1 /*
2  * Copyright (c) 1991-1997 Sam Leffler
3  * Copyright (c) 1991-1997 Silicon Graphics, Inc.
4  *
5  * Permission to use, copy, modify, distribute, and sell this software and
6  * its documentation for any purpose is hereby granted without fee, provided
7  * that (i) the above copyright notices and this permission notice appear in
8  * all copies of the software and related documentation, and (ii) the names of
9  * Sam Leffler and Silicon Graphics may not be used in any advertising or
10  * publicity relating to the software without the specific, prior written
11  * permission of Sam Leffler and Silicon Graphics.
12  *
13  * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
14  * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
15  * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
16  *
17  * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
18  * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
19  * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
20  * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
21  * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
22  * OF THIS SOFTWARE.
23  */
24 
25 /*
26  * TIFF Library
27  *
28  * Read and return a packed RGBA image.
29  */
30 #include "tiffiop.h"
31 #include <stdio.h>
32 
33 static int gtTileContig(TIFFRGBAImage*, uint32*, uint32, uint32);
34 static int gtTileSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
35 static int gtStripContig(TIFFRGBAImage*, uint32*, uint32, uint32);
36 static int gtStripSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
37 static int PickContigCase(TIFFRGBAImage*);
38 static int PickSeparateCase(TIFFRGBAImage*);
39 
40 static int BuildMapUaToAa(TIFFRGBAImage* img);
41 static int BuildMapBitdepth16To8(TIFFRGBAImage* img);
42 
43 static const char photoTag[] = "PhotometricInterpretation";
44 
45 /*
46  * Helper constants used in Orientation tag handling
47  */
48 #define FLIP_VERTICALLY 0x01
49 #define FLIP_HORIZONTALLY 0x02
50 
51 /*
52  * Color conversion constants. We will define display types here.
53  */
54 
55 static const TIFFDisplay display_sRGB = {
56 	{			/* XYZ -> luminance matrix */
57 		{  3.2410F, -1.5374F, -0.4986F },
58 		{  -0.9692F, 1.8760F, 0.0416F },
59 		{  0.0556F, -0.2040F, 1.0570F }
60 	},
61 	100.0F, 100.0F, 100.0F,	/* Light o/p for reference white */
62 	255, 255, 255,		/* Pixel values for ref. white */
63 	1.0F, 1.0F, 1.0F,	/* Residual light o/p for black pixel */
64 	2.4F, 2.4F, 2.4F,	/* Gamma values for the three guns */
65 };
66 
67 /*
68  * Check the image to see if TIFFReadRGBAImage can deal with it.
69  * 1/0 is returned according to whether or not the image can
70  * be handled.  If 0 is returned, emsg contains the reason
71  * why it is being rejected.
72  */
73 int
TIFFRGBAImageOK(TIFF * tif,char emsg[1024])74 TIFFRGBAImageOK(TIFF* tif, char emsg[1024])
75 {
76 	TIFFDirectory* td = &tif->tif_dir;
77 	uint16 photometric;
78 	int colorchannels;
79 
80 	if (!tif->tif_decodestatus) {
81 		sprintf(emsg, "Sorry, requested compression method is not configured");
82 		return (0);
83 	}
84 	switch (td->td_bitspersample) {
85 		case 1:
86 		case 2:
87 		case 4:
88 		case 8:
89 		case 16:
90 			break;
91 		default:
92 			sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
93 			    td->td_bitspersample);
94 			return (0);
95 	}
96         if (td->td_sampleformat == SAMPLEFORMAT_IEEEFP) {
97                 sprintf(emsg, "Sorry, can not handle images with IEEE floating-point samples");
98                 return (0);
99         }
100 	colorchannels = td->td_samplesperpixel - td->td_extrasamples;
101 	if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric)) {
102 		switch (colorchannels) {
103 			case 1:
104 				photometric = PHOTOMETRIC_MINISBLACK;
105 				break;
106 			case 3:
107 				photometric = PHOTOMETRIC_RGB;
108 				break;
109 			default:
110 				sprintf(emsg, "Missing needed %s tag", photoTag);
111 				return (0);
112 		}
113 	}
114 	switch (photometric) {
115 		case PHOTOMETRIC_MINISWHITE:
116 		case PHOTOMETRIC_MINISBLACK:
117 		case PHOTOMETRIC_PALETTE:
118 			if (td->td_planarconfig == PLANARCONFIG_CONTIG
119 			    && td->td_samplesperpixel != 1
120 			    && td->td_bitspersample < 8 ) {
121 				sprintf(emsg,
122 				    "Sorry, can not handle contiguous data with %s=%d, "
123 				    "and %s=%d and Bits/Sample=%d",
124 				    photoTag, photometric,
125 				    "Samples/pixel", td->td_samplesperpixel,
126 				    td->td_bitspersample);
127 				return (0);
128 			}
129 			/*
130 			 * We should likely validate that any extra samples are either
131 			 * to be ignored, or are alpha, and if alpha we should try to use
132 			 * them.  But for now we won't bother with this.
133 			*/
134 			break;
135 		case PHOTOMETRIC_YCBCR:
136 			/*
137 			 * TODO: if at all meaningful and useful, make more complete
138 			 * support check here, or better still, refactor to let supporting
139 			 * code decide whether there is support and what meaningful
140 			 * error to return
141 			 */
142 			break;
143 		case PHOTOMETRIC_RGB:
144 			if (colorchannels < 3) {
145 				sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
146 				    "Color channels", colorchannels);
147 				return (0);
148 			}
149 			break;
150 		case PHOTOMETRIC_SEPARATED:
151 			{
152 				uint16 inkset;
153 				TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
154 				if (inkset != INKSET_CMYK) {
155 					sprintf(emsg,
156 					    "Sorry, can not handle separated image with %s=%d",
157 					    "InkSet", inkset);
158 					return 0;
159 				}
160 				if (td->td_samplesperpixel < 4) {
161 					sprintf(emsg,
162 					    "Sorry, can not handle separated image with %s=%d",
163 					    "Samples/pixel", td->td_samplesperpixel);
164 					return 0;
165 				}
166 				break;
167 			}
168 		case PHOTOMETRIC_LOGL:
169 			if (td->td_compression != COMPRESSION_SGILOG) {
170 				sprintf(emsg, "Sorry, LogL data must have %s=%d",
171 				    "Compression", COMPRESSION_SGILOG);
172 				return (0);
173 			}
174 			break;
175 		case PHOTOMETRIC_LOGLUV:
176 			if (td->td_compression != COMPRESSION_SGILOG &&
177 			    td->td_compression != COMPRESSION_SGILOG24) {
178 				sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
179 				    "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
180 				return (0);
181 			}
182 			if (td->td_planarconfig != PLANARCONFIG_CONTIG) {
183 				sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
184 				    "Planarconfiguration", td->td_planarconfig);
185 				return (0);
186 			}
187 			if ( td->td_samplesperpixel != 3 || colorchannels != 3 ) {
188                                 sprintf(emsg,
189                                         "Sorry, can not handle image with %s=%d, %s=%d",
190                                         "Samples/pixel", td->td_samplesperpixel,
191                                         "colorchannels", colorchannels);
192                                 return 0;
193                         }
194 			break;
195 		case PHOTOMETRIC_CIELAB:
196                         if ( td->td_samplesperpixel != 3 || colorchannels != 3 || td->td_bitspersample != 8 ) {
197                                 sprintf(emsg,
198                                         "Sorry, can not handle image with %s=%d, %s=%d and %s=%d",
199                                         "Samples/pixel", td->td_samplesperpixel,
200                                         "colorchannels", colorchannels,
201                                         "Bits/sample", td->td_bitspersample);
202                                 return 0;
203                         }
204 			break;
205                 default:
206 			sprintf(emsg, "Sorry, can not handle image with %s=%d",
207 			    photoTag, photometric);
208 			return (0);
209 	}
210 	return (1);
211 }
212 
213 void
TIFFRGBAImageEnd(TIFFRGBAImage * img)214 TIFFRGBAImageEnd(TIFFRGBAImage* img)
215 {
216 	if (img->Map) {
217 		_TIFFfree(img->Map);
218 		img->Map = NULL;
219 	}
220 	if (img->BWmap) {
221 		_TIFFfree(img->BWmap);
222 		img->BWmap = NULL;
223 	}
224 	if (img->PALmap) {
225 		_TIFFfree(img->PALmap);
226 		img->PALmap = NULL;
227 	}
228 	if (img->ycbcr) {
229 		_TIFFfree(img->ycbcr);
230 		img->ycbcr = NULL;
231 	}
232 	if (img->cielab) {
233 		_TIFFfree(img->cielab);
234 		img->cielab = NULL;
235 	}
236 	if (img->UaToAa) {
237 		_TIFFfree(img->UaToAa);
238 		img->UaToAa = NULL;
239 	}
240 	if (img->Bitdepth16To8) {
241 		_TIFFfree(img->Bitdepth16To8);
242 		img->Bitdepth16To8 = NULL;
243 	}
244 
245 	if( img->redcmap ) {
246 		_TIFFfree( img->redcmap );
247 		_TIFFfree( img->greencmap );
248 		_TIFFfree( img->bluecmap );
249                 img->redcmap = img->greencmap = img->bluecmap = NULL;
250 	}
251 }
252 
253 static int
isCCITTCompression(TIFF * tif)254 isCCITTCompression(TIFF* tif)
255 {
256     uint16 compress;
257     TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress);
258     return (compress == COMPRESSION_CCITTFAX3 ||
259 	    compress == COMPRESSION_CCITTFAX4 ||
260 	    compress == COMPRESSION_CCITTRLE ||
261 	    compress == COMPRESSION_CCITTRLEW);
262 }
263 
264 int
TIFFRGBAImageBegin(TIFFRGBAImage * img,TIFF * tif,int stop,char emsg[1024])265 TIFFRGBAImageBegin(TIFFRGBAImage* img, TIFF* tif, int stop, char emsg[1024])
266 {
267 	uint16* sampleinfo;
268 	uint16 extrasamples;
269 	uint16 planarconfig;
270 	uint16 compress;
271 	int colorchannels;
272 	uint16 *red_orig, *green_orig, *blue_orig;
273 	int n_color;
274 
275 	if( !TIFFRGBAImageOK(tif, emsg) )
276 		return 0;
277 
