1 //*@@@+++@@@@******************************************************************
2 //
3 // Copyright � Microsoft Corp.
4 // All rights reserved.
5 //
6 // Redistribution and use in source and binary forms, with or without
7 // modification, are permitted provided that the following conditions are met:
8 //
9 // � Redistributions of source code must retain the above copyright notice,
10 //   this list of conditions and the following disclaimer.
11 // � Redistributions in binary form must reproduce the above copyright notice,
12 //   this list of conditions and the following disclaimer in the documentation
13 //   and/or other materials provided with the distribution.
14 //
15 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
19 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 // POSSIBILITY OF SUCH DAMAGE.
26 //
27 //*@@@---@@@@******************************************************************
28 
29 #include "strcodec.h"
30 #include "decode.h"
31 
32 #ifdef MEM_TRACE
33 #define TRACE_MALLOC    1
34 #define TRACE_NEW       0
35 #define TRACE_HEAP      0
36 #include "memtrace.h"
37 #endif
38 
39 extern const int dctIndex[3][16];
40 extern const int blkOffset[16];
41 extern const int blkOffsetUV[4];
42 static Int DecodeSignificantAbsLevel (struct CAdaptiveHuffman *pAHexpt, BitIOInfo* pIO);
43 
44 //#undef X86OPT_INLINE
45 
46 #ifdef X86OPT_INLINE
47 #define _FORCEINLINE __forceinline
48 #else // X86OPT_INLINE
49 #define _FORCEINLINE
50 #endif // X86OPT_INLINE
51 
52 //================================================================
53 // Memory access functions
54 //================================================================
_load4(void * pv)55 static U32 _FORCEINLINE _load4(void* pv)
56 {
57 #ifdef _BIG__ENDIAN_
58     return (*(U32*)pv);
59 #else // _BIG__ENDIAN_
60 #if defined(_M_IA64) || defined(_ARM_)
61     U32  v;
62     v = ((U16 *) pv)[0];
63     v |= ((U32)((U16 *) pv)[1]) << 16;
64     return _byteswap_ulong(v);
65 #else // _M_IA64
66     return _byteswap_ulong(*(U32*)pv);
67 #endif // _M_IA64
68 #endif // _BIG__ENDIAN_
69 }
70 
_peekBit16(BitIOInfo * pIO,U32 cBits)71 static _FORCEINLINE U32 _peekBit16(BitIOInfo* pIO, U32 cBits)
72 {
73     PEEKBIT16(pIO, cBits);
74     // masking is not needed here because shift of unsigned int is implemented as a logical shift (SHR)!
75 }
76 
77 #define LOAD16 _load4
_flushBit16(BitIOInfo * pIO,U32 cBits)78 static _FORCEINLINE U32 _flushBit16(BitIOInfo* pIO, U32 cBits)
79 {
80     FLUSHBIT16(pIO, cBits);
81 }
82 
_getBit16(BitIOInfo * pIO,U32 cBits)83 static _FORCEINLINE U32 _getBit16(BitIOInfo* pIO, U32 cBits)
84 {
85     U32 uiRet = _peekBit16(pIO, cBits);
86     _flushBit16(pIO, cBits);
87 
88     return uiRet;
89 }
90 
91 #define SIGN_BIT(TypeOrValue) (((UInt) 1) << (8 * sizeof (TypeOrValue) - 1))
92 /***********************************************************************************************************
93   Huffman decode (input is a fully built Huffman table)
94 ***********************************************************************************************************/
getHuff(const short * pDecodeTable,BitIOInfo * pIO)95 Int getHuff(const short *pDecodeTable, BitIOInfo* pIO)
96 {
97     Int iSymbol, iSymbolHuff;
98     iSymbol = pDecodeTable[peekBit16(pIO, HUFFMAN_DECODE_ROOT_BITS)];
99 
100     flushBit16(pIO, iSymbol < 0 ? HUFFMAN_DECODE_ROOT_BITS : iSymbol & ((1 << HUFFMAN_DECODE_ROOT_BITS_LOG) - 1));
101 	iSymbolHuff = iSymbol >> HUFFMAN_DECODE_ROOT_BITS_LOG;
102 
103 	if (iSymbolHuff < 0) {
104 		iSymbolHuff = iSymbol;
105         while ((iSymbolHuff = pDecodeTable[iSymbolHuff + SIGN_BIT (pDecodeTable[0]) + getBit16(pIO, 1)]) < 0);
106 	}
107     return (iSymbolHuff);
108 }
109 
110 #if 1
_getBool16(BitIOInfo * pIO)111 static _FORCEINLINE U32 _getBool16(BitIOInfo* pIO)
112 {
113     U32 uiRet = pIO->uiAccumulator >> 31;//_peekBit16(pIO, 1);
114     //_flushBit16(pIO, 1);
115     pIO->cBitsUsed++;
116     if (pIO->cBitsUsed < 16) {
117         pIO->uiAccumulator <<= 1;
118     }
119     else {
120         pIO->pbCurrent = MASKPTR(pIO->pbCurrent + ((pIO->cBitsUsed >> 3)/* & 2*/), pIO->iMask);
121         pIO->cBitsUsed &= 16 - 1;
122         pIO->uiAccumulator = LOAD16(pIO->pbCurrent) << pIO->cBitsUsed;
123     }
124 
125     return uiRet;
126 }
127 
_getSign(BitIOInfo * pIO)128 static _FORCEINLINE I32 _getSign(BitIOInfo* pIO)
129 {
130     I32 uiRet = (int) pIO->uiAccumulator >> 31;//_peekBit16(pIO, 1);
131     //_flushBit16(pIO, 1);
132     pIO->cBitsUsed++;
133     if (pIO->cBitsUsed < 16) {
134         pIO->uiAccumulator <<= 1;
135     }
136     else {
137         pIO->pbCurrent = MASKPTR(pIO->pbCurrent + ((pIO->cBitsUsed >> 3)/* & 2*/), pIO->iMask);
138         pIO->cBitsUsed &= 16 - 1;
139         pIO->uiAccumulator = LOAD16(pIO->pbCurrent) << pIO->cBitsUsed;
140     }
141 
142     return uiRet;
143 }
144 #else
145 #define _getBool16(x)   _getBit16((x),1)
146 #define _getSign(x)   (-_getBit16((x),1))
147 #endif
148 
149 /** this function returns cBits if zero is read, or a signed value if first cBits are not all zero **/
_getBit16s(BitIOInfo * pIO,U32 cBits)150 static _FORCEINLINE I32 _getBit16s(BitIOInfo* pIO, U32 cBits)
151 {
152     I32 iRet = (I32)_peekBit16(pIO, cBits + 1);
153     iRet = ((iRet >> 1) ^ (-(iRet & 1))) + (iRet & 1);
154     _flushBit16(pIO, cBits + (iRet != 0));
155     return iRet;
156 }
157 
158 /*************************************************************************
159     Huffman decoding with short tables
160 *************************************************************************/
_getHuffShort(const short * pDecodeTable,BitIOInfo * pIO)161 static _FORCEINLINE Int _getHuffShort(const short *pDecodeTable, BitIOInfo* pIO)
162 {
163     Int iSymbol = pDecodeTable[_peekBit16(pIO, HUFFMAN_DECODE_ROOT_BITS)];
164     assert(iSymbol >= 0);
