1 //===- LoopVectorizationLegality.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides loop vectorization legality analysis. Original code
10 // resided in LoopVectorize.cpp for a long time.
11 //
12 // At this point, it is implemented as a utility class, not as an analysis
13 // pass. It should be easy to create an analysis pass around it if there
14 // is a need (but D45420 needs to happen first).
15 //
16
17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/Analysis/VectorUtils.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Transforms/Utils/SizeOpts.h"
28 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
29
30 using namespace llvm;
31 using namespace PatternMatch;
32
33 #define LV_NAME "loop-vectorize"
34 #define DEBUG_TYPE LV_NAME
35
36 static cl::opt<bool>
37 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
38 cl::desc("Enable if-conversion during vectorization."));
39
40 namespace llvm {
41 cl::opt<bool>
42 HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden,
43 cl::desc("Allow enabling loop hints to reorder "
44 "FP operations during vectorization."));
45 }
46
47 // TODO: Move size-based thresholds out of legality checking, make cost based
48 // decisions instead of hard thresholds.
49 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
50 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
51 cl::desc("The maximum number of SCEV checks allowed."));
52
53 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
54 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
55 cl::desc("The maximum number of SCEV checks allowed with a "
56 "vectorize(enable) pragma"));
57
58 static cl::opt<LoopVectorizeHints::ScalableForceKind>
59 ForceScalableVectorization(
60 "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified),
61 cl::Hidden,
62 cl::desc("Control whether the compiler can use scalable vectors to "
63 "vectorize a loop"),
64 cl::values(
65 clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off",
66 "Scalable vectorization is disabled."),
67 clEnumValN(
68 LoopVectorizeHints::SK_PreferScalable, "preferred",
69 "Scalable vectorization is available and favored when the "
70 "cost is inconclusive."),
71 clEnumValN(
72 LoopVectorizeHints::SK_PreferScalable, "on",
73 "Scalable vectorization is available and favored when the "
74 "cost is inconclusive.")));
75
76 /// Maximum vectorization interleave count.
77 static const unsigned MaxInterleaveFactor = 16;
78
79 namespace llvm {
80
validate(unsigned Val)81 bool LoopVectorizeHints::Hint::validate(unsigned Val) {
82 switch (Kind) {
83 case HK_WIDTH:
84 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
85 case HK_INTERLEAVE:
86 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
87 case HK_FORCE:
88 return (Val <= 1);
89 case HK_ISVECTORIZED:
90 case HK_PREDICATE:
91 case HK_SCALABLE:
92 return (Val == 0 || Val == 1);
93 }
94 return false;
95 }
96
LoopVectorizeHints(const Loop * L,bool InterleaveOnlyWhenForced,OptimizationRemarkEmitter & ORE,const TargetTransformInfo * TTI)97 LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
98 bool InterleaveOnlyWhenForced,
99 OptimizationRemarkEmitter &ORE,
100 const TargetTransformInfo *TTI)
101 : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
102 Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE),
103 Force("vectorize.enable", FK_Undefined, HK_FORCE),
104 IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
105 Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE),
106 Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE),
107 TheLoop(L), ORE(ORE) {
108 // Populate values with existing loop metadata.
109 getHintsFromMetadata();
110
111 // force-vector-interleave overrides DisableInterleaving.
112 if (VectorizerParams::isInterleaveForced())
113 Interleave.Value = VectorizerParams::VectorizationInterleave;
114
115 // If the metadata doesn't explicitly specify whether to enable scalable
116 // vectorization, then decide based on the following criteria (increasing
117 // level of priority):
118 // - Target default
119 // - Metadata width
120 // - Force option (always overrides)
121 if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) {
122 if (TTI)
123 Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable
124 : SK_FixedWidthOnly;
125
126 if (Width.Value)
127 // If the width is set, but the metadata says nothing about the scalable
128 // property, then assume it concerns only a fixed-width UserVF.
129 // If width is not set, the flag takes precedence.
130 Scalable.Value = SK_FixedWidthOnly;
131 }
132
133 // If the flag is set to force any use of scalable vectors, override the loop
134 // hints.
135 if (ForceScalableVectorization.getValue() !=
136 LoopVectorizeHints::SK_Unspecified)
137 Scalable.Value = ForceScalableVectorization.getValue();
138
139 // Scalable vectorization is disabled if no preference is specified.
140 if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified)
141 Scalable.Value = SK_FixedWidthOnly;
142
143 if (IsVectorized.Value != 1)
144 // If the vectorization width and interleaving count are both 1 then
145 // consider the loop to have been already vectorized because there's
146 // nothing more that we can do.
147 IsVectorized.Value =
148 getWidth() == ElementCount::getFixed(1) && getInterleave() == 1;
149 LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs()
150 << "LV: Interleaving disabled by the pass manager\n");
151 }
152
setAlreadyVectorized()153 void LoopVectorizeHints::setAlreadyVectorized() {
154 LLVMContext &Context = TheLoop->getHeader()->getContext();
155
156 MDNode *IsVectorizedMD = MDNode::get(
157 Context,
158 {MDString::get(Context, "llvm.loop.isvectorized"),
159 ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
160 MDNode *LoopID = TheLoop->getLoopID();
161 MDNode *NewLoopID =
162 makePostTransformationMetadata(Context, LoopID,
163 {Twine(Prefix(), "vectorize.").str(),
164 Twine(Prefix(), "interleave.").str()},
165 {IsVectorizedMD});
166 TheLoop->setLoopID(NewLoopID);
167
168 // Update internal cache.
169 IsVectorized.Value = 1;
170 }
171
allowVectorization(Function * F,Loop * L,bool VectorizeOnlyWhenForced) const172 bool LoopVectorizeHints::allowVectorization(
173 Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
174 if (getForce() == LoopVectorizeHints::FK_Disabled) {
175 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
176 emitRemarkWithHints();
177 return false;
178 }
179
180 if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
181 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
182 emitRemarkWithHints();
183 return false;
184 }
185
186 if (getIsVectorized() == 1) {
187 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
188 // FIXME: Add interleave.disable metadata. This will allow
189 // vectorize.disable to be used without disabling the pass and errors
190 // to differentiate between disabled vectorization and a width of 1.
