1 //===- LegacyDivergenceAnalysis.cpp --------- Legacy Divergence Analysis
2 //Implementation -==//
3 //
4 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5 // See https://llvm.org/LICENSE.txt for license information.
6 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements divergence analysis which determines whether a branch
11 // in a GPU program is divergent.It can help branch optimizations such as jump
12 // threading and loop unswitching to make better decisions.
13 //
14 // GPU programs typically use the SIMD execution model, where multiple threads
15 // in the same execution group have to execute in lock-step. Therefore, if the
16 // code contains divergent branches (i.e., threads in a group do not agree on
17 // which path of the branch to take), the group of threads has to execute all
18 // the paths from that branch with different subsets of threads enabled until
19 // they converge at the immediately post-dominating BB of the paths.
20 //
21 // Due to this execution model, some optimizations such as jump
22 // threading and loop unswitching can be unfortunately harmful when performed on
23 // divergent branches. Therefore, an analysis that computes which branches in a
24 // GPU program are divergent can help the compiler to selectively run these
25 // optimizations.
26 //
27 // This file defines divergence analysis which computes a conservative but
28 // non-trivial approximation of all divergent branches in a GPU program. It
29 // partially implements the approach described in
30 //
31 // Divergence Analysis
32 // Sampaio, Souza, Collange, Pereira
33 // TOPLAS '13
34 //
35 // The divergence analysis identifies the sources of divergence (e.g., special
36 // variables that hold the thread ID), and recursively marks variables that are
37 // data or sync dependent on a source of divergence as divergent.
38 //
39 // While data dependency is a well-known concept, the notion of sync dependency
40 // is worth more explanation. Sync dependence characterizes the control flow
41 // aspect of the propagation of branch divergence. For example,
42 //
43 // %cond = icmp slt i32 %tid, 10
44 // br i1 %cond, label %then, label %else
45 // then:
46 // br label %merge
47 // else:
48 // br label %merge
49 // merge:
50 // %a = phi i32 [ 0, %then ], [ 1, %else ]
51 //
52 // Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
53 // because %tid is not on its use-def chains, %a is sync dependent on %tid
54 // because the branch "br i1 %cond" depends on %tid and affects which value %a
55 // is assigned to.
56 //
57 // The current implementation has the following limitations:
58 // 1. intra-procedural. It conservatively considers the arguments of a
59 // non-kernel-entry function and the return value of a function call as
60 // divergent.
61 // 2. memory as black box. It conservatively considers values loaded from
62 // generic or local address as divergent. This can be improved by leveraging
63 // pointer analysis.
64 //
65 //===----------------------------------------------------------------------===//
66
67 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
68 #include "llvm/ADT/PostOrderIterator.h"
69 #include "llvm/Analysis/CFG.h"
70 #include "llvm/Analysis/DivergenceAnalysis.h"
71 #include "llvm/Analysis/LoopInfo.h"
72 #include "llvm/Analysis/Passes.h"
73 #include "llvm/Analysis/PostDominators.h"
74 #include "llvm/Analysis/TargetTransformInfo.h"
75 #include "llvm/IR/Dominators.h"
76 #include "llvm/IR/InstIterator.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/Value.h"
79 #include "llvm/InitializePasses.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/raw_ostream.h"
83 #include <vector>
84 using namespace llvm;
85
86 #define DEBUG_TYPE "divergence"
87
88 // transparently use the GPUDivergenceAnalysis
89 static cl::opt<bool> UseGPUDA("use-gpu-divergence-analysis", cl::init(false),
90 cl::Hidden,
91 cl::desc("turn the LegacyDivergenceAnalysis into "
92 "a wrapper for GPUDivergenceAnalysis"));
93
94 namespace {
95
96 class DivergencePropagator {
97 public:
DivergencePropagator(Function & F,TargetTransformInfo & TTI,DominatorTree & DT,PostDominatorTree & PDT,DenseSet<const Value * > & DV,DenseSet<const Use * > & DU)98 DivergencePropagator(Function &F, TargetTransformInfo &TTI, DominatorTree &DT,
99 PostDominatorTree &PDT, DenseSet<const Value *> &DV,
100 DenseSet<const Use *> &DU)
101 : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV), DU(DU) {}
102 void populateWithSourcesOfDivergence();
103 void propagate();
104
105 private:
106 // A helper function that explores data dependents of V.
107 void exploreDataDependency(Value *V);
108 // A helper function that explores sync dependents of TI.
109 void exploreSyncDependency(Instruction *TI);
110 // Computes the influence region from Start to End. This region includes all
111 // basic blocks on any simple path from Start to End.