165     // for some strange reason, inlining flushBit doesn't work well
166     flushBit16(pIO, iSymbol & ((1 << HUFFMAN_DECODE_ROOT_BITS_LOG) - 1));
167     return (iSymbol >> HUFFMAN_DECODE_ROOT_BITS_LOG);
168 }
169 /*************************************************************************
170     Adapt + Huffman init
171 *************************************************************************/
AdaptDecFixed(CAdaptiveHuffman * pAH)172 static Int AdaptDecFixed (CAdaptiveHuffman *pAH)
173 {
174     AdaptDiscriminant (pAH);
175     return ICERR_OK;
176 }
177 
178 /*************************************************************************
179     DecodeCBP
180 *************************************************************************/
DecodeCBP(CWMImageStrCodec * pSC,CCodingContext * pContext)181 static Void DecodeCBP(CWMImageStrCodec * pSC, CCodingContext *pContext)
182 {
183     BitIOInfo* pIO = pContext->m_pIOAC;
184     const COLORFORMAT cf = pSC->m_param.cfColorFormat;
185     const Int iChannel = (cf == NCOMPONENT || cf == CMYK) ? (Int) pSC->m_param.cNumChannels : 1;
186     Int iCBPCY, iCBPCU , iCBPCV;
187     Int k, iBlock, i;
188     Int iNumCBP;
189     Bool bIsChroma;
190     CAdaptiveHuffman *pAHCBP = pContext->m_pAdaptHuffCBPCY;
191     CAdaptiveHuffman *pAHCBP1 = pContext->m_pAdaptHuffCBPCY1;
192     CAdaptiveHuffman *pAHex1 = pContext->m_pAHexpt[1];
193 
194     readIS_L1(pSC, pIO);
195 
196     for (i = 0; i < iChannel; i++) {
197 
198         iCBPCY = iCBPCU = iCBPCV = 0;
199         iNumCBP = _getHuffShort(pAHCBP1->m_hufDecTable, pIO);
200         pAHCBP1->m_iDiscriminant += pAHCBP1->m_pDelta[iNumCBP];
201 
202         switch (iNumCBP) {
203             case 2:
204                 iNumCBP = _getBit16(pIO, 2);
205                 if (iNumCBP == 0)
206                     iNumCBP = 3;
207                 else if (iNumCBP == 1)
208                     iNumCBP = 5;
209                 else {
210                     static const Int aTab[] = { 6, 9, 10, 12 };
211                     iNumCBP = aTab[iNumCBP * 2 + _getBool16 (pIO) - 4];
212                 }
213                 break;
214             case 1:
215                 iNumCBP = 1 << _getBit16(pIO, 2);
216                 break;
217             case 3:
218                 iNumCBP = 0xf ^ (1 << _getBit16(pIO, 2));
219                 break;
220             case 4:
221                 iNumCBP = 0xf;
222         }
223 
224         for (iBlock = 0; iBlock < 4; iBlock++) {
225             if (iNumCBP & (1 << iBlock)) {
226                 static const UInt gFLC0[] = { 0,2,1,2,2,0 };
227                 static const UInt gOff0[] = { 0,4,2,8,12,1 };
228                 static const UInt gOut0[] = { 0,15,3,12, 1,2,4,8, 5,6,9,10, 7,11,13,14 };
229                 Int iNumBlockCBP = getHuff(pAHCBP->m_hufDecTable, pIO);
230                 unsigned int val = (unsigned int) iNumBlockCBP + 1, iCode1;
231 
232                 pAHCBP->m_iDiscriminant += pAHCBP->m_pDelta[iNumBlockCBP];
233                 iNumBlockCBP = 0;
234 
235                 if (val >= 6) { // chroma present
236                     if (_getBool16 (pIO)) {
237                         iNumBlockCBP = 0x10;
238                     }
239                     else if (_getBool16 (pIO)) {
240                         iNumBlockCBP = 0x20;
241                     }
242                     else {
243                         iNumBlockCBP = 0x30;
244                     }
245                     if (val == 9) {
246                         if (_getBool16 (pIO)) {
247                             // do nothing
248                         }
249                         else if (_getBool16 (pIO)) {
250                             val = 10;
251                         }
252                         else {
253                             val = 11;
254                         }
255                     }
256                     val -= 6;
257                 }
258                 iCode1 = gOff0[val];
259                 if (gFLC0[val]) {
260                     iCode1 += _getBit16(pIO, gFLC0[val]);
261                 }
262                 iNumBlockCBP += gOut0[iCode1];
263 
264                 switch (cf) {
265                     case YUV_444:
266                         iCBPCY |= ((iNumBlockCBP & 0xf) << (iBlock * 4));
267                         for (k = 0; k < 2; k++) {
268                             bIsChroma = ((iNumBlockCBP>>(k+4)) & 0x01);
269                             if (bIsChroma) { // U is present in block
270                                 Int iCode = _getHuffShort(pAHex1->m_hufDecTable, pIO);
271                                 switch (iCode) {
272                             case 1:
273                                 iCode = _getBit16(pIO, 2);
274                                 if (iCode == 0)
275                                     iCode = 3;
276                                 else if (iCode == 1)
277                                     iCode = 5;
278                                 else {
279                                     static const Int aTab[] = { 6, 9, 10, 12 };
280                                     iCode = aTab[iCode * 2 + _getBool16 (pIO) - 4];
281                                 }
282                                 break;
283                             case 0:
284                                 iCode = 1 << _getBit16(pIO, 2);
285                                 break;
286                             case 2:
287                                 iCode = 0xf ^ (1 << _getBit16(pIO, 2));
288                                 break;
289                             case 3:
290                                 iCode = 0xf;
291                                 }
292                                 if (k == 0)
293                                     iCBPCU |= (iCode << (iBlock * 4));
294                                 else
