all  recipients  should regard themselves as participants  in  an
9  * ongoing  research  project and hence should  feel  obligated  to report
10  * their  experiences (good or bad) with these elementary function  codes,
11  * using "sendbug 4bsd-bugs@BERKELEY", to the authors.
12  */
13 
14 #ifndef lint
15 static char sccsid[] = "@(#)atan2.c	1.4 (Berkeley) 06/29/87";
16 #endif not lint
17 
18 /* ATAN2(Y,X)
19  * RETURN ARG (X+iY)
20  * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
21  * CODED IN C BY K.C. NG, 1/8/85;
22  * REVISED BY K.C. NG on 2/7/85, 2/13/85, 3/7/85, 3/30/85, 6/29/85.
23  *
24  * Required system supported functions :
25  *	copysign(x,y)
26  *	scalb(x,y)
27  *	logb(x)
28  *
29  * Method :
30  *	1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
31  *	2. Reduce x to positive by (if x and y are unexceptional):
32  *		ARG (x+iy) = arctan(y/x)   	   ... if x > 0,
33  *		ARG (x+iy) = pi - arctan[y/(-x)]   ... if x < 0,
34  *	3. According to the integer k=4t+0.25 truncated , t=y/x, the argument
35  *	   is further reduced to one of the following intervals and the
36  *	   arctangent of y/x is evaluated by the corresponding formula:
37  *
38  *         [0,7/16]	   atan(y/x) = t - t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
39  *	   [7/16,11/16]    atan(y/x) = atan(1/2) + atan( (y-x/2)/(x+y/2) )
40  *	   [11/16.19/16]   atan(y/x) = atan( 1 ) + atan( (y-x)/(x+y) )
41  *	   [19/16,39/16]   atan(y/x) = atan(3/2) + atan( (y-1.5x)/(x+1.5y) )
42  *	   [39/16,INF]     atan(y/x) = atan(INF) + atan( -x/y )
43  *
44  * Special cases:
45  * Notations: atan2(y,x) == ARG (x+iy) == ARG(x,y).
46  *
47  *	ARG( NAN , (anything) ) is NaN;
48  *	ARG( (anything), NaN ) is NaN;
49  *	ARG(+(anything but NaN), +-0) is +-0  ;
50  *	ARG(-(anything but NaN), +-0) is +-PI ;
51  *	ARG( 0, +-(anything but 0 and NaN) ) is +-PI/2;
52  *	ARG( +INF,+-(anything but INF and NaN) ) is +-0 ;
53  *	ARG( -INF,+-(anything but INF and NaN) ) is +-PI;
54  *	ARG( +INF,+-INF ) is +-PI/4 ;
55  *	ARG( -INF,+-INF ) is +-3PI/4;
56  *	ARG( (anything but,0,NaN, and INF),+-INF ) is +-PI/2;
57  *
58  * Accuracy:
59  *	atan2(y,x) returns (PI/pi) * the exact ARG (x+iy) nearly rounded,
60  *	where
61  *
62  *	in decimal:
63  *		pi = 3.141592653589793 23846264338327 .....
64  *    53 bits   PI = 3.141592653589793 115997963 ..... ,
65  *    56 bits   PI = 3.141592653589793 227020265 ..... ,
66  *
67  *	in hexadecimal:
68  *		pi = 3.243F6A8885A308D313198A2E....
69  *    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18	error=.276ulps
70  *    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2    error=.206ulps
71  *
72  *	In a test run with 356,000 random argument on [-1,1] * [-1,1] on a
73  *	VAX, the maximum observed error was 1.41 ulps (units of the last place)
74  *	compared with (PI/pi)*(the exact ARG(x+iy)).
75  *
76  * Note:
77  *	We use machine PI (the true pi rounded) in place of the actual
78  *	value of pi for all the trig and inverse trig functions. In general,
79  *	if trig is one of sin, cos, tan, then computed trig(y) returns the
80  *	exact trig(y*pi/PI) nearly rounded; correspondingly, computed arctrig
81  *	returns the exact arctrig(y)*PI/pi nearly rounded. These guarantee the
82  *	trig functions have period PI, and trig(arctrig(x)) returns x for
83  *	all critical values x.
84  *
85  * Constants:
86  * The hexadecimal values are the intended ones for the following constants.
87  * The decimal values may be used, provided that the compiler will convert
88  * from decimal to binary accurately enough to produce the hexadecimal values
89  * shown.
