1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements inlining of a function into a call site, resolving
10 // parameters and the return value as appropriate.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/CallGraph.h"
25 #include "llvm/Analysis/CaptureTracking.h"
26 #include "llvm/Analysis/EHPersonalities.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/MemoryProfileInfo.h"
29 #include "llvm/Analysis/ObjCARCAnalysisUtils.h"
30 #include "llvm/Analysis/ObjCARCUtil.h"
31 #include "llvm/Analysis/ProfileSummaryInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/Analysis/VectorUtils.h"
34 #include "llvm/IR/Argument.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugInfo.h"
41 #include "llvm/IR/DebugInfoMetadata.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/IRBuilder.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/User.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
64 #include "llvm/Transforms/Utils/Cloning.h"
65 #include "llvm/Transforms/Utils/Local.h"
66 #include "llvm/Transforms/Utils/ValueMapper.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstdint>
70 #include <iterator>
71 #include <limits>
72 #include <optional>
73 #include <string>
74 #include <utility>
75 #include <vector>
76
77 #define DEBUG_TYPE "inline-function"
78
79 using namespace llvm;
80 using namespace llvm::memprof;
81 using ProfileCount = Function::ProfileCount;
82
83 static cl::opt<bool>
84 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
85 cl::Hidden,
86 cl::desc("Convert noalias attributes to metadata during inlining."));
87
88 static cl::opt<bool>
89 UseNoAliasIntrinsic("use-noalias-intrinsic-during-inlining", cl::Hidden,
90 cl::init(true),
91 cl::desc("Use the llvm.experimental.noalias.scope.decl "
92 "intrinsic during inlining."));
93
94 // Disabled by default, because the added alignment assumptions may increase
95 // compile-time and block optimizations. This option is not suitable for use
96 // with frontends that emit comprehensive parameter alignment annotations.
97 static cl::opt<bool>
98 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
99 cl::init(false), cl::Hidden,
100 cl::desc("Convert align attributes to assumptions during inlining."));
101
102 static cl::opt<bool> UpdateReturnAttributes(
103 "update-return-attrs", cl::init(true), cl::Hidden,
104 cl::desc("Update return attributes on calls within inlined body"));
105
106 static cl::opt<unsigned> InlinerAttributeWindow(
107 "max-inst-checked-for-throw-during-inlining", cl::Hidden,
108 cl::desc("the maximum number of instructions analyzed for may throw during "
109 "attribute inference in inlined body"),
110 cl::init(4));
111
112 namespace {
113
114 /// A class for recording information about inlining a landing pad.
115 class LandingPadInliningInfo {
116 /// Destination of the invoke's unwind.
117 BasicBlock *OuterResumeDest;
118
119 /// Destination for the callee's resume.
120 BasicBlock *InnerResumeDest = nullptr;
121
122 /// LandingPadInst associated with the invoke.
123 LandingPadInst *CallerLPad = nullptr;
124
125 /// PHI for EH values from landingpad insts.
126 PHINode *InnerEHValuesPHI = nullptr;
127
128 SmallVector<Value*, 8> UnwindDestPHIValues;
129
130 public:
LandingPadInliningInfo(InvokeInst * II)131 LandingPadInliningInfo(InvokeInst *II)
132 : OuterResumeDest(II->getUnwindDest()) {
133 // If there are PHI nodes in the unwind destination block, we need to keep
134 // track of which values came into them from the invoke before removing
135 // the edge from this block.
136 BasicBlock *InvokeBB = II->getParent();
137 BasicBlock::iterator I = OuterResumeDest->begin();
138 for (; isa<PHINode>(I); ++I) {
139 // Save the value to use for this edge.
140 PHINode *PHI = cast<PHINode>(I);
141 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
142 }
143
144 CallerLPad = cast<LandingPadInst>(I);
145 }
146
147 /// The outer unwind destination is the target of
148 /// unwind edges introduced for calls within the inlined function.
getOuterResumeDest() const149 BasicBlock *getOuterResumeDest() const {
150 return OuterResumeDest;
151 }
152
153 BasicBlock *getInnerResumeDest();
154
getLandingPadInst() const155 LandingPadInst *getLandingPadInst() const { return CallerLPad; }
156
157 /// Forward the 'resume' instruction to the caller's landing pad block.
158 /// When the landing pad block has only one predecessor, this is
159 /// a simple branch. When there is more than one predecessor, we need to
160 /// split the landing pad block after the landingpad instruction and jump
161 /// to there.
162 void forwardResume(ResumeInst *RI,
163 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
164
165 /// Add incoming-PHI values to the unwind destination block for the given
166 /// basic block, using the values for the original invoke's source block.
addIncomingPHIValuesFor(BasicBlock * BB) const167 void addIncomingPHIValuesFor(BasicBlock *BB) const {
168 addIncomingPHIValuesForInto(BB, OuterResumeDest);
169 }
170
addIncomingPHIValuesForInto(BasicBlock * src,BasicBlock * dest) const171 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
172 BasicBlock::iterator I = dest->begin();
173 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
174 PHINode *phi = cast<PHINode>(I);
175 phi->addIncoming(UnwindDestPHIValues[i], src);
176 }
177 }
178 };
179
180 } // end anonymous namespace
181
182 /// Get or create a target for the branch from ResumeInsts.
getInnerResumeDest()183 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
184 if (InnerResumeDest) return InnerResumeDest;
185
186 // Split the landing pad.
187 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
188 InnerResumeDest =
189 OuterResumeDest->splitBasicBlock(SplitPoint,
190 OuterResumeDest->getName() + ".body");
191
192 // The number of incoming edges we expect to the inner landing pad.
193 const unsigned PHICapacity = 2;
194
195 // Create corresponding new PHIs for all the PHIs in the outer landing pad.
196 Instruction *InsertPoint = &InnerResumeDest->front();
197 BasicBlock::iterator I = OuterResumeDest->begin();
198 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
199 PHINode *OuterPHI = cast<PHINode>(I);
200 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
201 OuterPHI->getName() + ".lpad-body",
202 InsertPoint);
203 OuterPHI->replaceAllUsesWith(InnerPHI);
204 InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
205 }
206
207 // Create a PHI for the exception values.
208 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
209 "eh.lpad-body", InsertPoint);
210 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
211 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
212
213 // All done.
214 return InnerResumeDest;
215 }
216
217 /// Forward the 'resume' instruction to the caller's landing pad block.
218 /// When the landing pad block has only one predecessor, this is a simple
219 /// branch. When there is more than one predecessor, we need to split the
220 /// landing pad block after the landingpad instruction and jump to there.
forwardResume(ResumeInst * RI,SmallPtrSetImpl<LandingPadInst * > & InlinedLPads)221 void LandingPadInliningInfo::forwardResume(
222 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
223 BasicBlock *Dest = getInnerResumeDest();
224 BasicBlock *Src = RI->getParent();
225
226 BranchInst::Create(Dest, Src);
227
228 // Update the PHIs in the destination. They were inserted in an order which
229 // makes this work.
230 addIncomingPHIValuesForInto(Src, Dest);
231
232 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
233 RI->eraseFromParent();
234 }
235
236 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
getParentPad(Value * EHPad)237 static Value *getParentPad(Value *EHPad) {
238 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
239 return FPI->getParentPad();
240 return cast<CatchSwitchInst>(EHPad)->getParentPad();
241 }
242
243 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;
244
245 /// Helper for getUnwindDestToken that does the descendant-ward part of
246 /// the search.
getUnwindDestTokenHelper(Instruction * EHPad,UnwindDestMemoTy & MemoMap)247 static Value *getUnwindDestTokenHelper(Instruction *EHPad,
248 UnwindDestMemoTy &MemoMap) {
249 SmallVector<Instruction *, 8> Worklist(1, EHPad);
250
251 while (!Worklist.empty()) {
252 Instruction *CurrentPad = Worklist.pop_back_val();
253 // We only put pads on the worklist that aren't in the MemoMap. When
254 // we find an unwind dest for a pad we may update its ancestors, but
255 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
256 // so they should never get updated while queued on the worklist.
257 assert(!MemoMap.count(CurrentPad));
258 Value *UnwindDestToken = nullptr;
259 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
260 if (CatchSwitch->hasUnwindDest()) {
261 UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
262 } else {
263 // Catchswitch doesn't have a 'nounwind' variant, and one might be
264 // annotated as "unwinds to caller" when really it's nounwind (see
265 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
266 // parent's unwind dest from this. We can check its catchpads'
267 // descendants, since they might include a cleanuppad with an
268 // "unwinds to caller" cleanupret, which can be trusted.
269 for (auto HI = CatchSwitch->handler_begin(),
270 HE = CatchSwitch->handler_end();
271 HI != HE && !UnwindDestToken; ++HI) {
272 BasicBlock *HandlerBlock = *HI;
273 auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
274 for (User *Child : CatchPad->users()) {
275 // Intentionally ignore invokes here -- since the catchswitch is
276 // marked "unwind to caller", it would be a verifier error if it
277 // contained an invoke which unwinds out of it, so any invoke we'd
278 // encounter must unwind to some child of the catch.
279 if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
280 continue;
281
282 Instruction *ChildPad = cast<Instruction>(Child);
283 auto Memo = MemoMap.find(ChildPad);
284 if (Memo == MemoMap.end()) {
285 // Haven't figured out this child pad yet; queue it.
286 Worklist.push_back(ChildPad);
287 continue;
288 }
289 // We've already checked this child, but might have found that
290 // it offers no proof either way.
291 Value *ChildUnwindDestToken = Memo->second;
292 if (!ChildUnwindDestToken)
293 continue;
294 // We already know the child's unwind dest, which can either
295 // be ConstantTokenNone to indicate unwind to caller, or can
296 // be another child of the catchpad. Only the former indicates
297 // the unwind dest of the catchswitch.
298 if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
299 UnwindDestToken = ChildUnwindDestToken;
300 break;
301 }
302 assert(getParentPad(ChildUnwindDestToken) == CatchPad);
303 }
304 }
305 }
306 } else {
307 auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
308 for (User *U : CleanupPad->users()) {
309 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
310 if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
311 UnwindDestToken = RetUnwindDest->getFirstNonPHI();
312 else
313 UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
314 break;
315 }
316 Value *ChildUnwindDestToken;
317 if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
318 ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
319 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
320 Instruction *ChildPad = cast<Instruction>(U);
321 auto Memo = MemoMap.find(ChildPad);
322 if (Memo == MemoMap.end()) {
323 // Haven't resolved this child yet; queue it and keep searching.
324 Worklist.push_back(ChildPad);
325 continue;
326 }
327 // We've checked this child, but still need to ignore it if it
328 // had no proof either way.
329 ChildUnwindDestToken = Memo->second;
330 if (!ChildUnwindDestToken)
331 continue;
332 } else {
333 // Not a relevant user of the cleanuppad
334 continue;
335 }
336 // In a well-formed program, the child/invoke must either unwind to
337 // an(other) child of the cleanup, or exit the cleanup. In the
338 // first case, continue searching.
339 if (isa<Instruction>(ChildUnwindDestToken) &&
340 getParentPad(ChildUnwindDestToken) == CleanupPad)
341 continue;
342 UnwindDestToken = ChildUnwindDestToken;
343 break;
344 }
345 }
346 // If we haven't found an unwind dest for CurrentPad, we may have queued its
347 // children, so move on to the next in the worklist.
348 if (!UnwindDestToken)
349 continue;
350
351 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits
352 // any ancestors of CurrentPad up to but not including UnwindDestToken's
353 // parent pad. Record this in the memo map, and check to see if the
354 // original EHPad being queried is one of the ones exited.
355 Value *UnwindParent;
356 if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
357 UnwindParent = getParentPad(UnwindPad);
358 else
359 UnwindParent = nullptr;
360 bool ExitedOriginalPad = false;
361 for (Instruction *ExitedPad = CurrentPad;
362 ExitedPad && ExitedPad != UnwindParent;
363 ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
364 // Skip over catchpads since they just follow their catchswitches.
365 if (isa<CatchPadInst>(ExitedPad))
366 continue;
367 MemoMap[ExitedPad] = UnwindDestToken;
368 ExitedOriginalPad |= (ExitedPad == EHPad);
369 }
370
371 if (ExitedOriginalPad)
372 return UnwindDestToken;
373
374 // Continue the search.
375 }
376
377 // No definitive information is contained within this funclet.
378 return nullptr;
379 }
380
381 /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad,
382 /// return that pad instruction. If it unwinds to caller, return
383 /// ConstantTokenNone. If it does not have a definitive unwind destination,
384 /// return nullptr.
385 ///
386 /// This routine gets invoked for calls in funclets in inlinees when inlining
387 /// an invoke. Since many funclets don't have calls inside them, it's queried
388 /// on-demand rather than building a map of pads to unwind dests up front.
389 /// Determining a funclet's unwind dest may require recursively searching its
390 /// descendants, and also ancestors and cousins if the descendants don't provide
391 /// an answer. Since most funclets will have their unwind dest immediately
392 /// available as the unwind dest of a catchswitch or cleanupret, this routine
393 /// searches top-down from the given pad and then up. To avoid worst-case
394 /// quadratic run-time given that approach, it uses a memo map to avoid
395 /// re-processing funclet trees. The callers that rewrite the IR as they go
396 /// take advantage of this, for correctness, by checking/forcing rewritten
397 /// pads' entries to match the original callee view.
getUnwindDestToken(Instruction * EHPad,UnwindDestMemoTy & MemoMap)398 static Value *getUnwindDestToken(Instruction *EHPad,
399 UnwindDestMemoTy &MemoMap) {
400 // Catchpads unwind to the same place as their catchswitch;
401 // redirct any queries on catchpads so the code below can
402 // deal with just catchswitches and cleanuppads.
403 if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
404 EHPad = CPI->getCatchSwitch();
405
406 // Check if we've already determined the unwind dest for this pad.
407 auto Memo = MemoMap.find(EHPad);
408 if (Memo != MemoMap.end())
409 return Memo->second;
410
411 // Search EHPad and, if necessary, its descendants.
412 Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
413 assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
414 if (UnwindDestToken)
415 return UnwindDestToken;
416
417 // No information is available for this EHPad from itself or any of its
418 // descendants. An unwind all the way out to a pad in the caller would
419 // need also to agree with the unwind dest of the parent funclet, so
420 // search up the chain to try to find a funclet with information. Put
421 // null entries in the memo map to avoid re-processing as we go up.
422 MemoMap[EHPad] = nullptr;
423 #ifndef NDEBUG
424 SmallPtrSet<Instruction *, 4> TempMemos;
425 TempMemos.insert(EHPad);
426 #endif
427 Instruction *LastUselessPad = EHPad;
428 Value *AncestorToken;
429 for (AncestorToken = getParentPad(EHPad);
430 auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
431 AncestorToken = getParentPad(AncestorToken)) {
432 // Skip over catchpads since they just follow their catchswitches.
433 if (isa<CatchPadInst>(AncestorPad))
434 continue;
435 // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
436 // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
437 // call to getUnwindDestToken, that would mean that AncestorPad had no
438 // information in itself, its descendants, or its ancestors. If that
439 // were the case, then we should also have recorded the lack of information
440 // for the descendant that we're coming from. So assert that we don't
441 // find a null entry in the MemoMap for AncestorPad.
