1 /*
2  * Copyright (c) 2002-2007, Communications and Remote Sensing Laboratory, Universite catholique de Louvain (UCL), Belgium
3  * Copyright (c) 2002-2007, Professor Benoit Macq
4  * Copyright (c) 2001-2003, David Janssens
5  * Copyright (c) 2002-2003, Yannick Verschueren
6  * Copyright (c) 2003-2007, Francois-Olivier Devaux and Antonin Descampe
7  * Copyright (c) 2005, Herve Drolon, FreeImage Team
8  * Copyright (c) 2008;2011-2012, Centre National d'Etudes Spatiales (CNES), France
9  * Copyright (c) 2012, CS Systemes d'Information, France
10  * All rights reserved.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #ifdef __SSE__
35 #include <xmmintrin.h>
36 #endif
37 
38 #include "opj_includes.h"
39 
40 /* <summary> */
41 /* This table contains the norms of the basis function of the reversible MCT. */
42 /* </summary> */
43 static const OPJ_FLOAT64 opj_mct_norms[3] = { 1.732, .8292, .8292 };
44 
45 /* <summary> */
46 /* This table contains the norms of the basis function of the irreversible MCT. */
47 /* </summary> */
48 static const OPJ_FLOAT64 opj_mct_norms_real[3] = { 1.732, 1.805, 1.573 };
49 
opj_mct_get_mct_norms()50 const OPJ_FLOAT64 * opj_mct_get_mct_norms ()
51 {
52 	return opj_mct_norms;
53 }
54 
opj_mct_get_mct_norms_real()55 const OPJ_FLOAT64 * opj_mct_get_mct_norms_real ()
56 {
57 	return opj_mct_norms_real;
58 }
59 
60 /* <summary> */
61 /* Foward reversible MCT. */
62 /* </summary> */
opj_mct_encode(OPJ_INT32 * restrict c0,OPJ_INT32 * restrict c1,OPJ_INT32 * restrict c2,OPJ_UINT32 n)63 void opj_mct_encode(
64 		OPJ_INT32* restrict c0,
65 		OPJ_INT32* restrict c1,
66 		OPJ_INT32* restrict c2,
67 		OPJ_UINT32 n)
68 {
69 	OPJ_UINT32 i;
70 	for(i = 0; i < n; ++i) {
71 		OPJ_INT32 r = c0[i];
72 		OPJ_INT32 g = c1[i];
73 		OPJ_INT32 b = c2[i];
74 		OPJ_INT32 y = (r + (g * 2) + b) >> 2;
75 		OPJ_INT32 u = b - g;
76 		OPJ_INT32 v = r - g;
77 		c0[i] = y;
78 		c1[i] = u;
79 		c2[i] = v;
80 	}
81 }
82 
83 /* <summary> */
84 /* Inverse reversible MCT. */
85 /* </summary> */
opj_mct_decode(OPJ_INT32 * restrict c0,OPJ_INT32 * restrict c1,OPJ_INT32 * restrict c2,OPJ_UINT32 n)86 void opj_mct_decode(
87 		OPJ_INT32* restrict c0,
88 		OPJ_INT32* restrict c1,
89 		OPJ_INT32* restrict c2,
90 		OPJ_UINT32 n)
91 {
92 	OPJ_UINT32 i;
93 	for (i = 0; i < n; ++i) {
94 		OPJ_INT32 y = c0[i];
95 		OPJ_INT32 u = c1[i];
96 		OPJ_INT32 v = c2[i];
97 		OPJ_INT32 g = y - ((u + v) >> 2);
98 		OPJ_INT32 r = v + g;
99 		OPJ_INT32 b = u + g;
100 		c0[i] = r;
101 		c1[i] = g;
102 		c2[i] = b;
103 	}
104 }
105 
106 /* <summary> */
107 /* Get norm of basis function of reversible MCT. */
108 /* </summary> */
opj_mct_getnorm(OPJ_UINT32 compno)109 OPJ_FLOAT64 opj_mct_getnorm(OPJ_UINT32 compno) {
110 	return opj_mct_norms[compno];
111 }
112 
113 /* <summary> */
114 /* Foward irreversible MCT. */
115 /* </summary> */
opj_mct_encode_real(OPJ_INT32 * restrict c0,OPJ_INT32 * restrict c1,OPJ_INT32 * restrict c2,OPJ_UINT32 n)116 void opj_mct_encode_real(
117 		OPJ_INT32* restrict c0,