295                                     iCBPCV |= (iCode << (iBlock * 4));
296                             }
297                         }
298                         break;
299 
300                     case YUV_420:
301                         iCBPCY |= ((iNumBlockCBP & 0xf) << (iBlock * 4));
302                         iCBPCU |= ((iNumBlockCBP >> 4) & 0x1) << (iBlock);
303                         iCBPCV |= ((iNumBlockCBP >> 5) & 0x1) << (iBlock);
304                         break;
305 
306                     case YUV_422:
307                         iCBPCY |= ((iNumBlockCBP & 0xf) << (iBlock * 4));
308                         for (k = 0; k < 2; k ++) {
309                             Int iCode = 5;
310                             const Int iShift[4] = {0, 1, 4, 5};
311                             if((iNumBlockCBP >> (k + 4)) & 0x01) {
312                                 if(_getBool16(pIO)) {
313                                     iCode = 1;
314                                 }
315                                 else if(_getBool16(pIO)){
316                                     iCode = 4;
317                                 }
318                                 iCode <<= iShift[iBlock];
319                                 if(k == 0) iCBPCU |= iCode;
320                                 else iCBPCV |= iCode;
321                             }
322                         }
323                         break;
324 
325                     default:
326                         iCBPCY |= (iNumBlockCBP << (iBlock * 4));
327                 }
328             }
329         }
330 
331         pSC->MBInfo.iDiffCBP[i] = iCBPCY;
332         if (cf == YUV_420 || cf == YUV_444 || cf == YUV_422) {
333             pSC->MBInfo.iDiffCBP[1] = iCBPCU;
334             pSC->MBInfo.iDiffCBP[2] = iCBPCV;
335         }
336     }
337 }
338 
339 /*************************************************************************
340     Experimental code -- decodeBlock
341     SR = <0 1 2> == <last, nonsignificant, significant run>
342     alphabet 12:
343         pAHexpt[0] == <SR', SL, SR | first symbol>
344     alphabet 6:
345         pAHexpt[1] == <SR', SL | continuous>
346         pAHexpt[2] == <SR', SL | continuous>
347     alphabet 4:
348         pAHexpt[3] == <SR', SL | 2 free slots> (SR may be last or insignificant only)
349     alphabet f(run) (this can be extended to 6 contexts - SL and SR')
350         pAHexpt[4] == <run | continuous>
351     alphabet f(lev) (this can be extended to 9 contexts)
352         pAHexpt[5-6] == <lev | continuous> first symbol
353         pAHexpt[7-8] == <lev | continuous> condition on SRn no use
354 *************************************************************************/
355 
DecodeSignificantRun(Int iMaxRun,struct CAdaptiveHuffman * pAHexpt,BitIOInfo * pIO)356 Int _FORCEINLINE DecodeSignificantRun (Int iMaxRun, struct CAdaptiveHuffman *pAHexpt, BitIOInfo* pIO)
357 {
358     Int iIndex;
359     static const Int aRemap[] = {1,2,3,5,7,   1,2,3,5,7,   /*1,2,3,4,6,  */1,2,3,4,5 };
360     Int iBin = gSignificantRunBin[iMaxRun];
361     Int iRun = 0, iFLC = 0;
362 
363     if (iMaxRun < 5) {
364         if (iMaxRun == 1) {
365             return 1;
366         }
367         else if (_getBool16 (pIO)) {
368             return 1;
369         }
370         else if (iMaxRun == 2 || _getBool16 (pIO)) {
371             return 2;
372         }
373         else if (iMaxRun == 3 || _getBool16 (pIO)) {
374             return 3;
375         }
376         return 4;
377     }
378     iIndex = _getHuffShort (pAHexpt->m_hufDecTable, pIO);
379     iIndex += iBin * 5;
380     iRun = aRemap[iIndex];
381     iFLC = gSignificantRunFixedLength[iIndex];
382     if (iFLC) {
383         iRun += _getBit16 (pIO, iFLC);
384     }
385     return iRun;
386 }
387 
388 #ifndef X86OPT_INLINE
DecodeFirstIndex(Int * pIndex,struct CAdaptiveHuffman * pAHexpt,BitIOInfo * pIO)389 static Void DecodeFirstIndex (Int *pIndex, struct CAdaptiveHuffman *pAHexpt,
390                       BitIOInfo* pIO)
391 #else
392 static __forceinline Void DecodeFirstIndex (Int *pIndex, struct CAdaptiveHuffman *pAHexpt,
393                       BitIOInfo* pIO)
394 #endif
395 {
396     Int iIndex;
397     iIndex = getHuff (pAHexpt->m_hufDecTable, pIO);
398     pAHexpt->m_iDiscriminant += pAHexpt->m_pDelta[iIndex];
399     pAHexpt->m_iDiscriminant1 += pAHexpt->m_pDelta1[iIndex];
400     *pIndex = iIndex;
401 }
402 
403 #ifndef X86OPT_INLINE
DecodeIndex(Int * pIndex,Int iLoc,struct CAdaptiveHuffman * pAHexpt,BitIOInfo * pIO)404 static Void DecodeIndex (Int *pIndex, Int iLoc, struct CAdaptiveHuffman *pAHexpt,
405                  BitIOInfo* pIO)
406 #else
407 static __forceinline Void DecodeIndex (Int *pIndex, Int iLoc,
408                                        struct CAdaptiveHuffman *pAHexpt, BitIOInfo* pIO)
409 #endif
410 {
411     Int iIndex;
412     if (iLoc < 15) {
413         iIndex = _getHuffShort (pAHexpt->m_hufDecTable, pIO);
414         pAHexpt->m_iDiscriminant += pAHexpt->m_pDelta[iIndex];
415         pAHexpt->m_iDiscriminant1 += pAHexpt->m_pDelta1[iIndex];
416         *pIndex = iIndex;
417     }
418     else if (iLoc == 15) {
419         if (_getBool16 (pIO) == 0) {
420             iIndex = 0;
421         }
422         else if (_getBool16 (pIO) == 0) {
423             iIndex = 2;
424         }
425         else {
426             iIndex = 1 + 2 * _getBool16 (pIO);
427         }
428         *pIndex = iIndex;
429     }
430     else { //if (iLoc == 16) { /* deterministic */
431         Int iSL = _getBit16 (pIO, 1/* + 1*/);
432         *pIndex = iSL;// >> 1;
433     }
434 }
435 
DecodeBlock(Bool bChroma,Int * aLocalCoef,struct CAdaptiveHuffman ** pAHexpt,const Int iContextOffset,BitIOInfo * pIO,Int iLocation)436 static _FORCEINLINE Int DecodeBlock (Bool bChroma, Int *aLocalCoef, struct CAdaptiveHuffman **pAHexpt,