442 assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
443 auto AncestorMemo = MemoMap.find(AncestorPad);
444 if (AncestorMemo == MemoMap.end()) {
445 UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
446 } else {
447 UnwindDestToken = AncestorMemo->second;
448 }
449 if (UnwindDestToken)
450 break;
451 LastUselessPad = AncestorPad;
452 MemoMap[LastUselessPad] = nullptr;
453 #ifndef NDEBUG
454 TempMemos.insert(LastUselessPad);
455 #endif
456 }
457
458 // We know that getUnwindDestTokenHelper was called on LastUselessPad and
459 // returned nullptr (and likewise for EHPad and any of its ancestors up to
460 // LastUselessPad), so LastUselessPad has no information from below. Since
461 // getUnwindDestTokenHelper must investigate all downward paths through
462 // no-information nodes to prove that a node has no information like this,
463 // and since any time it finds information it records it in the MemoMap for
464 // not just the immediately-containing funclet but also any ancestors also
465 // exited, it must be the case that, walking downward from LastUselessPad,
466 // visiting just those nodes which have not been mapped to an unwind dest
467 // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
468 // they are just used to keep getUnwindDestTokenHelper from repeating work),
469 // any node visited must have been exhaustively searched with no information
470 // for it found.
471 SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
472 while (!Worklist.empty()) {
473 Instruction *UselessPad = Worklist.pop_back_val();
474 auto Memo = MemoMap.find(UselessPad);
475 if (Memo != MemoMap.end() && Memo->second) {
476 // Here the name 'UselessPad' is a bit of a misnomer, because we've found
477 // that it is a funclet that does have information about unwinding to
478 // a particular destination; its parent was a useless pad.
479 // Since its parent has no information, the unwind edge must not escape
480 // the parent, and must target a sibling of this pad. This local unwind
481 // gives us no information about EHPad. Leave it and the subtree rooted
482 // at it alone.
483 assert(getParentPad(Memo->second) == getParentPad(UselessPad));
484 continue;
485 }
486 // We know we don't have information for UselesPad. If it has an entry in
487 // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
488 // added on this invocation of getUnwindDestToken; if a previous invocation
489 // recorded nullptr, it would have had to prove that the ancestors of
490 // UselessPad, which include LastUselessPad, had no information, and that
491 // in turn would have required proving that the descendants of
492 // LastUselesPad, which include EHPad, have no information about
493 // LastUselessPad, which would imply that EHPad was mapped to nullptr in
494 // the MemoMap on that invocation, which isn't the case if we got here.
495 assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
496 // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
497 // information that we'd be contradicting by making a map entry for it
498 // (which is something that getUnwindDestTokenHelper must have proved for
499 // us to get here). Just assert on is direct users here; the checks in
500 // this downward walk at its descendants will verify that they don't have
501 // any unwind edges that exit 'UselessPad' either (i.e. they either have no
502 // unwind edges or unwind to a sibling).
503 MemoMap[UselessPad] = UnwindDestToken;
504 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
505 assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
506 for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
507 auto *CatchPad = HandlerBlock->getFirstNonPHI();
508 for (User *U : CatchPad->users()) {
509 assert(
510 (!isa<InvokeInst>(U) ||
511 (getParentPad(
512 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
513 CatchPad)) &&
514 "Expected useless pad");
515 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
516 Worklist.push_back(cast<Instruction>(U));
517 }
518 }
519 } else {
520 assert(isa<CleanupPadInst>(UselessPad));
521 for (User *U : UselessPad->users()) {
522 assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
523 assert((!isa<InvokeInst>(U) ||
524 (getParentPad(
525 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
526 UselessPad)) &&
527 "Expected useless pad");
528 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
529 Worklist.push_back(cast<Instruction>(U));
530 }
531 }
532 }
533
534 return UnwindDestToken;
535 }
536
537 /// When we inline a basic block into an invoke,
538 /// we have to turn all of the calls that can throw into invokes.
539 /// This function analyze BB to see if there are any calls, and if so,
540 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
541 /// nodes in that block with the values specified in InvokeDestPHIValues.
HandleCallsInBlockInlinedThroughInvoke(BasicBlock * BB,BasicBlock * UnwindEdge,UnwindDestMemoTy * FuncletUnwindMap=nullptr)542 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
543 BasicBlock *BB, BasicBlock *UnwindEdge,
544 UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
545 for (Instruction &I : llvm::make_early_inc_range(*BB)) {
546 // We only need to check for function calls: inlined invoke
547 // instructions require no special handling.
548 CallInst *CI = dyn_cast<CallInst>(&I);
549
550 if (!CI || CI->doesNotThrow())
551 continue;
552
553 // We do not need to (and in fact, cannot) convert possibly throwing calls
554 // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
555 // invokes. The caller's "segment" of the deoptimization continuation
556 // attached to the newly inlined @llvm.experimental_deoptimize
557 // (resp. @llvm.experimental.guard) call should contain the exception
558 // handling logic, if any.
559 if (auto *F = CI->getCalledFunction())
560 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
561 F->getIntrinsicID() == Intrinsic::experimental_guard)
562 continue;
563
564 if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
565 // This call is nested inside a funclet. If that funclet has an unwind
566 // destination within the inlinee, then unwinding out of this call would
567 // be UB. Rewriting this call to an invoke which targets the inlined
568 // invoke's unwind dest would give the call's parent funclet multiple
569 // unwind destinations, which is something that subsequent EH table
570 // generation can't handle and that the veirifer rejects. So when we
571 // see such a call, leave it as a call.
572 auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
573 Value *UnwindDestToken =
574 getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
575 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
576 continue;
577 #ifndef NDEBUG
578 Instruction *MemoKey;
579 if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
580 MemoKey = CatchPad->getCatchSwitch();
581 else
582 MemoKey = FuncletPad;
583 assert(FuncletUnwindMap->count(MemoKey) &&
584 (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
585 "must get memoized to avoid confusing later searches");
586 #endif // NDEBUG
587 }
588
589 changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
590 return BB;
591 }
592 return nullptr;
593 }
594
595 /// If we inlined an invoke site, we need to convert calls
596 /// in the body of the inlined function into invokes.
597 ///
598 /// II is the invoke instruction being inlined. FirstNewBlock is the first
599 /// block of the inlined code (the last block is the end of the function),
600 /// and InlineCodeInfo is information about the code that got inlined.
HandleInlinedLandingPad(InvokeInst * II,BasicBlock * FirstNewBlock,ClonedCodeInfo & InlinedCodeInfo)601 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
602 ClonedCodeInfo &InlinedCodeInfo) {
603 BasicBlock *InvokeDest = II->getUnwindDest();
604
605 Function *Caller = FirstNewBlock->getParent();
606
607 // The inlined code is currently at the end of the function, scan from the
608 // start of the inlined code to its end, checking for stuff we need to
609 // rewrite.
610 LandingPadInliningInfo Invoke(II);
611
612 // Get all of the inlined landing pad instructions.
613 SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
614 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
615 I != E; ++I)
616 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
617 InlinedLPads.insert(II->getLandingPadInst());
618
619 // Append the clauses from the outer landing pad instruction into the inlined
620 // landing pad instructions.
621 LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
622 for (LandingPadInst *InlinedLPad : InlinedLPads) {
623 unsigned OuterNum = OuterLPad->getNumClauses();
624 InlinedLPad->reserveClauses(OuterNum);
625 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
626 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
627 if (OuterLPad->isCleanup())
628 InlinedLPad->setCleanup(true);
629 }
630
631 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
632 BB != E; ++BB) {
633 if (InlinedCodeInfo.ContainsCalls)
634 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
635 &*BB, Invoke.getOuterResumeDest()))
636 // Update any PHI nodes in the exceptional block to indicate that there
637 // is now a new entry in them.
638 Invoke.addIncomingPHIValuesFor(NewBB);
639
640 // Forward any resumes that are remaining here.
641 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
642 Invoke.forwardResume(RI, InlinedLPads);
643 }
644
645 // Now that everything is happy, we have one final detail. The PHI nodes in
646 // the exception destination block still have entries due to the original
647 // invoke instruction. Eliminate these entries (which might even delete the
648 // PHI node) now.
649 InvokeDest->removePredecessor(II->getParent());
650 }
651
652 /// If we inlined an invoke site, we need to convert calls
653 /// in the body of the inlined function into invokes.
654 ///
655 /// II is the invoke instruction being inlined. FirstNewBlock is the first
656 /// block of the inlined code (the last block is the end of the function),
657 /// and InlineCodeInfo is information about the code that got inlined.
HandleInlinedEHPad(InvokeInst * II,BasicBlock * FirstNewBlock,ClonedCodeInfo & InlinedCodeInfo)658 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
659 ClonedCodeInfo &InlinedCodeInfo) {
660 BasicBlock *UnwindDest = II->getUnwindDest();
661 Function *Caller = FirstNewBlock->getParent();
662
663 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
664
665 // If there are PHI nodes in the unwind destination block, we need to keep
666 // track of which values came into them from the invoke before removing the
667 // edge from this block.
668 SmallVector<Value *, 8> UnwindDestPHIValues;
669 BasicBlock *InvokeBB = II->getParent();
670 for (PHINode &PHI : UnwindDest->phis()) {
671 // Save the value to use for this edge.
672 UnwindDestPHIValues.push_back(PHI.getIncomingValueForBlock(InvokeBB));
673 }
674
675 // Add incoming-PHI values to the unwind destination block for the given basic
676 // block, using the values for the original invoke's source block.
677 auto UpdatePHINodes = [&](BasicBlock *Src) {
678 BasicBlock::iterator I = UnwindDest->begin();
679 for (Value *V : UnwindDestPHIValues) {
680 PHINode *PHI = cast<PHINode>(I);
681 PHI->addIncoming(V, Src);
682 ++I;
683 }
684 };
685
686 // This connects all the instructions which 'unwind to caller' to the invoke
687 // destination.
688 UnwindDestMemoTy FuncletUnwindMap;
689 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
690 BB != E; ++BB) {
691 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
692 if (CRI->unwindsToCaller()) {
693 auto *CleanupPad = CRI->getCleanupPad();
694 CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
695 CRI->eraseFromParent();
696 UpdatePHINodes(&*BB);
697 // Finding a cleanupret with an unwind destination would confuse
698 // subsequent calls to getUnwindDestToken, so map the cleanuppad
699 // to short-circuit any such calls and recognize this as an "unwind
700 // to caller" cleanup.
701 assert(!FuncletUnwindMap.count(CleanupPad) ||
702 isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
703 FuncletUnwindMap[CleanupPad] =
704 ConstantTokenNone::get(Caller->getContext());
705 }
706 }
707
708 Instruction *I = BB->getFirstNonPHI();
709 if (!I->isEHPad())
710 continue;
711
712 Instruction *Replacement = nullptr;
713 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
714 if (CatchSwitch->unwindsToCaller()) {
715 Value *UnwindDestToken;
716 if (auto *ParentPad =
717 dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
718 // This catchswitch is nested inside another funclet. If that
719 // funclet has an unwind destination within the inlinee, then
720 // unwinding out of this catchswitch would be UB. Rewriting this
721 // catchswitch to unwind to the inlined invoke's unwind dest would
722 // give the parent funclet multiple unwind destinations, which is
723 // something that subsequent EH table generation can't handle and
724 // that the veirifer rejects. So when we see such a call, leave it
725 // as "unwind to caller".
726 UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
727 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
728 continue;
729 } else {
730 // This catchswitch has no parent to inherit constraints from, and
731 // none of its descendants can have an unwind edge that exits it and
732 // targets another funclet in the inlinee. It may or may not have a
733 // descendant that definitively has an unwind to caller. In either
734 // case, we'll have to assume that any unwinds out of it may need to
735 // be routed to the caller, so treat it as though it has a definitive
736 // unwind to caller.
737 UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
738 }
739 auto *NewCatchSwitch = CatchSwitchInst::Create(
740 CatchSwitch->getParentPad(), UnwindDest,
741 CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
742 CatchSwitch);
743 for (BasicBlock *PadBB : CatchSwitch->handlers())
744 NewCatchSwitch->addHandler(PadBB);
745 // Propagate info for the old catchswitch over to the new one in
746 // the unwind map. This also serves to short-circuit any subsequent
747 // checks for the unwind dest of this catchswitch, which would get
748 // confused if they found the outer handler in the callee.
749 FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
750 Replacement = NewCatchSwitch;
751 }
752 } else if (!isa<FuncletPadInst>(I)) {
753 llvm_unreachable("unexpected EHPad!");
754 }
755
756 if (Replacement) {
757 Replacement->takeName(I);
758 I->replaceAllUsesWith(Replacement);
759 I->eraseFromParent();
760 UpdatePHINodes(&*BB);
761 }
762 }
763
764 if (InlinedCodeInfo.ContainsCalls)
765 for (Function::iterator BB = FirstNewBlock->getIterator(),
766 E = Caller->end();
767 BB != E; ++BB)
768 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
769 &*BB, UnwindDest, &FuncletUnwindMap))
770 // Update any PHI nodes in the exceptional block to indicate that there
771 // is now a new entry in them.
772 UpdatePHINodes(NewBB);
773
774 // Now that everything is happy, we have one final detail. The PHI nodes in
775 // the exception destination block still have entries due to the original
776 // invoke instruction. Eliminate these entries (which might even delete the
777 // PHI node) now.
778 UnwindDest->removePredecessor(InvokeBB);
779 }
780
haveCommonPrefix(MDNode * MIBStackContext,MDNode * CallsiteStackContext)781 static bool haveCommonPrefix(MDNode *MIBStackContext,
782 MDNode *CallsiteStackContext) {
783 assert(MIBStackContext->getNumOperands() > 0 &&
784 CallsiteStackContext->getNumOperands() > 0);
785 // Because of the context trimming performed during matching, the callsite
786 // context could have more stack ids than the MIB. We match up to the end of
787 // the shortest stack context.
788 for (auto MIBStackIter = MIBStackContext->op_begin(),
789 CallsiteStackIter = CallsiteStackContext->op_begin();
790 MIBStackIter != MIBStackContext->op_end() &&
791 CallsiteStackIter != CallsiteStackContext->op_end();
792 MIBStackIter++, CallsiteStackIter++) {
793 auto *Val1 = mdconst::dyn_extract<ConstantInt>(*MIBStackIter);
794 auto *Val2 = mdconst::dyn_extract<ConstantInt>(*CallsiteStackIter);
795 assert(Val1 && Val2);
796 if (Val1->getZExtValue() != Val2->getZExtValue())
797 return false;
798 }
799 return true;
800 }
801
removeMemProfMetadata(CallBase * Call)802 static void removeMemProfMetadata(CallBase *Call) {
803 Call->setMetadata(LLVMContext::MD_memprof, nullptr);
804 }
805
removeCallsiteMetadata(CallBase * Call)806 static void removeCallsiteMetadata(CallBase *Call) {
807 Call->setMetadata(LLVMContext::MD_callsite, nullptr);
808 }
809
updateMemprofMetadata(CallBase * CI,const std::vector<Metadata * > & MIBList)810 static void updateMemprofMetadata(CallBase *CI,
811 const std::vector<Metadata *> &MIBList) {
812 assert(!MIBList.empty());
813 // Remove existing memprof, which will either be replaced or may not be needed
814 // if we are able to use a single allocation type function attribute.