191 ORE.emit([&]() {
192 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
193 "AllDisabled", L->getStartLoc(),
194 L->getHeader())
195 << "loop not vectorized: vectorization and interleaving are "
196 "explicitly disabled, or the loop has already been "
197 "vectorized";
198 });
199 return false;
200 }
201
202 return true;
203 }
204
emitRemarkWithHints() const205 void LoopVectorizeHints::emitRemarkWithHints() const {
206 using namespace ore;
207
208 ORE.emit([&]() {
209 if (Force.Value == LoopVectorizeHints::FK_Disabled)
210 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
211 TheLoop->getStartLoc(),
212 TheLoop->getHeader())
213 << "loop not vectorized: vectorization is explicitly disabled";
214 else {
215 OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
216 TheLoop->getStartLoc(), TheLoop->getHeader());
217 R << "loop not vectorized";
218 if (Force.Value == LoopVectorizeHints::FK_Enabled) {
219 R << " (Force=" << NV("Force", true);
220 if (Width.Value != 0)
221 R << ", Vector Width=" << NV("VectorWidth", getWidth());
222 if (getInterleave() != 0)
223 R << ", Interleave Count=" << NV("InterleaveCount", getInterleave());
224 R << ")";
225 }
226 return R;
227 }
228 });
229 }
230
vectorizeAnalysisPassName() const231 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
232 if (getWidth() == ElementCount::getFixed(1))
233 return LV_NAME;
234 if (getForce() == LoopVectorizeHints::FK_Disabled)
235 return LV_NAME;
236 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero())
237 return LV_NAME;
238 return OptimizationRemarkAnalysis::AlwaysPrint;
239 }
240
allowReordering() const241 bool LoopVectorizeHints::allowReordering() const {
242 // Allow the vectorizer to change the order of operations if enabling
243 // loop hints are provided
244 ElementCount EC = getWidth();
245 return HintsAllowReordering &&
246 (getForce() == LoopVectorizeHints::FK_Enabled ||
247 EC.getKnownMinValue() > 1);
248 }
249
getHintsFromMetadata()250 void LoopVectorizeHints::getHintsFromMetadata() {
251 MDNode *LoopID = TheLoop->getLoopID();
252 if (!LoopID)
253 return;
254
255 // First operand should refer to the loop id itself.
256 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
257 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
258
259 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
260 const MDString *S = nullptr;
261 SmallVector<Metadata *, 4> Args;
262
263 // The expected hint is either a MDString or a MDNode with the first
264 // operand a MDString.
265 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
266 if (!MD || MD->getNumOperands() == 0)
267 continue;
268 S = dyn_cast<MDString>(MD->getOperand(0));
269 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
270 Args.push_back(MD->getOperand(i));
271 } else {
272 S = dyn_cast<MDString>(LoopID->getOperand(i));
273 assert(Args.size() == 0 && "too many arguments for MDString");
274 }
275
276 if (!S)
277 continue;
278
279 // Check if the hint starts with the loop metadata prefix.
280 StringRef Name = S->getString();
281 if (Args.size() == 1)
282 setHint(Name, Args[0]);
283 }
284 }
285
setHint(StringRef Name,Metadata * Arg)286 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
287 if (!Name.startswith(Prefix()))
288 return;
289 Name = Name.substr(Prefix().size(), StringRef::npos);
290
291 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
292 if (!C)
293 return;
294 unsigned Val = C->getZExtValue();
295
296 Hint *Hints[] = {&Width, &Interleave, &Force,
297 &IsVectorized, &Predicate, &Scalable};
298 for (auto *H : Hints) {
299 if (Name == H->Name) {
300 if (H->validate(Val))
301 H->Value = Val;
302 else
303 LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
304 break;
305 }
306 }
307 }
308
309 // Return true if the inner loop \p Lp is uniform with regard to the outer loop
310 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
311 // executing the inner loop will execute the same iterations). This check is
312 // very constrained for now but it will be relaxed in the future. \p Lp is
313 // considered uniform if it meets all the following conditions:
314 // 1) it has a canonical IV (starting from 0 and with stride 1),
315 // 2) its latch terminator is a conditional branch and,
316 // 3) its latch condition is a compare instruction whose operands are the
317 // canonical IV and an OuterLp invariant.
318 // This check doesn't take into account the uniformity of other conditions not
319 // related to the loop latch because they don't affect the loop uniformity.
320 //
321 // NOTE: We decided to keep all these checks and its associated documentation
322 // together so that we can easily have a picture of the current supported loop
323 // nests. However, some of the current checks don't depend on \p OuterLp and
324 // would be redundantly executed for each \p Lp if we invoked this function for
325 // different candidate outer loops. This is not the case for now because we
326 // don't currently have the infrastructure to evaluate multiple candidate outer
327 // loops and \p OuterLp will be a fixed parameter while we only support explicit
328 // outer loop vectorization. It's also very likely that these checks go away
329 // before introducing the aforementioned infrastructure. However, if this is not
330 // the case, we should move the \p OuterLp independent checks to a separate
331 // function that is only executed once for each \p Lp.
isUniformLoop(Loop * Lp,Loop * OuterLp)332 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
333 assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
334
335 // If Lp is the outer loop, it's uniform by definition.
336 if (Lp == OuterLp)
337 return true;
338 assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
339
340 // 1.
341 PHINode *IV = Lp->getCanonicalInductionVariable();
342 if (!IV) {
343 LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
344 return false;
345 }
346
347 // 2.
348 BasicBlock *Latch = Lp->getLoopLatch();
349 auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
350 if (!LatchBr || LatchBr->isUnconditional()) {
351 LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
352 return false;
353 }
354
355 // 3.
356 auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
357 if (!LatchCmp) {
358 LLVM_DEBUG(
359 dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
360 return false;
361 }
362
363 Value *CondOp0 = LatchCmp->getOperand(0);
364 Value *CondOp1 = LatchCmp->getOperand(1);
365 Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
366 if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
367 !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
368 LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
369 return false;
370 }
371
372 return true;
373 }
374
375 // Return true if \p Lp and all its nested loops are uniform with regard to \p
376 // OuterLp.
isUniformLoopNest(Loop * Lp,Loop * OuterLp)377 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
378 if (!isUniformLoop(Lp, OuterLp))
379 return false;
380
381 // Check if nested loops are uniform.
382 for (Loop *SubLp : *Lp)
383 if (!isUniformLoopNest(SubLp, OuterLp))
384 return false;
385
386 return true;
387 }
388
convertPointerToIntegerType(const DataLayout & DL,Type * Ty)389 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
390 if (Ty->isPointerTy())
391 return DL.getIntPtrType(Ty);
392
393 // It is possible that char's or short's overflow when we ask for the loop's
394 // trip count, work around this by changing the type size.