90  */
91 
92 static double
93 #if defined(VAX) || defined(TAHOE) 	/* VAX D format */
94 athfhi =  4.6364760900080611433E-1    , /*Hex  2^ -1   *  .ED63382B0DDA7B */
95 athflo =  1.9338828231967579916E-19   , /*Hex  2^-62   *  .E450059CFE92C0 */
96 PIo4   =  7.8539816339744830676E-1    , /*Hex  2^  0   *  .C90FDAA22168C2 */
97 at1fhi =  9.8279372324732906796E-1    , /*Hex  2^  0   *  .FB985E940FB4D9 */
98 at1flo = -3.5540295636764633916E-18   , /*Hex  2^-57   * -.831EDC34D6EAEA */
99 PIo2   =  1.5707963267948966135E0     , /*Hex  2^  1   *  .C90FDAA22168C2 */
100 PI     =  3.1415926535897932270E0     , /*Hex  2^  2   *  .C90FDAA22168C2 */
101 a1     =  3.3333333333333473730E-1    , /*Hex  2^ -1   *  .AAAAAAAAAAAB75 */
102 a2     = -2.0000000000017730678E-1    , /*Hex  2^ -2   * -.CCCCCCCCCD946E */
103 a3     =  1.4285714286694640301E-1    , /*Hex  2^ -2   *  .92492492744262 */
104 a4     = -1.1111111135032672795E-1    , /*Hex  2^ -3   * -.E38E38EBC66292 */
105 a5     =  9.0909091380563043783E-2    , /*Hex  2^ -3   *  .BA2E8BB31BD70C */
106 a6     = -7.6922954286089459397E-2    , /*Hex  2^ -3   * -.9D89C827C37F18 */
107 a7     =  6.6663180891693915586E-2    , /*Hex  2^ -3   *  .8886B4AE379E58 */
108 a8     = -5.8772703698290408927E-2    , /*Hex  2^ -4   * -.F0BBA58481A942 */
109 a9     =  5.2170707402812969804E-2    , /*Hex  2^ -4   *  .D5B0F3A1AB13AB */
110 a10    = -4.4895863157820361210E-2    , /*Hex  2^ -4   * -.B7E4B97FD1048F */
111 a11    =  3.3006147437343875094E-2    , /*Hex  2^ -4   *  .8731743CF72D87 */
112 a12    = -1.4614844866464185439E-2    ; /*Hex  2^ -6   * -.EF731A2F3476D9 */
113 #else 	/* IEEE double */
114 athfhi =  4.6364760900080609352E-1    , /*Hex  2^ -2   *  1.DAC670561BB4F */
115 athflo =  4.6249969567426939759E-18   , /*Hex  2^-58   *  1.5543B8F253271 */
116 PIo4   =  7.8539816339744827900E-1    , /*Hex  2^ -1   *  1.921FB54442D18 */
117 at1fhi =  9.8279372324732905408E-1    , /*Hex  2^ -1   *  1.F730BD281F69B */
118 at1flo = -2.4407677060164810007E-17   , /*Hex  2^-56   * -1.C23DFEFEAE6B5 */
119 PIo2   =  1.5707963267948965580E0     , /*Hex  2^  0   *  1.921FB54442D18 */
120 PI     =  3.1415926535897931160E0     , /*Hex  2^  1   *  1.921FB54442D18 */
121 a1     =  3.3333333333333942106E-1    , /*Hex  2^ -2   *  1.55555555555C3 */
122 a2     = -1.9999999999979536924E-1    , /*Hex  2^ -3   * -1.9999999997CCD */
123 a3     =  1.4285714278004377209E-1    , /*Hex  2^ -3   *  1.24924921EC1D7 */
124 a4     = -1.1111110579344973814E-1    , /*Hex  2^ -4   * -1.C71C7059AF280 */
125 a5     =  9.0908906105474668324E-2    , /*Hex  2^ -4   *  1.745CE5AA35DB2 */
126 a6     = -7.6919217767468239799E-2    , /*Hex  2^ -4   * -1.3B0FA54BEC400 */
127 a7     =  6.6614695906082474486E-2    , /*Hex  2^ -4   *  1.10DA924597FFF */
128 a8     = -5.8358371008508623523E-2    , /*Hex  2^ -5   * -1.DE125FDDBD793 */
129 a9     =  4.9850617156082015213E-2    , /*Hex  2^ -5   *  1.9860524BDD807 */
130 a10    = -3.6700606902093604877E-2    , /*Hex  2^ -5   * -1.2CA6C04C6937A */