815 removeMemProfMetadata(CI);
816 CallStackTrie CallStack;
817 for (Metadata *MIB : MIBList)
818 CallStack.addCallStack(cast<MDNode>(MIB));
819 bool MemprofMDAttached = CallStack.buildAndAttachMIBMetadata(CI);
820 assert(MemprofMDAttached == CI->hasMetadata(LLVMContext::MD_memprof));
821 if (!MemprofMDAttached)
822 // If we used a function attribute remove the callsite metadata as well.
823 removeCallsiteMetadata(CI);
824 }
825
826 // Update the metadata on the inlined copy ClonedCall of a call OrigCall in the
827 // inlined callee body, based on the callsite metadata InlinedCallsiteMD from
828 // the call that was inlined.
propagateMemProfHelper(const CallBase * OrigCall,CallBase * ClonedCall,MDNode * InlinedCallsiteMD)829 static void propagateMemProfHelper(const CallBase *OrigCall,
830 CallBase *ClonedCall,
831 MDNode *InlinedCallsiteMD) {
832 MDNode *OrigCallsiteMD = ClonedCall->getMetadata(LLVMContext::MD_callsite);
833 MDNode *ClonedCallsiteMD = nullptr;
834 // Check if the call originally had callsite metadata, and update it for the
835 // new call in the inlined body.
836 if (OrigCallsiteMD) {
837 // The cloned call's context is now the concatenation of the original call's
838 // callsite metadata and the callsite metadata on the call where it was
839 // inlined.
840 ClonedCallsiteMD = MDNode::concatenate(OrigCallsiteMD, InlinedCallsiteMD);
841 ClonedCall->setMetadata(LLVMContext::MD_callsite, ClonedCallsiteMD);
842 }
843
844 // Update any memprof metadata on the cloned call.
845 MDNode *OrigMemProfMD = ClonedCall->getMetadata(LLVMContext::MD_memprof);
846 if (!OrigMemProfMD)
847 return;
848 // We currently expect that allocations with memprof metadata also have
849 // callsite metadata for the allocation's part of the context.
850 assert(OrigCallsiteMD);
851
852 // New call's MIB list.
853 std::vector<Metadata *> NewMIBList;
854
855 // For each MIB metadata, check if its call stack context starts with the
856 // new clone's callsite metadata. If so, that MIB goes onto the cloned call in
857 // the inlined body. If not, it stays on the out-of-line original call.
858 for (auto &MIBOp : OrigMemProfMD->operands()) {
859 MDNode *MIB = dyn_cast<MDNode>(MIBOp);
860 // Stack is first operand of MIB.
861 MDNode *StackMD = getMIBStackNode(MIB);
862 assert(StackMD);
863 // See if the new cloned callsite context matches this profiled context.
864 if (haveCommonPrefix(StackMD, ClonedCallsiteMD))
865 // Add it to the cloned call's MIB list.
866 NewMIBList.push_back(MIB);
867 }
868 if (NewMIBList.empty()) {
869 removeMemProfMetadata(ClonedCall);
870 removeCallsiteMetadata(ClonedCall);
871 return;
872 }
873 if (NewMIBList.size() < OrigMemProfMD->getNumOperands())
874 updateMemprofMetadata(ClonedCall, NewMIBList);
875 }
876
877 // Update memprof related metadata (!memprof and !callsite) based on the
878 // inlining of Callee into the callsite at CB. The updates include merging the
879 // inlined callee's callsite metadata with that of the inlined call,
880 // and moving the subset of any memprof contexts to the inlined callee
881 // allocations if they match the new inlined call stack.
882 // FIXME: Replace memprof metadata with function attribute if all MIB end up
883 // having the same behavior. Do other context trimming/merging optimizations
884 // too.
885 static void
propagateMemProfMetadata(Function * Callee,CallBase & CB,bool ContainsMemProfMetadata,const ValueMap<const Value *,WeakTrackingVH> & VMap)886 propagateMemProfMetadata(Function *Callee, CallBase &CB,
887 bool ContainsMemProfMetadata,
888 const ValueMap<const Value *, WeakTrackingVH> &VMap) {
889 MDNode *CallsiteMD = CB.getMetadata(LLVMContext::MD_callsite);
890 // Only need to update if the inlined callsite had callsite metadata, or if
891 // there was any memprof metadata inlined.
892 if (!CallsiteMD && !ContainsMemProfMetadata)
893 return;
894
895 // Propagate metadata onto the cloned calls in the inlined callee.
896 for (const auto &Entry : VMap) {
897 // See if this is a call that has been inlined and remapped, and not
898 // simplified away in the process.
899 auto *OrigCall = dyn_cast_or_null<CallBase>(Entry.first);
900 auto *ClonedCall = dyn_cast_or_null<CallBase>(Entry.second);
901 if (!OrigCall || !ClonedCall)
902 continue;
903 // If the inlined callsite did not have any callsite metadata, then it isn't
904 // involved in any profiled call contexts, and we can remove any memprof
905 // metadata on the cloned call.
906 if (!CallsiteMD) {
907 removeMemProfMetadata(ClonedCall);
908 removeCallsiteMetadata(ClonedCall);
909 continue;
910 }
911 propagateMemProfHelper(OrigCall, ClonedCall, CallsiteMD);
912 }
913 }
914
915 /// When inlining a call site that has !llvm.mem.parallel_loop_access,
916 /// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should
917 /// be propagated to all memory-accessing cloned instructions.
PropagateCallSiteMetadata(CallBase & CB,Function::iterator FStart,Function::iterator FEnd)918 static void PropagateCallSiteMetadata(CallBase &CB, Function::iterator FStart,
919 Function::iterator FEnd) {
920 MDNode *MemParallelLoopAccess =
921 CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
922 MDNode *AccessGroup = CB.getMetadata(LLVMContext::MD_access_group);
923 MDNode *AliasScope = CB.getMetadata(LLVMContext::MD_alias_scope);
924 MDNode *NoAlias = CB.getMetadata(LLVMContext::MD_noalias);
925 if (!MemParallelLoopAccess && !AccessGroup && !AliasScope && !NoAlias)
926 return;
927
928 for (BasicBlock &BB : make_range(FStart, FEnd)) {
929 for (Instruction &I : BB) {
930 // This metadata is only relevant for instructions that access memory.
931 if (!I.mayReadOrWriteMemory())
932 continue;
933
934 if (MemParallelLoopAccess) {
935 // TODO: This probably should not overwrite MemParalleLoopAccess.
936 MemParallelLoopAccess = MDNode::concatenate(
937 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access),
938 MemParallelLoopAccess);
939 I.setMetadata(LLVMContext::MD_mem_parallel_loop_access,
940 MemParallelLoopAccess);
941 }
942
943 if (AccessGroup)
944 I.setMetadata(LLVMContext::MD_access_group, uniteAccessGroups(
945 I.getMetadata(LLVMContext::MD_access_group), AccessGroup));
946
947 if (AliasScope)
948 I.setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate(
949 I.getMetadata(LLVMContext::MD_alias_scope), AliasScope));
950
951 if (NoAlias)
952 I.setMetadata(LLVMContext::MD_noalias, MDNode::concatenate(
953 I.getMetadata(LLVMContext::MD_noalias), NoAlias));
954 }
955 }
956 }
957
958 /// Bundle operands of the inlined function must be added to inlined call sites.
PropagateOperandBundles(Function::iterator InlinedBB,Instruction * CallSiteEHPad)959 static void PropagateOperandBundles(Function::iterator InlinedBB,
960 Instruction *CallSiteEHPad) {
961 for (Instruction &II : llvm::make_early_inc_range(*InlinedBB)) {
962 CallBase *I = dyn_cast<CallBase>(&II);
963 if (!I)
964 continue;
965 // Skip call sites which already have a "funclet" bundle.
966 if (I->getOperandBundle(LLVMContext::OB_funclet))
967 continue;
968 // Skip call sites which are nounwind intrinsics (as long as they don't
969 // lower into regular function calls in the course of IR transformations).
970 auto *CalledFn =
971 dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts());
972 if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow() &&
973 !IntrinsicInst::mayLowerToFunctionCall(CalledFn->getIntrinsicID()))
974 continue;
975
976 SmallVector<OperandBundleDef, 1> OpBundles;
977 I->getOperandBundlesAsDefs(OpBundles);
978 OpBundles.emplace_back("funclet", CallSiteEHPad);
979
980 Instruction *NewInst = CallBase::Create(I, OpBundles, I);
981 NewInst->takeName(I);
982 I->replaceAllUsesWith(NewInst);
983 I->eraseFromParent();
984 }
985 }
986
987 namespace {
988 /// Utility for cloning !noalias and !alias.scope metadata. When a code region
989 /// using scoped alias metadata is inlined, the aliasing relationships may not
990 /// hold between the two version. It is necessary to create a deep clone of the
991 /// metadata, putting the two versions in separate scope domains.
992 class ScopedAliasMetadataDeepCloner {
993 using MetadataMap = DenseMap<const MDNode *, TrackingMDNodeRef>;
994 SetVector<const MDNode *> MD;
995 MetadataMap MDMap;
996 void addRecursiveMetadataUses();
997
998 public:
999 ScopedAliasMetadataDeepCloner(const Function *F);
1000
1001 /// Create a new clone of the scoped alias metadata, which will be used by
1002 /// subsequent remap() calls.
1003 void clone();
1004
1005 /// Remap instructions in the given range from the original to the cloned
1006 /// metadata.
1007 void remap(Function::iterator FStart, Function::iterator FEnd);
1008 };
1009 } // namespace
1010
ScopedAliasMetadataDeepCloner(const Function * F)1011 ScopedAliasMetadataDeepCloner::ScopedAliasMetadataDeepCloner(
1012 const Function *F) {
1013 for (const BasicBlock &BB : *F) {
1014 for (const Instruction &I : BB) {
1015 if (const MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
1016 MD.insert(M);
1017 if (const MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
1018 MD.insert(M);
1019
1020 // We also need to clone the metadata in noalias intrinsics.
1021 if (const auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1022 MD.insert(Decl->getScopeList());
1023 }
1024 }
1025 addRecursiveMetadataUses();
1026 }
1027
addRecursiveMetadataUses()1028 void ScopedAliasMetadataDeepCloner::addRecursiveMetadataUses() {
1029 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
1030 while (!Queue.empty()) {
1031 const MDNode *M = cast<MDNode>(Queue.pop_back_val());
1032 for (const Metadata *Op : M->operands())
1033 if (const MDNode *OpMD = dyn_cast<MDNode>(Op))
1034 if (MD.insert(OpMD))
1035 Queue.push_back(OpMD);
1036 }
1037 }
1038
clone()1039 void ScopedAliasMetadataDeepCloner::clone() {
1040 assert(MDMap.empty() && "clone() already called ?");
1041
1042 SmallVector<TempMDTuple, 16> DummyNodes;
1043 for (const MDNode *I : MD) {
1044 DummyNodes.push_back(MDTuple::getTemporary(I->getContext(), std::nullopt));
1045 MDMap[I].reset(DummyNodes.back().get());
1046 }
1047
1048 // Create new metadata nodes to replace the dummy nodes, replacing old
1049 // metadata references with either a dummy node or an already-created new
1050 // node.
1051 SmallVector<Metadata *, 4> NewOps;
1052 for (const MDNode *I : MD) {
1053 for (const Metadata *Op : I->operands()) {
1054 if (const MDNode *M = dyn_cast<MDNode>(Op))
1055 NewOps.push_back(MDMap[M]);
1056 else
1057 NewOps.push_back(const_cast<Metadata *>(Op));
1058 }
1059
1060 MDNode *NewM = MDNode::get(I->getContext(), NewOps);
1061 MDTuple *TempM = cast<MDTuple>(MDMap[I]);
1062 assert(TempM->isTemporary() && "Expected temporary node");
1063
1064 TempM->replaceAllUsesWith(NewM);
1065 NewOps.clear();
1066 }
1067 }
1068
remap(Function::iterator FStart,Function::iterator FEnd)1069 void ScopedAliasMetadataDeepCloner::remap(Function::iterator FStart,
1070 Function::iterator FEnd) {
1071 if (MDMap.empty())
1072 return; // Nothing to do.
1073
1074 for (BasicBlock &BB : make_range(FStart, FEnd)) {
1075 for (Instruction &I : BB) {
1076 // TODO: The null checks for the MDMap.lookup() results should no longer
1077 // be necessary.
1078 if (MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
1079 if (MDNode *MNew = MDMap.lookup(M))
1080 I.setMetadata(LLVMContext::MD_alias_scope, MNew);
1081
1082 if (MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
1083 if (MDNode *MNew = MDMap.lookup(M))
1084 I.setMetadata(LLVMContext::MD_noalias, MNew);
1085
1086 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
1087 if (MDNode *MNew = MDMap.lookup(Decl->getScopeList()))
1088 Decl->setScopeList(MNew);
1089 }
1090 }
1091 }
1092
1093 /// If the inlined function has noalias arguments,
1094 /// then add new alias scopes for each noalias argument, tag the mapped noalias
1095 /// parameters with noalias metadata specifying the new scope, and tag all
1096 /// non-derived loads, stores and memory intrinsics with the new alias scopes.
AddAliasScopeMetadata(CallBase & CB,ValueToValueMapTy & VMap,const DataLayout & DL,AAResults * CalleeAAR,ClonedCodeInfo & InlinedFunctionInfo)1097 static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap,
1098 const DataLayout &DL, AAResults *CalleeAAR,
1099 ClonedCodeInfo &InlinedFunctionInfo) {
1100 if (!EnableNoAliasConversion)
1101 return;
1102
1103 const Function *CalledFunc = CB.getCalledFunction();
1104 SmallVector<const Argument *, 4> NoAliasArgs;
1105
1106 for (const Argument &Arg : CalledFunc->args())
1107 if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty())
1108 NoAliasArgs.push_back(&Arg);
1109
1110 if (NoAliasArgs.empty())
1111 return;
1112
1113 // To do a good job, if a noalias variable is captured, we need to know if
1114 // the capture point dominates the particular use we're considering.
1115 DominatorTree DT;
1116 DT.recalculate(const_cast<Function&>(*CalledFunc));
1117
1118 // noalias indicates that pointer values based on the argument do not alias
1119 // pointer values which are not based on it. So we add a new "scope" for each
1120 // noalias function argument. Accesses using pointers based on that argument
1121 // become part of that alias scope, accesses using pointers not based on that
1122 // argument are tagged as noalias with that scope.
1123
1124 DenseMap<const Argument *, MDNode *> NewScopes;
1125 MDBuilder MDB(CalledFunc->getContext());
1126
1127 // Create a new scope domain for this function.
1128 MDNode *NewDomain =
1129 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
1130 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
1131 const Argument *A = NoAliasArgs[i];
1132
1133 std::string Name = std::string(CalledFunc->getName());
1134 if (A->hasName()) {
1135 Name += ": %";
1136 Name += A->getName();
1137 } else {
1138 Name += ": argument ";
1139 Name += utostr(i);
1140 }
1141
1142 // Note: We always create a new anonymous root here. This is true regardless
1143 // of the linkage of the callee because the aliasing "scope" is not just a
1144 // property of the callee, but also all control dependencies in the caller.