395 if (Ty->getScalarSizeInBits() < 32)
396 return Type::getInt32Ty(Ty->getContext());
397
398 return Ty;
399 }
400
getWiderType(const DataLayout & DL,Type * Ty0,Type * Ty1)401 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
402 Ty0 = convertPointerToIntegerType(DL, Ty0);
403 Ty1 = convertPointerToIntegerType(DL, Ty1);
404 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
405 return Ty0;
406 return Ty1;
407 }
408
409 /// Check that the instruction has outside loop users and is not an
410 /// identified reduction variable.
hasOutsideLoopUser(const Loop * TheLoop,Instruction * Inst,SmallPtrSetImpl<Value * > & AllowedExit)411 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
412 SmallPtrSetImpl<Value *> &AllowedExit) {
413 // Reductions, Inductions and non-header phis are allowed to have exit users. All
414 // other instructions must not have external users.
415 if (!AllowedExit.count(Inst))
416 // Check that all of the users of the loop are inside the BB.
417 for (User *U : Inst->users()) {
418 Instruction *UI = cast<Instruction>(U);
419 // This user may be a reduction exit value.
420 if (!TheLoop->contains(UI)) {
421 LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
422 return true;
423 }
424 }
425 return false;
426 }
427
428 /// Returns true if A and B have same pointer operands or same SCEVs addresses
storeToSameAddress(ScalarEvolution * SE,StoreInst * A,StoreInst * B)429 static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A,
430 StoreInst *B) {
431 // Compare store
432 if (A == B)
433 return true;
434
435 // Otherwise Compare pointers
436 Value *APtr = A->getPointerOperand();
437 Value *BPtr = B->getPointerOperand();
438 if (APtr == BPtr)
439 return true;
440
441 // Otherwise compare address SCEVs
442 if (SE->getSCEV(APtr) == SE->getSCEV(BPtr))
443 return true;
444
445 return false;
446 }
447
isConsecutivePtr(Type * AccessTy,Value * Ptr) const448 int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy,
449 Value *Ptr) const {
450 const ValueToValueMap &Strides =
451 getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
452
453 Function *F = TheLoop->getHeader()->getParent();
454 bool OptForSize = F->hasOptSize() ||
455 llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI,
456 PGSOQueryType::IRPass);
457 bool CanAddPredicate = !OptForSize;
458 int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides,
459 CanAddPredicate, false).value_or(0);
460 if (Stride == 1 || Stride == -1)
461 return Stride;
462 return 0;
463 }
464
isUniform(Value * V) const465 bool LoopVectorizationLegality::isUniform(Value *V) const {
466 return LAI->isUniform(V);
467 }
468
isUniformMemOp(Instruction & I) const469 bool LoopVectorizationLegality::isUniformMemOp(Instruction &I) const {
470 Value *Ptr = getLoadStorePointerOperand(&I);
471 if (!Ptr)
472 return false;
473 // Note: There's nothing inherent which prevents predicated loads and
474 // stores from being uniform. The current lowering simply doesn't handle
475 // it; in particular, the cost model distinguishes scatter/gather from
476 // scalar w/predication, and we currently rely on the scalar path.
477 return isUniform(Ptr) && !blockNeedsPredication(I.getParent());
478 }
479
canVectorizeOuterLoop()480 bool LoopVectorizationLegality::canVectorizeOuterLoop() {
481 assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop.");
482 // Store the result and return it at the end instead of exiting early, in case
483 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
484 bool Result = true;
485 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
486
487 for (BasicBlock *BB : TheLoop->blocks()) {
488 // Check whether the BB terminator is a BranchInst. Any other terminator is
489 // not supported yet.
490 auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
491 if (!Br) {
492 reportVectorizationFailure("Unsupported basic block terminator",
493 "loop control flow is not understood by vectorizer",
494 "CFGNotUnderstood", ORE, TheLoop);
495 if (DoExtraAnalysis)
496 Result = false;
497 else
498 return false;
499 }
500
501 // Check whether the BranchInst is a supported one. Only unconditional
502 // branches, conditional branches with an outer loop invariant condition or
503 // backedges are supported.
504 // FIXME: We skip these checks when VPlan predication is enabled as we
505 // want to allow divergent branches. This whole check will be removed
506 // once VPlan predication is on by default.
507 if (Br && Br->isConditional() &&
508 !TheLoop->isLoopInvariant(Br->getCondition()) &&
509 !LI->isLoopHeader(Br->getSuccessor(0)) &&
510 !LI->isLoopHeader(Br->getSuccessor(1))) {
511 reportVectorizationFailure("Unsupported conditional branch",
512 "loop control flow is not understood by vectorizer",
513 "CFGNotUnderstood", ORE, TheLoop);
514 if (DoExtraAnalysis)
515 Result = false;
516 else
517 return false;
518 }
519 }
520
521 // Check whether inner loops are uniform. At this point, we only support
522 // simple outer loops scenarios with uniform nested loops.
523 if (!isUniformLoopNest(TheLoop /*loop nest*/,
524 TheLoop /*context outer loop*/)) {
525 reportVectorizationFailure("Outer loop contains divergent loops",
526 "loop control flow is not understood by vectorizer",
527 "CFGNotUnderstood", ORE, TheLoop);
528 if (DoExtraAnalysis)
529 Result = false;
530 else
531 return false;
532 }
533
534 // Check whether we are able to set up outer loop induction.
535 if (!setupOuterLoopInductions()) {
536 reportVectorizationFailure("Unsupported outer loop Phi(s)",
537 "Unsupported outer loop Phi(s)",
538 "UnsupportedPhi", ORE, TheLoop);
539 if (DoExtraAnalysis)
540 Result = false;
541 else
542 return false;
543 }
544
545 return Result;
546 }
547
addInductionPhi(PHINode * Phi,const InductionDescriptor & ID,SmallPtrSetImpl<Value * > & AllowedExit)548 void LoopVectorizationLegality::addInductionPhi(
549 PHINode *Phi, const InductionDescriptor &ID,
550 SmallPtrSetImpl<Value *> &AllowedExit) {
551 Inductions[Phi] = ID;
552
553 // In case this induction also comes with casts that we know we can ignore
554 // in the vectorized loop body, record them here. All casts could be recorded
555 // here for ignoring, but suffices to record only the first (as it is the
556 // only one that may bw used outside the cast sequence).
557 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
558 if (!Casts.empty())
559 InductionCastsToIgnore.insert(*Casts.begin());
560
561 Type *PhiTy = Phi->getType();
562 const DataLayout &DL = Phi->getModule()->getDataLayout();
563
564 // Get the widest type.