112 void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End,
113 DenseSet<BasicBlock *> &InfluenceRegion);
114 // Finds all users of I that are outside the influence region, and add these
115 // users to Worklist.
116 void findUsersOutsideInfluenceRegion(
117 Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion);
118
119 Function &F;
120 TargetTransformInfo &TTI;
121 DominatorTree &DT;
122 PostDominatorTree &PDT;
123 std::vector<Value *> Worklist; // Stack for DFS.
124 DenseSet<const Value *> &DV; // Stores all divergent values.
125 DenseSet<const Use *> &DU; // Stores divergent uses of possibly uniform
126 // values.
127 };
128
populateWithSourcesOfDivergence()129 void DivergencePropagator::populateWithSourcesOfDivergence() {
130 Worklist.clear();
131 DV.clear();
132 DU.clear();
133 for (auto &I : instructions(F)) {
134 if (TTI.isSourceOfDivergence(&I)) {
135 Worklist.push_back(&I);
136 DV.insert(&I);
137 }
138 }
139 for (auto &Arg : F.args()) {
140 if (TTI.isSourceOfDivergence(&Arg)) {
141 Worklist.push_back(&Arg);
142 DV.insert(&Arg);
143 }
144 }
145 }
146
exploreSyncDependency(Instruction * TI)147 void DivergencePropagator::exploreSyncDependency(Instruction *TI) {
148 // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's
149 // immediate post dominator are divergent. This rule handles if-then-else
150 // patterns. For example,
151 //
152 // if (tid < 5)
153 // a1 = 1;
154 // else
155 // a2 = 2;
156 // a = phi(a1, a2); // sync dependent on (tid < 5)
157 BasicBlock *ThisBB = TI->getParent();
158
159 // Unreachable blocks may not be in the dominator tree.
160 if (!DT.isReachableFromEntry(ThisBB))
161 return;
162
163 // If the function has no exit blocks or doesn't reach any exit blocks, the
164 // post dominator may be null.
165 DomTreeNode *ThisNode = PDT.getNode(ThisBB);
166 if (!ThisNode)
167 return;
168
169 BasicBlock *IPostDom = ThisNode->getIDom()->getBlock();
170 if (IPostDom == nullptr)
171 return;
172
173 for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) {
174 // A PHINode is uniform if it returns the same value no matter which path is
175 // taken.
176 if (!cast<PHINode>(I)->hasConstantOrUndefValue() && DV.insert(&*I).second)
177 Worklist.push_back(&*I);
178 }
179
180 // Propagation rule 2: if a value defined in a loop is used outside, the user
181 // is sync dependent on the condition of the loop exits that dominate the
182 // user. For example,
183 //
184 // int i = 0;
185 // do {
186 // i++;
187 // if (foo(i)) ... // uniform
188 // } while (i < tid);
189 // if (bar(i)) ... // divergent
190 //
191 // A program may contain unstructured loops. Therefore, we cannot leverage
192 // LoopInfo, which only recognizes natural loops.
193 //
194 // The algorithm used here handles both natural and unstructured loops. Given
195 // a branch TI, we first compute its influence region, the union of all simple
196 // paths from TI to its immediate post dominator (IPostDom). Then, we search
197 // for all the values defined in the influence region but used outside. All
198 // these users are sync dependent on TI.
199 DenseSet<BasicBlock *> InfluenceRegion;
200 computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion);
201 // An insight that can speed up the search process is that all the in-region
202 // values that are used outside must dominate TI. Therefore, instead of
203 // searching every basic blocks in the influence region, we search all the
204 // dominators of TI until it is outside the influence region.
205 BasicBlock *InfluencedBB = ThisBB;
206 while (InfluenceRegion.count(InfluencedBB)) {
207 for (auto &I : *InfluencedBB) {
208 if (!DV.count(&I))
209 findUsersOutsideInfluenceRegion(I, InfluenceRegion);
210 }
211 DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom();
212 if (IDomNode == nullptr)
213 break;
214 InfluencedBB = IDomNode->getBlock();
215 }
216 }
217
findUsersOutsideInfluenceRegion(Instruction & I,const DenseSet<BasicBlock * > & InfluenceRegion)218 void DivergencePropagator::findUsersOutsideInfluenceRegion(
219 Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) {
220 for (Use &Use : I.uses()) {
221 Instruction *UserInst = cast<Instruction>(Use.getUser());
222 if (!InfluenceRegion.count(UserInst->getParent())) {
223 DU.insert(&Use);
224 if (DV.insert(UserInst).second)
225 Worklist.push_back(UserInst);
226 }
227 }
228 }
229
230 // A helper function for computeInfluenceRegion that adds successors of "ThisBB"
231 // to the influence region.