437                         const Int iContextOffset, BitIOInfo* pIO, Int iLocation)
438 {
439     Int iSR, iSRn, iIndex, iNumNonzero = 1, iCont, iSign;
440     struct CAdaptiveHuffman **pAH1 = pAHexpt + iContextOffset + bChroma * 3;
441 
442     /** first symbol **/
443     DecodeFirstIndex (&iIndex, /*&iSign, */pAH1[0], pIO);
444     iSR = (iIndex & 1);
445     iSRn = iIndex >> 2;
446 
447     iCont = iSR & iSRn;
448     iSign = _getSign(pIO);
449 
450     if (iIndex & 2 /* iSL */) {
451         aLocalCoef[1] = (DecodeSignificantAbsLevel (pAHexpt[6 + iContextOffset + iCont], pIO) ^ iSign) - iSign;
452     }
453     else {
454         aLocalCoef[1] = (1 | iSign); // 0 -> 1; -1 -> -1
455     }
456     aLocalCoef[0] = 0;
457     if (iSR == 0) {
458         aLocalCoef[0] = DecodeSignificantRun (15 - iLocation, pAHexpt[0], pIO);
459     }
460     iLocation += aLocalCoef[0] + 1;
461 
462     while (iSRn != 0) {
463         iSR = iSRn & 1;
464         aLocalCoef[iNumNonzero * 2] = 0;
465         if (iSR == 0) {
466             aLocalCoef[iNumNonzero * 2] = DecodeSignificantRun (15 - iLocation, pAHexpt[0], pIO);
467         }
468         iLocation += aLocalCoef[iNumNonzero * 2] + 1;
469         DecodeIndex (&iIndex, /*&iSign, */iLocation, pAH1[iCont + 1], pIO);
470         iSRn = iIndex >> 1;
471 
472         assert (iSRn >= 0 && iSRn < 3);
473         iCont &= iSRn;  /** huge difference! **/
474         iSign = _getSign(pIO);
475 
476         if (iIndex & 1 /* iSL */) {
477             aLocalCoef[iNumNonzero * 2 + 1] =
478                 (DecodeSignificantAbsLevel (pAHexpt[6 + iContextOffset + iCont], pIO) ^ iSign) - iSign;
479         }
480         else {
481             aLocalCoef[iNumNonzero * 2 + 1] = (1 | iSign); // 0 -> 1; -1 -> -1 (was 1 + (iSign * 2))
482         }
483         iNumNonzero++;
484     }
485     return iNumNonzero;
486 }
487 
488 /*************************************************************************
489     DecodeBlockHighpass :
490 *************************************************************************/
DecodeBlockHighpass(const Bool bChroma,struct CAdaptiveHuffman ** pAHexpt,BitIOInfo * pIO,const Int iQP,Int * pCoef,CAdaptiveScan * pScan)491 static _FORCEINLINE Int DecodeBlockHighpass (const Bool bChroma, struct CAdaptiveHuffman **pAHexpt,
492                        BitIOInfo* pIO, const Int iQP, Int *pCoef, CAdaptiveScan *pScan)
493 {
494     const Int iContextOffset = CTDC + CONTEXTX;
495     UInt  iLoc = 1;
496     Int iSR, iSRn, iIndex, iNumNonzero = 1, iCont, iSign, iLevel;
497     struct CAdaptiveHuffman **pAH1 = pAHexpt + iContextOffset + bChroma * 3;
498     const CAdaptiveScan *pConstScan = (const CAdaptiveScan *) pScan;
499 
500     /** first symbol **/
501     DecodeFirstIndex (&iIndex, /*&iSign, */pAH1[0], pIO);
502     iSR = (iIndex & 1);
503     iSRn = iIndex >> 2;
504 
505     iCont = iSR & iSRn;
506     iSign = _getSign(pIO);
507 
508     iLevel = (iQP ^ iSign) - iSign;
509     if (iIndex & 2 /* iSL */) {
510         iLevel *= DecodeSignificantAbsLevel (pAHexpt[6 + iContextOffset + iCont], pIO);// ^ iSign) - iSign;
511     }
512     //else {
513     //    iLevel = (1 | iSign); // 0 -> 1; -1 -> -1
514     //}
515     if (iSR == 0) {
516        iLoc += DecodeSignificantRun (15 - iLoc, pAHexpt[0], pIO);
517     }
518     iLoc &= 0xf;
519 	pCoef[pConstScan[iLoc].uScan] = (PixelI) iLevel;//(PixelI)(iQP * iLevel);
520     pScan[iLoc].uTotal++;
521 	if (iLoc && pScan[iLoc].uTotal > pScan[iLoc - 1].uTotal) {
522 		CAdaptiveScan cTemp = pScan[iLoc];
523 		pScan[iLoc] = pScan[iLoc - 1];
524 		pScan[iLoc - 1] = cTemp;
525     }
526     iLoc = (iLoc + 1) & 0xf;
527     //iLoc++;
528 
529     while (iSRn != 0) {
530         iSR = iSRn & 1;
531         if (iSR == 0) {
532             iLoc += DecodeSignificantRun (15 - iLoc, pAHexpt[0], pIO);
533             if (iLoc >= 16)
534                 return 16;
535         }
536         DecodeIndex (&iIndex, /*&iSign, */iLoc + 1, pAH1[iCont + 1], pIO);
537         iSRn = iIndex >> 1;
538 
539         assert (iSRn >= 0 && iSRn < 3);
540         iCont &= iSRn;  /** huge difference! **/
541         iSign = _getSign(pIO);
542 
543         iLevel = (iQP ^ iSign) - iSign;
544         if (iIndex & 1 /* iSL */) {
545             iLevel *= DecodeSignificantAbsLevel (pAHexpt[6 + iContextOffset + iCont], pIO);// ^ iSign) - iSign;
546             //iLevel = (DecodeSignificantAbsLevel (pAHexpt[6 + iContextOffset + iCont], pIO) ^ iSign) - iSign;
547         }
548         //else {
549         //    iLevel = (1 | iSign); // 0 -> 1; -1 -> -1 (was 1 + (iSign * 2))
550         //}
551 
552 	    pCoef[pConstScan[iLoc].uScan] = (PixelI) iLevel;//(PixelI)(iQP * iLevel);
553         pScan[iLoc].uTotal++;
554 	    if (iLoc && pScan[iLoc].uTotal > pScan[iLoc - 1].uTotal) {
555 		    CAdaptiveScan cTemp = pScan[iLoc];
556 		    pScan[iLoc] = pScan[iLoc - 1];
557 		    pScan[iLoc - 1] = cTemp;
558         }
559 
560         iLoc = (iLoc + 1) & 0xf;
561         iNumNonzero++;
562     }
563     return iNumNonzero;
564 }
565 
566 /*************************************************************************
567     DecodeBlockAdaptive
568 *************************************************************************/
DecodeBlockAdaptive(Bool bNoSkip,Bool bChroma,CAdaptiveHuffman ** pAdHuff,BitIOInfo * pIO,BitIOInfo * pIOFL,PixelI * pCoeffs,CAdaptiveScan * pScan,const Int iModelBits,const Int iTrim,const Int iQP,const Int * pOrder,const Bool bSkipFlexbits)569 static _FORCEINLINE Int DecodeBlockAdaptive (Bool bNoSkip, Bool bChroma, CAdaptiveHuffman **pAdHuff,
570                                 BitIOInfo *pIO, BitIOInfo *pIOFL,
571                                 PixelI *pCoeffs, CAdaptiveScan *pScan,
572                                 const Int iModelBits, const Int iTrim, const Int iQP,