1145 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
1146 NewScopes.insert(std::make_pair(A, NewScope));
1147
1148 if (UseNoAliasIntrinsic) {
1149 // Introduce a llvm.experimental.noalias.scope.decl for the noalias
1150 // argument.
1151 MDNode *AScopeList = MDNode::get(CalledFunc->getContext(), NewScope);
1152 auto *NoAliasDecl =
1153 IRBuilder<>(&CB).CreateNoAliasScopeDeclaration(AScopeList);
1154 // Ignore the result for now. The result will be used when the
1155 // llvm.noalias intrinsic is introduced.
1156 (void)NoAliasDecl;
1157 }
1158 }
1159
1160 // Iterate over all new instructions in the map; for all memory-access
1161 // instructions, add the alias scope metadata.
1162 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
1163 VMI != VMIE; ++VMI) {
1164 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
1165 if (!VMI->second)
1166 continue;
1167
1168 Instruction *NI = dyn_cast<Instruction>(VMI->second);
1169 if (!NI || InlinedFunctionInfo.isSimplified(I, NI))
1170 continue;
1171
1172 bool IsArgMemOnlyCall = false, IsFuncCall = false;
1173 SmallVector<const Value *, 2> PtrArgs;
1174
1175 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
1176 PtrArgs.push_back(LI->getPointerOperand());
1177 else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
1178 PtrArgs.push_back(SI->getPointerOperand());
1179 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
1180 PtrArgs.push_back(VAAI->getPointerOperand());
1181 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
1182 PtrArgs.push_back(CXI->getPointerOperand());
1183 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
1184 PtrArgs.push_back(RMWI->getPointerOperand());
1185 else if (const auto *Call = dyn_cast<CallBase>(I)) {
1186 // If we know that the call does not access memory, then we'll still
1187 // know that about the inlined clone of this call site, and we don't
1188 // need to add metadata.
1189 if (Call->doesNotAccessMemory())
1190 continue;
1191
1192 IsFuncCall = true;
1193 if (CalleeAAR) {
1194 MemoryEffects ME = CalleeAAR->getMemoryEffects(Call);
1195
1196 // We'll retain this knowledge without additional metadata.
1197 if (ME.onlyAccessesInaccessibleMem())
1198 continue;
1199
1200 if (ME.onlyAccessesArgPointees())
1201 IsArgMemOnlyCall = true;
1202 }
1203
1204 for (Value *Arg : Call->args()) {
1205 // Only care about pointer arguments. If a noalias argument is
1206 // accessed through a non-pointer argument, it must be captured
1207 // first (e.g. via ptrtoint), and we protect against captures below.
1208 if (!Arg->getType()->isPointerTy())
1209 continue;
1210
1211 PtrArgs.push_back(Arg);
1212 }
1213 }
1214
1215 // If we found no pointers, then this instruction is not suitable for
1216 // pairing with an instruction to receive aliasing metadata.
1217 // However, if this is a call, this we might just alias with none of the
1218 // noalias arguments.
1219 if (PtrArgs.empty() && !IsFuncCall)
1220 continue;
1221
1222 // It is possible that there is only one underlying object, but you
1223 // need to go through several PHIs to see it, and thus could be
1224 // repeated in the Objects list.
1225 SmallPtrSet<const Value *, 4> ObjSet;
1226 SmallVector<Metadata *, 4> Scopes, NoAliases;
1227
1228 SmallSetVector<const Argument *, 4> NAPtrArgs;
1229 for (const Value *V : PtrArgs) {
1230 SmallVector<const Value *, 4> Objects;
1231 getUnderlyingObjects(V, Objects, /* LI = */ nullptr);
1232
1233 for (const Value *O : Objects)
1234 ObjSet.insert(O);
1235 }
1236
1237 // Figure out if we're derived from anything that is not a noalias
1238 // argument.
1239 bool RequiresNoCaptureBefore = false, UsesAliasingPtr = false,
1240 UsesUnknownObject = false;
1241 for (const Value *V : ObjSet) {
1242 // Is this value a constant that cannot be derived from any pointer
1243 // value (we need to exclude constant expressions, for example, that
1244 // are formed from arithmetic on global symbols).
1245 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
1246 isa<ConstantPointerNull>(V) ||
1247 isa<ConstantDataVector>(V) || isa<UndefValue>(V);
1248 if (IsNonPtrConst)
1249 continue;
1250
1251 // If this is anything other than a noalias argument, then we cannot
1252 // completely describe the aliasing properties using alias.scope
1253 // metadata (and, thus, won't add any).
1254 if (const Argument *A = dyn_cast<Argument>(V)) {
1255 if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias))
1256 UsesAliasingPtr = true;
1257 } else {
1258 UsesAliasingPtr = true;
1259 }
1260
1261 if (isEscapeSource(V)) {
1262 // An escape source can only alias with a noalias argument if it has
1263 // been captured beforehand.
1264 RequiresNoCaptureBefore = true;
1265 } else if (!isa<Argument>(V) && !isIdentifiedObject(V)) {
1266 // If this is neither an escape source, nor some identified object
1267 // (which cannot directly alias a noalias argument), nor some other
1268 // argument (which, by definition, also cannot alias a noalias
1269 // argument), conservatively do not make any assumptions.
1270 UsesUnknownObject = true;
1271 }
1272 }
1273
1274 // Nothing we can do if the used underlying object cannot be reliably
1275 // determined.
1276 if (UsesUnknownObject)
1277 continue;
1278
1279 // A function call can always get captured noalias pointers (via other
1280 // parameters, globals, etc.).
1281 if (IsFuncCall && !IsArgMemOnlyCall)
1282 RequiresNoCaptureBefore = true;
1283
1284 // First, we want to figure out all of the sets with which we definitely
1285 // don't alias. Iterate over all noalias set, and add those for which:
1286 // 1. The noalias argument is not in the set of objects from which we
1287 // definitely derive.
1288 // 2. The noalias argument has not yet been captured.
1289 // An arbitrary function that might load pointers could see captured
1290 // noalias arguments via other noalias arguments or globals, and so we
1291 // must always check for prior capture.
1292 for (const Argument *A : NoAliasArgs) {
1293 if (ObjSet.contains(A))
1294 continue; // May be based on a noalias argument.
1295
1296 // It might be tempting to skip the PointerMayBeCapturedBefore check if
1297 // A->hasNoCaptureAttr() is true, but this is incorrect because
1298 // nocapture only guarantees that no copies outlive the function, not
1299 // that the value cannot be locally captured.
1300 if (!RequiresNoCaptureBefore ||
1301 !PointerMayBeCapturedBefore(A, /* ReturnCaptures */ false,
1302 /* StoreCaptures */ false, I, &DT))
1303 NoAliases.push_back(NewScopes[A]);
1304 }
1305
1306 if (!NoAliases.empty())
1307 NI->setMetadata(LLVMContext::MD_noalias,
1308 MDNode::concatenate(
1309 NI->getMetadata(LLVMContext::MD_noalias),
1310 MDNode::get(CalledFunc->getContext(), NoAliases)));
1311
1312 // Next, we want to figure out all of the sets to which we might belong.
1313 // We might belong to a set if the noalias argument is in the set of
1314 // underlying objects. If there is some non-noalias argument in our list
1315 // of underlying objects, then we cannot add a scope because the fact
1316 // that some access does not alias with any set of our noalias arguments
1317 // cannot itself guarantee that it does not alias with this access
1318 // (because there is some pointer of unknown origin involved and the
1319 // other access might also depend on this pointer). We also cannot add
1320 // scopes to arbitrary functions unless we know they don't access any
1321 // non-parameter pointer-values.
1322 bool CanAddScopes = !UsesAliasingPtr;
1323 if (CanAddScopes && IsFuncCall)
1324 CanAddScopes = IsArgMemOnlyCall;
1325
1326 if (CanAddScopes)
1327 for (const Argument *A : NoAliasArgs) {
1328 if (ObjSet.count(A))
1329 Scopes.push_back(NewScopes[A]);
1330 }
1331
1332 if (!Scopes.empty())
1333 NI->setMetadata(
1334 LLVMContext::MD_alias_scope,
1335 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
1336 MDNode::get(CalledFunc->getContext(), Scopes)));
1337 }
1338 }
1339 }
1340
MayContainThrowingOrExitingCall(Instruction * Begin,Instruction * End)1341 static bool MayContainThrowingOrExitingCall(Instruction *Begin,
1342 Instruction *End) {
1343
1344 assert(Begin->getParent() == End->getParent() &&
1345 "Expected to be in same basic block!");
1346 return !llvm::isGuaranteedToTransferExecutionToSuccessor(
1347 Begin->getIterator(), End->getIterator(), InlinerAttributeWindow + 1);
1348 }
1349
IdentifyValidAttributes(CallBase & CB)1350 static AttrBuilder IdentifyValidAttributes(CallBase &CB) {
1351
1352 AttrBuilder AB(CB.getContext(), CB.getAttributes().getRetAttrs());
1353 if (!AB.hasAttributes())
1354 return AB;
1355 AttrBuilder Valid(CB.getContext());
1356 // Only allow these white listed attributes to be propagated back to the
1357 // callee. This is because other attributes may only be valid on the call
1358 // itself, i.e. attributes such as signext and zeroext.
1359 if (auto DerefBytes = AB.getDereferenceableBytes())
1360 Valid.addDereferenceableAttr(DerefBytes);
1361 if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes())
1362 Valid.addDereferenceableOrNullAttr(DerefOrNullBytes);
1363 if (AB.contains(Attribute::NoAlias))
1364 Valid.addAttribute(Attribute::NoAlias);
1365 if (AB.contains(Attribute::NonNull))
1366 Valid.addAttribute(Attribute::NonNull);
1367 return Valid;
1368 }
1369
AddReturnAttributes(CallBase & CB,ValueToValueMapTy & VMap)1370 static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) {
1371 if (!UpdateReturnAttributes)
1372 return;
1373
1374 AttrBuilder Valid = IdentifyValidAttributes(CB);
1375 if (!Valid.hasAttributes())
1376 return;
1377 auto *CalledFunction = CB.getCalledFunction();
1378 auto &Context = CalledFunction->getContext();
1379
1380 for (auto &BB : *CalledFunction) {
1381 auto *RI = dyn_cast<ReturnInst>(BB.getTerminator());
1382 if (!RI || !isa<CallBase>(RI->getOperand(0)))
1383 continue;
1384 auto *RetVal = cast<CallBase>(RI->getOperand(0));
1385 // Check that the cloned RetVal exists and is a call, otherwise we cannot
1386 // add the attributes on the cloned RetVal. Simplification during inlining
1387 // could have transformed the cloned instruction.
1388 auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal));
1389 if (!NewRetVal)
1390 continue;
1391 // Backward propagation of attributes to the returned value may be incorrect
1392 // if it is control flow dependent.
1393 // Consider:
1394 // @callee {
1395 // %rv = call @foo()
1396 // %rv2 = call @bar()
1397 // if (%rv2 != null)
1398 // return %rv2
1399 // if (%rv == null)
1400 // exit()
1401 // return %rv
1402 // }
1403 // caller() {
1404 // %val = call nonnull @callee()
1405 // }
1406 // Here we cannot add the nonnull attribute on either foo or bar. So, we
1407 // limit the check to both RetVal and RI are in the same basic block and
1408 // there are no throwing/exiting instructions between these instructions.
1409 if (RI->getParent() != RetVal->getParent() ||
1410 MayContainThrowingOrExitingCall(RetVal, RI))
1411 continue;
1412 // Add to the existing attributes of NewRetVal, i.e. the cloned call
1413 // instruction.
1414 // NB! When we have the same attribute already existing on NewRetVal, but
1415 // with a differing value, the AttributeList's merge API honours the already
1416 // existing attribute value (i.e. attributes such as dereferenceable,
1417 // dereferenceable_or_null etc). See AttrBuilder::merge for more details.
1418 AttributeList AL = NewRetVal->getAttributes();
1419 AttributeList NewAL = AL.addRetAttributes(Context, Valid);
1420 NewRetVal->setAttributes(NewAL);
1421 }
1422 }
1423
1424 /// If the inlined function has non-byval align arguments, then
1425 /// add @llvm.assume-based alignment assumptions to preserve this information.
AddAlignmentAssumptions(CallBase & CB,InlineFunctionInfo & IFI)1426 static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) {
1427 if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
1428 return;
1429
1430 AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller());
1431 auto &DL = CB.getCaller()->getParent()->getDataLayout();
1432
1433 // To avoid inserting redundant assumptions, we should check for assumptions
1434 // already in the caller. To do this, we might need a DT of the caller.
1435 DominatorTree DT;
1436 bool DTCalculated = false;
1437
1438 Function *CalledFunc = CB.getCalledFunction();
1439 for (Argument &Arg : CalledFunc->args()) {
1440 if (!Arg.getType()->isPointerTy() || Arg.hasPassPointeeByValueCopyAttr() ||
1441 Arg.hasNUses(0))
1442 continue;
1443 MaybeAlign Alignment = Arg.getParamAlign();
1444 if (!Alignment)
1445 continue;
1446
1447 if (!DTCalculated) {
1448 DT.recalculate(*CB.getCaller());
1449 DTCalculated = true;
1450 }
1451 // If we can already prove the asserted alignment in the context of the
1452 // caller, then don't bother inserting the assumption.
1453 Value *ArgVal = CB.getArgOperand(Arg.getArgNo());
1454 if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= *Alignment)
1455 continue;
1456
1457 CallInst *NewAsmp = IRBuilder<>(&CB).CreateAlignmentAssumption(
1458 DL, ArgVal, Alignment->value());
1459 AC->registerAssumption(cast<AssumeInst>(NewAsmp));
1460 }
1461 }
1462
1463 /// Once we have cloned code over from a callee into the caller,
1464 /// update the specified callgraph to reflect the changes we made.
1465 /// Note that it's possible that not all code was copied over, so only
1466 /// some edges of the callgraph may remain.
UpdateCallGraphAfterInlining(CallBase & CB,Function::iterator FirstNewBlock,ValueToValueMapTy & VMap,InlineFunctionInfo & IFI)1467 static void UpdateCallGraphAfterInlining(CallBase &CB,
1468 Function::iterator FirstNewBlock,
1469 ValueToValueMapTy &VMap,
1470 InlineFunctionInfo &IFI) {
1471 CallGraph &CG = *IFI.CG;
1472 const Function *Caller = CB.getCaller();
1473 const Function *Callee = CB.getCalledFunction();
1474 CallGraphNode *CalleeNode = CG[Callee];
1475 CallGraphNode *CallerNode = CG[Caller];
1476
1477 // Since we inlined some uninlined call sites in the callee into the caller,
1478 // add edges from the caller to all of the callees of the callee.
1479 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
1480
1481 // Consider the case where CalleeNode == CallerNode.
1482 CallGraphNode::CalledFunctionsVector CallCache;
1483 if (CalleeNode == CallerNode) {
1484 CallCache.assign(I, E);
1485 I = CallCache.begin();
1486 E = CallCache.end();
1487 }
1488
1489 for (; I != E; ++I) {
1490 // Skip 'refererence' call records.