565 if (!PhiTy->isFloatingPointTy()) {
566 if (!WidestIndTy)
567 WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
568 else
569 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
570 }
571
572 // Int inductions are special because we only allow one IV.
573 if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
574 ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
575 isa<Constant>(ID.getStartValue()) &&
576 cast<Constant>(ID.getStartValue())->isNullValue()) {
577
578 // Use the phi node with the widest type as induction. Use the last
579 // one if there are multiple (no good reason for doing this other
580 // than it is expedient). We've checked that it begins at zero and
581 // steps by one, so this is a canonical induction variable.
582 if (!PrimaryInduction || PhiTy == WidestIndTy)
583 PrimaryInduction = Phi;
584 }
585
586 // Both the PHI node itself, and the "post-increment" value feeding
587 // back into the PHI node may have external users.
588 // We can allow those uses, except if the SCEVs we have for them rely
589 // on predicates that only hold within the loop, since allowing the exit
590 // currently means re-using this SCEV outside the loop (see PR33706 for more
591 // details).
592 if (PSE.getPredicate().isAlwaysTrue()) {
593 AllowedExit.insert(Phi);
594 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
595 }
596
597 LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
598 }
599
setupOuterLoopInductions()600 bool LoopVectorizationLegality::setupOuterLoopInductions() {
601 BasicBlock *Header = TheLoop->getHeader();
602
603 // Returns true if a given Phi is a supported induction.
604 auto isSupportedPhi = [&](PHINode &Phi) -> bool {
605 InductionDescriptor ID;
606 if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
607 ID.getKind() == InductionDescriptor::IK_IntInduction) {
608 addInductionPhi(&Phi, ID, AllowedExit);
609 return true;
610 } else {
611 // Bail out for any Phi in the outer loop header that is not a supported
612 // induction.
613 LLVM_DEBUG(
614 dbgs()
615 << "LV: Found unsupported PHI for outer loop vectorization.\n");
616 return false;
617 }
618 };
619
620 if (llvm::all_of(Header->phis(), isSupportedPhi))
621 return true;
622 else
623 return false;
624 }
625
626 /// Checks if a function is scalarizable according to the TLI, in
627 /// the sense that it should be vectorized and then expanded in
628 /// multiple scalar calls. This is represented in the
629 /// TLI via mappings that do not specify a vector name, as in the
630 /// following example:
631 ///
632 /// const VecDesc VecIntrinsics[] = {
633 /// {"llvm.phx.abs.i32", "", 4}
634 /// };
isTLIScalarize(const TargetLibraryInfo & TLI,const CallInst & CI)635 static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
636 const StringRef ScalarName = CI.getCalledFunction()->getName();
637 bool Scalarize = TLI.isFunctionVectorizable(ScalarName);
638 // Check that all known VFs are not associated to a vector
639 // function, i.e. the vector name is emty.
640 if (Scalarize) {
641 ElementCount WidestFixedVF, WidestScalableVF;
642 TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF);
643 for (ElementCount VF = ElementCount::getFixed(2);
644 ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2)
645 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
646 for (ElementCount VF = ElementCount::getScalable(1);
647 ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2)
648 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
649 assert((WidestScalableVF.isZero() || !Scalarize) &&
650 "Caller may decide to scalarize a variant using a scalable VF");
651 }
652 return Scalarize;
653 }
654
canVectorizeInstrs()655 bool LoopVectorizationLegality::canVectorizeInstrs() {
656 BasicBlock *Header = TheLoop->getHeader();
657
658 // For each block in the loop.
659 for (BasicBlock *BB : TheLoop->blocks()) {
660 // Scan the instructions in the block and look for hazards.
661 for (Instruction &I : *BB) {
662 if (auto *Phi = dyn_cast<PHINode>(&I)) {
663 Type *PhiTy = Phi->getType();
664 // Check that this PHI type is allowed.
665 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
666 !PhiTy->isPointerTy()) {
667 reportVectorizationFailure("Found a non-int non-pointer PHI",
668 "loop control flow is not understood by vectorizer",
669 "CFGNotUnderstood", ORE, TheLoop);
670 return false;
671 }
672
673 // If this PHINode is not in the header block, then we know that we
674 // can convert it to select during if-conversion. No need to check if
675 // the PHIs in this block are induction or reduction variables.
676 if (BB != Header) {
677 // Non-header phi nodes that have outside uses can be vectorized. Add
678 // them to the list of allowed exits.
679 // Unsafe cyclic dependencies with header phis are identified during
680 // legalization for reduction, induction and fixed order
681 // recurrences.
682 AllowedExit.insert(&I);
683 continue;
684 }
685
686 // We only allow if-converted PHIs with exactly two incoming values.
687 if (Phi->getNumIncomingValues() != 2) {
688 reportVectorizationFailure("Found an invalid PHI",
689 "loop control flow is not understood by vectorizer",
690 "CFGNotUnderstood", ORE, TheLoop, Phi);
691 return false;
692 }
693
694 RecurrenceDescriptor RedDes;
695 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
696 DT, PSE.getSE())) {
697 Requirements->addExactFPMathInst(RedDes.getExactFPMathInst());
698 AllowedExit.insert(RedDes.getLoopExitInstr());
699 Reductions[Phi] = RedDes;
700 continue;
701 }
702
703 // TODO: Instead of recording the AllowedExit, it would be good to
704 // record the complementary set: NotAllowedExit. These include (but may
705 // not be limited to):
706 // 1. Reduction phis as they represent the one-before-last value, which
707 // is not available when vectorized
708 // 2. Induction phis and increment when SCEV predicates cannot be used
709 // outside the loop - see addInductionPhi
710 // 3. Non-Phis with outside uses when SCEV predicates cannot be used
711 // outside the loop - see call to hasOutsideLoopUser in the non-phi
712 // handling below
713 // 4. FixedOrderRecurrence phis that can possibly be handled by
714 // extraction.
715 // By recording these, we can then reason about ways to vectorize each
716 // of these NotAllowedExit.
717 InductionDescriptor ID;
718 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
719 addInductionPhi(Phi, ID, AllowedExit);
720 Requirements->addExactFPMathInst(ID.getExactFPMathInst());
721 continue;
722 }
723
724 if (RecurrenceDescriptor::isFixedOrderRecurrence(Phi, TheLoop,
725 SinkAfter, DT)) {
726 AllowedExit.insert(Phi);
727 FixedOrderRecurrences.insert(Phi);
728 continue;
729 }
730
731 // As a last resort, coerce the PHI to a AddRec expression
732 // and re-try classifying it a an induction PHI.