573                                 const Int *pOrder, const Bool bSkipFlexbits)
574 {
575     // const Int iLocation = 1;
576     // const Int iContextOffset = CTDC + CONTEXTX;
577     Int kk, iNumNonzero = 0, iFlex = iModelBits - iTrim;
578 
579     if (iFlex < 0 || bSkipFlexbits)
580         iFlex = 0;
581 
582     if (bNoSkip) {
583         const Int iQP1 = (iQP << iModelBits);
584         iNumNonzero = DecodeBlockHighpass (bChroma, pAdHuff, pIO, iQP1, pCoeffs, pScan);
585     }
586     if (iFlex) {
587         UInt k;
588         if (iQP + iTrim == 1) { // only iTrim = 0, iQP = 1 is legal
589             assert (iTrim == 0);
590             assert (iQP == 1);
591 
592             for (k = 1; k < 16; k++) {
593                 PixelI *pk = pCoeffs + pOrder[k];
594                 if (*pk < 0) {
595                     Int fine = _getBit16(pIOFL, iFlex);
596                     *pk -= (PixelI)(fine);
597                 }
598                 else if (*pk > 0) {
599                     Int fine = _getBit16(pIOFL, iFlex);
600                     *pk += (PixelI)(fine);
601                 }
602                 else {
603                     *pk = (PixelI)(_getBit16s(pIOFL, iFlex));
604                 }
605             }
606         }
607         else {
608             const Int iQP1 = iQP << iTrim;
609             for (k = 1; k < 16; k++) {
610                 kk = pCoeffs[pOrder[k]];
611                 if (kk < 0) {
612                     Int fine = _getBit16(pIOFL, iFlex);
613                     pCoeffs[pOrder[k]] -= (PixelI)(iQP1 * fine);
614                 }
615                 else if (kk > 0) {
616                     Int fine = _getBit16(pIOFL, iFlex);
617                     pCoeffs[pOrder[k]] += (PixelI)(iQP1 * fine);
618                 }
619                 else {
620                     pCoeffs[pOrder[k]] = (PixelI)(iQP1 * _getBit16s(pIOFL, iFlex));
621                 }
622             }
623         }
624     }
625 
626     return iNumNonzero;
627 }
628 
629 
630 /*************************************************************************
631     GetCoeffs
632 *************************************************************************/
DecodeCoeffs(CWMImageStrCodec * pSC,CCodingContext * pContext,Int iMBX,Int iMBY,BitIOInfo * pIO,BitIOInfo * pIOFL)633 static _FORCEINLINE Int DecodeCoeffs (CWMImageStrCodec * pSC, CCodingContext *pContext,
634                          Int iMBX, Int iMBY,
635                          BitIOInfo* pIO, BitIOInfo *pIOFL)
636 {
637     CWMITile * pTile = pSC->pTile + pSC->cTileColumn;
638     const COLORFORMAT cf = pSC->m_param.cfColorFormat;
639     const Int iChannels = (Int) pSC->m_param.cNumChannels;
640     const Int iPlanes = (cf == YUV_420 || cf == YUV_422) ? 1 : iChannels;
641     Int  iQP;
642     CAdaptiveScan *pScan;
643     PixelI  *pCoeffs;
644     Int i, iBlock, iSubblock, iNBlocks = 4;
645     Int iModelBits = pContext->m_aModelAC.m_iFlcBits[0];
646     Int aLaplacianMean[2] = { 0, 0}, *pLM = aLaplacianMean + 0;
647     const Int *pOrder = dctIndex[0];
648     const Int iOrient = pSC->MBInfo.iOrientation;
649     Bool bChroma = FALSE;
650 
651     Int iCBPCU = pSC->MBInfo.iCBP[1];
652     Int iCBPCV = pSC->MBInfo.iCBP[2];
653     Int iCBPCY = pSC->MBInfo.iCBP[0];
654 
655     UNREFERENCED_PARAMETER( iMBX );
656     UNREFERENCED_PARAMETER( iMBY );
657 
658     /** set scan arrays and other MB level constants **/
659     if (iOrient == 1) {
660         pScan = pContext->m_aScanVert;
661     }
662     else {
663         pScan = pContext->m_aScanHoriz;
664     }
665 
666     if (cf == YUV_420) {
667         iNBlocks = 6;
668         iCBPCY += (iCBPCU << 16) + (iCBPCV << 20);
669     }
670     else if (cf == YUV_422) {
671         iNBlocks = 8;
672         iCBPCY += (iCBPCU << 16) + (iCBPCV << 24);
673     }
674 
675     for (i = 0; i < iPlanes; i++) {
676         Int iIndex = 0, iNumNonZero;
677 
678         if(pSC->WMISCP.sbSubband != SB_NO_FLEXBITS)
679             readIS_L1(pSC, pIOFL);
680 
681         for (iBlock = 0; iBlock < iNBlocks; iBlock++) {
682 
683             readIS_L2(pSC, pIO);
684             if (pIO != pIOFL)
685                 readIS_L2(pSC, pIOFL);
686 
687             iQP = (pSC->m_param.bTranscode ? 1 : pTile->pQuantizerHP[iPlanes > 1 ? i : (iBlock > 3 ? (cf == YUV_420 ? iBlock - 3 : iBlock / 2 - 1) : 0)][pSC->MBInfo.iQIndexHP].iQP);
688 
689             for (iSubblock = 0; iSubblock < 4; iSubblock++, iIndex++, iCBPCY >>= 1) {
690                 pCoeffs = pSC->p1MBbuffer[i] + blkOffset[iIndex & 0xf];
691 
692                 //if (iBlock < 4) {//(cf == YUV_444) {
693                     //bBlockNoSkip = ((iTempCBPC & (1 << iIndex1)) != 0);
694                     //pCoeffs = pSC->p1MBbuffer[iBlock >> 2] + blkOffset[iIndex & 0xf];
695                 //}
696                 //else {
697                 if (iBlock >= 4) {
698                     if(cf == YUV_420) {
699                         pCoeffs = pSC->p1MBbuffer[iBlock - 3] + blkOffsetUV[iSubblock];
700                     }
701                     else { // YUV_422
702                         pCoeffs = pSC->p1MBbuffer[1 + (1 & (iBlock >> 1))] + ((iBlock & 1) * 32) + blkOffsetUV_422[iSubblock];
703                     }
704                 }
705 
706                 /** read AC values **/
707                 assert (pSC->m_Dparam->bSkipFlexbits == 0 || pSC->WMISCP.bfBitstreamFormat == FREQUENCY || pSC->WMISCP.sbSubband == SB_NO_FLEXBITS);
708                 iNumNonZero = DecodeBlockAdaptive ((iCBPCY & 1), bChroma, pContext->m_pAHexpt,
709                     pIO, pIOFL, pCoeffs, pScan, iModelBits, pContext->m_iTrimFlexBits,
710                     iQP, pOrder, pSC->m_Dparam->bSkipFlexbits);
711                 if(iNumNonZero > 16) // something is wrong!
712                     return ICERR_ERROR;
713                 // shouldn't this be > 15?