278 	/* Initialize to normal values */
279 	img->row_offset = 0;
280 	img->col_offset = 0;
281 	img->redcmap = NULL;
282 	img->greencmap = NULL;
283 	img->bluecmap = NULL;
284 	img->Map = NULL;
285 	img->BWmap = NULL;
286 	img->PALmap = NULL;
287 	img->ycbcr = NULL;
288 	img->cielab = NULL;
289 	img->UaToAa = NULL;
290 	img->Bitdepth16To8 = NULL;
291 	img->req_orientation = ORIENTATION_BOTLEFT;     /* It is the default */
292 
293 	img->tif = tif;
294 	img->stoponerr = stop;
295 	TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample);
296 	switch (img->bitspersample) {
297 		case 1:
298 		case 2:
299 		case 4:
300 		case 8:
301 		case 16:
302 			break;
303 		default:
304 			sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
305 			    img->bitspersample);
306 			goto fail_return;
307 	}
308 	img->alpha = 0;
309 	TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixel);
310 	TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES,
311 	    &extrasamples, &sampleinfo);
312 	if (extrasamples >= 1)
313 	{
314 		switch (sampleinfo[0]) {
315 			case EXTRASAMPLE_UNSPECIFIED:          /* Workaround for some images without */
316 				if (img->samplesperpixel > 3)  /* correct info about alpha channel */
317 					img->alpha = EXTRASAMPLE_ASSOCALPHA;
318 				break;
319 			case EXTRASAMPLE_ASSOCALPHA:           /* data is pre-multiplied */
320 			case EXTRASAMPLE_UNASSALPHA:           /* data is not pre-multiplied */
321 				img->alpha = sampleinfo[0];
322 				break;
323 		}
324 	}
325 
326 #ifdef DEFAULT_EXTRASAMPLE_AS_ALPHA
327 	if( !TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric))
328 		img->photometric = PHOTOMETRIC_MINISWHITE;
329 
330 	if( extrasamples == 0
331 	    && img->samplesperpixel == 4
332 	    && img->photometric == PHOTOMETRIC_RGB )
333 	{
334 		img->alpha = EXTRASAMPLE_ASSOCALPHA;
335 		extrasamples = 1;
336 	}
337 #endif
338 
339 	colorchannels = img->samplesperpixel - extrasamples;
340 	TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress);
341 	TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig);
342 	if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) {
343 		switch (colorchannels) {
344 			case 1:
345 				if (isCCITTCompression(tif))
346 					img->photometric = PHOTOMETRIC_MINISWHITE;
347 				else
348 					img->photometric = PHOTOMETRIC_MINISBLACK;
349 				break;
350 			case 3:
351 				img->photometric = PHOTOMETRIC_RGB;
352 				break;
353 			default:
354 				sprintf(emsg, "Missing needed %s tag", photoTag);
355                                 goto fail_return;
356 		}
357 	}
358 	switch (img->photometric) {
359 		case PHOTOMETRIC_PALETTE:
360 			if (!TIFFGetField(tif, TIFFTAG_COLORMAP,
361 			    &red_orig, &green_orig, &blue_orig)) {
362 				sprintf(emsg, "Missing required \"Colormap\" tag");
363                                 goto fail_return;
364 			}
365 
366 			/* copy the colormaps so we can modify them */
367 			n_color = (1U << img->bitspersample);
368 			img->redcmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
369 			img->greencmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
370 			img->bluecmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
371 			if( !img->redcmap || !img->greencmap || !img->bluecmap ) {
372 				sprintf(emsg, "Out of memory for colormap copy");
373                                 goto fail_return;
374 			}
375 
376 			_TIFFmemcpy( img->redcmap, red_orig, n_color * 2 );
377 			_TIFFmemcpy( img->greencmap, green_orig, n_color * 2 );
378 			_TIFFmemcpy( img->bluecmap, blue_orig, n_color * 2 );
379 
380 			/* fall through... */
381 		case PHOTOMETRIC_MINISWHITE:
382 		case PHOTOMETRIC_MINISBLACK:
383 			if (planarconfig == PLANARCONFIG_CONTIG
384 			    && img->samplesperpixel != 1
385 			    && img->bitspersample < 8 ) {
386 				sprintf(emsg,
387 				    "Sorry, can not handle contiguous data with %s=%d, "
388 				    "and %s=%d and Bits/Sample=%d",
389 				    photoTag, img->photometric,
390 				    "Samples/pixel", img->samplesperpixel,
391 				    img->bitspersample);
392                                 goto fail_return;
393 			}
394 			break;
395 		case PHOTOMETRIC_YCBCR:
396 			/* It would probably be nice to have a reality check here. */
397 			if (planarconfig == PLANARCONFIG_CONTIG)
398 				/* can rely on libjpeg to convert to RGB */
399 				/* XXX should restore current state on exit */
400 				switch (compress) {
401 					case COMPRESSION_JPEG:
402 						/*
403 						 * TODO: when complete tests verify complete desubsampling
404 						 * and YCbCr handling, remove use of TIFFTAG_JPEGCOLORMODE in
405 						 * favor of tif_getimage.c native handling
406 						 */
407 						TIFFSetField(tif, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB);
408 						img->photometric = PHOTOMETRIC_RGB;
409 						break;
410 					default:
411 						/* do nothing */;
412 						break;
413 				}
414 			/*
415 			 * TODO: if at all meaningful and useful, make more complete
416 			 * support check here, or better still, refactor to let supporting
417 			 * code decide whether there is support and what meaningful
418 			 * error to return
419 			 */
420 			break;
421 		case PHOTOMETRIC_RGB:
422 			if (colorchannels < 3) {
423 				sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
424 				    "Color channels", colorchannels);
425                                 goto fail_return;
426 			}
427 			break;
428 		case PHOTOMETRIC_SEPARATED:
429 			{
430 				uint16 inkset;
431 				TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
432 				if (inkset != INKSET_CMYK) {
433 					sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
434 					    "InkSet", inkset);
435                                         goto fail_return;
436 				}
437 				if (img->samplesperpixel < 4) {
438 					sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
439 					    "Samples/pixel", img->samplesperpixel);
440                                         goto fail_return;
441 				}
442 			}
443 			break;
444 		case PHOTOMETRIC_LOGL:
445 			if (compress != COMPRESSION_SGILOG) {
446 				sprintf(emsg, "Sorry, LogL data must have %s=%d",
447 				    "Compression", COMPRESSION_SGILOG);
448                                 goto fail_return;
449 			}
450 			TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
451 			img->photometric = PHOTOMETRIC_MINISBLACK;	/* little white lie */
452 			img->bitspersample = 8;
453 			break;
454 		case PHOTOMETRIC_LOGLUV:
455 			if (compress != COMPRESSION_SGILOG && compress != COMPRESSION_SGILOG24) {
456 				sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
457 				    "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
458                                 goto fail_return;
459 			}
460 			if (planarconfig != PLANARCONFIG_CONTIG) {
461 				sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
462 				    "Planarconfiguration", planarconfig);
463 				return (0);
464 			}
465 			TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
466 			img->photometric = PHOTOMETRIC_RGB;		/* little white lie */
467 			img->bitspersample = 8;
468 			break;
469 		case PHOTOMETRIC_CIELAB:
470 			break;
471 		default:
472 			sprintf(emsg, "Sorry, can not handle image with %s=%d",
473 			    photoTag, img->photometric);
474                         goto fail_return;
475 	}
476 	TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width);
477 	TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height);
478 	TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation);
479 	img->isContig =
480 	    !(planarconfig == PLANARCONFIG_SEPARATE && img->samplesperpixel > 1);
481 	if (img->isContig) {
482 		if (!PickContigCase(img)) {
483 			sprintf(emsg, "Sorry, can not handle image");
484 			goto fail_return;
485 		}
486 	} else {
487 		if (!PickSeparateCase(img)) {
488 			sprintf(emsg, "Sorry, can not handle image");
489 			goto fail_return;
490 		}
491 	}
492 	return 1;
493 
494   fail_return:
495         TIFFRGBAImageEnd( img );
496         return 0;
497 }
498 
499 int
TIFFRGBAImageGet(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)500 TIFFRGBAImageGet(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
501 {
502     if (img->get == NULL) {
503 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No \"get\" routine setup");
504 		return (0);
505 	}
506 	if (img->put.any == NULL) {
507 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif),
508 		"No \"put\" routine setupl; probably can not handle image format");
509 		return (0);
510     }
511     return (*img->get)(img, raster, w, h);
512 }
513 
514 /*
515  * Read the specified image into an ABGR-format rastertaking in account
516  * specified orientation.
517  */
518 int
TIFFReadRGBAImageOriented(TIFF * tif,uint32 rwidth,uint32 rheight,uint32 * raster,int orientation,int stop)519 TIFFReadRGBAImageOriented(TIFF* tif,
520 			  uint32 rwidth, uint32 rheight, uint32* raster,
521 			  int orientation, int stop)
522 {
523     char emsg[1024] = "";
524     TIFFRGBAImage img;
525     int ok;
526 
527 	if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop, emsg)) {
528 		img.req_orientation = (uint16)orientation;
529 		/* XXX verify rwidth and rheight against width and height */
530 		ok = TIFFRGBAImageGet(&img, raster+(rheight-img.height)*rwidth,
531 			rwidth, img.height);
532 		TIFFRGBAImageEnd(&img);
533 	} else {
534 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
535 		ok = 0;
536     }
537     return (ok);
538 }
539 
540 /*
541  * Read the specified image into an ABGR-format raster. Use bottom left
542  * origin for raster by default.