1491 if (!I->first)
1492 continue;
1493
1494 const Value *OrigCall = *I->first;
1495
1496 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
1497 // Only copy the edge if the call was inlined!
1498 if (VMI == VMap.end() || VMI->second == nullptr)
1499 continue;
1500
1501 // If the call was inlined, but then constant folded, there is no edge to
1502 // add. Check for this case.
1503 auto *NewCall = dyn_cast<CallBase>(VMI->second);
1504 if (!NewCall)
1505 continue;
1506
1507 // We do not treat intrinsic calls like real function calls because we
1508 // expect them to become inline code; do not add an edge for an intrinsic.
1509 if (NewCall->getCalledFunction() &&
1510 NewCall->getCalledFunction()->isIntrinsic())
1511 continue;
1512
1513 // Remember that this call site got inlined for the client of
1514 // InlineFunction.
1515 IFI.InlinedCalls.push_back(NewCall);
1516
1517 // It's possible that inlining the callsite will cause it to go from an
1518 // indirect to a direct call by resolving a function pointer. If this
1519 // happens, set the callee of the new call site to a more precise
1520 // destination. This can also happen if the call graph node of the caller
1521 // was just unnecessarily imprecise.
1522 if (!I->second->getFunction())
1523 if (Function *F = NewCall->getCalledFunction()) {
1524 // Indirect call site resolved to direct call.
1525 CallerNode->addCalledFunction(NewCall, CG[F]);
1526
1527 continue;
1528 }
1529
1530 CallerNode->addCalledFunction(NewCall, I->second);
1531 }
1532
1533 // Update the call graph by deleting the edge from Callee to Caller. We must
1534 // do this after the loop above in case Caller and Callee are the same.
1535 CallerNode->removeCallEdgeFor(*cast<CallBase>(&CB));
1536 }
1537
HandleByValArgumentInit(Type * ByValType,Value * Dst,Value * Src,Module * M,BasicBlock * InsertBlock,InlineFunctionInfo & IFI)1538 static void HandleByValArgumentInit(Type *ByValType, Value *Dst, Value *Src,
1539 Module *M, BasicBlock *InsertBlock,
1540 InlineFunctionInfo &IFI) {
1541 IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
1542
1543 Value *Size =
1544 Builder.getInt64(M->getDataLayout().getTypeStoreSize(ByValType));
1545
1546 // Always generate a memcpy of alignment 1 here because we don't know
1547 // the alignment of the src pointer. Other optimizations can infer
1548 // better alignment.
1549 Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src,
1550 /*SrcAlign*/ Align(1), Size);
1551 }
1552
1553 /// When inlining a call site that has a byval argument,
1554 /// we have to make the implicit memcpy explicit by adding it.
HandleByValArgument(Type * ByValType,Value * Arg,Instruction * TheCall,const Function * CalledFunc,InlineFunctionInfo & IFI,MaybeAlign ByValAlignment)1555 static Value *HandleByValArgument(Type *ByValType, Value *Arg,
1556 Instruction *TheCall,
1557 const Function *CalledFunc,
1558 InlineFunctionInfo &IFI,
1559 MaybeAlign ByValAlignment) {
1560 assert(cast<PointerType>(Arg->getType())
1561 ->isOpaqueOrPointeeTypeMatches(ByValType));
1562 Function *Caller = TheCall->getFunction();
1563 const DataLayout &DL = Caller->getParent()->getDataLayout();
1564
1565 // If the called function is readonly, then it could not mutate the caller's
1566 // copy of the byval'd memory. In this case, it is safe to elide the copy and
1567 // temporary.
1568 if (CalledFunc->onlyReadsMemory()) {
1569 // If the byval argument has a specified alignment that is greater than the
1570 // passed in pointer, then we either have to round up the input pointer or
1571 // give up on this transformation.
1572 if (ByValAlignment.valueOrOne() == 1)
1573 return Arg;
1574
1575 AssumptionCache *AC =
1576 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
1577
1578 // If the pointer is already known to be sufficiently aligned, or if we can
1579 // round it up to a larger alignment, then we don't need a temporary.
1580 if (getOrEnforceKnownAlignment(Arg, *ByValAlignment, DL, TheCall, AC) >=
1581 *ByValAlignment)
1582 return Arg;
1583
1584 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad
1585 // for code quality, but rarely happens and is required for correctness.
1586 }
1587
1588 // Create the alloca. If we have DataLayout, use nice alignment.
1589 Align Alignment = DL.getPrefTypeAlign(ByValType);
1590
1591 // If the byval had an alignment specified, we *must* use at least that
1592 // alignment, as it is required by the byval argument (and uses of the
1593 // pointer inside the callee).
1594 if (ByValAlignment)
1595 Alignment = std::max(Alignment, *ByValAlignment);
1596
1597 Value *NewAlloca =
1598 new AllocaInst(ByValType, DL.getAllocaAddrSpace(), nullptr, Alignment,
1599 Arg->getName(), &*Caller->begin()->begin());
1600 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
1601
1602 // Uses of the argument in the function should use our new alloca
1603 // instead.
1604 return NewAlloca;
1605 }
1606
1607 // Check whether this Value is used by a lifetime intrinsic.
isUsedByLifetimeMarker(Value * V)1608 static bool isUsedByLifetimeMarker(Value *V) {
1609 for (User *U : V->users())
1610 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U))
1611 if (II->isLifetimeStartOrEnd())
1612 return true;
1613 return false;
1614 }
1615
1616 // Check whether the given alloca already has
1617 // lifetime.start or lifetime.end intrinsics.
hasLifetimeMarkers(AllocaInst * AI)1618 static bool hasLifetimeMarkers(AllocaInst *AI) {
1619 Type *Ty = AI->getType();
1620 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
1621 Ty->getPointerAddressSpace());
1622 if (Ty == Int8PtrTy)
1623 return isUsedByLifetimeMarker(AI);
1624
1625 // Do a scan to find all the casts to i8*.
1626 for (User *U : AI->users()) {
1627 if (U->getType() != Int8PtrTy) continue;
1628 if (U->stripPointerCasts() != AI) continue;
1629 if (isUsedByLifetimeMarker(U))
1630 return true;
1631 }
1632 return false;
1633 }
1634
1635 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry
1636 /// block. Allocas used in inalloca calls and allocas of dynamic array size
1637 /// cannot be static.
allocaWouldBeStaticInEntry(const AllocaInst * AI)1638 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
1639 return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
1640 }
1641
1642 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL
1643 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache.
inlineDebugLoc(DebugLoc OrigDL,DILocation * InlinedAt,LLVMContext & Ctx,DenseMap<const MDNode *,MDNode * > & IANodes)1644 static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt,
1645 LLVMContext &Ctx,
1646 DenseMap<const MDNode *, MDNode *> &IANodes) {
1647 auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes);
1648 return DILocation::get(Ctx, OrigDL.getLine(), OrigDL.getCol(),
1649 OrigDL.getScope(), IA);
1650 }
1651
1652 /// Update inlined instructions' line numbers to
1653 /// to encode location where these instructions are inlined.
fixupLineNumbers(Function * Fn,Function::iterator FI,Instruction * TheCall,bool CalleeHasDebugInfo)1654 static void fixupLineNumbers(Function *Fn, Function::iterator FI,
1655 Instruction *TheCall, bool CalleeHasDebugInfo) {
1656 const DebugLoc &TheCallDL = TheCall->getDebugLoc();
1657 if (!TheCallDL)
1658 return;
1659
1660 auto &Ctx = Fn->getContext();
1661 DILocation *InlinedAtNode = TheCallDL;
1662
1663 // Create a unique call site, not to be confused with any other call from the
1664 // same location.
1665 InlinedAtNode = DILocation::getDistinct(
1666 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
1667 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
1668
1669 // Cache the inlined-at nodes as they're built so they are reused, without
1670 // this every instruction's inlined-at chain would become distinct from each
1671 // other.
1672 DenseMap<const MDNode *, MDNode *> IANodes;
1673
1674 // Check if we are not generating inline line tables and want to use
1675 // the call site location instead.
1676 bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables");
1677
1678 for (; FI != Fn->end(); ++FI) {
1679 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
1680 BI != BE; ++BI) {
1681 // Loop metadata needs to be updated so that the start and end locs
1682 // reference inlined-at locations.
1683 auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode,
1684 &IANodes](Metadata *MD) -> Metadata * {
1685 if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1686 return inlineDebugLoc(Loc, InlinedAtNode, Ctx, IANodes).get();
1687 return MD;
1688 };
1689 updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc);
1690
1691 if (!NoInlineLineTables)
1692 if (DebugLoc DL = BI->getDebugLoc()) {
1693 DebugLoc IDL =
1694 inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes);
1695 BI->setDebugLoc(IDL);
1696 continue;
1697 }
1698
1699 if (CalleeHasDebugInfo && !NoInlineLineTables)
1700 continue;
1701
1702 // If the inlined instruction has no line number, or if inline info
1703 // is not being generated, make it look as if it originates from the call
1704 // location. This is important for ((__always_inline, __nodebug__))
1705 // functions which must use caller location for all instructions in their
1706 // function body.
1707
1708 // Don't update static allocas, as they may get moved later.
1709 if (auto *AI = dyn_cast<AllocaInst>(BI))
1710 if (allocaWouldBeStaticInEntry(AI))
1711 continue;
1712
1713 BI->setDebugLoc(TheCallDL);
1714 }
1715
1716 // Remove debug info intrinsics if we're not keeping inline info.
1717 if (NoInlineLineTables) {
1718 BasicBlock::iterator BI = FI->begin();
1719 while (BI != FI->end()) {
1720 if (isa<DbgInfoIntrinsic>(BI)) {
1721 BI = BI->eraseFromParent();
1722 continue;
1723 }
1724 ++BI;
1725 }
1726 }
1727
1728 }
1729 }
1730
1731 #undef DEBUG_TYPE
1732 #define DEBUG_TYPE "assignment-tracking"
1733 /// Find Alloca and linked DbgAssignIntrinsic for locals escaped by \p CB.
collectEscapedLocals(const DataLayout & DL,const CallBase & CB)1734 static at::StorageToVarsMap collectEscapedLocals(const DataLayout &DL,
1735 const CallBase &CB) {
1736 at::StorageToVarsMap EscapedLocals;
1737 SmallPtrSet<const Value *, 4> SeenBases;
1738
1739 LLVM_DEBUG(
1740 errs() << "# Finding caller local variables escaped by callee\n");
1741 for (const Value *Arg : CB.args()) {
1742 LLVM_DEBUG(errs() << "INSPECT: " << *Arg << "\n");
1743 if (!Arg->getType()->isPointerTy()) {
1744 LLVM_DEBUG(errs() << " | SKIP: Not a pointer\n");
1745 continue;
1746 }
1747
1748 const Instruction *I = dyn_cast<Instruction>(Arg);
1749 if (!I) {
1750 LLVM_DEBUG(errs() << " | SKIP: Not result of instruction\n");
1751 continue;
1752 }
1753
1754 // Walk back to the base storage.
1755 assert(Arg->getType()->isPtrOrPtrVectorTy());
1756 APInt TmpOffset(DL.getIndexTypeSizeInBits(Arg->getType()), 0, false);
1757 const AllocaInst *Base = dyn_cast<AllocaInst>(
1758 Arg->stripAndAccumulateConstantOffsets(DL, TmpOffset, true));
1759 if (!Base) {
1760 LLVM_DEBUG(errs() << " | SKIP: Couldn't walk back to base storage\n");
1761 continue;
1762 }
1763
1764 assert(Base);
1765 LLVM_DEBUG(errs() << " | BASE: " << *Base << "\n");
1766 // We only need to process each base address once - skip any duplicates.
1767 if (!SeenBases.insert(Base).second)
1768 continue;
1769
1770 // Find all local variables associated with the backing storage.
1771 for (auto *DAI : at::getAssignmentMarkers(Base)) {
1772 // Skip variables from inlined functions - they are not local variables.
1773 if (DAI->getDebugLoc().getInlinedAt())
1774 continue;
1775 LLVM_DEBUG(errs() << " > DEF : " << *DAI << "\n");
1776 EscapedLocals[Base].insert(at::VarRecord(DAI));
1777 }
1778 }
1779 return EscapedLocals;
1780 }
1781
trackInlinedStores(Function::iterator Start,Function::iterator End,const CallBase & CB)1782 static void trackInlinedStores(Function::iterator Start, Function::iterator End,
1783 const CallBase &CB) {
1784 LLVM_DEBUG(errs() << "trackInlinedStores into "
1785 << Start->getParent()->getName() << " from "
1786 << CB.getCalledFunction()->getName() << "\n");
1787 std::unique_ptr<DataLayout> DL = std::make_unique<DataLayout>(CB.getModule());
1788 at::trackAssignments(Start, End, collectEscapedLocals(*DL, CB), *DL);
1789 }
1790
1791 /// Update inlined instructions' DIAssignID metadata. We need to do this
1792 /// otherwise a function inlined more than once into the same function
1793 /// will cause DIAssignID to be shared by many instructions.
fixupAssignments(Function::iterator Start,Function::iterator End)1794 static void fixupAssignments(Function::iterator Start, Function::iterator End) {
1795 // Map {Old, New} metadata. Not used directly - use GetNewID.
1796 DenseMap<DIAssignID *, DIAssignID *> Map;
1797 auto GetNewID = [&Map](Metadata *Old) {
1798 DIAssignID *OldID = cast<DIAssignID>(Old);
1799 if (DIAssignID *NewID = Map.lookup(OldID))
1800 return NewID;
1801 DIAssignID *NewID = DIAssignID::getDistinct(OldID->getContext());
1802 Map[OldID] = NewID;
1803 return NewID;
1804 };
1805 // Loop over all the inlined instructions. If we find a DIAssignID
1806 // attachment or use, replace it with a new version.
1807 for (auto BBI = Start; BBI != End; ++BBI) {
1808 for (Instruction &I : *BBI) {
1809 if (auto *ID = I.getMetadata(LLVMContext::MD_DIAssignID))
1810 I.setMetadata(LLVMContext::MD_DIAssignID, GetNewID(ID));
1811 else if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&I))
1812 DAI->setAssignId(GetNewID(DAI->getAssignID()));
1813 }
1814 }
1815 }
1816 #undef DEBUG_TYPE
1817 #define DEBUG_TYPE "inline-function"
1818
1819 /// Update the block frequencies of the caller after a callee has been inlined.
1820 ///
1821 /// Each block cloned into the caller has its block frequency scaled by the
1822 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
1823 /// callee's entry block gets the same frequency as the callsite block and the
1824 /// relative frequencies of all cloned blocks remain the same after cloning.
updateCallerBFI(BasicBlock * CallSiteBlock,const ValueToValueMapTy & VMap,BlockFrequencyInfo * CallerBFI,BlockFrequencyInfo * CalleeBFI,const BasicBlock & CalleeEntryBlock)1825 static void updateCallerBFI(BasicBlock *CallSiteBlock,
1826 const ValueToValueMapTy &VMap,
1827 BlockFrequencyInfo *CallerBFI,
1828 BlockFrequencyInfo *CalleeBFI,
1829 const BasicBlock &CalleeEntryBlock) {
1830 SmallPtrSet<BasicBlock *, 16> ClonedBBs;
1831 for (auto Entry : VMap) {
1832 if (!isa<BasicBlock>(Entry.first) || !Entry.second)
1833 continue;
1834 auto *OrigBB = cast<BasicBlock>(Entry.first);
1835 auto *ClonedBB = cast<BasicBlock>(Entry.second);
1836 uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency();
1837 if (!ClonedBBs.insert(ClonedBB).second) {
1838 // Multiple blocks in the callee might get mapped to one cloned block in
1839 // the caller since we prune the callee as we clone it. When that happens,
1840 // we want to use the maximum among the original blocks' frequencies.