733 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
734 addInductionPhi(Phi, ID, AllowedExit);
735 continue;
736 }
737
738 reportVectorizationFailure("Found an unidentified PHI",
739 "value that could not be identified as "
740 "reduction is used outside the loop",
741 "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi);
742 return false;
743 } // end of PHI handling
744
745 // We handle calls that:
746 // * Are debug info intrinsics.
747 // * Have a mapping to an IR intrinsic.
748 // * Have a vector version available.
749 auto *CI = dyn_cast<CallInst>(&I);
750
751 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
752 !isa<DbgInfoIntrinsic>(CI) &&
753 !(CI->getCalledFunction() && TLI &&
754 (!VFDatabase::getMappings(*CI).empty() ||
755 isTLIScalarize(*TLI, *CI)))) {
756 // If the call is a recognized math libary call, it is likely that
757 // we can vectorize it given loosened floating-point constraints.
758 LibFunc Func;
759 bool IsMathLibCall =
760 TLI && CI->getCalledFunction() &&
761 CI->getType()->isFloatingPointTy() &&
762 TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
763 TLI->hasOptimizedCodeGen(Func);
764
765 if (IsMathLibCall) {
766 // TODO: Ideally, we should not use clang-specific language here,
767 // but it's hard to provide meaningful yet generic advice.
768 // Also, should this be guarded by allowExtraAnalysis() and/or be part
769 // of the returned info from isFunctionVectorizable()?
770 reportVectorizationFailure(
771 "Found a non-intrinsic callsite",
772 "library call cannot be vectorized. "
773 "Try compiling with -fno-math-errno, -ffast-math, "
774 "or similar flags",
775 "CantVectorizeLibcall", ORE, TheLoop, CI);
776 } else {
777 reportVectorizationFailure("Found a non-intrinsic callsite",
778 "call instruction cannot be vectorized",
779 "CantVectorizeLibcall", ORE, TheLoop, CI);
780 }
781 return false;
782 }
783
784 // Some intrinsics have scalar arguments and should be same in order for
785 // them to be vectorized (i.e. loop invariant).
786 if (CI) {
787 auto *SE = PSE.getSE();
788 Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
789 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i)
790 if (isVectorIntrinsicWithScalarOpAtArg(IntrinID, i)) {
791 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) {
792 reportVectorizationFailure("Found unvectorizable intrinsic",
793 "intrinsic instruction cannot be vectorized",
794 "CantVectorizeIntrinsic", ORE, TheLoop, CI);
795 return false;
796 }
797 }
798 }
799
800 // Check that the instruction return type is vectorizable.
801 // Also, we can't vectorize extractelement instructions.
802 if ((!VectorType::isValidElementType(I.getType()) &&
803 !I.getType()->isVoidTy()) ||
804 isa<ExtractElementInst>(I)) {
805 reportVectorizationFailure("Found unvectorizable type",
806 "instruction return type cannot be vectorized",
807 "CantVectorizeInstructionReturnType", ORE, TheLoop, &I);
808 return false;
809 }
810
811 // Check that the stored type is vectorizable.
812 if (auto *ST = dyn_cast<StoreInst>(&I)) {
813 Type *T = ST->getValueOperand()->getType();
814 if (!VectorType::isValidElementType(T)) {
815 reportVectorizationFailure("Store instruction cannot be vectorized",
816 "store instruction cannot be vectorized",
817 "CantVectorizeStore", ORE, TheLoop, ST);
818 return false;
819 }
820
821 // For nontemporal stores, check that a nontemporal vector version is
822 // supported on the target.
823 if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
824 // Arbitrarily try a vector of 2 elements.
825 auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2);
826 assert(VecTy && "did not find vectorized version of stored type");
827 if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) {
828 reportVectorizationFailure(
829 "nontemporal store instruction cannot be vectorized",
830 "nontemporal store instruction cannot be vectorized",
831 "CantVectorizeNontemporalStore", ORE, TheLoop, ST);
832 return false;
833 }
834 }
835
836 } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
837 if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
838 // For nontemporal loads, check that a nontemporal vector version is
839 // supported on the target (arbitrarily try a vector of 2 elements).
840 auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2);
841 assert(VecTy && "did not find vectorized version of load type");
842 if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) {
843 reportVectorizationFailure(
844 "nontemporal load instruction cannot be vectorized",
845 "nontemporal load instruction cannot be vectorized",
846 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
847 return false;
848 }
849 }
850
851 // FP instructions can allow unsafe algebra, thus vectorizable by
852 // non-IEEE-754 compliant SIMD units.
853 // This applies to floating-point math operations and calls, not memory
854 // operations, shuffles, or casts, as they don't change precision or
855 // semantics.
856 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
857 !I.isFast()) {
858 LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
859 Hints->setPotentiallyUnsafe();
860 }
861
862 // Reduction instructions are allowed to have exit users.
863 // All other instructions must not have external users.
864 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
865 // We can safely vectorize loops where instructions within the loop are
866 // used outside the loop only if the SCEV predicates within the loop is
867 // same as outside the loop. Allowing the exit means reusing the SCEV
868 // outside the loop.
869 if (PSE.getPredicate().isAlwaysTrue()) {
870 AllowedExit.insert(&I);
871 continue;
872 }
873 reportVectorizationFailure("Value cannot be used outside the loop",
874 "value cannot be used outside the loop",
875 "ValueUsedOutsideLoop", ORE, TheLoop, &I);
876 return false;
877 }
878 } // next instr.
879 }
880
881 if (!PrimaryInduction) {
882 if (Inductions.empty()) {
883 reportVectorizationFailure("Did not find one integer induction var",
884 "loop induction variable could not be identified",
885 "NoInductionVariable", ORE, TheLoop);
886 return false;
887 } else if (!WidestIndTy) {
888 reportVectorizationFailure("Did not find one integer induction var",
889 "integer loop induction variable could not be identified",
890 "NoIntegerInductionVariable", ORE, TheLoop);
891 return false;
892 } else {
893 LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
894 }
895 }
896
897 // For fixed order recurrences, we use the previous value (incoming value from
898 // the latch) to check if it dominates all users of the recurrence. Bail out
899 // if we have to sink such an instruction for another recurrence, as the
900 // dominance requirement may not hold after sinking.