543  */
544 int
TIFFReadRGBAImage(TIFF * tif,uint32 rwidth,uint32 rheight,uint32 * raster,int stop)545 TIFFReadRGBAImage(TIFF* tif,
546 		  uint32 rwidth, uint32 rheight, uint32* raster, int stop)
547 {
548 	return TIFFReadRGBAImageOriented(tif, rwidth, rheight, raster,
549 					 ORIENTATION_BOTLEFT, stop);
550 }
551 
552 static int
setorientation(TIFFRGBAImage * img)553 setorientation(TIFFRGBAImage* img)
554 {
555 	switch (img->orientation) {
556 		case ORIENTATION_TOPLEFT:
557 		case ORIENTATION_LEFTTOP:
558 			if (img->req_orientation == ORIENTATION_TOPRIGHT ||
559 			    img->req_orientation == ORIENTATION_RIGHTTOP)
560 				return FLIP_HORIZONTALLY;
561 			else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
562 			    img->req_orientation == ORIENTATION_RIGHTBOT)
563 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
564 			else if (img->req_orientation == ORIENTATION_BOTLEFT ||
565 			    img->req_orientation == ORIENTATION_LEFTBOT)
566 				return FLIP_VERTICALLY;
567 			else
568 				return 0;
569 		case ORIENTATION_TOPRIGHT:
570 		case ORIENTATION_RIGHTTOP:
571 			if (img->req_orientation == ORIENTATION_TOPLEFT ||
572 			    img->req_orientation == ORIENTATION_LEFTTOP)
573 				return FLIP_HORIZONTALLY;
574 			else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
575 			    img->req_orientation == ORIENTATION_RIGHTBOT)
576 				return FLIP_VERTICALLY;
577 			else if (img->req_orientation == ORIENTATION_BOTLEFT ||
578 			    img->req_orientation == ORIENTATION_LEFTBOT)
579 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
580 			else
581 				return 0;
582 		case ORIENTATION_BOTRIGHT:
583 		case ORIENTATION_RIGHTBOT:
584 			if (img->req_orientation == ORIENTATION_TOPLEFT ||
585 			    img->req_orientation == ORIENTATION_LEFTTOP)
586 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
587 			else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
588 			    img->req_orientation == ORIENTATION_RIGHTTOP)
589 				return FLIP_VERTICALLY;
590 			else if (img->req_orientation == ORIENTATION_BOTLEFT ||
591 			    img->req_orientation == ORIENTATION_LEFTBOT)
592 				return FLIP_HORIZONTALLY;
593 			else
594 				return 0;
595 		case ORIENTATION_BOTLEFT:
596 		case ORIENTATION_LEFTBOT:
597 			if (img->req_orientation == ORIENTATION_TOPLEFT ||
598 			    img->req_orientation == ORIENTATION_LEFTTOP)
599 				return FLIP_VERTICALLY;
600 			else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
601 			    img->req_orientation == ORIENTATION_RIGHTTOP)
602 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
603 			else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
604 			    img->req_orientation == ORIENTATION_RIGHTBOT)
605 				return FLIP_HORIZONTALLY;
606 			else
607 				return 0;
608 		default:	/* NOTREACHED */
609 			return 0;
610 	}
611 }
612 
613 /*
614  * Get an tile-organized image that has
615  *	PlanarConfiguration contiguous if SamplesPerPixel > 1
616  * or
617  *	SamplesPerPixel == 1
618  */
619 static int
gtTileContig(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)620 gtTileContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
621 {
622     TIFF* tif = img->tif;
623     tileContigRoutine put = img->put.contig;
624     uint32 col, row, y, rowstoread;
625     tmsize_t pos;
626     uint32 tw, th;
627     unsigned char* buf = NULL;
628     int32 fromskew, toskew;
629     uint32 nrow;
630     int ret = 1, flip;
631     uint32 this_tw, tocol;
632     int32 this_toskew, leftmost_toskew;
633     int32 leftmost_fromskew;
634     uint32 leftmost_tw;
635     tmsize_t bufsize;
636 
637     bufsize = TIFFTileSize(tif);
638     if (bufsize == 0) {
639         TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No space for tile buffer");
640         return (0);
641     }
642 
643     TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
644     TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
645 
646     flip = setorientation(img);
647     if (flip & FLIP_VERTICALLY) {
648 	    y = h - 1;
649 	    toskew = -(int32)(tw + w);
650     }
651     else {
652 	    y = 0;
653 	    toskew = -(int32)(tw - w);
654     }
655 
656     /*
657      *	Leftmost tile is clipped on left side if col_offset > 0.
658      */
659     leftmost_fromskew = img->col_offset % tw;
660     leftmost_tw = tw - leftmost_fromskew;
661     leftmost_toskew = toskew + leftmost_fromskew;
662     for (row = 0; ret != 0 && row < h; row += nrow)
663     {
664         rowstoread = th - (row + img->row_offset) % th;
665     	nrow = (row + rowstoread > h ? h - row : rowstoread);
666 	fromskew = leftmost_fromskew;
667 	this_tw = leftmost_tw;
668 	this_toskew = leftmost_toskew;
669 	tocol = 0;
670 	col = img->col_offset;
671 	while (tocol < w)
672         {
673 	    if (_TIFFReadTileAndAllocBuffer(tif, (void**) &buf, bufsize, col,
674 			     row+img->row_offset, 0, 0)==(tmsize_t)(-1) &&
675                 (buf == NULL || img->stoponerr))
676             {
677                 ret = 0;
678                 break;
679             }
680             pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif) + \
681 		   ((tmsize_t) fromskew * img->samplesperpixel);
682 	    if (tocol + this_tw > w)
683 	    {
684 		/*
685 		 * Rightmost tile is clipped on right side.
686 		 */
687 		fromskew = tw - (w - tocol);
688 		this_tw = tw - fromskew;
689 		this_toskew = toskew + fromskew;
690 	    }
691 	    (*put)(img, raster+y*w+tocol, tocol, y, this_tw, nrow, fromskew, this_toskew, buf + pos);
692 	    tocol += this_tw;
693 	    col += this_tw;
694 	    /*
695 	     * After the leftmost tile, tiles are no longer clipped on left side.
696 	     */
697 	    fromskew = 0;
698 	    this_tw = tw;
699 	    this_toskew = toskew;
700 	}
701 
702         y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow);
703     }
704     _TIFFfree(buf);
705 
706     if (flip & FLIP_HORIZONTALLY) {
707 	    uint32 line;
708 
709 	    for (line = 0; line < h; line++) {
710 		    uint32 *left = raster + (line * w);
711 		    uint32 *right = left + w - 1;
712 
713 		    while ( left < right ) {
714 			    uint32 temp = *left;
715 			    *left = *right;
716 			    *right = temp;
717 			    left++;
718 				right--;
719 		    }
720 	    }
721     }
722 
723     return (ret);
724 }
725 
726 /*
727  * Get an tile-organized image that has
728  *	 SamplesPerPixel > 1
729  *	 PlanarConfiguration separated
730  * We assume that all such images are RGB.
731  */
732 static int
gtTileSeparate(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)733 gtTileSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
734 {
735 	TIFF* tif = img->tif;
736 	tileSeparateRoutine put = img->put.separate;
737 	uint32 col, row, y, rowstoread;
738 	tmsize_t pos;
739 	uint32 tw, th;
740 	unsigned char* buf = NULL;
741 	unsigned char* p0 = NULL;
742 	unsigned char* p1 = NULL;
743 	unsigned char* p2 = NULL;
744 	unsigned char* pa = NULL;
745 	tmsize_t tilesize;
746 	tmsize_t bufsize;
747 	int32 fromskew, toskew;
748 	int alpha = img->alpha;
749 	uint32 nrow;
750 	int ret = 1, flip;
751         uint16 colorchannels;
752 	uint32 this_tw, tocol;
753 	int32 this_toskew, leftmost_toskew;
754 	int32 leftmost_fromskew;
755 	uint32 leftmost_tw;
756 
757 	tilesize = TIFFTileSize(tif);
758 	bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,tilesize);
759 	if (bufsize == 0) {
760 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtTileSeparate");
761 		return (0);
762 	}
763 
764 	TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
765 	TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
766 
767 	flip = setorientation(img);
768 	if (flip & FLIP_VERTICALLY) {
769 		y = h - 1;
770 		toskew = -(int32)(tw + w);
771 	}
772 	else {
773 		y = 0;
774 		toskew = -(int32)(tw - w);
775 	}
776 
777         switch( img->photometric )
778         {
779           case PHOTOMETRIC_MINISWHITE:
780           case PHOTOMETRIC_MINISBLACK:
781           case PHOTOMETRIC_PALETTE:
782             colorchannels = 1;
783             break;
784 
785           default:
786             colorchannels = 3;
787             break;
788         }
789 
790 	/*
791 	 *	Leftmost tile is clipped on left side if col_offset > 0.
792 	 */
793 	leftmost_fromskew = img->col_offset % tw;
794 	leftmost_tw = tw - leftmost_fromskew;
795 	leftmost_toskew = toskew + leftmost_fromskew;
796 	for (row = 0; ret != 0 && row < h; row += nrow)
797 	{
798 		rowstoread = th - (row + img->row_offset) % th;
799 		nrow = (row + rowstoread > h ? h - row : rowstoread);
800 		fromskew = leftmost_fromskew;
801 		this_tw = leftmost_tw;
802 		this_toskew = leftmost_toskew;
803 		tocol = 0;
804 		col = img->col_offset;
805 		while (tocol < w)
806 		{
807                         if( buf == NULL )
808                         {
809                             if (_TIFFReadTileAndAllocBuffer(
810                                     tif, (void**) &buf, bufsize, col,
811                                     row+img->row_offset,0,0)==(tmsize_t)(-1)
812                                 && (buf == NULL || img->stoponerr))
813                             {
814                                     ret = 0;
815                                     break;
816                             }
817                             p0 = buf;
818                             if( colorchannels == 1 )
819                             {
820                                 p2 = p1 = p0;
821                                 pa = (alpha?(p0+3*tilesize):NULL);
822                             }
823                             else
824                             {
825                                 p1 = p0 + tilesize;
826                                 p2 = p1 + tilesize;
827                                 pa = (alpha?(p2+tilesize):NULL);
828                             }
829                         }
830 			else if (TIFFReadTile(tif, p0, col,
831 			    row+img->row_offset,0,0)==(tmsize_t)(-1) && img->stoponerr)
832 			{
833 				ret = 0;
834 				break;
835 			}
836 			if (colorchannels > 1
837                             && TIFFReadTile(tif, p1, col,
838                                             row+img->row_offset,0,1) == (tmsize_t)(-1)
839                             && img->stoponerr)
840 			{
841 				ret = 0;
842 				break;
843 			}
844 			if (colorchannels > 1
845                             && TIFFReadTile(tif, p2, col,
846                                             row+img->row_offset,0,2) == (tmsize_t)(-1)
847                             && img->stoponerr)
848 			{
849 				ret = 0;
850 				break;
851 			}
852 			if (alpha
853                             && TIFFReadTile(tif,pa,col,
854                                             row+img->row_offset,0,colorchannels) == (tmsize_t)(-1)
855                             && img->stoponerr)
856                         {
857                             ret = 0;
858                             break;
859 			}
860 
861 			pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif) + \
862 			   ((tmsize_t) fromskew * img->samplesperpixel);
863 			if (tocol + this_tw > w)
864 			{
865 				/*
866 				 * Rightmost tile is clipped on right side.