1841 uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency();
1842 if (NewFreq > Freq)
1843 Freq = NewFreq;
1844 }
1845 CallerBFI->setBlockFreq(ClonedBB, Freq);
1846 }
1847 BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
1848 CallerBFI->setBlockFreqAndScale(
1849 EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(),
1850 ClonedBBs);
1851 }
1852
1853 /// Update the branch metadata for cloned call instructions.
updateCallProfile(Function * Callee,const ValueToValueMapTy & VMap,const ProfileCount & CalleeEntryCount,const CallBase & TheCall,ProfileSummaryInfo * PSI,BlockFrequencyInfo * CallerBFI)1854 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
1855 const ProfileCount &CalleeEntryCount,
1856 const CallBase &TheCall, ProfileSummaryInfo *PSI,
1857 BlockFrequencyInfo *CallerBFI) {
1858 if (CalleeEntryCount.isSynthetic() || CalleeEntryCount.getCount() < 1)
1859 return;
1860 auto CallSiteCount =
1861 PSI ? PSI->getProfileCount(TheCall, CallerBFI) : std::nullopt;
1862 int64_t CallCount =
1863 std::min(CallSiteCount.value_or(0), CalleeEntryCount.getCount());
1864 updateProfileCallee(Callee, -CallCount, &VMap);
1865 }
1866
updateProfileCallee(Function * Callee,int64_t EntryDelta,const ValueMap<const Value *,WeakTrackingVH> * VMap)1867 void llvm::updateProfileCallee(
1868 Function *Callee, int64_t EntryDelta,
1869 const ValueMap<const Value *, WeakTrackingVH> *VMap) {
1870 auto CalleeCount = Callee->getEntryCount();
1871 if (!CalleeCount)
1872 return;
1873
1874 const uint64_t PriorEntryCount = CalleeCount->getCount();
1875
1876 // Since CallSiteCount is an estimate, it could exceed the original callee
1877 // count and has to be set to 0 so guard against underflow.
1878 const uint64_t NewEntryCount =
1879 (EntryDelta < 0 && static_cast<uint64_t>(-EntryDelta) > PriorEntryCount)
1880 ? 0
1881 : PriorEntryCount + EntryDelta;
1882
1883 // During inlining ?
1884 if (VMap) {
1885 uint64_t CloneEntryCount = PriorEntryCount - NewEntryCount;
1886 for (auto Entry : *VMap)
1887 if (isa<CallInst>(Entry.first))
1888 if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
1889 CI->updateProfWeight(CloneEntryCount, PriorEntryCount);
1890 }
1891
1892 if (EntryDelta) {
1893 Callee->setEntryCount(NewEntryCount);
1894
1895 for (BasicBlock &BB : *Callee)
1896 // No need to update the callsite if it is pruned during inlining.
1897 if (!VMap || VMap->count(&BB))
1898 for (Instruction &I : BB)
1899 if (CallInst *CI = dyn_cast<CallInst>(&I))
1900 CI->updateProfWeight(NewEntryCount, PriorEntryCount);
1901 }
1902 }
1903
1904 /// An operand bundle "clang.arc.attachedcall" on a call indicates the call
1905 /// result is implicitly consumed by a call to retainRV or claimRV immediately
1906 /// after the call. This function inlines the retainRV/claimRV calls.
1907 ///
1908 /// There are three cases to consider:
1909 ///
1910 /// 1. If there is a call to autoreleaseRV that takes a pointer to the returned
1911 /// object in the callee return block, the autoreleaseRV call and the
1912 /// retainRV/claimRV call in the caller cancel out. If the call in the caller
1913 /// is a claimRV call, a call to objc_release is emitted.
1914 ///
1915 /// 2. If there is a call in the callee return block that doesn't have operand
1916 /// bundle "clang.arc.attachedcall", the operand bundle on the original call
1917 /// is transferred to the call in the callee.
1918 ///
1919 /// 3. Otherwise, a call to objc_retain is inserted if the call in the caller is
1920 /// a retainRV call.
1921 static void
inlineRetainOrClaimRVCalls(CallBase & CB,objcarc::ARCInstKind RVCallKind,const SmallVectorImpl<ReturnInst * > & Returns)1922 inlineRetainOrClaimRVCalls(CallBase &CB, objcarc::ARCInstKind RVCallKind,
1923 const SmallVectorImpl<ReturnInst *> &Returns) {
1924 Module *Mod = CB.getModule();
1925 assert(objcarc::isRetainOrClaimRV(RVCallKind) && "unexpected ARC function");
1926 bool IsRetainRV = RVCallKind == objcarc::ARCInstKind::RetainRV,
1927 IsUnsafeClaimRV = !IsRetainRV;
1928
1929 for (auto *RI : Returns) {
1930 Value *RetOpnd = objcarc::GetRCIdentityRoot(RI->getOperand(0));
1931 bool InsertRetainCall = IsRetainRV;
1932 IRBuilder<> Builder(RI->getContext());
1933
1934 // Walk backwards through the basic block looking for either a matching
1935 // autoreleaseRV call or an unannotated call.
1936 auto InstRange = llvm::make_range(++(RI->getIterator().getReverse()),
1937 RI->getParent()->rend());
1938 for (Instruction &I : llvm::make_early_inc_range(InstRange)) {
1939 // Ignore casts.
1940 if (isa<CastInst>(I))
1941 continue;
1942
1943 if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1944 if (II->getIntrinsicID() != Intrinsic::objc_autoreleaseReturnValue ||
1945 !II->hasNUses(0) ||
1946 objcarc::GetRCIdentityRoot(II->getOperand(0)) != RetOpnd)
1947 break;
1948
1949 // If we've found a matching authoreleaseRV call:
1950 // - If claimRV is attached to the call, insert a call to objc_release
1951 // and erase the autoreleaseRV call.
1952 // - If retainRV is attached to the call, just erase the autoreleaseRV
1953 // call.
1954 if (IsUnsafeClaimRV) {
1955 Builder.SetInsertPoint(II);
1956 Function *IFn =
1957 Intrinsic::getDeclaration(Mod, Intrinsic::objc_release);
1958 Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType());
1959 Builder.CreateCall(IFn, BC, "");
1960 }
1961 II->eraseFromParent();
1962 InsertRetainCall = false;
1963 break;
1964 }
1965
1966 auto *CI = dyn_cast<CallInst>(&I);
1967
1968 if (!CI)
1969 break;
1970
1971 if (objcarc::GetRCIdentityRoot(CI) != RetOpnd ||
1972 objcarc::hasAttachedCallOpBundle(CI))
1973 break;
1974
1975 // If we've found an unannotated call that defines RetOpnd, add a
1976 // "clang.arc.attachedcall" operand bundle.
1977 Value *BundleArgs[] = {*objcarc::getAttachedARCFunction(&CB)};
1978 OperandBundleDef OB("clang.arc.attachedcall", BundleArgs);
1979 auto *NewCall = CallBase::addOperandBundle(
1980 CI, LLVMContext::OB_clang_arc_attachedcall, OB, CI);
1981 NewCall->copyMetadata(*CI);
1982 CI->replaceAllUsesWith(NewCall);
1983 CI->eraseFromParent();
1984 InsertRetainCall = false;
1985 break;
1986 }
1987
1988 if (InsertRetainCall) {
1989 // The retainRV is attached to the call and we've failed to find a
1990 // matching autoreleaseRV or an annotated call in the callee. Emit a call
1991 // to objc_retain.
1992 Builder.SetInsertPoint(RI);
1993 Function *IFn = Intrinsic::getDeclaration(Mod, Intrinsic::objc_retain);
1994 Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType());
1995 Builder.CreateCall(IFn, BC, "");
1996 }
1997 }
1998 }
1999
2000 /// This function inlines the called function into the basic block of the
2001 /// caller. This returns false if it is not possible to inline this call.
2002 /// The program is still in a well defined state if this occurs though.
2003 ///
2004 /// Note that this only does one level of inlining. For example, if the
2005 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
2006 /// exists in the instruction stream. Similarly this will inline a recursive
2007 /// function by one level.
InlineFunction(CallBase & CB,InlineFunctionInfo & IFI,bool MergeAttributes,AAResults * CalleeAAR,bool InsertLifetime,Function * ForwardVarArgsTo)2008 llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
2009 bool MergeAttributes,
2010 AAResults *CalleeAAR,
2011 bool InsertLifetime,
2012 Function *ForwardVarArgsTo) {
2013 assert(CB.getParent() && CB.getFunction() && "Instruction not in function!");
2014
2015 // FIXME: we don't inline callbr yet.
2016 if (isa<CallBrInst>(CB))
2017 return InlineResult::failure("We don't inline callbr yet.");
2018
2019 // If IFI has any state in it, zap it before we fill it in.
2020 IFI.reset();
2021
2022 Function *CalledFunc = CB.getCalledFunction();
2023 if (!CalledFunc || // Can't inline external function or indirect
2024 CalledFunc->isDeclaration()) // call!
2025 return InlineResult::failure("external or indirect");
2026
2027 // The inliner does not know how to inline through calls with operand bundles
2028 // in general ...
2029 if (CB.hasOperandBundles()) {
2030 for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) {
2031 uint32_t Tag = CB.getOperandBundleAt(i).getTagID();
2032 // ... but it knows how to inline through "deopt" operand bundles ...
2033 if (Tag == LLVMContext::OB_deopt)
2034 continue;
2035 // ... and "funclet" operand bundles.
2036 if (Tag == LLVMContext::OB_funclet)
2037 continue;
2038 if (Tag == LLVMContext::OB_clang_arc_attachedcall)
2039 continue;
2040 if (Tag == LLVMContext::OB_kcfi)
2041 continue;
2042
2043 return InlineResult::failure("unsupported operand bundle");
2044 }
2045 }
2046
2047 // If the call to the callee cannot throw, set the 'nounwind' flag on any
2048 // calls that we inline.
2049 bool MarkNoUnwind = CB.doesNotThrow();
2050
2051 BasicBlock *OrigBB = CB.getParent();
2052 Function *Caller = OrigBB->getParent();
2053
2054 // Do not inline strictfp function into non-strictfp one. It would require
2055 // conversion of all FP operations in host function to constrained intrinsics.
2056 if (CalledFunc->getAttributes().hasFnAttr(Attribute::StrictFP) &&
2057 !Caller->getAttributes().hasFnAttr(Attribute::StrictFP)) {
2058 return InlineResult::failure("incompatible strictfp attributes");
2059 }
2060
2061 // GC poses two hazards to inlining, which only occur when the callee has GC:
2062 // 1. If the caller has no GC, then the callee's GC must be propagated to the
2063 // caller.
2064 // 2. If the caller has a differing GC, it is invalid to inline.
2065 if (CalledFunc->hasGC()) {
2066 if (!Caller->hasGC())
2067 Caller->setGC(CalledFunc->getGC());
2068 else if (CalledFunc->getGC() != Caller->getGC())
2069 return InlineResult::failure("incompatible GC");
2070 }
2071
2072 // Get the personality function from the callee if it contains a landing pad.
2073 Constant *CalledPersonality =
2074 CalledFunc->hasPersonalityFn()
2075 ? CalledFunc->getPersonalityFn()->stripPointerCasts()
2076 : nullptr;
2077
2078 // Find the personality function used by the landing pads of the caller. If it
2079 // exists, then check to see that it matches the personality function used in
2080 // the callee.
2081 Constant *CallerPersonality =
2082 Caller->hasPersonalityFn()
2083 ? Caller->getPersonalityFn()->stripPointerCasts()
2084 : nullptr;
2085 if (CalledPersonality) {
2086 if (!CallerPersonality)
2087 Caller->setPersonalityFn(CalledPersonality);
2088 // If the personality functions match, then we can perform the
2089 // inlining. Otherwise, we can't inline.
2090 // TODO: This isn't 100% true. Some personality functions are proper
2091 // supersets of others and can be used in place of the other.
2092 else if (CalledPersonality != CallerPersonality)
2093 return InlineResult::failure("incompatible personality");
2094 }
2095
2096 // We need to figure out which funclet the callsite was in so that we may
2097 // properly nest the callee.
2098 Instruction *CallSiteEHPad = nullptr;
2099 if (CallerPersonality) {
2100 EHPersonality Personality = classifyEHPersonality(CallerPersonality);
2101 if (isScopedEHPersonality(Personality)) {
2102 std::optional<OperandBundleUse> ParentFunclet =
2103 CB.getOperandBundle(LLVMContext::OB_funclet);
2104 if (ParentFunclet)
2105 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
2106
2107 // OK, the inlining site is legal. What about the target function?
2108
2109 if (CallSiteEHPad) {
2110 if (Personality == EHPersonality::MSVC_CXX) {
2111 // The MSVC personality cannot tolerate catches getting inlined into
2112 // cleanup funclets.
2113 if (isa<CleanupPadInst>(CallSiteEHPad)) {
2114 // Ok, the call site is within a cleanuppad. Let's check the callee
2115 // for catchpads.
2116 for (const BasicBlock &CalledBB : *CalledFunc) {
2117 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
2118 return InlineResult::failure("catch in cleanup funclet");
2119 }
2120 }
2121 } else if (isAsynchronousEHPersonality(Personality)) {
2122 // SEH is even less tolerant, there may not be any sort of exceptional
2123 // funclet in the callee.
2124 for (const BasicBlock &CalledBB : *CalledFunc) {
2125 if (CalledBB.isEHPad())
2126 return InlineResult::failure("SEH in cleanup funclet");
2127 }
2128 }
2129 }
2130 }
2131 }
2132
2133 // Determine if we are dealing with a call in an EHPad which does not unwind
2134 // to caller.
2135 bool EHPadForCallUnwindsLocally = false;
2136 if (CallSiteEHPad && isa<CallInst>(CB)) {
2137 UnwindDestMemoTy FuncletUnwindMap;
2138 Value *CallSiteUnwindDestToken =
2139 getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
2140
2141 EHPadForCallUnwindsLocally =
2142 CallSiteUnwindDestToken &&
2143 !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
2144 }
2145
2146 // Get an iterator to the last basic block in the function, which will have
2147 // the new function inlined after it.
2148 Function::iterator LastBlock = --Caller->end();
2149
2150 // Make sure to capture all of the return instructions from the cloned
2151 // function.
2152 SmallVector<ReturnInst*, 8> Returns;
2153 ClonedCodeInfo InlinedFunctionInfo;
2154 Function::iterator FirstNewBlock;
2155
2156 { // Scope to destroy VMap after cloning.
2157 ValueToValueMapTy VMap;
2158 struct ByValInit {
2159 Value *Dst;
2160 Value *Src;
2161 Type *Ty;
2162 };
2163 // Keep a list of pair (dst, src) to emit byval initializations.