901 BasicBlock *LoopLatch = TheLoop->getLoopLatch();
902 if (any_of(FixedOrderRecurrences, [LoopLatch, this](const PHINode *Phi) {
903 Instruction *V =
904 cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch));
905 return SinkAfter.find(V) != SinkAfter.end();
906 }))
907 return false;
908
909 // Now we know the widest induction type, check if our found induction
910 // is the same size. If it's not, unset it here and InnerLoopVectorizer
911 // will create another.
912 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
913 PrimaryInduction = nullptr;
914
915 return true;
916 }
917
canVectorizeMemory()918 bool LoopVectorizationLegality::canVectorizeMemory() {
919 LAI = &LAIs.getInfo(*TheLoop);
920 const OptimizationRemarkAnalysis *LAR = LAI->getReport();
921 if (LAR) {
922 ORE->emit([&]() {
923 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
924 "loop not vectorized: ", *LAR);
925 });
926 }
927
928 if (!LAI->canVectorizeMemory())
929 return false;
930
931 // We can vectorize stores to invariant address when final reduction value is
932 // guaranteed to be stored at the end of the loop. Also, if decision to
933 // vectorize loop is made, runtime checks are added so as to make sure that
934 // invariant address won't alias with any other objects.
935 if (!LAI->getStoresToInvariantAddresses().empty()) {
936 // For each invariant address, check if last stored value is unconditional
937 // and the address is not calculated inside the loop.
938 for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
939 if (!isInvariantStoreOfReduction(SI))
940 continue;
941
942 if (blockNeedsPredication(SI->getParent())) {
943 reportVectorizationFailure(
944 "We don't allow storing to uniform addresses",
945 "write of conditional recurring variant value to a loop "
946 "invariant address could not be vectorized",
947 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
948 return false;
949 }
950
951 // Invariant address should be defined outside of loop. LICM pass usually
952 // makes sure it happens, but in rare cases it does not, we do not want
953 // to overcomplicate vectorization to support this case.
954 if (Instruction *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) {
955 if (TheLoop->contains(Ptr)) {
956 reportVectorizationFailure(
957 "Invariant address is calculated inside the loop",
958 "write to a loop invariant address could not "
959 "be vectorized",
960 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
961 return false;
962 }
963 }
964 }
965
966 if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
967 // For each invariant address, check its last stored value is the result
968 // of one of our reductions.
969 //
970 // We do not check if dependence with loads exists because they are
971 // currently rejected earlier in LoopAccessInfo::analyzeLoop. In case this
972 // behaviour changes we have to modify this code.
973 ScalarEvolution *SE = PSE.getSE();
974 SmallVector<StoreInst *, 4> UnhandledStores;
975 for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
976 if (isInvariantStoreOfReduction(SI)) {
977 // Earlier stores to this address are effectively deadcode.
978 // With opaque pointers it is possible for one pointer to be used with
979 // different sizes of stored values:
980 // store i32 0, ptr %x
981 // store i8 0, ptr %x
982 // The latest store doesn't complitely overwrite the first one in the
983 // example. That is why we have to make sure that types of stored
984 // values are same.
985 // TODO: Check that bitwidth of unhandled store is smaller then the
986 // one that overwrites it and add a test.
987 erase_if(UnhandledStores, [SE, SI](StoreInst *I) {
988 return storeToSameAddress(SE, SI, I) &&
989 I->getValueOperand()->getType() ==
990 SI->getValueOperand()->getType();
991 });
992 continue;
993 }
994 UnhandledStores.push_back(SI);
995 }
996
997 bool IsOK = UnhandledStores.empty();
998 // TODO: we should also validate against InvariantMemSets.
999 if (!IsOK) {
1000 reportVectorizationFailure(
1001 "We don't allow storing to uniform addresses",
1002 "write to a loop invariant address could not "
1003 "be vectorized",
1004 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1005 return false;
1006 }
1007 }
1008 }
1009
1010 PSE.addPredicate(LAI->getPSE().getPredicate());
1011 return true;
1012 }
1013
canVectorizeFPMath(bool EnableStrictReductions)1014 bool LoopVectorizationLegality::canVectorizeFPMath(
1015 bool EnableStrictReductions) {
1016
1017 // First check if there is any ExactFP math or if we allow reassociations
1018 if (!Requirements->getExactFPInst() || Hints->allowReordering())
1019 return true;
1020
1021 // If the above is false, we have ExactFPMath & do not allow reordering.
1022 // If the EnableStrictReductions flag is set, first check if we have any
1023 // Exact FP induction vars, which we cannot vectorize.
1024 if (!EnableStrictReductions ||
1025 any_of(getInductionVars(), [&](auto &Induction) -> bool {
1026 InductionDescriptor IndDesc = Induction.second;
1027 return IndDesc.getExactFPMathInst();
1028 }))
1029 return false;
1030
1031 // We can now only vectorize if all reductions with Exact FP math also
1032 // have the isOrdered flag set, which indicates that we can move the
1033 // reduction operations in-loop.