118 		OPJ_INT32* restrict c1,
119 		OPJ_INT32* restrict c2,
120 		OPJ_UINT32 n)
121 {
122 	OPJ_UINT32 i;
123 	for(i = 0; i < n; ++i) {
124 		OPJ_INT32 r = c0[i];
125 		OPJ_INT32 g = c1[i];
126 		OPJ_INT32 b = c2[i];
127 		OPJ_INT32 y =  opj_int_fix_mul(r, 2449) + opj_int_fix_mul(g, 4809) + opj_int_fix_mul(b, 934);
128 		OPJ_INT32 u = -opj_int_fix_mul(r, 1382) - opj_int_fix_mul(g, 2714) + opj_int_fix_mul(b, 4096);
129 		OPJ_INT32 v =  opj_int_fix_mul(r, 4096) - opj_int_fix_mul(g, 3430) - opj_int_fix_mul(b, 666);
130 		c0[i] = y;
131 		c1[i] = u;
132 		c2[i] = v;
133 	}
134 }
135 
136 /* <summary> */
137 /* Inverse irreversible MCT. */
138 /* </summary> */
opj_mct_decode_real(OPJ_FLOAT32 * restrict c0,OPJ_FLOAT32 * restrict c1,OPJ_FLOAT32 * restrict c2,OPJ_UINT32 n)139 void opj_mct_decode_real(
140 		OPJ_FLOAT32* restrict c0,
141 		OPJ_FLOAT32* restrict c1,
142 		OPJ_FLOAT32* restrict c2,
143 		OPJ_UINT32 n)
144 {
145 	OPJ_UINT32 i;
146 #ifdef __SSE__
147 	__m128 vrv, vgu, vgv, vbu;
148 	vrv = _mm_set1_ps(1.402f);
149 	vgu = _mm_set1_ps(0.34413f);
150 	vgv = _mm_set1_ps(0.71414f);
151 	vbu = _mm_set1_ps(1.772f);
152 	for (i = 0; i < (n >> 3); ++i) {
153 		__m128 vy, vu, vv;
154 		__m128 vr, vg, vb;
155 
156 		vy = _mm_load_ps(c0);
157 		vu = _mm_load_ps(c1);
158 		vv = _mm_load_ps(c2);
159 		vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv));
160 		vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv));
161 		vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu));
162 		_mm_store_ps(c0, vr);
163 		_mm_store_ps(c1, vg);
164 		_mm_store_ps(c2, vb);
165 		c0 += 4;
166 		c1 += 4;
167 		c2 += 4;
168 
169 		vy = _mm_load_ps(c0);
170 		vu = _mm_load_ps(c1);
171 		vv = _mm_load_ps(c2);
172 		vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv));
173 		vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv));
174 		vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu));
175 		_mm_store_ps(c0, vr);
176 		_mm_store_ps(c1, vg);
177 		_mm_store_ps(c2, vb);
178 		c0 += 4;
179 		c1 += 4;
180 		c2 += 4;
181 	}
182 	n &= 7;
183 #endif
184 	for(i = 0; i < n; ++i) {
185 		OPJ_FLOAT32 y = c0[i];
186 		OPJ_FLOAT32 u = c1[i];
187 		OPJ_FLOAT32 v = c2[i];
188 		OPJ_FLOAT32 r = y + (v * 1.402f);
189 		OPJ_FLOAT32 g = y - (u * 0.34413f) - (v * (0.71414f));
190 		OPJ_FLOAT32 b = y + (u * 1.772f);
191 		c0[i] = r;
192 		c1[i] = g;
193 		c2[i] = b;
194 	}
195 }
196 
197 /* <summary> */
198 /* Get norm of basis function of irreversible MCT. */
199 /* </summary> */
opj_mct_getnorm_real(OPJ_UINT32 compno)200 OPJ_FLOAT64 opj_mct_getnorm_real(OPJ_UINT32 compno) {
201 	return opj_mct_norms_real[compno];
202 }
203 
204 
opj_mct_encode_custom(OPJ_BYTE * pCodingdata,OPJ_UINT32 n,OPJ_BYTE ** pData,OPJ_UINT32 pNbComp,OPJ_UINT32 isSigned)205 OPJ_BOOL opj_mct_encode_custom(
206 					   OPJ_BYTE * pCodingdata,
207 					   OPJ_UINT32 n,
208 					   OPJ_BYTE ** pData,
209 					   OPJ_UINT32 pNbComp,
210 					   OPJ_UINT32 isSigned)
211 {
212 	OPJ_FLOAT32 * lMct = (OPJ_FLOAT32 *) pCodingdata;