2164 SmallVector<ByValInit, 4> ByValInits;
2165
2166 // When inlining a function that contains noalias scope metadata,
2167 // this metadata needs to be cloned so that the inlined blocks
2168 // have different "unique scopes" at every call site.
2169 // Track the metadata that must be cloned. Do this before other changes to
2170 // the function, so that we do not get in trouble when inlining caller ==
2171 // callee.
2172 ScopedAliasMetadataDeepCloner SAMetadataCloner(CB.getCalledFunction());
2173
2174 auto &DL = Caller->getParent()->getDataLayout();
2175
2176 // Calculate the vector of arguments to pass into the function cloner, which
2177 // matches up the formal to the actual argument values.
2178 auto AI = CB.arg_begin();
2179 unsigned ArgNo = 0;
2180 for (Function::arg_iterator I = CalledFunc->arg_begin(),
2181 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
2182 Value *ActualArg = *AI;
2183
2184 // When byval arguments actually inlined, we need to make the copy implied
2185 // by them explicit. However, we don't do this if the callee is readonly
2186 // or readnone, because the copy would be unneeded: the callee doesn't
2187 // modify the struct.
2188 if (CB.isByValArgument(ArgNo)) {
2189 ActualArg = HandleByValArgument(CB.getParamByValType(ArgNo), ActualArg,
2190 &CB, CalledFunc, IFI,
2191 CalledFunc->getParamAlign(ArgNo));
2192 if (ActualArg != *AI)
2193 ByValInits.push_back(
2194 {ActualArg, (Value *)*AI, CB.getParamByValType(ArgNo)});
2195 }
2196
2197 VMap[&*I] = ActualArg;
2198 }
2199
2200 // TODO: Remove this when users have been updated to the assume bundles.
2201 // Add alignment assumptions if necessary. We do this before the inlined
2202 // instructions are actually cloned into the caller so that we can easily
2203 // check what will be known at the start of the inlined code.
2204 AddAlignmentAssumptions(CB, IFI);
2205
2206 AssumptionCache *AC =
2207 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
2208
2209 /// Preserve all attributes on of the call and its parameters.
2210 salvageKnowledge(&CB, AC);
2211
2212 // We want the inliner to prune the code as it copies. We would LOVE to
2213 // have no dead or constant instructions leftover after inlining occurs
2214 // (which can happen, e.g., because an argument was constant), but we'll be
2215 // happy with whatever the cloner can do.
2216 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
2217 /*ModuleLevelChanges=*/false, Returns, ".i",
2218 &InlinedFunctionInfo);
2219 // Remember the first block that is newly cloned over.
2220 FirstNewBlock = LastBlock; ++FirstNewBlock;
2221
2222 // Insert retainRV/clainRV runtime calls.
2223 objcarc::ARCInstKind RVCallKind = objcarc::getAttachedARCFunctionKind(&CB);
2224 if (RVCallKind != objcarc::ARCInstKind::None)
2225 inlineRetainOrClaimRVCalls(CB, RVCallKind, Returns);
2226
2227 // Updated caller/callee profiles only when requested. For sample loader
2228 // inlining, the context-sensitive inlinee profile doesn't need to be
2229 // subtracted from callee profile, and the inlined clone also doesn't need
2230 // to be scaled based on call site count.
2231 if (IFI.UpdateProfile) {
2232 if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
2233 // Update the BFI of blocks cloned into the caller.
2234 updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
2235 CalledFunc->front());
2236
2237 if (auto Profile = CalledFunc->getEntryCount())
2238 updateCallProfile(CalledFunc, VMap, *Profile, CB, IFI.PSI,
2239 IFI.CallerBFI);
2240 }
2241
2242 // Inject byval arguments initialization.
2243 for (ByValInit &Init : ByValInits)
2244 HandleByValArgumentInit(Init.Ty, Init.Dst, Init.Src, Caller->getParent(),
2245 &*FirstNewBlock, IFI);
2246
2247 std::optional<OperandBundleUse> ParentDeopt =
2248 CB.getOperandBundle(LLVMContext::OB_deopt);
2249 if (ParentDeopt) {
2250 SmallVector<OperandBundleDef, 2> OpDefs;
2251
2252 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
2253 CallBase *ICS = dyn_cast_or_null<CallBase>(VH);
2254 if (!ICS)
2255 continue; // instruction was DCE'd or RAUW'ed to undef
2256
2257 OpDefs.clear();
2258
2259 OpDefs.reserve(ICS->getNumOperandBundles());
2260
2261 for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe;
2262 ++COBi) {
2263 auto ChildOB = ICS->getOperandBundleAt(COBi);
2264 if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
2265 // If the inlined call has other operand bundles, let them be
2266 OpDefs.emplace_back(ChildOB);
2267 continue;
2268 }
2269
2270 // It may be useful to separate this logic (of handling operand
2271 // bundles) out to a separate "policy" component if this gets crowded.
2272 // Prepend the parent's deoptimization continuation to the newly
2273 // inlined call's deoptimization continuation.
2274 std::vector<Value *> MergedDeoptArgs;
2275 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
2276 ChildOB.Inputs.size());
2277
2278 llvm::append_range(MergedDeoptArgs, ParentDeopt->Inputs);
2279 llvm::append_range(MergedDeoptArgs, ChildOB.Inputs);
2280
2281 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
2282 }
2283
2284 Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS);
2285
2286 // Note: the RAUW does the appropriate fixup in VMap, so we need to do
2287 // this even if the call returns void.
2288 ICS->replaceAllUsesWith(NewI);
2289
2290 VH = nullptr;
2291 ICS->eraseFromParent();
2292 }
2293 }
2294
2295 // Update the callgraph if requested.
2296 if (IFI.CG)
2297 UpdateCallGraphAfterInlining(CB, FirstNewBlock, VMap, IFI);
2298
2299 // For 'nodebug' functions, the associated DISubprogram is always null.
2300 // Conservatively avoid propagating the callsite debug location to
2301 // instructions inlined from a function whose DISubprogram is not null.
2302 fixupLineNumbers(Caller, FirstNewBlock, &CB,
2303 CalledFunc->getSubprogram() != nullptr);
2304
2305 if (isAssignmentTrackingEnabled(*Caller->getParent())) {
2306 // Interpret inlined stores to caller-local variables as assignments.
2307 trackInlinedStores(FirstNewBlock, Caller->end(), CB);
2308
2309 // Update DIAssignID metadata attachments and uses so that they are
2310 // unique to this inlined instance.
2311 fixupAssignments(FirstNewBlock, Caller->end());
2312 }
2313
2314 // Now clone the inlined noalias scope metadata.
2315 SAMetadataCloner.clone();
2316 SAMetadataCloner.remap(FirstNewBlock, Caller->end());
2317
2318 // Add noalias metadata if necessary.
2319 AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR, InlinedFunctionInfo);
2320
2321 // Clone return attributes on the callsite into the calls within the inlined
2322 // function which feed into its return value.
2323 AddReturnAttributes(CB, VMap);
2324
2325 propagateMemProfMetadata(CalledFunc, CB,
2326 InlinedFunctionInfo.ContainsMemProfMetadata, VMap);
2327
2328 // Propagate metadata on the callsite if necessary.
2329 PropagateCallSiteMetadata(CB, FirstNewBlock, Caller->end());
2330
2331 // Register any cloned assumptions.
2332 if (IFI.GetAssumptionCache)
2333 for (BasicBlock &NewBlock :
2334 make_range(FirstNewBlock->getIterator(), Caller->end()))
2335 for (Instruction &I : NewBlock)
2336 if (auto *II = dyn_cast<CondGuardInst>(&I))
2337 IFI.GetAssumptionCache(*Caller).registerAssumption(II);
2338 }
2339
2340 // If there are any alloca instructions in the block that used to be the entry
2341 // block for the callee, move them to the entry block of the caller. First
2342 // calculate which instruction they should be inserted before. We insert the
2343 // instructions at the end of the current alloca list.
2344 {
2345 BasicBlock::iterator InsertPoint = Caller->begin()->begin();
2346 for (BasicBlock::iterator I = FirstNewBlock->begin(),
2347 E = FirstNewBlock->end(); I != E; ) {
2348 AllocaInst *AI = dyn_cast<AllocaInst>(I++);
2349 if (!AI) continue;
2350
2351 // If the alloca is now dead, remove it. This often occurs due to code
2352 // specialization.
2353 if (AI->use_empty()) {
2354 AI->eraseFromParent();
2355 continue;
2356 }
2357
2358 if (!allocaWouldBeStaticInEntry(AI))
2359 continue;
2360
2361 // Keep track of the static allocas that we inline into the caller.
2362 IFI.StaticAllocas.push_back(AI);
2363
2364 // Scan for the block of allocas that we can move over, and move them
2365 // all at once.
2366 while (isa<AllocaInst>(I) &&
2367 !cast<AllocaInst>(I)->use_empty() &&
2368 allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
2369 IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
2370 ++I;
2371 }
2372
2373 // Transfer all of the allocas over in a block. Using splice means
2374 // that the instructions aren't removed from the symbol table, then
2375 // reinserted.
2376 Caller->getEntryBlock().splice(InsertPoint, &*FirstNewBlock,
2377 AI->getIterator(), I);
2378 }
2379 }
2380
2381 SmallVector<Value*,4> VarArgsToForward;
2382 SmallVector<AttributeSet, 4> VarArgsAttrs;
2383 for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
2384 i < CB.arg_size(); i++) {
2385 VarArgsToForward.push_back(CB.getArgOperand(i));
2386 VarArgsAttrs.push_back(CB.getAttributes().getParamAttrs(i));
2387 }
2388
2389 bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
2390 if (InlinedFunctionInfo.ContainsCalls) {
2391 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
2392 if (CallInst *CI = dyn_cast<CallInst>(&CB))
2393 CallSiteTailKind = CI->getTailCallKind();
2394
2395 // For inlining purposes, the "notail" marker is the same as no marker.
2396 if (CallSiteTailKind == CallInst::TCK_NoTail)
2397 CallSiteTailKind = CallInst::TCK_None;
2398
2399 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
2400 ++BB) {
2401 for (Instruction &I : llvm::make_early_inc_range(*BB)) {
2402 CallInst *CI = dyn_cast<CallInst>(&I);
2403 if (!CI)
2404 continue;
2405
2406 // Forward varargs from inlined call site to calls to the
2407 // ForwardVarArgsTo function, if requested, and to musttail calls.
2408 if (!VarArgsToForward.empty() &&
2409 ((ForwardVarArgsTo &&
2410 CI->getCalledFunction() == ForwardVarArgsTo) ||
2411 CI->isMustTailCall())) {
2412 // Collect attributes for non-vararg parameters.
2413 AttributeList Attrs = CI->getAttributes();
2414 SmallVector<AttributeSet, 8> ArgAttrs;
2415 if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
2416 for (unsigned ArgNo = 0;
2417 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
2418 ArgAttrs.push_back(Attrs.getParamAttrs(ArgNo));
2419 }
2420
2421 // Add VarArg attributes.
2422 ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
2423 Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttrs(),
2424 Attrs.getRetAttrs(), ArgAttrs);
2425 // Add VarArgs to existing parameters.
2426 SmallVector<Value *, 6> Params(CI->args());
2427 Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
2428 CallInst *NewCI = CallInst::Create(
2429 CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI);
2430 NewCI->setDebugLoc(CI->getDebugLoc());
2431 NewCI->setAttributes(Attrs);
2432 NewCI->setCallingConv(CI->getCallingConv());
2433 CI->replaceAllUsesWith(NewCI);
2434 CI->eraseFromParent();
2435 CI = NewCI;
2436 }
2437
2438 if (Function *F = CI->getCalledFunction())
2439 InlinedDeoptimizeCalls |=
2440 F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
2441
2442 // We need to reduce the strength of any inlined tail calls. For
2443 // musttail, we have to avoid introducing potential unbounded stack
2444 // growth. For example, if functions 'f' and 'g' are mutually recursive
2445 // with musttail, we can inline 'g' into 'f' so long as we preserve
2446 // musttail on the cloned call to 'f'. If either the inlined call site
2447 // or the cloned call site is *not* musttail, the program already has
2448 // one frame of stack growth, so it's safe to remove musttail. Here is
2449 // a table of example transformations:
2450 //
2451 // f -> musttail g -> musttail f ==> f -> musttail f
2452 // f -> musttail g -> tail f ==> f -> tail f
2453 // f -> g -> musttail f ==> f -> f
2454 // f -> g -> tail f ==> f -> f
2455 //
2456 // Inlined notail calls should remain notail calls.
2457 CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
2458 if (ChildTCK != CallInst::TCK_NoTail)
2459 ChildTCK = std::min(CallSiteTailKind, ChildTCK);
2460 CI->setTailCallKind(ChildTCK);
2461 InlinedMustTailCalls |= CI->isMustTailCall();
2462
2463 // Call sites inlined through a 'nounwind' call site should be
2464 // 'nounwind' as well. However, avoid marking call sites explicitly
2465 // where possible. This helps expose more opportunities for CSE after
2466 // inlining, commonly when the callee is an intrinsic.
2467 if (MarkNoUnwind && !CI->doesNotThrow())
2468 CI->setDoesNotThrow();
2469 }
2470 }
2471 }
2472
2473 // Leave lifetime markers for the static alloca's, scoping them to the
2474 // function we just inlined.
2475 // We need to insert lifetime intrinsics even at O0 to avoid invalid
2476 // access caused by multithreaded coroutines. The check
2477 // `Caller->isPresplitCoroutine()` would affect AlwaysInliner at O0 only.
2478 if ((InsertLifetime || Caller->isPresplitCoroutine()) &&
2479 !IFI.StaticAllocas.empty()) {
2480 IRBuilder<> builder(&FirstNewBlock->front());
2481 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
2482 AllocaInst *AI = IFI.StaticAllocas[ai];
2483 // Don't mark swifterror allocas. They can't have bitcast uses.
2484 if (AI->isSwiftError())
2485 continue;
2486
2487 // If the alloca is already scoped to something smaller than the whole
2488 // function then there's no need to add redundant, less accurate markers.
2489 if (hasLifetimeMarkers(AI))
2490 continue;
2491
2492 // Try to determine the size of the allocation.
2493 ConstantInt *AllocaSize = nullptr;
2494 if (ConstantInt *AIArraySize =
2495 dyn_cast<ConstantInt>(AI->getArraySize())) {
2496 auto &DL = Caller->getParent()->getDataLayout();
2497 Type *AllocaType = AI->getAllocatedType();
2498 TypeSize AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
2499 uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
2500
2501 // Don't add markers for zero-sized allocas.
2502 if (AllocaArraySize == 0)
2503 continue;
2504
2505 // Check that array size doesn't saturate uint64_t and doesn't
2506 // overflow when it's multiplied by type size.
2507 if (!AllocaTypeSize.isScalable() &&
2508 AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
2509 std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
2510 AllocaTypeSize.getFixedValue()) {
2511 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
2512 AllocaArraySize * AllocaTypeSize);
2513 }
2514 }
2515
2516 builder.CreateLifetimeStart(AI, AllocaSize);
2517 for (ReturnInst *RI : Returns) {
2518 // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
2519 // call and a return. The return kills all local allocas.