1034 return (all_of(getReductionVars(), [&](auto &Reduction) -> bool {
1035 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1036 return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered();
1037 }));
1038 }
1039
isInvariantStoreOfReduction(StoreInst * SI)1040 bool LoopVectorizationLegality::isInvariantStoreOfReduction(StoreInst *SI) {
1041 return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
1042 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1043 return RdxDesc.IntermediateStore == SI;
1044 });
1045 }
1046
isInvariantAddressOfReduction(Value * V)1047 bool LoopVectorizationLegality::isInvariantAddressOfReduction(Value *V) {
1048 return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
1049 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1050 if (!RdxDesc.IntermediateStore)
1051 return false;
1052
1053 ScalarEvolution *SE = PSE.getSE();
1054 Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand();
1055 return V == InvariantAddress ||
1056 SE->getSCEV(V) == SE->getSCEV(InvariantAddress);
1057 });
1058 }
1059
isInductionPhi(const Value * V) const1060 bool LoopVectorizationLegality::isInductionPhi(const Value *V) const {
1061 Value *In0 = const_cast<Value *>(V);
1062 PHINode *PN = dyn_cast_or_null<PHINode>(In0);
1063 if (!PN)
1064 return false;
1065
1066 return Inductions.count(PN);
1067 }
1068
1069 const InductionDescriptor *
getIntOrFpInductionDescriptor(PHINode * Phi) const1070 LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const {
1071 if (!isInductionPhi(Phi))
1072 return nullptr;
1073 auto &ID = getInductionVars().find(Phi)->second;
1074 if (ID.getKind() == InductionDescriptor::IK_IntInduction ||
1075 ID.getKind() == InductionDescriptor::IK_FpInduction)
1076 return &ID;
1077 return nullptr;
1078 }
1079
1080 const InductionDescriptor *
getPointerInductionDescriptor(PHINode * Phi) const1081 LoopVectorizationLegality::getPointerInductionDescriptor(PHINode *Phi) const {
1082 if (!isInductionPhi(Phi))
1083 return nullptr;
1084 auto &ID = getInductionVars().find(Phi)->second;
1085 if (ID.getKind() == InductionDescriptor::IK_PtrInduction)
1086 return &ID;
1087 return nullptr;
1088 }
1089
isCastedInductionVariable(const Value * V) const1090 bool LoopVectorizationLegality::isCastedInductionVariable(
1091 const Value *V) const {
1092 auto *Inst = dyn_cast<Instruction>(V);
1093 return (Inst && InductionCastsToIgnore.count(Inst));
1094 }
1095
isInductionVariable(const Value * V) const1096 bool LoopVectorizationLegality::isInductionVariable(const Value *V) const {
1097 return isInductionPhi(V) || isCastedInductionVariable(V);
1098 }
1099
isFixedOrderRecurrence(const PHINode * Phi) const1100 bool LoopVectorizationLegality::isFixedOrderRecurrence(
1101 const PHINode *Phi) const {
1102 return FixedOrderRecurrences.count(Phi);
1103 }
1104
blockNeedsPredication(BasicBlock * BB) const1105 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const {
1106 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
1107 }
1108
blockCanBePredicated(BasicBlock * BB,SmallPtrSetImpl<Value * > & SafePtrs,SmallPtrSetImpl<const Instruction * > & MaskedOp,SmallPtrSetImpl<Instruction * > & ConditionalAssumes) const1109 bool LoopVectorizationLegality::blockCanBePredicated(
1110 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs,
1111 SmallPtrSetImpl<const Instruction *> &MaskedOp,
1112 SmallPtrSetImpl<Instruction *> &ConditionalAssumes) const {
1113 for (Instruction &I : *BB) {
1114 // We can predicate blocks with calls to assume, as long as we drop them in
1115 // case we flatten the CFG via predication.
1116 if (match(&I, m_Intrinsic<Intrinsic::assume>())) {
1117 ConditionalAssumes.insert(&I);
1118 continue;
1119 }
1120
1121 // Do not let llvm.experimental.noalias.scope.decl block the vectorization.
1122 // TODO: there might be cases that it should block the vectorization. Let's
1123 // ignore those for now.
1124 if (isa<NoAliasScopeDeclInst>(&I))
1125 continue;
1126
1127 // Loads are handled via masking (or speculated if safe to do so.)
1128 if (auto *LI = dyn_cast<LoadInst>(&I)) {
1129 if (!SafePtrs.count(LI->getPointerOperand()))
1130 MaskedOp.insert(LI);
1131 continue;
1132 }
1133
1134 // Predicated store requires some form of masking:
1135 // 1) masked store HW instruction,
1136 // 2) emulation via load-blend-store (only if safe and legal to do so,
1137 // be aware on the race conditions), or
1138 // 3) element-by-element predicate check and scalar store.
1139 if (auto *SI = dyn_cast<StoreInst>(&I)) {
1140 MaskedOp.insert(SI);
1141 continue;
1142 }
1143
1144 if (I.mayReadFromMemory() || I.mayWriteToMemory() || I.mayThrow())
1145 return false;
1146 }
1147
1148 return true;
1149 }
1150
canVectorizeWithIfConvert()1151 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
1152 if (!EnableIfConversion) {
1153 reportVectorizationFailure("If-conversion is disabled",
1154 "if-conversion is disabled",
1155 "IfConversionDisabled",
1156 ORE, TheLoop);
1157 return false;
1158 }
1159
1160 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
1161
1162 // A list of pointers which are known to be dereferenceable within scope of
1163 // the loop body for each iteration of the loop which executes. That is,
1164 // the memory pointed to can be dereferenced (with the access size implied by
1165 // the value's type) unconditionally within the loop header without
1166 // introducing a new fault.
1167 SmallPtrSet<Value *, 8> SafePointers;
1168
1169 // Collect safe addresses.
1170 for (BasicBlock *BB : TheLoop->blocks()) {
1171 if (!blockNeedsPredication(BB)) {
1172 for (Instruction &I : *BB)
1173 if (auto *Ptr = getLoadStorePointerOperand(&I))
1174 SafePointers.insert(Ptr);
1175 continue;
1176 }
1177
1178 // For a block which requires predication, a address may be safe to access
1179 // in the loop w/o predication if we can prove dereferenceability facts
1180 // sufficient to ensure it'll never fault within the loop. For the moment,
1181 // we restrict this to loads; stores are more complicated due to
1182 // concurrency restrictions.
1183 ScalarEvolution &SE = *PSE.getSE();
1184 for (Instruction &I : *BB) {
1185 LoadInst *LI = dyn_cast<LoadInst>(&I);
1186 if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) &&
1187 isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT, AC))
1188 SafePointers.insert(LI->getPointerOperand());
1189 }
1190 }
1191
1192 // Collect the blocks that need predication.
1193 for (BasicBlock *BB : TheLoop->blocks()) {
1194 // We don't support switch statements inside loops.
1195 if (!isa<BranchInst>(BB->getTerminator())) {
1196 reportVectorizationFailure("Loop contains a switch statement",
1197 "loop contains a switch statement",
1198 "LoopContainsSwitch", ORE, TheLoop,
1199 BB->getTerminator());
1200 return false;
1201 }
1202
1203 // We must be able to predicate all blocks that need to be predicated.
1204 if (blockNeedsPredication(BB)) {
1205 if (!blockCanBePredicated(BB, SafePointers, MaskedOp,
1206 ConditionalAssumes)) {
1207 reportVectorizationFailure(
1208 "Control flow cannot be substituted for a select",
1209 "control flow cannot be substituted for a select",
1210 "NoCFGForSelect", ORE, TheLoop,
1211 BB->getTerminator());
1212 return false;
1213 }
1214 }
1215 }
1216
1217 // We can if-convert this loop.
1218 return true;
1219 }
1220
1221 // Helper function to canVectorizeLoopNestCFG.
canVectorizeLoopCFG(Loop * Lp,bool UseVPlanNativePath)1222 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
1223 bool UseVPlanNativePath) {
1224 assert((UseVPlanNativePath || Lp->isInnermost()) &&
1225 "VPlan-native path is not enabled.");
1226
1227 // TODO: ORE should be improved to show more accurate information when an
1228 // outer loop can't be vectorized because a nested loop is not understood or
1229 // legal. Something like: "outer_loop_location: loop not vectorized:
1230 // (inner_loop_location) loop control flow is not understood by vectorizer".