714                 (*pLM) += iNumNonZero;
715             }
716             if (iBlock == 3) {
717                 iModelBits = pContext->m_aModelAC.m_iFlcBits[1];
718                 pLM = aLaplacianMean + 1;
719                 bChroma = TRUE;
720             }
721         }
722 
723         iCBPCY = pSC->MBInfo.iCBP[(i + 1) & 0xf];
724         assert (MAX_CHANNELS == 16);
725     }
726 
727     /** update model at end of MB **/
728     UpdateModelMB (cf, iChannels, aLaplacianMean, &(pContext->m_aModelAC));
729     return ICERR_OK;
730 }
731 
732 /*************************************************************************
733     DecodeSignificantAbsLevel
734 *************************************************************************/
735 #ifndef X86OPT_INLINE
DecodeSignificantAbsLevel(struct CAdaptiveHuffman * pAHexpt,BitIOInfo * pIO)736 static Int DecodeSignificantAbsLevel (struct CAdaptiveHuffman *pAHexpt, BitIOInfo* pIO)
737 #else
738 static __forceinline Int DecodeSignificantAbsLevel (struct CAdaptiveHuffman *pAHexpt, BitIOInfo* pIO)
739 #endif
740 {
741     UInt iIndex;
742     Int iFixed, iLevel;
743     static const Int aRemap[] = { 2, 3, 4, 6, 10, 14 };
744     static const Int aFixedLength[] = { 0, 0, 1, 2, 2, 2 };
745 
746     iIndex = (UInt)getHuff (pAHexpt->m_hufDecTable, pIO);
747     assert(iIndex <= 6);
748     pAHexpt->m_iDiscriminant += pAHexpt->m_pDelta[iIndex];
749     if (iIndex < 2) {
750         iLevel = iIndex + 2; // = aRemap[iIndex]
751     }
752     else if (iIndex < 6) {
753         iFixed = aFixedLength[iIndex];
754         iLevel = aRemap[iIndex] + _getBit16 (pIO, iFixed);
755     }
756     else{
757         iFixed = _getBit16 (pIO, 4) + 4;
758         if (iFixed == 19) {
759             iFixed += _getBit16 (pIO, 2);
760             if (iFixed == 22) {
761                 iFixed += _getBit16 (pIO, 3);
762             }
763         }
764         iLevel = 2 + (1 << iFixed);
765         iIndex = getBit32 (pIO, iFixed);
766         iLevel += iIndex;
767     }
768     return iLevel;
769 }
770 
decodeQPIndex(BitIOInfo * pIO,U8 cBits)771 U8 decodeQPIndex(BitIOInfo* pIO,U8 cBits)
772 {
773     if(_getBit16(pIO, 1) == 0)
774         return 0;
775     return (U8)(_getBit16(pIO, cBits) + 1);
776 }
777 
778 /*************************************************************************
779     DecodeSecondStageCoeff
780 *************************************************************************/
DecodeMacroblockLowpass(CWMImageStrCodec * pSC,CCodingContext * pContext,Int iMBX,Int iMBYdummy)781 Int DecodeMacroblockLowpass (CWMImageStrCodec * pSC, CCodingContext *pContext,
782         Int iMBX, Int iMBYdummy)
783 {
784     const COLORFORMAT cf = pSC->m_param.cfColorFormat;
785     const Int iChannels = (Int) pSC->m_param.cNumChannels;
786     const Int iFullPlanes = (cf == YUV_420 || cf == YUV_422) ? 2 : iChannels;
787     Int k;
788 	CAdaptiveScan *pScan = pContext->m_aScanLowpass;
789     BitIOInfo* pIO = pContext->m_pIOLP;
790     Int iModelBits = pContext->m_aModelLP.m_iFlcBits[0];
791     Int aRLCoeffs[32], iNumNonzero = 0, iIndex = 0;
792     Int aLaplacianMean[2] = { 0, 0}, *pLM = aLaplacianMean;
793     Int iChannel, iCBP = 0;
794 #ifndef ARMOPT_BITIO    // ARM opt always uses 32-bit version of getBits
795     U32 (*getBits)(BitIOInfo* pIO, U32 cBits) = _getBit16;
796 #endif
797     CWMIMBInfo * pMBInfo = &pSC->MBInfo;
798     I32 *aDC[MAX_CHANNELS];
799 
800     UNREFERENCED_PARAMETER( iMBX );
801     UNREFERENCED_PARAMETER( iMBYdummy );
802 
803     readIS_L1(pSC, pIO);
804     if((pSC->WMISCP.bfBitstreamFormat != SPATIAL) && (pSC->pTile[pSC->cTileColumn].cBitsLP > 0))  // MB-based LP QP index
805         pMBInfo->iQIndexLP = decodeQPIndex(pIO, pSC->pTile[pSC->cTileColumn].cBitsLP);
806 
807     // set arrays
808     for (k = 0; k < (Int) pSC->m_param.cNumChannels; k++) {
809         aDC[k & 15] = pMBInfo->iBlockDC[k];
810     }
811 
812     /** reset adaptive scan totals **/
813     if (pSC->m_bResetRGITotals) {
814         int iScale = 2;
815         int iWeight = iScale * 16;
816 		pScan[0].uTotal = MAXTOTAL;
817         for (k = 1; k < 16; k++) {
818 			pScan[k].uTotal = iWeight;
819             iWeight -= iScale;
820         }
821     }
822 
823     /** in raw mode, this can take 6% of the bits in the extreme low rate case!!! **/
824     if (cf == YUV_420 || cf == YUV_422 || cf == YUV_444) {
825         int iCountM = pContext->m_iCBPCountMax, iCountZ = pContext->m_iCBPCountZero;
826         int iMax = iFullPlanes * 4 - 5; /* actually (1 << iNChannels) - 1 **/
827         if (iCountZ <= 0 || iCountM < 0) {
828             iCBP = 0;
829             if (_getBool16 (pIO)) {
830                 iCBP = 1;
831                 k = _getBit16 (pIO, iFullPlanes - 1);
832                 if (k) {
833                     iCBP = k * 2 + _getBit16(pIO, 1);
834                 }
835             }
836             if (iCountM < iCountZ)
837                 iCBP = iMax - iCBP;
838         }
839         else {
840             iCBP = _getBit16(pIO, iFullPlanes);
841         }
842 
843         iCountM += 1 - 4 * (iCBP == iMax);//(b + c - 2*a);
844         iCountZ += 1 - 4 * (iCBP == 0);//(a + b - 2*c);
845         if (iCountM < -8)
846             iCountM = -8;
847         else if (iCountM > 7)
848             iCountM = 7;
849         pContext->m_iCBPCountMax = iCountM;
850 
851         if (iCountZ < -8)
852             iCountZ = -8;
853         else if (iCountZ > 7)
854             iCountZ = 7;
855         pContext->m_iCBPCountZero = iCountZ;
856     }
857     else { /** 1 or N channel **/
858         for (iChannel = 0; iChannel < iChannels; iChannel++)
859             iCBP |= (getBits (pIO, 1) << iChannel);
860     }
861 
862 #ifndef ARMOPT_BITIO    // ARM opt always uses 32-bit version of getBits
863     if (pContext->m_aModelLP.m_iFlcBits[0] > 14 || pContext->m_aModelLP.m_iFlcBits[1] > 14) {
864         getBits = getBit32;
865     }
866 #endif
867 
868     for (iChannel = 0; iChannel < iFullPlanes; iChannel++) {
869         PixelI *pCoeffs = aDC[iChannel];
870 
871         if (iCBP & 1) {
872             iNumNonzero = DecodeBlock (iChannel > 0, aRLCoeffs, pContext->m_pAHexpt,
873                 CTDC, pIO, 1 + 9 * ((cf == YUV_420) && (iChannel == 1))
874                 + ((cf == YUV_422) && (iChannel == 1)));
875 
876             if ((cf == YUV_420 || cf == YUV_422) && iChannel) {
877                 Int aTemp[16]; //14 required, 16 for security