867 				 */
868 				fromskew = tw - (w - tocol);
869 				this_tw = tw - fromskew;
870 				this_toskew = toskew + fromskew;
871 			}
872 			(*put)(img, raster+y*w+tocol, tocol, y, this_tw, nrow, fromskew, this_toskew, \
873 				p0 + pos, p1 + pos, p2 + pos, (alpha?(pa+pos):NULL));
874 			tocol += this_tw;
875 			col += this_tw;
876 			/*
877 			* After the leftmost tile, tiles are no longer clipped on left side.
878 			*/
879 			fromskew = 0;
880 			this_tw = tw;
881 			this_toskew = toskew;
882 		}
883 
884 		y += ((flip & FLIP_VERTICALLY) ?-(int32) nrow : (int32) nrow);
885 	}
886 
887 	if (flip & FLIP_HORIZONTALLY) {
888 		uint32 line;
889 
890 		for (line = 0; line < h; line++) {
891 			uint32 *left = raster + (line * w);
892 			uint32 *right = left + w - 1;
893 
894 			while ( left < right ) {
895 				uint32 temp = *left;
896 				*left = *right;
897 				*right = temp;
898 				left++;
899 				right--;
900 			}
901 		}
902 	}
903 
904 	_TIFFfree(buf);
905 	return (ret);
906 }
907 
908 /*
909  * Get a strip-organized image that has
910  *	PlanarConfiguration contiguous if SamplesPerPixel > 1
911  * or
912  *	SamplesPerPixel == 1
913  */
914 static int
gtStripContig(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)915 gtStripContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
916 {
917 	TIFF* tif = img->tif;
918 	tileContigRoutine put = img->put.contig;
919 	uint32 row, y, nrow, nrowsub, rowstoread;
920 	tmsize_t pos;
921 	unsigned char* buf = NULL;
922 	uint32 rowsperstrip;
923 	uint16 subsamplinghor,subsamplingver;
924 	uint32 imagewidth = img->width;
925 	tmsize_t scanline;
926 	int32 fromskew, toskew;
927 	int ret = 1, flip;
928         tmsize_t maxstripsize;
929 
930 	TIFFGetFieldDefaulted(tif, TIFFTAG_YCBCRSUBSAMPLING, &subsamplinghor, &subsamplingver);
931 	if( subsamplingver == 0 ) {
932 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Invalid vertical YCbCr subsampling");
933 		return (0);
934 	}
935 
936 	maxstripsize = TIFFStripSize(tif);
937 
938 	flip = setorientation(img);
939 	if (flip & FLIP_VERTICALLY) {
940 		y = h - 1;
941 		toskew = -(int32)(w + w);
942 	} else {
943 		y = 0;
944 		toskew = -(int32)(w - w);
945 	}
946 
947 	TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
948 
949 	scanline = TIFFScanlineSize(tif);
950 	fromskew = (w < imagewidth ? imagewidth - w : 0);
951 	for (row = 0; row < h; row += nrow)
952 	{
953 		rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
954 		nrow = (row + rowstoread > h ? h - row : rowstoread);
955 		nrowsub = nrow;
956 		if ((nrowsub%subsamplingver)!=0)
957 			nrowsub+=subsamplingver-nrowsub%subsamplingver;
958 		if (_TIFFReadEncodedStripAndAllocBuffer(tif,
959 		    TIFFComputeStrip(tif,row+img->row_offset, 0),
960 		    (void**)(&buf),
961                     maxstripsize,
962 		    ((row + img->row_offset)%rowsperstrip + nrowsub) * scanline)==(tmsize_t)(-1)
963 		    && (buf == NULL || img->stoponerr))
964 		{
965 			ret = 0;
966 			break;
967 		}
968 
969 		pos = ((row + img->row_offset) % rowsperstrip) * scanline + \
970 			((tmsize_t) img->col_offset * img->samplesperpixel);
971 		(*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, buf + pos);
972 		y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow);
973 	}
974 
975 	if (flip & FLIP_HORIZONTALLY) {
976 		uint32 line;
977 
978 		for (line = 0; line < h; line++) {
979 			uint32 *left = raster + (line * w);
980 			uint32 *right = left + w - 1;
981 
982 			while ( left < right ) {
983 				uint32 temp = *left;
984 				*left = *right;
985 				*right = temp;
986 				left++;
987 				right--;
988 			}
989 		}
990 	}
991 
992 	_TIFFfree(buf);
993 	return (ret);
994 }
995 
996 /*
997  * Get a strip-organized image with
998  *	 SamplesPerPixel > 1
999  *	 PlanarConfiguration separated
1000  * We assume that all such images are RGB.
1001  */
1002 static int
gtStripSeparate(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)1003 gtStripSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
1004 {
1005 	TIFF* tif = img->tif;
1006 	tileSeparateRoutine put = img->put.separate;
1007 	unsigned char *buf = NULL;
1008 	unsigned char *p0 = NULL, *p1 = NULL, *p2 = NULL, *pa = NULL;
1009 	uint32 row, y, nrow, rowstoread;
1010 	tmsize_t pos;
1011 	tmsize_t scanline;
1012 	uint32 rowsperstrip, offset_row;
1013 	uint32 imagewidth = img->width;
1014 	tmsize_t stripsize;
1015 	tmsize_t bufsize;
1016 	int32 fromskew, toskew;
1017 	int alpha = img->alpha;
1018 	int ret = 1, flip;
1019         uint16 colorchannels;
1020 
1021 	stripsize = TIFFStripSize(tif);
1022 	bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,stripsize);
1023 	if (bufsize == 0) {
1024 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtStripSeparate");
1025 		return (0);
1026 	}
1027 
1028 	flip = setorientation(img);
1029 	if (flip & FLIP_VERTICALLY) {
1030 		y = h - 1;
1031 		toskew = -(int32)(w + w);
1032 	}
1033 	else {
1034 		y = 0;
1035 		toskew = -(int32)(w - w);
1036 	}
1037 
1038         switch( img->photometric )
1039         {
1040           case PHOTOMETRIC_MINISWHITE:
1041           case PHOTOMETRIC_MINISBLACK:
1042           case PHOTOMETRIC_PALETTE:
1043             colorchannels = 1;
1044             break;
1045 
1046           default:
1047             colorchannels = 3;
1048             break;
1049         }
1050 
1051 	TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
1052 	scanline = TIFFScanlineSize(tif);
1053 	fromskew = (w < imagewidth ? imagewidth - w : 0);
1054 	for (row = 0; row < h; row += nrow)
1055 	{
1056 		rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
1057 		nrow = (row + rowstoread > h ? h - row : rowstoread);
1058 		offset_row = row + img->row_offset;
1059                 if( buf == NULL )
1060                 {
1061                     if (_TIFFReadEncodedStripAndAllocBuffer(
1062                             tif, TIFFComputeStrip(tif, offset_row, 0),
1063                             (void**) &buf, bufsize,
1064                             ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1)
1065                         && (buf == NULL || img->stoponerr))
1066                     {
1067                             ret = 0;
1068                             break;
1069                     }
1070                     p0 = buf;
1071                     if( colorchannels == 1 )
1072                     {
1073                         p2 = p1 = p0;
1074                         pa = (alpha?(p0+3*stripsize):NULL);
1075                     }
1076                     else
1077                     {
1078                         p1 = p0 + stripsize;
1079                         p2 = p1 + stripsize;
1080                         pa = (alpha?(p2+stripsize):NULL);
1081                     }
1082                 }
1083 		else if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 0),
1084 		    p0, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1)
1085 		    && img->stoponerr)
1086 		{
1087 			ret = 0;
1088 			break;
1089 		}
1090 		if (colorchannels > 1
1091                     && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 1),
1092                                             p1, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1)
1093 		    && img->stoponerr)
1094 		{
1095 			ret = 0;
1096 			break;
1097 		}
1098 		if (colorchannels > 1
1099                     && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 2),
1100                                             p2, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1)
1101 		    && img->stoponerr)
1102 		{
1103 			ret = 0;
1104 			break;
1105 		}
1106 		if (alpha)
1107 		{
1108 			if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, colorchannels),
1109 			    pa, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1)
1110 			    && img->stoponerr)
1111 			{
1112 				ret = 0;
1113 				break;
1114 			}
1115 		}
1116 
1117 		pos = ((row + img->row_offset) % rowsperstrip) * scanline + \
1118 			((tmsize_t) img->col_offset * img->samplesperpixel);
1119 		(*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, p0 + pos, p1 + pos,
1120 		    p2 + pos, (alpha?(pa+pos):NULL));
1121 		y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow);
1122 	}
1123 
1124 	if (flip & FLIP_HORIZONTALLY) {
1125 		uint32 line;
1126 
1127 		for (line = 0; line < h; line++) {
1128 			uint32 *left = raster + (line * w);
1129 			uint32 *right = left + w - 1;
1130 
1131 			while ( left < right ) {
1132 				uint32 temp = *left;
1133 				*left = *right;
1134 				*right = temp;
1135 				left++;
1136 				right--;
1137 			}
1138 		}
1139 	}
1140 
1141 	_TIFFfree(buf);
1142 	return (ret);
1143 }
1144 
1145 /*
1146  * The following routines move decoded data returned
1147  * from the TIFF library into rasters filled with packed
1148  * ABGR pixels (i.e. suitable for passing to lrecwrite.)
1149  *
1150  * The routines have been created according to the most
1151  * important cases and optimized.  PickContigCase and
1152  * PickSeparateCase analyze the parameters and select
1153  * the appropriate "get" and "put" routine to use.