1231
1232 // Store the result and return it at the end instead of exiting early, in case
1233 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1234 bool Result = true;
1235 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1236
1237 // We must have a loop in canonical form. Loops with indirectbr in them cannot
1238 // be canonicalized.
1239 if (!Lp->getLoopPreheader()) {
1240 reportVectorizationFailure("Loop doesn't have a legal pre-header",
1241 "loop control flow is not understood by vectorizer",
1242 "CFGNotUnderstood", ORE, TheLoop);
1243 if (DoExtraAnalysis)
1244 Result = false;
1245 else
1246 return false;
1247 }
1248
1249 // We must have a single backedge.
1250 if (Lp->getNumBackEdges() != 1) {
1251 reportVectorizationFailure("The loop must have a single backedge",
1252 "loop control flow is not understood by vectorizer",
1253 "CFGNotUnderstood", ORE, TheLoop);
1254 if (DoExtraAnalysis)
1255 Result = false;
1256 else
1257 return false;
1258 }
1259
1260 return Result;
1261 }
1262
canVectorizeLoopNestCFG(Loop * Lp,bool UseVPlanNativePath)1263 bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1264 Loop *Lp, bool UseVPlanNativePath) {
1265 // Store the result and return it at the end instead of exiting early, in case
1266 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1267 bool Result = true;
1268 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1269 if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1270 if (DoExtraAnalysis)
1271 Result = false;
1272 else
1273 return false;
1274 }
1275
1276 // Recursively check whether the loop control flow of nested loops is
1277 // understood.
1278 for (Loop *SubLp : *Lp)
1279 if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1280 if (DoExtraAnalysis)
1281 Result = false;
1282 else
1283 return false;
1284 }
1285
1286 return Result;
1287 }
1288
canVectorize(bool UseVPlanNativePath)1289 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1290 // Store the result and return it at the end instead of exiting early, in case
1291 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1292 bool Result = true;
1293
1294 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1295 // Check whether the loop-related control flow in the loop nest is expected by
1296 // vectorizer.
1297 if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1298 if (DoExtraAnalysis)
1299 Result = false;
1300 else
1301 return false;
1302 }
1303
1304 // We need to have a loop header.
1305 LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1306 << '\n');
1307
1308 // Specific checks for outer loops. We skip the remaining legal checks at this
1309 // point because they don't support outer loops.
1310 if (!TheLoop->isInnermost()) {
1311 assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1312
1313 if (!canVectorizeOuterLoop()) {
1314 reportVectorizationFailure("Unsupported outer loop",
1315 "unsupported outer loop",
1316 "UnsupportedOuterLoop",
1317 ORE, TheLoop);
1318 // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1319 // outer loops.
1320 return false;
1321 }
1322
1323 LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1324 return Result;
1325 }
1326
1327 assert(TheLoop->isInnermost() && "Inner loop expected.");
1328 // Check if we can if-convert non-single-bb loops.
1329 unsigned NumBlocks = TheLoop->getNumBlocks();
1330 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1331 LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1332 if (DoExtraAnalysis)
1333 Result = false;
1334 else
1335 return false;
1336 }
1337
1338 // Check if we can vectorize the instructions and CFG in this loop.
1339 if (!canVectorizeInstrs()) {
1340 LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1341 if (DoExtraAnalysis)
1342 Result = false;
1343 else
1344 return false;
1345 }
1346
1347 // Go over each instruction and look at memory deps.
1348 if (!canVectorizeMemory()) {
1349 LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1350 if (DoExtraAnalysis)
1351 Result = false;
1352 else
1353 return false;
1354 }
1355
1356 LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1357 << (LAI->getRuntimePointerChecking()->Need
1358 ? " (with a runtime bound check)"
1359 : "")
1360 << "!\n");
1361
1362 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1363 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1364 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1365
1366 if (PSE.getPredicate().getComplexity() > SCEVThreshold) {
1367 reportVectorizationFailure("Too many SCEV checks needed",
1368 "Too many SCEV assumptions need to be made and checked at runtime",
1369 "TooManySCEVRunTimeChecks", ORE, TheLoop);
1370 if (DoExtraAnalysis)
1371 Result = false;
1372 else
1373 return false;
1374 }
1375
1376 // Okay! We've done all the tests. If any have failed, return false. Otherwise
1377 // we can vectorize, and at this point we don't have any other mem analysis
1378 // which may limit our maximum vectorization factor, so just return true with
1379 // no restrictions.
1380 return Result;
1381 }
1382
prepareToFoldTailByMasking()1383 bool LoopVectorizationLegality::prepareToFoldTailByMasking() {
1384
1385 LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1386
1387 SmallPtrSet<const Value *, 8> ReductionLiveOuts;
1388
1389 for (const auto &Reduction : getReductionVars())
1390 ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());
1391
1392 // TODO: handle non-reduction outside users when tail is folded by masking.
1393 for (auto *AE : AllowedExit) {
1394 // Check that all users of allowed exit values are inside the loop or
1395 // are the live-out of a reduction.
1396 if (ReductionLiveOuts.count(AE))
1397 continue;
1398 for (User *U : AE->users()) {
1399 Instruction *UI = cast<Instruction>(U);
1400 if (TheLoop->contains(UI))
1401 continue;
1402 LLVM_DEBUG(
1403 dbgs()
1404 << "LV: Cannot fold tail by masking, loop has an outside user for "
1405 << *UI << "\n");
1406 return false;
1407 }
1408 }
1409
1410 // The list of pointers that we can safely read and write to remains empty.
1411 SmallPtrSet<Value *, 8> SafePointers;
1412
1413 SmallPtrSet<const Instruction *, 8> TmpMaskedOp;
1414 SmallPtrSet<Instruction *, 8> TmpConditionalAssumes;
1415
1416 // Check and mark all blocks for predication, including those that ordinarily
1417 // do not need predication such as the header block.
1418 for (BasicBlock *BB : TheLoop->blocks()) {
1419 if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp,
1420 TmpConditionalAssumes)) {
1421 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n");
1422 return false;
1423 }
1424 }
1425
1426 LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1427
1428 MaskedOp.insert(TmpMaskedOp.begin(), TmpMaskedOp.end());
1429 ConditionalAssumes.insert(TmpConditionalAssumes.begin(),
1430 TmpConditionalAssumes.end());
1431
1432 return true;
1433 }
1434
1435 } // namespace llvm
1436