232 static void
addSuccessorsToInfluenceRegion(BasicBlock * ThisBB,BasicBlock * End,DenseSet<BasicBlock * > & InfluenceRegion,std::vector<BasicBlock * > & InfluenceStack)233 addSuccessorsToInfluenceRegion(BasicBlock *ThisBB, BasicBlock *End,
234 DenseSet<BasicBlock *> &InfluenceRegion,
235 std::vector<BasicBlock *> &InfluenceStack) {
236 for (BasicBlock *Succ : successors(ThisBB)) {
237 if (Succ != End && InfluenceRegion.insert(Succ).second)
238 InfluenceStack.push_back(Succ);
239 }
240 }
241
computeInfluenceRegion(BasicBlock * Start,BasicBlock * End,DenseSet<BasicBlock * > & InfluenceRegion)242 void DivergencePropagator::computeInfluenceRegion(
243 BasicBlock *Start, BasicBlock *End,
244 DenseSet<BasicBlock *> &InfluenceRegion) {
245 assert(PDT.properlyDominates(End, Start) &&
246 "End does not properly dominate Start");
247
248 // The influence region starts from the end of "Start" to the beginning of
249 // "End". Therefore, "Start" should not be in the region unless "Start" is in
250 // a loop that doesn't contain "End".
251 std::vector<BasicBlock *> InfluenceStack;
252 addSuccessorsToInfluenceRegion(Start, End, InfluenceRegion, InfluenceStack);
253 while (!InfluenceStack.empty()) {
254 BasicBlock *BB = InfluenceStack.back();
255 InfluenceStack.pop_back();
256 addSuccessorsToInfluenceRegion(BB, End, InfluenceRegion, InfluenceStack);
257 }
258 }
259
exploreDataDependency(Value * V)260 void DivergencePropagator::exploreDataDependency(Value *V) {
261 // Follow def-use chains of V.
262 for (User *U : V->users()) {
263 if (!TTI.isAlwaysUniform(U) && DV.insert(U).second)
264 Worklist.push_back(U);
265 }
266 }
267
propagate()268 void DivergencePropagator::propagate() {
269 // Traverse the dependency graph using DFS.
270 while (!Worklist.empty()) {
271 Value *V = Worklist.back();
272 Worklist.pop_back();
273 if (Instruction *I = dyn_cast<Instruction>(V)) {
274 // Terminators with less than two successors won't introduce sync
275 // dependency. Ignore them.
276 if (I->isTerminator() && I->getNumSuccessors() > 1)
277 exploreSyncDependency(I);
278 }
279 exploreDataDependency(V);
280 }
281 }
282
283 } // namespace
284
285 // Register this pass.
286 char LegacyDivergenceAnalysis::ID = 0;
LegacyDivergenceAnalysis()287 LegacyDivergenceAnalysis::LegacyDivergenceAnalysis() : FunctionPass(ID) {
288 initializeLegacyDivergenceAnalysisPass(*PassRegistry::getPassRegistry());
289 }
290 INITIALIZE_PASS_BEGIN(LegacyDivergenceAnalysis, "divergence",
291 "Legacy Divergence Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)292 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
293 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
294 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
295 INITIALIZE_PASS_END(LegacyDivergenceAnalysis, "divergence",
296 "Legacy Divergence Analysis", false, true)
297
298 FunctionPass *llvm::createLegacyDivergenceAnalysisPass() {
299 return new LegacyDivergenceAnalysis();
300 }
301
shouldUseGPUDivergenceAnalysis(const Function & F,const TargetTransformInfo & TTI,const LoopInfo & LI)302 bool LegacyDivergenceAnalysisImpl::shouldUseGPUDivergenceAnalysis(
303 const Function &F, const TargetTransformInfo &TTI, const LoopInfo &LI) {
304 if (!(UseGPUDA || TTI.useGPUDivergenceAnalysis()))
305 return false;
306
307 // GPUDivergenceAnalysis requires a reducible CFG.