1154  */
1155 #define	REPEAT8(op)	REPEAT4(op); REPEAT4(op)
1156 #define	REPEAT4(op)	REPEAT2(op); REPEAT2(op)
1157 #define	REPEAT2(op)	op; op
1158 #define	CASE8(x,op)			\
1159     switch (x) {			\
1160     case 7: op; /*-fallthrough*/ \
1161     case 6: op; /*-fallthrough*/ \
1162     case 5: op; /*-fallthrough*/ \
1163     case 4: op; /*-fallthrough*/ \
1164     case 3: op; /*-fallthrough*/ \
1165     case 2: op; /*-fallthrough*/ \
1166     case 1: op;				\
1167     }
1168 #define	CASE4(x,op)	switch (x) { case 3: op; /*-fallthrough*/ case 2: op; /*-fallthrough*/ case 1: op; }
1169 #define	NOP
1170 
1171 #define	UNROLL8(w, op1, op2) {		\
1172     uint32 _x;				\
1173     for (_x = w; _x >= 8; _x -= 8) {	\
1174 	op1;				\
1175 	REPEAT8(op2);			\
1176     }					\
1177     if (_x > 0) {			\
1178 	op1;				\
1179 	CASE8(_x,op2);			\
1180     }					\
1181 }
1182 #define	UNROLL4(w, op1, op2) {		\
1183     uint32 _x;				\
1184     for (_x = w; _x >= 4; _x -= 4) {	\
1185 	op1;				\
1186 	REPEAT4(op2);			\
1187     }					\
1188     if (_x > 0) {			\
1189 	op1;				\
1190 	CASE4(_x,op2);			\
1191     }					\
1192 }
1193 #define	UNROLL2(w, op1, op2) {		\
1194     uint32 _x;				\
1195     for (_x = w; _x >= 2; _x -= 2) {	\
1196 	op1;				\
1197 	REPEAT2(op2);			\
1198     }					\
1199     if (_x) {				\
1200 	op1;				\
1201 	op2;				\
1202     }					\
1203 }
1204 
1205 #define	SKEW(r,g,b,skew)	{ r += skew; g += skew; b += skew; }
1206 #define	SKEW4(r,g,b,a,skew)	{ r += skew; g += skew; b += skew; a+= skew; }
1207 
1208 #define A1 (((uint32)0xffL)<<24)
1209 #define	PACK(r,g,b)	\
1210 	((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|A1)
1211 #define	PACK4(r,g,b,a)	\
1212 	((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|((uint32)(a)<<24))
1213 #define W2B(v) (((v)>>8)&0xff)
1214 /* TODO: PACKW should have be made redundant in favor of Bitdepth16To8 LUT */
1215 #define	PACKW(r,g,b)	\
1216 	((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|A1)
1217 #define	PACKW4(r,g,b,a)	\
1218 	((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|((uint32)W2B(a)<<24))
1219 
1220 #define	DECLAREContigPutFunc(name) \
1221 static void name(\
1222     TIFFRGBAImage* img, \
1223     uint32* cp, \
1224     uint32 x, uint32 y, \
1225     uint32 w, uint32 h, \
1226     int32 fromskew, int32 toskew, \
1227     unsigned char* pp \
1228 )
1229 
1230 /*
1231  * 8-bit palette => colormap/RGB
1232  */
DECLAREContigPutFunc(put8bitcmaptile)1233 DECLAREContigPutFunc(put8bitcmaptile)
1234 {
1235     uint32** PALmap = img->PALmap;
1236     int samplesperpixel = img->samplesperpixel;
1237 
1238     (void) y;
1239     for( ; h > 0; --h) {
1240 	for (x = w; x > 0; --x)
1241         {
1242 	    *cp++ = PALmap[*pp][0];
1243             pp += samplesperpixel;
1244         }
1245 	cp += toskew;
1246 	pp += fromskew;
1247     }
1248 }
1249 
1250 /*
1251  * 4-bit palette => colormap/RGB
1252  */
DECLAREContigPutFunc(put4bitcmaptile)1253 DECLAREContigPutFunc(put4bitcmaptile)
1254 {
1255     uint32** PALmap = img->PALmap;
1256 
1257     (void) x; (void) y;
1258     fromskew /= 2;
1259     for( ; h > 0; --h) {
1260 	uint32* bw;
1261 	UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++);
1262 	cp += toskew;
1263 	pp += fromskew;
1264     }
1265 }
1266 
1267 /*
1268  * 2-bit palette => colormap/RGB
1269  */
DECLAREContigPutFunc(put2bitcmaptile)1270 DECLAREContigPutFunc(put2bitcmaptile)
1271 {
1272     uint32** PALmap = img->PALmap;
1273 
1274     (void) x; (void) y;
1275     fromskew /= 4;
1276     for( ; h > 0; --h) {
1277 	uint32* bw;
1278 	UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++);
1279 	cp += toskew;
1280 	pp += fromskew;
1281     }
1282 }
1283 
1284 /*
1285  * 1-bit palette => colormap/RGB
1286  */
DECLAREContigPutFunc(put1bitcmaptile)1287 DECLAREContigPutFunc(put1bitcmaptile)
1288 {
1289     uint32** PALmap = img->PALmap;
1290 
1291     (void) x; (void) y;
1292     fromskew /= 8;
1293     for( ; h > 0; --h) {
1294 	uint32* bw;
1295 	UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++);
1296 	cp += toskew;
1297 	pp += fromskew;
1298     }
1299 }
1300 
1301 /*
1302  * 8-bit greyscale => colormap/RGB
1303  */
DECLAREContigPutFunc(putgreytile)1304 DECLAREContigPutFunc(putgreytile)
1305 {
1306     int samplesperpixel = img->samplesperpixel;
1307     uint32** BWmap = img->BWmap;
1308 
1309     (void) y;
1310     for( ; h > 0; --h) {
1311 	for (x = w; x > 0; --x)
1312         {
1313 	    *cp++ = BWmap[*pp][0];
1314             pp += samplesperpixel;
1315         }
1316 	cp += toskew;
1317 	pp += fromskew;
1318     }
1319 }
1320 
1321 /*
1322  * 8-bit greyscale with associated alpha => colormap/RGBA
1323  */
DECLAREContigPutFunc(putagreytile)1324 DECLAREContigPutFunc(putagreytile)
1325 {
1326     int samplesperpixel = img->samplesperpixel;
1327     uint32** BWmap = img->BWmap;
1328 
1329     (void) y;
1330     for( ; h > 0; --h) {
1331 	for (x = w; x > 0; --x)
1332         {
1333             *cp++ = BWmap[*pp][0] & ((uint32)*(pp+1) << 24 | ~A1);
1334             pp += samplesperpixel;
1335         }
1336 	cp += toskew;
1337 	pp += fromskew;
1338     }
1339 }
1340 
1341 /*
1342  * 16-bit greyscale => colormap/RGB
1343  */
DECLAREContigPutFunc(put16bitbwtile)1344 DECLAREContigPutFunc(put16bitbwtile)
1345 {
1346     int samplesperpixel = img->samplesperpixel;
1347     uint32** BWmap = img->BWmap;
1348 
1349     (void) y;
1350     for( ; h > 0; --h) {
1351         uint16 *wp = (uint16 *) pp;
1352 
1353 	for (x = w; x > 0; --x)
1354         {
1355             /* use high order byte of 16bit value */
1356 
1357 	    *cp++ = BWmap[*wp >> 8][0];
1358             pp += 2 * samplesperpixel;
1359             wp += samplesperpixel;
1360         }
1361 	cp += toskew;
1362 	pp += fromskew;
1363     }
1364 }
1365 
1366 /*
1367  * 1-bit bilevel => colormap/RGB
1368  */
DECLAREContigPutFunc(put1bitbwtile)1369 DECLAREContigPutFunc(put1bitbwtile)
1370 {
1371     uint32** BWmap = img->BWmap;
1372 
1373     (void) x; (void) y;
1374     fromskew /= 8;
1375     for( ; h > 0; --h) {
1376 	uint32* bw;
1377 	UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++);
1378 	cp += toskew;
1379 	pp += fromskew;
1380     }
1381 }
1382 
1383 /*
1384  * 2-bit greyscale => colormap/RGB
1385  */
DECLAREContigPutFunc(put2bitbwtile)1386 DECLAREContigPutFunc(put2bitbwtile)
1387 {
1388     uint32** BWmap = img->BWmap;
1389 
1390     (void) x; (void) y;
1391     fromskew /= 4;
1392     for( ; h > 0; --h) {
1393 	uint32* bw;
1394 	UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++);
1395 	cp += toskew;
1396 	pp += fromskew;
1397     }
1398 }
1399 
1400 /*
1401  * 4-bit greyscale => colormap/RGB
1402  */
DECLAREContigPutFunc(put4bitbwtile)1403 DECLAREContigPutFunc(put4bitbwtile)
1404 {
1405     uint32** BWmap = img->BWmap;
1406 
1407     (void) x; (void) y;
1408     fromskew /= 2;
1409     for( ; h > 0; --h) {
1410 	uint32* bw;
1411 	UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++);
1412 	cp += toskew;
1413 	pp += fromskew;
1414     }
1415 }
1416 
1417 /*
1418  * 8-bit packed samples, no Map => RGB
1419  */
DECLAREContigPutFunc(putRGBcontig8bittile)1420 DECLAREContigPutFunc(putRGBcontig8bittile)
1421 {
1422     int samplesperpixel = img->samplesperpixel;
1423 
1424     (void) x; (void) y;
1425     fromskew *= samplesperpixel;
1426     for( ; h > 0; --h) {
1427 	UNROLL8(w, NOP,
1428 	    *cp++ = PACK(pp[0], pp[1], pp[2]);
1429 	    pp += samplesperpixel);
1430 	cp += toskew;
1431 	pp += fromskew;
1432     }
1433 }
1434 
1435 /*
1436  * 8-bit packed samples => RGBA w/ associated alpha
1437  * (known to have Map == NULL)
1438  */
DECLAREContigPutFunc(putRGBAAcontig8bittile)1439 DECLAREContigPutFunc(putRGBAAcontig8bittile)
1440 {
1441     int samplesperpixel = img->samplesperpixel;
1442 
1443     (void) x; (void) y;
1444     fromskew *= samplesperpixel;
1445     for( ; h > 0; --h) {
1446 	UNROLL8(w, NOP,
1447 	    *cp++ = PACK4(pp[0], pp[1], pp[2], pp[3]);
1448 	    pp += samplesperpixel);
1449 	cp += toskew;
1450 	pp += fromskew;
1451     }
1452 }
1453 
1454 /*
1455  * 8-bit packed samples => RGBA w/ unassociated alpha
1456  * (known to have Map == NULL)
1457  */
DECLAREContigPutFunc(putRGBUAcontig8bittile)1458 DECLAREContigPutFunc(putRGBUAcontig8bittile)
1459 {
1460 	int samplesperpixel = img->samplesperpixel;
1461 	(void) y;
1462 	fromskew *= samplesperpixel;
1463 	for( ; h > 0; --h) {
1464 		uint32 r, g, b, a;
1465 		uint8* m;
1466 		for (x = w; x > 0; --x) {
1467 			a = pp[3];
1468 			m = img->UaToAa+((size_t) a<<8);