131 a11    =  1.6438029044759730479E-2    ; /*Hex  2^ -6   *  1.0D52174A1BB54 */
132 #endif
133 
atan2(y,x)134 double atan2(y,x)
135 double  y,x;
136 {
137 	static double zero=0, one=1, small=1.0E-9, big=1.0E18;
138 	double copysign(),logb(),scalb(),t,z,signy,signx,hi,lo;
139 	int finite(), k,m;
140 
141     /* if x or y is NAN */
142 	if(x!=x) return(x); if(y!=y) return(y);
143 
144     /* copy down the sign of y and x */
145 	signy = copysign(one,y) ;
146 	signx = copysign(one,x) ;
147 
148     /* if x is 1.0, goto begin */
149 	if(x==1) { y=copysign(y,one); t=y; if(finite(t)) goto begin;}
150 
151     /* when y = 0 */
152 	if(y==zero) return((signx==one)?y:copysign(PI,signy));
153 
154     /* when x = 0 */
155 	if(x==zero) return(copysign(PIo2,signy));
156 
157     /* when x is INF */
158 	if(!finite(x))
159 	    if(!finite(y))
160 		return(copysign((signx==one)?PIo4:3*PIo4,signy));
161 	    else
162 		return(copysign((signx==one)?zero:PI,signy));
163 
164     /* when y is INF */
165 	if(!finite(y)) return(copysign(PIo2,signy));
166 
167 
168     /* compute y/x */
169 	x=copysign(x,one);
170 	y=copysign(y,one);
171 	if((m=(k=logb(y))-logb(x)) > 60) t=big+big;
172 	    else if(m < -80 ) t=y/x;
173 	    else { t = y/x ; y = scalb(y,-k); x=scalb(x,-k); }
174 
175     /* begin argument reduction */
176 begin:
177 	if (t < 2.4375) {
178 
179 	/* truncate 4(t+1/16) to integer for branching */
180 	    k = 4 * (t+0.0625);
181 	    switch (k) {
182 
183 	    /* t is in [0,7/16] */
184 	    case 0:
185 	    case 1:
186 		if (t < small)
187 		    { big + small ;  /* raise inexact flag */
188 		      return (copysign((signx>zero)?t:PI-t,signy)); }
189 
190 		hi = zero;  lo = zero;  break;
191 
192 	    /* t is in [7/16,11/16] */
193 	    case 2:
194 		hi = athfhi; lo = athflo;
195 		z = x+x;
196 		t = ( (y+y) - x ) / ( z +  y ); break;
197 
198 	    /* t is in [11/16,19/16] */
199 	    case 3:
200 	    case 4:
201 		hi = PIo4; lo = zero;
202 		t = ( y - x ) / ( x + y ); break;
203 
204 	    /* t is in [19/16,39/16] */
205 	    default:
206 		hi = at1fhi; lo = at1flo;
207 		z = y-x; y=y+y+y; t = x+x;
208 		t = ( (z+z)-x ) / ( t + y ); break;
209 	    }
210 	}
211 	/* end of if (t < 2.4375) */
212 
213 	else
214 	{
215 	    hi = PIo2; lo = zero;
216 
217 	    /* t is in [2.4375, big] */
218 	    if (t <= big)  t = - x / y;
219 
220 	    /* t is in [big, INF] */
221 	    else
222 	      { big+small;	/* raise inexact flag */
223 		t = zero; }
224 	}
225     /* end of argument reduction */
226 
227     /* compute atan(t) for t in [-.4375, .4375] */
228 	z = t*t;
229 #if defined(VAX) || defined(TAHOE)
230 	z = t*(z*(a1+z*(a2+z*(a3+z*(a4+z*(a5+z*(a6+z*(a7+z*(a8+
231 			z*(a9+z*(a10+z*(a11+z*a12))))))))))));
232 #else	/* IEEE double */
233 	z = t*(z*(a1+z*(a2+z*(a3+z*(a4+z*(a5+z*(a6+z*(a7+z*(a8+
234 			z*(a9+z*(a10+z*a11)))))))))));
235 #endif
236 	z = lo - z; z += t; z += hi;
237 
238 	return(copysign((signx>zero)?z:PI-z,signy));
239 }
240