2520 if (InlinedMustTailCalls &&
2521 RI->getParent()->getTerminatingMustTailCall())
2522 continue;
2523 if (InlinedDeoptimizeCalls &&
2524 RI->getParent()->getTerminatingDeoptimizeCall())
2525 continue;
2526 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
2527 }
2528 }
2529 }
2530
2531 // If the inlined code contained dynamic alloca instructions, wrap the inlined
2532 // code with llvm.stacksave/llvm.stackrestore intrinsics.
2533 if (InlinedFunctionInfo.ContainsDynamicAllocas) {
2534 Module *M = Caller->getParent();
2535 // Get the two intrinsics we care about.
2536 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
2537 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
2538
2539 // Insert the llvm.stacksave.
2540 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
2541 .CreateCall(StackSave, {}, "savedstack");
2542
2543 // Insert a call to llvm.stackrestore before any return instructions in the
2544 // inlined function.
2545 for (ReturnInst *RI : Returns) {
2546 // Don't insert llvm.stackrestore calls between a musttail or deoptimize
2547 // call and a return. The return will restore the stack pointer.
2548 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
2549 continue;
2550 if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
2551 continue;
2552 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
2553 }
2554 }
2555
2556 // If we are inlining for an invoke instruction, we must make sure to rewrite
2557 // any call instructions into invoke instructions. This is sensitive to which
2558 // funclet pads were top-level in the inlinee, so must be done before
2559 // rewriting the "parent pad" links.
2560 if (auto *II = dyn_cast<InvokeInst>(&CB)) {
2561 BasicBlock *UnwindDest = II->getUnwindDest();
2562 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
2563 if (isa<LandingPadInst>(FirstNonPHI)) {
2564 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2565 } else {
2566 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2567 }
2568 }
2569
2570 // Update the lexical scopes of the new funclets and callsites.
2571 // Anything that had 'none' as its parent is now nested inside the callsite's
2572 // EHPad.
2573 if (CallSiteEHPad) {
2574 for (Function::iterator BB = FirstNewBlock->getIterator(),
2575 E = Caller->end();
2576 BB != E; ++BB) {
2577 // Add bundle operands to inlined call sites.
2578 PropagateOperandBundles(BB, CallSiteEHPad);
2579
2580 // It is problematic if the inlinee has a cleanupret which unwinds to
2581 // caller and we inline it into a call site which doesn't unwind but into
2582 // an EH pad that does. Such an edge must be dynamically unreachable.
2583 // As such, we replace the cleanupret with unreachable.
2584 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
2585 if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
2586 changeToUnreachable(CleanupRet);
2587
2588 Instruction *I = BB->getFirstNonPHI();
2589 if (!I->isEHPad())
2590 continue;
2591
2592 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
2593 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
2594 CatchSwitch->setParentPad(CallSiteEHPad);
2595 } else {
2596 auto *FPI = cast<FuncletPadInst>(I);
2597 if (isa<ConstantTokenNone>(FPI->getParentPad()))
2598 FPI->setParentPad(CallSiteEHPad);
2599 }
2600 }
2601 }
2602
2603 if (InlinedDeoptimizeCalls) {
2604 // We need to at least remove the deoptimizing returns from the Return set,
2605 // so that the control flow from those returns does not get merged into the
2606 // caller (but terminate it instead). If the caller's return type does not
2607 // match the callee's return type, we also need to change the return type of
2608 // the intrinsic.
2609 if (Caller->getReturnType() == CB.getType()) {
2610 llvm::erase_if(Returns, [](ReturnInst *RI) {
2611 return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
2612 });
2613 } else {
2614 SmallVector<ReturnInst *, 8> NormalReturns;
2615 Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
2616 Caller->getParent(), Intrinsic::experimental_deoptimize,
2617 {Caller->getReturnType()});
2618
2619 for (ReturnInst *RI : Returns) {
2620 CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
2621 if (!DeoptCall) {
2622 NormalReturns.push_back(RI);
2623 continue;
2624 }
2625
2626 // The calling convention on the deoptimize call itself may be bogus,
2627 // since the code we're inlining may have undefined behavior (and may
2628 // never actually execute at runtime); but all
2629 // @llvm.experimental.deoptimize declarations have to have the same
2630 // calling convention in a well-formed module.
2631 auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
2632 NewDeoptIntrinsic->setCallingConv(CallingConv);
2633 auto *CurBB = RI->getParent();
2634 RI->eraseFromParent();
2635
2636 SmallVector<Value *, 4> CallArgs(DeoptCall->args());
2637
2638 SmallVector<OperandBundleDef, 1> OpBundles;
2639 DeoptCall->getOperandBundlesAsDefs(OpBundles);
2640 auto DeoptAttributes = DeoptCall->getAttributes();
2641 DeoptCall->eraseFromParent();
2642 assert(!OpBundles.empty() &&
2643 "Expected at least the deopt operand bundle");
2644
2645 IRBuilder<> Builder(CurBB);
2646 CallInst *NewDeoptCall =
2647 Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
2648 NewDeoptCall->setCallingConv(CallingConv);
2649 NewDeoptCall->setAttributes(DeoptAttributes);
2650 if (NewDeoptCall->getType()->isVoidTy())
2651 Builder.CreateRetVoid();
2652 else
2653 Builder.CreateRet(NewDeoptCall);
2654 }
2655
2656 // Leave behind the normal returns so we can merge control flow.
2657 std::swap(Returns, NormalReturns);
2658 }
2659 }
2660
2661 // Handle any inlined musttail call sites. In order for a new call site to be
2662 // musttail, the source of the clone and the inlined call site must have been
2663 // musttail. Therefore it's safe to return without merging control into the
2664 // phi below.
2665 if (InlinedMustTailCalls) {
2666 // Check if we need to bitcast the result of any musttail calls.
2667 Type *NewRetTy = Caller->getReturnType();
2668 bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy;
2669
2670 // Handle the returns preceded by musttail calls separately.
2671 SmallVector<ReturnInst *, 8> NormalReturns;
2672 for (ReturnInst *RI : Returns) {
2673 CallInst *ReturnedMustTail =
2674 RI->getParent()->getTerminatingMustTailCall();
2675 if (!ReturnedMustTail) {
2676 NormalReturns.push_back(RI);
2677 continue;
2678 }
2679 if (!NeedBitCast)
2680 continue;
2681
2682 // Delete the old return and any preceding bitcast.
2683 BasicBlock *CurBB = RI->getParent();
2684 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
2685 RI->eraseFromParent();
2686 if (OldCast)
2687 OldCast->eraseFromParent();
2688
2689 // Insert a new bitcast and return with the right type.
2690 IRBuilder<> Builder(CurBB);
2691 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
2692 }
2693
2694 // Leave behind the normal returns so we can merge control flow.
2695 std::swap(Returns, NormalReturns);
2696 }
2697
2698 // Now that all of the transforms on the inlined code have taken place but
2699 // before we splice the inlined code into the CFG and lose track of which
2700 // blocks were actually inlined, collect the call sites. We only do this if
2701 // call graph updates weren't requested, as those provide value handle based
2702 // tracking of inlined call sites instead. Calls to intrinsics are not
2703 // collected because they are not inlineable.
2704 if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) {
2705 // Otherwise just collect the raw call sites that were inlined.
2706 for (BasicBlock &NewBB :
2707 make_range(FirstNewBlock->getIterator(), Caller->end()))
2708 for (Instruction &I : NewBB)
2709 if (auto *CB = dyn_cast<CallBase>(&I))
2710 if (!(CB->getCalledFunction() &&
2711 CB->getCalledFunction()->isIntrinsic()))
2712 IFI.InlinedCallSites.push_back(CB);
2713 }
2714
2715 // If we cloned in _exactly one_ basic block, and if that block ends in a
2716 // return instruction, we splice the body of the inlined callee directly into
2717 // the calling basic block.
2718 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
2719 // Move all of the instructions right before the call.
2720 OrigBB->splice(CB.getIterator(), &*FirstNewBlock, FirstNewBlock->begin(),
2721 FirstNewBlock->end());
2722 // Remove the cloned basic block.
2723 Caller->back().eraseFromParent();
2724
2725 // If the call site was an invoke instruction, add a branch to the normal
2726 // destination.
2727 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2728 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB);
2729 NewBr->setDebugLoc(Returns[0]->getDebugLoc());
2730 }
2731
2732 // If the return instruction returned a value, replace uses of the call with
2733 // uses of the returned value.
2734 if (!CB.use_empty()) {
2735 ReturnInst *R = Returns[0];
2736 if (&CB == R->getReturnValue())
2737 CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2738 else
2739 CB.replaceAllUsesWith(R->getReturnValue());
2740 }
2741 // Since we are now done with the Call/Invoke, we can delete it.
2742 CB.eraseFromParent();
2743
2744 // Since we are now done with the return instruction, delete it also.
2745 Returns[0]->eraseFromParent();
2746
2747 if (MergeAttributes)
2748 AttributeFuncs::mergeAttributesForInlining(*Caller, *CalledFunc);
2749
2750 // We are now done with the inlining.
2751 return InlineResult::success();
2752 }
2753
2754 // Otherwise, we have the normal case, of more than one block to inline or
2755 // multiple return sites.
2756
2757 // We want to clone the entire callee function into the hole between the
2758 // "starter" and "ender" blocks. How we accomplish this depends on whether
2759 // this is an invoke instruction or a call instruction.
2760 BasicBlock *AfterCallBB;
2761 BranchInst *CreatedBranchToNormalDest = nullptr;
2762 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2763
2764 // Add an unconditional branch to make this look like the CallInst case...
2765 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB);
2766
2767 // Split the basic block. This guarantees that no PHI nodes will have to be
2768 // updated due to new incoming edges, and make the invoke case more
2769 // symmetric to the call case.
2770 AfterCallBB =
2771 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
2772 CalledFunc->getName() + ".exit");
2773
2774 } else { // It's a call
2775 // If this is a call instruction, we need to split the basic block that
2776 // the call lives in.
2777 //
2778 AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(),
2779 CalledFunc->getName() + ".exit");
2780 }
2781
2782 if (IFI.CallerBFI) {
2783 // Copy original BB's block frequency to AfterCallBB
2784 IFI.CallerBFI->setBlockFreq(
2785 AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency());
2786 }
2787
2788 // Change the branch that used to go to AfterCallBB to branch to the first
2789 // basic block of the inlined function.
2790 //
2791 Instruction *Br = OrigBB->getTerminator();
2792 assert(Br && Br->getOpcode() == Instruction::Br &&
2793 "splitBasicBlock broken!");
2794 Br->setOperand(0, &*FirstNewBlock);
2795
2796 // Now that the function is correct, make it a little bit nicer. In
2797 // particular, move the basic blocks inserted from the end of the function
2798 // into the space made by splitting the source basic block.
2799 Caller->splice(AfterCallBB->getIterator(), Caller, FirstNewBlock,
2800 Caller->end());
2801
2802 // Handle all of the return instructions that we just cloned in, and eliminate
2803 // any users of the original call/invoke instruction.
2804 Type *RTy = CalledFunc->getReturnType();
2805
2806 PHINode *PHI = nullptr;
2807 if (Returns.size() > 1) {
2808 // The PHI node should go at the front of the new basic block to merge all
2809 // possible incoming values.
2810 if (!CB.use_empty()) {
2811 PHI = PHINode::Create(RTy, Returns.size(), CB.getName(),
2812 &AfterCallBB->front());
2813 // Anything that used the result of the function call should now use the
2814 // PHI node as their operand.
2815 CB.replaceAllUsesWith(PHI);
2816 }
2817
2818 // Loop over all of the return instructions adding entries to the PHI node
2819 // as appropriate.
2820 if (PHI) {
2821 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2822 ReturnInst *RI = Returns[i];
2823 assert(RI->getReturnValue()->getType() == PHI->getType() &&
2824 "Ret value not consistent in function!");
2825 PHI->addIncoming(RI->getReturnValue(), RI->getParent());
2826 }
2827 }
2828
2829 // Add a branch to the merge points and remove return instructions.
2830 DebugLoc Loc;
2831 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2832 ReturnInst *RI = Returns[i];
2833 BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
2834 Loc = RI->getDebugLoc();
2835 BI->setDebugLoc(Loc);
2836 RI->eraseFromParent();
2837 }
2838 // We need to set the debug location to *somewhere* inside the
2839 // inlined function. The line number may be nonsensical, but the
2840 // instruction will at least be associated with the right
2841 // function.
2842 if (CreatedBranchToNormalDest)
2843 CreatedBranchToNormalDest->setDebugLoc(Loc);
2844 } else if (!Returns.empty()) {
2845 // Otherwise, if there is exactly one return value, just replace anything
2846 // using the return value of the call with the computed value.
2847 if (!CB.use_empty()) {
2848 if (&CB == Returns[0]->getReturnValue())
2849 CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2850 else
2851 CB.replaceAllUsesWith(Returns[0]->getReturnValue());
2852 }
2853
2854 // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
2855 BasicBlock *ReturnBB = Returns[0]->getParent();
2856 ReturnBB->replaceAllUsesWith(AfterCallBB);
2857
2858 // Splice the code from the return block into the block that it will return
2859 // to, which contains the code that was after the call.
2860 AfterCallBB->splice(AfterCallBB->begin(), ReturnBB);
2861
2862 if (CreatedBranchToNormalDest)
2863 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
2864
2865 // Delete the return instruction now and empty ReturnBB now.
2866 Returns[0]->eraseFromParent();
2867 ReturnBB->eraseFromParent();
2868 } else if (!CB.use_empty()) {
2869 // No returns, but something is using the return value of the call. Just
2870 // nuke the result.
2871 CB.replaceAllUsesWith(PoisonValue::get(CB.getType()));
2872 }
2873
2874 // Since we are now done with the Call/Invoke, we can delete it.
2875 CB.eraseFromParent();
2876
2877 // If we inlined any musttail calls and the original return is now
2878 // unreachable, delete it. It can only contain a bitcast and ret.
2879 if (InlinedMustTailCalls && pred_empty(AfterCallBB))
2880 AfterCallBB->eraseFromParent();
2881
2882 // We should always be able to fold the entry block of the function into the
2883 // single predecessor of the block...
2884 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
2885 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
2886
2887 // Splice the code entry block into calling block, right before the
2888 // unconditional branch.
2889 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
2890 OrigBB->splice(Br->getIterator(), CalleeEntry);
2891
2892 // Remove the unconditional branch.
2893 Br->eraseFromParent();
2894
2895 // Now we can remove the CalleeEntry block, which is now empty.
2896 CalleeEntry->eraseFromParent();
2897
2898 // If we inserted a phi node, check to see if it has a single value (e.g. all
2899 // the entries are the same or undef). If so, remove the PHI so it doesn't
2900 // block other optimizations.
2901 if (PHI) {
2902 AssumptionCache *AC =
2903 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
2904 auto &DL = Caller->getParent()->getDataLayout();
2905 if (Value *V = simplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
2906 PHI->replaceAllUsesWith(V);
2907 PHI->eraseFromParent();
2908 }
2909 }
2910
2911 if (MergeAttributes)
2912 AttributeFuncs::mergeAttributesForInlining(*Caller, *CalledFunc);
2913
2914 return InlineResult::success();
2915 }
2916