1469 			r = m[pp[0]];
1470 			g = m[pp[1]];
1471 			b = m[pp[2]];
1472 			*cp++ = PACK4(r,g,b,a);
1473 			pp += samplesperpixel;
1474 		}
1475 		cp += toskew;
1476 		pp += fromskew;
1477 	}
1478 }
1479 
1480 /*
1481  * 16-bit packed samples => RGB
1482  */
DECLAREContigPutFunc(putRGBcontig16bittile)1483 DECLAREContigPutFunc(putRGBcontig16bittile)
1484 {
1485 	int samplesperpixel = img->samplesperpixel;
1486 	uint16 *wp = (uint16 *)pp;
1487 	(void) y;
1488 	fromskew *= samplesperpixel;
1489 	for( ; h > 0; --h) {
1490 		for (x = w; x > 0; --x) {
1491 			*cp++ = PACK(img->Bitdepth16To8[wp[0]],
1492 			    img->Bitdepth16To8[wp[1]],
1493 			    img->Bitdepth16To8[wp[2]]);
1494 			wp += samplesperpixel;
1495 		}
1496 		cp += toskew;
1497 		wp += fromskew;
1498 	}
1499 }
1500 
1501 /*
1502  * 16-bit packed samples => RGBA w/ associated alpha
1503  * (known to have Map == NULL)
1504  */
DECLAREContigPutFunc(putRGBAAcontig16bittile)1505 DECLAREContigPutFunc(putRGBAAcontig16bittile)
1506 {
1507 	int samplesperpixel = img->samplesperpixel;
1508 	uint16 *wp = (uint16 *)pp;
1509 	(void) y;
1510 	fromskew *= samplesperpixel;
1511 	for( ; h > 0; --h) {
1512 		for (x = w; x > 0; --x) {
1513 			*cp++ = PACK4(img->Bitdepth16To8[wp[0]],
1514 			    img->Bitdepth16To8[wp[1]],
1515 			    img->Bitdepth16To8[wp[2]],
1516 			    img->Bitdepth16To8[wp[3]]);
1517 			wp += samplesperpixel;
1518 		}
1519 		cp += toskew;
1520 		wp += fromskew;
1521 	}
1522 }
1523 
1524 /*
1525  * 16-bit packed samples => RGBA w/ unassociated alpha
1526  * (known to have Map == NULL)
1527  */
DECLAREContigPutFunc(putRGBUAcontig16bittile)1528 DECLAREContigPutFunc(putRGBUAcontig16bittile)
1529 {
1530 	int samplesperpixel = img->samplesperpixel;
1531 	uint16 *wp = (uint16 *)pp;
1532 	(void) y;
1533 	fromskew *= samplesperpixel;
1534 	for( ; h > 0; --h) {
1535 		uint32 r,g,b,a;
1536 		uint8* m;
1537 		for (x = w; x > 0; --x) {
1538 			a = img->Bitdepth16To8[wp[3]];
1539 			m = img->UaToAa+((size_t) a<<8);
1540 			r = m[img->Bitdepth16To8[wp[0]]];
1541 			g = m[img->Bitdepth16To8[wp[1]]];
1542 			b = m[img->Bitdepth16To8[wp[2]]];
1543 			*cp++ = PACK4(r,g,b,a);
1544 			wp += samplesperpixel;
1545 		}
1546 		cp += toskew;
1547 		wp += fromskew;
1548 	}
1549 }
1550 
1551 /*
1552  * 8-bit packed CMYK samples w/o Map => RGB
1553  *
1554  * NB: The conversion of CMYK->RGB is *very* crude.
1555  */
DECLAREContigPutFunc(putRGBcontig8bitCMYKtile)1556 DECLAREContigPutFunc(putRGBcontig8bitCMYKtile)
1557 {
1558     int samplesperpixel = img->samplesperpixel;
1559     uint16 r, g, b, k;
1560 
1561     (void) x; (void) y;
1562     fromskew *= samplesperpixel;
1563     for( ; h > 0; --h) {
1564 	UNROLL8(w, NOP,
1565 	    k = 255 - pp[3];
1566 	    r = (k*(255-pp[0]))/255;
1567 	    g = (k*(255-pp[1]))/255;
1568 	    b = (k*(255-pp[2]))/255;
1569 	    *cp++ = PACK(r, g, b);
1570 	    pp += samplesperpixel);
1571 	cp += toskew;
1572 	pp += fromskew;
1573     }
1574 }
1575 
1576 /*
1577  * 8-bit packed CMYK samples w/Map => RGB
1578  *
1579  * NB: The conversion of CMYK->RGB is *very* crude.
1580  */
DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile)1581 DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile)
1582 {
1583     int samplesperpixel = img->samplesperpixel;
1584     TIFFRGBValue* Map = img->Map;
1585     uint16 r, g, b, k;
1586 
1587     (void) y;
1588     fromskew *= samplesperpixel;
1589     for( ; h > 0; --h) {
1590 	for (x = w; x > 0; --x) {
1591 	    k = 255 - pp[3];
1592 	    r = (k*(255-pp[0]))/255;
1593 	    g = (k*(255-pp[1]))/255;
1594 	    b = (k*(255-pp[2]))/255;
1595 	    *cp++ = PACK(Map[r], Map[g], Map[b]);
1596 	    pp += samplesperpixel;
1597 	}
1598 	pp += fromskew;
1599 	cp += toskew;
1600     }
1601 }
1602 
1603 #define	DECLARESepPutFunc(name) \
1604 static void name(\
1605     TIFFRGBAImage* img,\
1606     uint32* cp,\
1607     uint32 x, uint32 y, \
1608     uint32 w, uint32 h,\
1609     int32 fromskew, int32 toskew,\
1610     unsigned char* r, unsigned char* g, unsigned char* b, unsigned char* a\
1611 )
1612 
1613 /*
1614  * 8-bit unpacked samples => RGB
1615  */
DECLARESepPutFunc(putRGBseparate8bittile)1616 DECLARESepPutFunc(putRGBseparate8bittile)
1617 {
1618     (void) img; (void) x; (void) y; (void) a;
1619     for( ; h > 0; --h) {
1620 	UNROLL8(w, NOP, *cp++ = PACK(*r++, *g++, *b++));
1621 	SKEW(r, g, b, fromskew);
1622 	cp += toskew;
1623     }
1624 }
1625 
1626 /*
1627  * 8-bit unpacked samples => RGBA w/ associated alpha
1628  */
DECLARESepPutFunc(putRGBAAseparate8bittile)1629 DECLARESepPutFunc(putRGBAAseparate8bittile)
1630 {
1631 	(void) img; (void) x; (void) y;
1632 	for( ; h > 0; --h) {
1633 		UNROLL8(w, NOP, *cp++ = PACK4(*r++, *g++, *b++, *a++));
1634 		SKEW4(r, g, b, a, fromskew);
1635 		cp += toskew;
1636 	}
1637 }
1638 
1639 /*
1640  * 8-bit unpacked CMYK samples => RGBA
1641  */
DECLARESepPutFunc(putCMYKseparate8bittile)1642 DECLARESepPutFunc(putCMYKseparate8bittile)
1643 {
1644 	(void) img; (void) y;
1645 	for( ; h > 0; --h) {
1646 		uint32 rv, gv, bv, kv;
1647 		for (x = w; x > 0; --x) {
1648 			kv = 255 - *a++;
1649 			rv = (kv*(255-*r++))/255;
1650 			gv = (kv*(255-*g++))/255;
1651 			bv = (kv*(255-*b++))/255;
1652 			*cp++ = PACK4(rv,gv,bv,255);
1653 		}
1654 		SKEW4(r, g, b, a, fromskew);
1655 		cp += toskew;
1656 	}
1657 }
1658 
1659 /*
1660  * 8-bit unpacked samples => RGBA w/ unassociated alpha
1661  */
DECLARESepPutFunc(putRGBUAseparate8bittile)1662 DECLARESepPutFunc(putRGBUAseparate8bittile)
1663 {
1664 	(void) img; (void) y;
1665 	for( ; h > 0; --h) {
1666 		uint32 rv, gv, bv, av;
1667 		uint8* m;
1668 		for (x = w; x > 0; --x) {
1669 			av = *a++;
1670 			m = img->UaToAa+((size_t) av<<8);
1671 			rv = m[*r++];
1672 			gv = m[*g++];
1673 			bv = m[*b++];
1674 			*cp++ = PACK4(rv,gv,bv,av);
1675 		}
1676 		SKEW4(r, g, b, a, fromskew);
1677 		cp += toskew;
1678 	}
1679 }
1680 
1681 /*
1682  * 16-bit unpacked samples => RGB
1683  */
DECLARESepPutFunc(putRGBseparate16bittile)1684 DECLARESepPutFunc(putRGBseparate16bittile)
1685 {
1686 	uint16 *wr = (uint16*) r;
1687 	uint16 *wg = (uint16*) g;
1688 	uint16 *wb = (uint16*) b;
1689 	(void) img; (void) y; (void) a;
1690 	for( ; h > 0; --h) {
1691 		for (x = 0; x < w; x++)
1692 			*cp++ = PACK(img->Bitdepth16To8[*wr++],
1693 			    img->Bitdepth16To8[*wg++],
1694 			    img->Bitdepth16To8[*wb++]);
1695 		SKEW(wr, wg, wb, fromskew);
1696 		cp += toskew;
1697 	}
1698 }
1699 
1700 /*
1701  * 16-bit unpacked samples => RGBA w/ associated alpha
1702  */
DECLARESepPutFunc(putRGBAAseparate16bittile)1703 DECLARESepPutFunc(putRGBAAseparate16bittile)
1704 {
1705 	uint16 *wr = (uint16*) r;
1706 	uint16 *wg = (uint16*) g;
1707 	uint16 *wb = (uint16*) b;
1708 	uint16 *wa = (uint16*) a;
1709 	(void) img; (void) y;
1710 	for( ; h > 0; --h) {
1711 		for (x = 0; x < w; x++)
1712 			*cp++ = PACK4(img->Bitdepth16To8[*wr++],
1713 			    img->Bitdepth16To8[*wg++],
1714 			    img->Bitdepth16To8[*wb++],
1715 			    img->Bitdepth16To8[*wa++]);
1716 		SKEW4(wr, wg, wb, wa, fromskew);
1717 		cp += toskew;
1718 	}
1719 }
1720 
1721 /*
1722  * 16-bit unpacked samples => RGBA w/ unassociated alpha
1723  */
DECLARESepPutFunc(putRGBUAseparate16bittile)1724 DECLARESepPutFunc(putRGBUAseparate16bittile)
1725 {
1726 	uint16 *wr = (uint16*) r;
1727 	uint16 *wg = (uint16*) g;
1728 	uint16 *wb = (uint16*) b;
1729 	uint16 *wa = (uint16*) a;
1730 	(void) img; (void) y;
1731 	for( ; h > 0; --h) {
1732 		uint32 r2,g2,b2,a2;
1733 		uint8* m;
1734 		for (x = w; x > 0; --x) {
1735 			a2 = img->Bitdepth16To8[*wa++];
1736 			m = img->UaToAa+((size_t) a2<<8);
1737 			r2 = m[img->Bitdepth16To8[*wr++]];
1738 			g2 = m[img->Bitdepth16To8[*wg++]];
1739 			b2 = m[img->Bitdepth16To8[*wb++]];
1740 			*cp++ = PACK4(r2,g2,b2,a2);
1741 		}
1742 		SKEW4(wr, wg, wb, wa, fromskew);
1743 		cp += toskew;
1744 	}
1745 }
1746 
1747 /*
1748  * 8-bit packed CIE L*a*b 1976 samples => RGB
1749  */
DECLAREContigPutFunc(putcontig8bitCIELab)1750 DECLAREContigPutFunc(putcontig8bitCIELab)
1751 {
1752 	float X, Y, Z;
1753 	uint32 r, g, b;
1754 	(void) y;
1755 	fromskew *= 3;
1756 	for( ; h > 0; --h) {
1757 		for (x = w; x > 0; --x) {
1758 			TIFFCIELabToXYZ(img->cielab,
1759 					(unsigned char)pp[0],
1760 					(signed char)pp[1],
1761 					(signed char)pp[2],
1762 					&X, &Y, &Z);
1763 			TIFFXYZToRGB(img->cielab, X, Y, Z, &r, &g, &b);
1764 			*cp++ = PACK(r, g, b);
1765 			pp += 3;
1766 		}
1767 		cp += toskew;
1768 		pp += fromskew;
1769 	}
1770 }
1771 
1772 /*
1773  * YCbCr -> RGB conversion and packing routines.