878                 static const Int aRemap[] = { 4,  1,2,3,  5,6,7 };
879                 const Int *pRemap = aRemap + (cf == YUV_420);
880                 const Int iCount = (cf == YUV_420) ? 6 : 14;
881 
882                 (*pLM) += iNumNonzero;
883                 iIndex = 0;
884                 memset (aTemp, 0, sizeof(aTemp));
885 
886                 for (k = 0; k < iNumNonzero; k++) {
887                     iIndex += aRLCoeffs[k * 2];
888                     aTemp[iIndex & 0xf] = aRLCoeffs[k * 2 + 1];
889                     iIndex++;
890                 }
891 
892                 for (k = 0; k < iCount; k++) {
893                     aDC[(k & 1) + 1][pRemap[k >> 1]] = aTemp[k];
894                 }
895             }
896             else {
897                 (*pLM) += iNumNonzero;
898                 iIndex = 1;
899 
900                 for (k = 0; k < iNumNonzero; k++) {
901                     iIndex += aRLCoeffs[k * 2];
902 					pCoeffs[pScan[iIndex].uScan] = aRLCoeffs[k * 2 + 1];
903 					pScan[iIndex].uTotal++;
904 					if (pScan[iIndex].uTotal > pScan[iIndex - 1].uTotal) {
905 						CAdaptiveScan cTemp = pScan[iIndex];
906 						pScan[iIndex] = pScan[iIndex - 1];
907 						pScan[iIndex - 1] = cTemp;
908 					}
909                     iIndex++;
910                 }
911             }
912         }
913 
914         if (iModelBits) {
915             if ((cf == YUV_420 || cf == YUV_422) && iChannel) {
916                 for (k = 1; k < (cf == YUV_420 ? 4 : 8); k++) {
917                     if (aDC[1][k] > 0) {
918                         aDC[1][k] <<= iModelBits;
919                         aDC[1][k] += getBits (pIO, iModelBits);
920                     }
921                     else if (aDC[1][k] < 0) {
922                         aDC[1][k] <<= iModelBits;
923                         aDC[1][k] -= getBits (pIO, iModelBits);
924                     }
925                     else {
926                         aDC[1][k] = getBits (pIO, iModelBits);
927                         if (aDC[1][k] && _getBool16 (pIO))
928                             aDC[1][k] = -aDC[1][k];
929                     }
930 
931                     if (aDC[2][k] > 0) {
932                         aDC[2][k] <<= iModelBits;
933                         aDC[2][k] += getBits (pIO, iModelBits);
934                     }
935                     else if (aDC[2][k] < 0) {
936                         aDC[2][k] <<= iModelBits;
937                         aDC[2][k] -= getBits (pIO, iModelBits);
938                     }
939                     else {
940                         aDC[2][k] = getBits (pIO, iModelBits);
941                         if (aDC[2][k] && _getBool16 (pIO))
942                             aDC[2][k] = -aDC[2][k];
943                     }
944                 }
945             }
946             else {
947 #ifdef WIN32
948                 const Int iMask = (1 << iModelBits) - 1;
949 #endif // WIN32
950                 for (k = 1; k < 16; k++) {
951 #ifdef WIN32
952                     if (pCoeffs[k]) {
953                         Int r1 = _rotl(pCoeffs[k], iModelBits);
954                         pCoeffs[k] = (r1 ^ getBits(pIO, iModelBits)) - (r1 & iMask);
955                     }
956 #else // WIN32
957                     if (pCoeffs[k] > 0) {
958                         pCoeffs[k] <<= iModelBits;
959                         pCoeffs[k] += getBits (pIO, iModelBits);
960                     }
961                     else if (pCoeffs[k] < 0) {
962                         pCoeffs[k] <<= iModelBits;
963                         pCoeffs[k] -= getBits (pIO, iModelBits);
964                     }
965 #endif // WIN32
966                     else {
967                         //pCoeffs[k] = getBits (pIO, iModelBits);
968                         //if (pCoeffs[k] && _getBool16 (pIO))
969                         //    pCoeffs[k] = -pCoeffs[k];
970                         Int r1 = _peekBit16 (pIO, iModelBits + 1);
971                         pCoeffs[k] = ((r1 >> 1) ^ (-(r1 & 1))) + (r1 & 1);
972                         _flushBit16 (pIO, iModelBits + (pCoeffs[k] != 0));
973                     }
974                 }
975             }
976         }
977         pLM = aLaplacianMean + 1;
978         iModelBits = pContext->m_aModelLP.m_iFlcBits[1];
979 
980         iCBP >>= 1;
981     }
982 
983     UpdateModelMB (cf, iChannels, aLaplacianMean, &(pContext->m_aModelLP));
984 
985     if (pSC->m_bResetContext) {
986         AdaptLowpassDec(pContext);
987     }
988 
989     return ICERR_OK;
990 }
991 
992 /*************************************************************************
993     8 bit YUV 420 macroblock decode function with 4x4 transform
994     Index order is as follows:
995     Y:              U:      V:
996      0  1  4  5     16 17   20 21
997      2  3  6  7     18 19   22 23
998      8  9 12 13
999     10 11 14 15
1000 
1001     DCAC coefficients stored for 4x4 - offsets (x == no storage)
1002     Y:
1003     x x x [0..3]
1004     x x x [4..7]
1005     x x x [8..11]
1006     [16..19] [20..23] [24..27] [28..31,12..15]
1007 
1008     U, V:
1009     x [0..3]
1010     [8..11] [4..7,12..15]
1011 *************************************************************************/
DecodeMacroblockDC(CWMImageStrCodec * pSC,CCodingContext * pContext,Int iMBX,Int iMBY)1012 Int DecodeMacroblockDC(CWMImageStrCodec * pSC, CCodingContext *pContext, Int iMBX, Int iMBY)
1013 {
1014     CWMITile * pTile = pSC->pTile + pSC->cTileColumn;
1015     CWMIMBInfo * pMBInfo = &pSC->MBInfo;
1016     const COLORFORMAT cf = pSC->m_param.cfColorFormat;
1017     const Int iChannels = (Int) pSC->m_param.cNumChannels;
1018     BitIOInfo* pIO = pContext->m_pIODC;
1019     Int iIndex, i;
1020     Int aLaplacianMean[2] = { 0, 0}, *pLM = aLaplacianMean;
1021     Int iModelBits = pContext->m_aModelDC.m_iFlcBits[0];
1022     struct CAdaptiveHuffman *pAH;
1023     Int iQDCY, iQDCU, iQDCV;
1024     // const Int iChromaElements = (cf == YUV_420) ? 8 * 8 : ((cf == YUV_422) ? 8 * 16 : 16 * 16);
1025 
1026     UNREFERENCED_PARAMETER( iMBX );
1027     UNREFERENCED_PARAMETER( iMBY );
1028 
1029     for (i = 0; i < iChannels; i++)
1030         memset (pMBInfo->iBlockDC[i], 0, 16 * sizeof (I32));
1031 
1032     readIS_L1(pSC, pIO);
1033 
1034     pMBInfo->iQIndexLP = pMBInfo->iQIndexHP = 0;
1035 
1036     if(pSC->WMISCP.bfBitstreamFormat == SPATIAL && pSC->WMISCP.sbSubband != SB_DC_ONLY){
1037         if(pTile->cBitsLP > 0)  // MB-based LP QP index