213 	OPJ_UINT32 i;
214 	OPJ_UINT32 j;
215 	OPJ_UINT32 k;
216 	OPJ_UINT32 lNbMatCoeff = pNbComp * pNbComp;
217 	OPJ_INT32 * lCurrentData = 00;
218 	OPJ_INT32 * lCurrentMatrix = 00;
219 	OPJ_INT32 ** lData = (OPJ_INT32 **) pData;
220 	OPJ_UINT32 lMultiplicator = 1 << 13;
221 	OPJ_INT32 * lMctPtr;
222 
223     OPJ_ARG_NOT_USED(isSigned);
224 
225 	lCurrentData = (OPJ_INT32 *) opj_malloc((pNbComp + lNbMatCoeff) * sizeof(OPJ_INT32));
226 	if (! lCurrentData) {
227 		return OPJ_FALSE;
228 	}
229 
230 	lCurrentMatrix = lCurrentData + pNbComp;
231 
232 	for (i =0;i<lNbMatCoeff;++i) {
233 		lCurrentMatrix[i] = (OPJ_INT32) (*(lMct++) * (OPJ_FLOAT32)lMultiplicator);
234 	}
235 
236 	for (i = 0; i < n; ++i)  {
237 		lMctPtr = lCurrentMatrix;
238 		for (j=0;j<pNbComp;++j) {
239 			lCurrentData[j] = (*(lData[j]));
240 		}
241 
242 		for (j=0;j<pNbComp;++j) {
243 			*(lData[j]) = 0;
244 			for (k=0;k<pNbComp;++k) {
245 				*(lData[j]) += opj_int_fix_mul(*lMctPtr, lCurrentData[k]);
246 				++lMctPtr;
247 			}
248 
249 			++lData[j];
250 		}
251 	}
252 
253 	opj_free(lCurrentData);
254 
255 	return OPJ_TRUE;
256 }
257 
opj_mct_decode_custom(OPJ_BYTE * pDecodingData,OPJ_UINT32 n,OPJ_BYTE ** pData,OPJ_UINT32 pNbComp,OPJ_UINT32 isSigned)258 OPJ_BOOL opj_mct_decode_custom(
259 					   OPJ_BYTE * pDecodingData,
260 					   OPJ_UINT32 n,
261 					   OPJ_BYTE ** pData,
262 					   OPJ_UINT32 pNbComp,
263 					   OPJ_UINT32 isSigned)
264 {
265 	OPJ_FLOAT32 * lMct;
266 	OPJ_UINT32 i;
267 	OPJ_UINT32 j;
268 	OPJ_UINT32 k;
269 
270 	OPJ_FLOAT32 * lCurrentData = 00;
271 	OPJ_FLOAT32 * lCurrentResult = 00;
272 	OPJ_FLOAT32 ** lData = (OPJ_FLOAT32 **) pData;
273 
274     OPJ_ARG_NOT_USED(isSigned);
275 
276 	lCurrentData = (OPJ_FLOAT32 *) opj_malloc (2 * pNbComp * sizeof(OPJ_FLOAT32));
277 	if (! lCurrentData) {
278 		return OPJ_FALSE;
279 	}
280 	lCurrentResult = lCurrentData + pNbComp;
281 
282 	for (i = 0; i < n; ++i) {
283 		lMct = (OPJ_FLOAT32 *) pDecodingData;
284 		for (j=0;j<pNbComp;++j) {
285 			lCurrentData[j] = (OPJ_FLOAT32) (*(lData[j]));
286 		}
287 		for (j=0;j<pNbComp;++j) {
288 			lCurrentResult[j] = 0;
289 			for	(k=0;k<pNbComp;++k)	{
290 				lCurrentResult[j] += *(lMct++) * lCurrentData[k];
291 			}
292 			*(lData[j]++) = (OPJ_FLOAT32) (lCurrentResult[j]);
293 		}
294 	}
295 	opj_free(lCurrentData);
296 	return OPJ_TRUE;
297 }
298 
opj_calculate_norms(OPJ_FLOAT64 * pNorms,OPJ_UINT32 pNbComps,OPJ_FLOAT32 * pMatrix)299 void opj_calculate_norms(	OPJ_FLOAT64 * pNorms,
300 							OPJ_UINT32 pNbComps,
301 							OPJ_FLOAT32 * pMatrix)
302 {
303 	OPJ_UINT32 i,j,lIndex;
304 	OPJ_FLOAT32 lCurrentValue;
305 	OPJ_FLOAT64 * lNorms = (OPJ_FLOAT64 *) pNorms;
306 	OPJ_FLOAT32 * lMatrix = (OPJ_FLOAT32 *) pMatrix;
307 
308 	for	(i=0;i<pNbComps;++i) {
309 		lNorms[i] = 0;
310 		lIndex = i;
311 
312 		for	(j=0;j<pNbComps;++j) {
313 			lCurrentValue = lMatrix[lIndex];
314 			lIndex += pNbComps;
315 			lNorms[i] += lCurrentValue * lCurrentValue;
316 		}
317 		lNorms[i] = sqrt(lNorms[i]);
318 	}
319 }
320