308 using RPOTraversal = ReversePostOrderTraversal<const Function *>;
309 RPOTraversal FuncRPOT(&F);
310 return !containsIrreducibleCFG<const BasicBlock *, const RPOTraversal,
311 const LoopInfo>(FuncRPOT, LI);
312 }
313
run(Function & F,llvm::TargetTransformInfo & TTI,llvm::DominatorTree & DT,llvm::PostDominatorTree & PDT,const llvm::LoopInfo & LI)314 void LegacyDivergenceAnalysisImpl::run(Function &F,
315 llvm::TargetTransformInfo &TTI,
316 llvm::DominatorTree &DT,
317 llvm::PostDominatorTree &PDT,
318 const llvm::LoopInfo &LI) {
319 if (shouldUseGPUDivergenceAnalysis(F, TTI, LI)) {
320 // run the new GPU divergence analysis
321 gpuDA = std::make_unique<DivergenceInfo>(F, DT, PDT, LI, TTI,
322 /* KnownReducible = */ true);
323
324 } else {
325 // run LLVM's existing DivergenceAnalysis
326 DivergencePropagator DP(F, TTI, DT, PDT, DivergentValues, DivergentUses);
327 DP.populateWithSourcesOfDivergence();
328 DP.propagate();
329 }
330 }
331
isDivergent(const Value * V) const332 bool LegacyDivergenceAnalysisImpl::isDivergent(const Value *V) const {
333 if (gpuDA) {
334 return gpuDA->isDivergent(*V);
335 }
336 return DivergentValues.count(V);
337 }
338
isDivergentUse(const Use * U) const339 bool LegacyDivergenceAnalysisImpl::isDivergentUse(const Use *U) const {
340 if (gpuDA) {
341 return gpuDA->isDivergentUse(*U);
342 }
343 return DivergentValues.count(U->get()) || DivergentUses.count(U);
344 }
345
print(raw_ostream & OS,const Module *) const346 void LegacyDivergenceAnalysisImpl::print(raw_ostream &OS,
347 const Module *) const {
348 if ((!gpuDA || !gpuDA->hasDivergence()) && DivergentValues.empty())
349 return;
350
351 const Function *F = nullptr;
352 if (!DivergentValues.empty()) {
353 const Value *FirstDivergentValue = *DivergentValues.begin();
354 if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) {
355 F = Arg->getParent();
356 } else if (const Instruction *I =
357 dyn_cast<Instruction>(FirstDivergentValue)) {
358 F = I->getParent()->getParent();
359 } else {
360 llvm_unreachable("Only arguments and instructions can be divergent");
361 }
362 } else if (gpuDA) {
363 F = &gpuDA->getFunction();
364 }
365 if (!F)
366 return;
367
368 // Dumps all divergent values in F, arguments and then instructions.
369 for (const auto &Arg : F->args()) {
370 OS << (isDivergent(&Arg) ? "DIVERGENT: " : " ");
371 OS << Arg << "\n";
372 }
373 // Iterate instructions using instructions() to ensure a deterministic order.
374 for (const BasicBlock &BB : *F) {
375 OS << "\n " << BB.getName() << ":\n";
376 for (const auto &I : BB.instructionsWithoutDebug()) {
377 OS << (isDivergent(&I) ? "DIVERGENT: " : " ");
378 OS << I << "\n";
379 }
380 }
381 OS << "\n";
382 }
383
getAnalysisUsage(AnalysisUsage & AU) const384 void LegacyDivergenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
385 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
386 AU.addRequiredTransitive<PostDominatorTreeWrapperPass>();
387 AU.addRequiredTransitive<LoopInfoWrapperPass>();
388 AU.setPreservesAll();
389 }
390
runOnFunction(Function & F)391 bool LegacyDivergenceAnalysis::runOnFunction(Function &F) {
392 auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
393 if (TTIWP == nullptr)
394 return false;
395
396 TargetTransformInfo &TTI = TTIWP->getTTI(F);
397 // Fast path: if the target does not have branch divergence, we do not mark
398 // any branch as divergent.
399 if (!TTI.hasBranchDivergence())
400 return false;
401
402 DivergentValues.clear();
403 DivergentUses.clear();
404 gpuDA = nullptr;
405
406 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
407 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
408 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
409 LegacyDivergenceAnalysisImpl::run(F, TTI, DT, PDT, LI);
410 LLVM_DEBUG(dbgs() << "\nAfter divergence analysis on " << F.getName()
411 << ":\n";
412 LegacyDivergenceAnalysisImpl::print(dbgs(), F.getParent()));
413
414 return false;
415 }
416
417 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & AM)418 LegacyDivergenceAnalysisPass::run(Function &F, FunctionAnalysisManager &AM) {
419 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
420 if (!TTI.hasBranchDivergence())
421 return PreservedAnalyses::all();
422
423 DivergentValues.clear();
424 DivergentUses.clear();
425 gpuDA = nullptr;
426
427 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
428 auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
429 auto &LI = AM.getResult<LoopAnalysis>(F);
430 LegacyDivergenceAnalysisImpl::run(F, TTI, DT, PDT, LI);
431 LLVM_DEBUG(dbgs() << "\nAfter divergence analysis on " << F.getName()
432 << ":\n";
433 LegacyDivergenceAnalysisImpl::print(dbgs(), F.getParent()));
434 return PreservedAnalyses::all();
435 }
436