1038             pMBInfo->iQIndexLP = decodeQPIndex(pIO, pTile->cBitsLP);
1039         if( pSC->WMISCP.sbSubband != SB_NO_HIGHPASS && pTile->cBitsHP > 0)  // MB-based HP QP index
1040             pMBInfo->iQIndexHP = decodeQPIndex(pIO, pTile->cBitsHP);
1041     }
1042     if(pTile->cBitsHP == 0 && pTile->cNumQPHP > 1) // use LP QP
1043         pMBInfo->iQIndexHP = pMBInfo->iQIndexLP;
1044     if (pMBInfo->iQIndexLP >= pTile->cNumQPLP || pMBInfo->iQIndexHP >= pTile->cNumQPHP)
1045         return ICERR_ERROR;
1046 
1047     if(cf == Y_ONLY || cf == CMYK || cf == NCOMPONENT) {
1048         for (i = 0; i < iChannels; i++) {
1049             iQDCY = 0;
1050             /** get luminance DC **/
1051             if (_getBool16 (pIO)) {
1052                 iQDCY = DecodeSignificantAbsLevel(pContext->m_pAHexpt[3], pIO) - 1;
1053                 *pLM += 1;
1054             }
1055             if (iModelBits) {
1056                 iQDCY = (iQDCY << iModelBits) | _getBit16(pIO, iModelBits);
1057             }
1058             if (iQDCY && _getBool16 (pIO))
1059                 iQDCY = -iQDCY;
1060             pMBInfo->iBlockDC[i][0] = iQDCY;
1061 
1062             pLM = aLaplacianMean + 1;
1063             iModelBits = pContext->m_aModelDC.m_iFlcBits[1];
1064         }
1065     }
1066     else {
1067         /** find significant level in 3D **/
1068         pAH = pContext->m_pAHexpt[2];
1069         iIndex = getHuff (pAH->m_hufDecTable, pIO);
1070         iQDCY = iIndex >> 2;
1071         iQDCU = (iIndex >> 1) & 1;
1072         iQDCV = iIndex & 1;
1073 
1074         /** get luminance DC **/
1075         if (iQDCY) {
1076             iQDCY = DecodeSignificantAbsLevel(pContext->m_pAHexpt[3], pIO) - 1;
1077             *pLM += 1;
1078         }
1079         if (iModelBits) {
1080             iQDCY = (iQDCY << iModelBits) | _getBit16(pIO, iModelBits);
1081         }
1082         if (iQDCY && _getBool16 (pIO))
1083             iQDCY = -iQDCY;
1084         pMBInfo->iBlockDC[0][0] = iQDCY;
1085 
1086         /** get chrominance DC **/
1087         pLM = aLaplacianMean + 1;
1088         iModelBits = pContext->m_aModelDC.m_iFlcBits[1];
1089 
1090         if (iQDCU) {
1091             iQDCU = DecodeSignificantAbsLevel(pContext->m_pAHexpt[4], pIO) - 1;
1092             *pLM += 1;
1093         }
1094         if (iModelBits) {
1095             iQDCU = (iQDCU << iModelBits) | _getBit16(pIO, iModelBits);
1096         }
1097         if (iQDCU && _getBool16 (pIO))
1098             iQDCU = -iQDCU;
1099         pMBInfo->iBlockDC[1][0] = iQDCU;
1100 
1101         if (iQDCV) {
1102             iQDCV = DecodeSignificantAbsLevel(pContext->m_pAHexpt[4], pIO) - 1;
1103             *pLM += 1;
1104         }
1105         if (iModelBits) {
1106             iQDCV = (iQDCV << iModelBits) | _getBit16(pIO, iModelBits);
1107         }
1108         if (iQDCV && _getBool16 (pIO))
1109             iQDCV = -iQDCV;
1110         pMBInfo->iBlockDC[2][0] = iQDCV;
1111     }
1112 
1113     UpdateModelMB (cf, iChannels, aLaplacianMean, &(pContext->m_aModelDC));
1114 
1115     if(((!(pSC->WMISCP.bfBitstreamFormat != FREQUENCY || pSC->m_Dparam->cThumbnailScale < 16)) || pSC->WMISCP.sbSubband == SB_DC_ONLY) && pSC->m_bResetContext){
1116         Int kk;
1117         for (kk = 2; kk < 5; kk++) {
1118             if (ICERR_OK != AdaptDecFixed (pContext->m_pAHexpt[kk])) {
1119                 return ICERR_ERROR;
1120             }
1121         }
1122     }
1123 
1124     return ICERR_OK;
1125 }
1126 
1127 /*************************************************************************
1128     DecodeMacroblockHighpass
1129 *************************************************************************/
DecodeMacroblockHighpass(CWMImageStrCodec * pSC,CCodingContext * pContext,Int iMBX,Int iMBY)1130 Int DecodeMacroblockHighpass (CWMImageStrCodec *pSC, CCodingContext *pContext,
1131                       Int iMBX, Int iMBY)
1132 {
1133     /** reset adaptive scan totals **/
1134     if (pSC->m_bResetRGITotals) {
1135         int iScale = 2, k;
1136         int iWeight = iScale * 16;
1137         pContext->m_aScanHoriz[0].uTotal = pContext->m_aScanVert[0].uTotal = MAXTOTAL;
1138         for (k = 1; k < 16; k++) {
1139             pContext->m_aScanHoriz[k].uTotal = pContext->m_aScanVert[k].uTotal = iWeight;
1140             iWeight -= iScale;
1141         }
1142     }
1143     if((pSC->WMISCP.bfBitstreamFormat != SPATIAL) && (pSC->pTile[pSC->cTileColumn].cBitsHP > 0)) { // MB-based HP QP index
1144         pSC->MBInfo.iQIndexHP = decodeQPIndex(pContext->m_pIOAC, pSC->pTile[pSC->cTileColumn].cBitsHP);
1145         if (pSC->MBInfo.iQIndexHP >= pSC->pTile[pSC->cTileColumn].cNumQPHP)
1146             goto ErrorExit;
1147     }
1148     else if(pSC->pTile[pSC->cTileColumn].cBitsHP == 0 && pSC->pTile[pSC->cTileColumn].cNumQPHP > 1) // use LP QP
1149         pSC->MBInfo.iQIndexHP = pSC->MBInfo.iQIndexLP;
1150 
1151 
1152     DecodeCBP (pSC, pContext);
1153     predCBPDec(pSC, pContext);
1154 
1155     if (DecodeCoeffs (pSC, pContext, iMBX, iMBY,
1156         pContext->m_pIOAC, pContext->m_pIOFL) != ICERR_OK)
1157         goto ErrorExit;
1158 
1159     if (pSC->m_bResetContext) {
1160         AdaptHighpassDec(pContext);
1161     }
1162 
1163     return ICERR_OK;
1164 ErrorExit:
1165     return ICERR_ERROR;
1166 }
1167 
1168 /*************************************************************************
1169     Adapt
1170 *************************************************************************/
AdaptLowpassDec(CCodingContext * pSC)1171 Int AdaptLowpassDec(CCodingContext * pSC)
1172 {
1173     Int kk;
1174     for (kk = 0; kk < CONTEXTX + CTDC; kk++) {
1175         if (ICERR_OK != AdaptDecFixed (pSC->m_pAHexpt[kk])) {
1176             goto ErrorExit;
1177         }
1178     }
1179     return ICERR_OK;
1180 
1181 ErrorExit:
1182     return ICERR_ERROR;
1183 
1184 }
1185 
AdaptHighpassDec(CCodingContext * pSC)1186 Int AdaptHighpassDec(CCodingContext * pSC)
1187 {
1188     Int kk;
1189     if (ICERR_OK != AdaptDecFixed (pSC->m_pAdaptHuffCBPCY)) {
1190         goto ErrorExit;
1191     }
1192     if (ICERR_OK != AdaptDecFixed (pSC->m_pAdaptHuffCBPCY1)) {
1193         goto ErrorExit;
1194     }
1195     for (kk = 0; kk < CONTEXTX; kk++) {
1196         if (ICERR_OK != AdaptDecFixed (pSC->m_pAHexpt[kk + CONTEXTX + CTDC])) {
1197             goto ErrorExit;
1198         }
1199     }
1200 
1201     return ICERR_OK;
1202 
1203 ErrorExit:
1204     return ICERR_ERROR;
1205 }
1206