1774  */
1775 
1776 #define	YCbCrtoRGB(dst, Y) {						\
1777 	uint32 r, g, b;							\
1778 	TIFFYCbCrtoRGB(img->ycbcr, (Y), Cb, Cr, &r, &g, &b);		\
1779 	dst = PACK(r, g, b);						\
1780 }
1781 
1782 /*
1783  * 8-bit packed YCbCr samples => RGB
1784  * This function is generic for different sampling sizes,
1785  * and can handle blocks sizes that aren't multiples of the
1786  * sampling size.  However, it is substantially less optimized
1787  * than the specific sampling cases.  It is used as a fallback
1788  * for difficult blocks.
1789  */
1790 #ifdef notdef
putcontig8bitYCbCrGenericTile(TIFFRGBAImage * img,uint32 * cp,uint32 x,uint32 y,uint32 w,uint32 h,int32 fromskew,int32 toskew,unsigned char * pp,int h_group,int v_group)1791 static void putcontig8bitYCbCrGenericTile(
1792     TIFFRGBAImage* img,
1793     uint32* cp,
1794     uint32 x, uint32 y,
1795     uint32 w, uint32 h,
1796     int32 fromskew, int32 toskew,
1797     unsigned char* pp,
1798     int h_group,
1799     int v_group )
1800 
1801 {
1802     uint32* cp1 = cp+w+toskew;
1803     uint32* cp2 = cp1+w+toskew;
1804     uint32* cp3 = cp2+w+toskew;
1805     int32 incr = 3*w+4*toskew;
1806     int32   Cb, Cr;
1807     int     group_size = v_group * h_group + 2;
1808 
1809     (void) y;
1810     fromskew = (fromskew * group_size) / h_group;
1811 
1812     for( yy = 0; yy < h; yy++ )
1813     {
1814         unsigned char *pp_line;
1815         int     y_line_group = yy / v_group;
1816         int     y_remainder = yy - y_line_group * v_group;
1817 
1818         pp_line = pp + v_line_group *
1819 
1820 
1821         for( xx = 0; xx < w; xx++ )
1822         {
1823             Cb = pp
1824         }
1825     }
1826     for (; h >= 4; h -= 4) {
1827 	x = w>>2;
1828 	do {
1829 	    Cb = pp[16];
1830 	    Cr = pp[17];
1831 
1832 	    YCbCrtoRGB(cp [0], pp[ 0]);
1833 	    YCbCrtoRGB(cp [1], pp[ 1]);
1834 	    YCbCrtoRGB(cp [2], pp[ 2]);
1835 	    YCbCrtoRGB(cp [3], pp[ 3]);
1836 	    YCbCrtoRGB(cp1[0], pp[ 4]);
1837 	    YCbCrtoRGB(cp1[1], pp[ 5]);
1838 	    YCbCrtoRGB(cp1[2], pp[ 6]);
1839 	    YCbCrtoRGB(cp1[3], pp[ 7]);
1840 	    YCbCrtoRGB(cp2[0], pp[ 8]);
1841 	    YCbCrtoRGB(cp2[1], pp[ 9]);
1842 	    YCbCrtoRGB(cp2[2], pp[10]);
1843 	    YCbCrtoRGB(cp2[3], pp[11]);
1844 	    YCbCrtoRGB(cp3[0], pp[12]);
1845 	    YCbCrtoRGB(cp3[1], pp[13]);
1846 	    YCbCrtoRGB(cp3[2], pp[14]);
1847 	    YCbCrtoRGB(cp3[3], pp[15]);
1848 
1849 	    cp += 4, cp1 += 4, cp2 += 4, cp3 += 4;
1850 	    pp += 18;
1851 	} while (--x);
1852 	cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
1853 	pp += fromskew;
1854     }
1855 }
1856 #endif
1857 
1858 /*
1859  * 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB
1860  */
DECLAREContigPutFunc(putcontig8bitYCbCr44tile)1861 DECLAREContigPutFunc(putcontig8bitYCbCr44tile)
1862 {
1863     uint32* cp1 = cp+w+toskew;
1864     uint32* cp2 = cp1+w+toskew;
1865     uint32* cp3 = cp2+w+toskew;
1866     int32 incr = 3*w+4*toskew;
1867 
1868     (void) y;
1869     /* adjust fromskew */
1870     fromskew = (fromskew / 4) * (4*2+2);
1871     if ((h & 3) == 0 && (w & 3) == 0) {
1872         for (; h >= 4; h -= 4) {
1873             x = w>>2;
1874             do {
1875                 int32 Cb = pp[16];
1876                 int32 Cr = pp[17];
1877 
1878                 YCbCrtoRGB(cp [0], pp[ 0]);
1879                 YCbCrtoRGB(cp [1], pp[ 1]);
1880                 YCbCrtoRGB(cp [2], pp[ 2]);
1881                 YCbCrtoRGB(cp [3], pp[ 3]);
1882                 YCbCrtoRGB(cp1[0], pp[ 4]);
1883                 YCbCrtoRGB(cp1[1], pp[ 5]);
1884                 YCbCrtoRGB(cp1[2], pp[ 6]);
1885                 YCbCrtoRGB(cp1[3], pp[ 7]);
1886                 YCbCrtoRGB(cp2[0], pp[ 8]);
1887                 YCbCrtoRGB(cp2[1], pp[ 9]);
1888                 YCbCrtoRGB(cp2[2], pp[10]);
1889                 YCbCrtoRGB(cp2[3], pp[11]);
1890                 YCbCrtoRGB(cp3[0], pp[12]);
1891                 YCbCrtoRGB(cp3[1], pp[13]);
1892                 YCbCrtoRGB(cp3[2], pp[14]);
1893                 YCbCrtoRGB(cp3[3], pp[15]);
1894 
1895                 cp += 4;
1896                 cp1 += 4;
1897                 cp2 += 4;
1898                 cp3 += 4;
1899                 pp += 18;
1900             } while (--x);
1901             cp += incr;
1902             cp1 += incr;
1903             cp2 += incr;
1904             cp3 += incr;
1905             pp += fromskew;
1906         }
1907     } else {
1908         while (h > 0) {
1909             for (x = w; x > 0;) {
1910                 int32 Cb = pp[16];
1911                 int32 Cr = pp[17];
1912                 switch (x) {
1913                 default:
1914                     switch (h) {
1915                     default: YCbCrtoRGB(cp3[3], pp[15]); /* FALLTHROUGH */
1916                     case 3:  YCbCrtoRGB(cp2[3], pp[11]); /* FALLTHROUGH */
1917                     case 2:  YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */
1918                     case 1:  YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */
1919                     }                                    /* FALLTHROUGH */
1920                 case 3:
1921                     switch (h) {
1922                     default: YCbCrtoRGB(cp3[2], pp[14]); /* FALLTHROUGH */
1923                     case 3:  YCbCrtoRGB(cp2[2], pp[10]); /* FALLTHROUGH */
1924                     case 2:  YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */
1925                     case 1:  YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */
1926                     }                                    /* FALLTHROUGH */
1927                 case 2:
1928                     switch (h) {
1929                     default: YCbCrtoRGB(cp3[1], pp[13]); /* FALLTHROUGH */
1930                     case 3:  YCbCrtoRGB(cp2[1], pp[ 9]); /* FALLTHROUGH */
1931                     case 2:  YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */
1932                     case 1:  YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
1933                     }                                    /* FALLTHROUGH */
1934                 case 1:
1935                     switch (h) {
1936                     default: YCbCrtoRGB(cp3[0], pp[12]); /* FALLTHROUGH */
1937                     case 3:  YCbCrtoRGB(cp2[0], pp[ 8]); /* FALLTHROUGH */
1938                     case 2:  YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */
1939                     case 1:  YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
1940                     }                                    /* FALLTHROUGH */
1941                 }
1942                 if (x < 4) {
1943                     cp += x; cp1 += x; cp2 += x; cp3 += x;
1944                     x = 0;
1945                 }
1946                 else {
1947                     cp += 4; cp1 += 4; cp2 += 4; cp3 += 4;
1948                     x -= 4;
1949                 }
1950                 pp += 18;
1951             }
1952             if (h <= 4)
1953                 break;
1954             h -= 4;
1955             cp += incr;
1956             cp1 += incr;
1957             cp2 += incr;
1958             cp3 += incr;
1959             pp += fromskew;
1960         }
1961     }
1962 }
1963 
1964 /*
1965  * 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB
1966  */
DECLAREContigPutFunc(putcontig8bitYCbCr42tile)1967 DECLAREContigPutFunc(putcontig8bitYCbCr42tile)
1968 {
1969     uint32* cp1 = cp+w+toskew;
1970     int32 incr = 2*toskew+w;
1971 
1972     (void) y;
1973     fromskew = (fromskew / 4) * (4*2+2);
1974     if ((w & 3) == 0 && (h & 1) == 0) {
1975         for (; h >= 2; h -= 2) {
1976             x = w>>2;
1977             do {
1978                 int32 Cb = pp[8];
1979                 int32 Cr = pp[9];
1980 
1981                 YCbCrtoRGB(cp [0], pp[0]);
1982                 YCbCrtoRGB(cp [1], pp[1]);
1983                 YCbCrtoRGB(cp [2], pp[2]);
1984                 YCbCrtoRGB(cp [3], pp[3]);
1985                 YCbCrtoRGB(cp1[0], pp[4]);
1986                 YCbCrtoRGB(cp1[1], pp[5]);
1987                 YCbCrtoRGB(cp1[2], pp[6]);
1988                 YCbCrtoRGB(cp1[3], pp[7]);
1989 
1990                 cp += 4;
1991                 cp1 += 4;
1992                 pp += 10;
1993             } while (--x);
1994             cp += incr;
1995             cp1 += incr;
1996             pp += fromskew;
1997         }
1998     } else {
1999         while (h > 0) {
2000             for (x = w; x > 0;) {
2001                 int32 Cb = pp[8];
2002                 int32 Cr = pp[9];
2003                 switch (x) {
2004                 default:
2005                     switch (h) {
2006                     default: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */
2007                     case 1:  YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */
2008                     }                                    /* FALLTHROUGH */
2009                 case 3:
2010                     switch (h) {
2011                     default: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */
2012                     case 1:  YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */
2013                     }                                    /* FALLTHROUGH */
2014                 case 2:
2015                     switch (h) {
2016                     default: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */
2017                     case 1:  YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
2018                     }                                    /* FALLTHROUGH */
2019                 case 1:
2020                     switch (h) {
2021                     default: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */
2022                     case 1:  YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
2023                     }                                    /* FALLTHROUGH */
2024                 }
2025                 if (x < 4) {
2026                     cp += x; cp1 += x;
2027                     x = 0;
2028                 }
2029                 else {
2030                     cp += 4; cp1 += 4;
2031                     x -= 4;
2032                 }
2033                 pp += 10;
2034             }
2035             if (h <= 2)
2036                 break;
2037             h -= 2;
2038             cp += incr;
2039             cp1 += incr;
2040             pp += fromskew;
2041         }
2042     }
2043 }
2044 
2045 /*
2046  * 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB
2047  */
DECLAREContigPutFunc(putcontig8bitYCbCr41tile)2048 DECLAREContigPutFunc(putcontig8bitYCbCr41tile)
2049 {
2050     (void) y;
2051     fromskew = (fromskew / 4) * (4*1+2);
2052     do {
2053 	x = w>>2;
2054 	while(x>0) {
2055 	    int32 Cb = pp[4];
2056 	    int32 Cr = pp[5];
2057 
2058 	    YCbCrtoRGB(cp [0], pp[0]);
2059 	    YCbCrtoRGB(cp [1], pp[1]);
2060 	    YCbCrtoRGB(cp [2], pp[2]);
2061 	    YCbCrtoRGB(cp [3], pp[3]);
2062 
2063 	    cp += 4;
2064 	    pp += 6;
2065 		x--;
2066 	}
2067 
2068         if( (w&3) != 0 )
2069         {
2070 	    int32 Cb = pp[4];
2071 	    int32 Cr = pp[5];
2072 
2073             switch( (w&3) ) {
2074               case 3: YCbCrtoRGB(cp [2], pp[2]); /*-fallthrough*/
2075               case 2: YCbCrtoRGB(cp [1], pp[1]); /*-fallthrough*/
2076               case 1: YCbCrtoRGB(cp [0], pp[0]); /*-fallthrough*/
2077               case 0: break;
2078             }
2079 
2080             cp += (w&3);
2081             pp += 6;
2082         }
2083 
2084 	cp += toskew;
2085 	pp += fromskew;
2086     } while (--h);
2087 
2088 }
2089 
2090 /*
2091  * 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB
2092  */
DECLAREContigPutFunc(putcontig8bitYCbCr22tile)2093 DECLAREContigPutFunc(putcontig8bitYCbCr22tile)
2094 {
2095 	uint32* cp2;
2096 	int32 incr = 2*toskew+w;
2097 	(void) y;
2098 	fromskew = (fromskew / 2) * (2*2+2);
2099 	cp2 = cp+w+toskew;
2100 	while (h>=2) {
2101 		x = w;
2102 		while (x>=2) {
2103 			uint32 Cb = pp[4];
2104 			uint32 Cr = pp[5];
2105 			YCbCrtoRGB(cp[0], pp[0]);
2106 			YCbCrtoRGB(cp[1], pp[1]);
2107 			YCbCrtoRGB(cp2[0], pp[2]);
2108 			YCbCrtoRGB(cp2[1], pp[3]);
2109 			cp += 2;
2110 			cp2 += 2;
2111 			pp += 6;
2112 			x -= 2;
2113 		}
2114 		if (x==1) {
2115 			uint32 Cb = pp[4];
2116 			uint32 Cr = pp[5];
2117 			YCbCrtoRGB(cp[0], pp[0]);
2118 			YCbCrtoRGB(cp2[0], pp[2]);
2119 			cp ++ ;
2120 			cp2 ++ ;
2121 			pp += 6;
2122 		}
2123 		cp += incr;
2124 		cp2 += incr;
2125 		pp += fromskew;
2126 		h-=2;
2127 	}
2128 	if (h==1) {
2129 		x = w;
2130 		while (x>=2) {
2131 			uint32 Cb = pp[4];
2132 			uint32 Cr = pp[5];
2133 			YCbCrtoRGB(cp[0], pp[0]);
2134 			YCbCrtoRGB(cp[1], pp[1]);
2135 			cp += 2;
2136 			cp2 += 2;
2137 			pp += 6;
2138 			x -= 2;
2139 		}
2140 		if (x==1) {
2141 			uint32 Cb = pp[4];
2142 			uint32 Cr = pp[5];
2143 			YCbCrtoRGB(cp[0], pp[0]);
2144 		}
2145 	}
2146 }
2147 
2148 /*
2149  * 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB
2150  */
DECLAREContigPutFunc(putcontig8bitYCbCr21tile)2151 DECLAREContigPutFunc(putcontig8bitYCbCr21tile)
2152 {
2153 	(void) y;
2154 	fromskew = (fromskew / 2) * (2*1+2);
2155 	do {
2156 		x = w>>1;
2157 		while(x>0) {
2158 			int32 Cb = pp[2];
2159 			int32 Cr = pp[3];
2160 
2161 			YCbCrtoRGB(cp[0], pp[0]);
2162 			YCbCrtoRGB(cp[1], pp[1]);
2163 
2164 			cp += 2;
2165 			pp += 4;
2166 			x --;
2167 		}
2168 
2169 		if( (w&1) != 0 )
2170 		{
2171 			int32 Cb = pp[2];
2172 			int32 Cr = pp[3];
2173 
2174 			YCbCrtoRGB(cp[0], pp[0]);
2175 
2176 			cp += 1;
2177 			pp += 4;
2178 		}
2179 
2180 		cp += toskew;
2181 		pp += fromskew;
2182 	} while (--h);
2183 }
2184 
2185 /*
2186  * 8-bit packed YCbCr samples w/ 1,2 subsampling => RGB
2187  */
DECLAREContigPutFunc(putcontig8bitYCbCr12tile)2188 DECLAREContigPutFunc(putcontig8bitYCbCr12tile)
2189 {
2190 	uint32* cp2;
2191 	int32 incr = 2*toskew+w;
2192 	(void) y;
2193 	fromskew = (fromskew / 1) * (1 * 2 + 2);
2194 	cp2 = cp+w+toskew;
2195 	while (h>=2) {
2196 		x = w;
2197 		do {
2198 			uint32 Cb = pp[2];
2199 			uint32 Cr = pp[3];
2200 			YCbCrtoRGB(cp[0], pp[0]);
2201 			YCbCrtoRGB(cp2[0], pp[1]);
2202 			cp ++;
2203 			cp2 ++;
2204 			pp += 4;
2205 		} while (--x);
2206 		cp += incr;
2207 		cp2 += incr;
2208 		pp += fromskew;
2209 		h-=2;
2210 	}
2211 	if (h==1) {
2212 		x = w;
2213 		do {
2214 			uint32 Cb = pp[2];
2215 			uint32 Cr = pp[3];
2216 			YCbCrtoRGB(cp[0], pp[0]);
2217 			cp ++;
2218 			pp += 4;
2219 		} while (--x);
2220 	}
2221 }
2222 
2223 /*
2224  * 8-bit packed YCbCr samples w/ no subsampling => RGB
2225  */
DECLAREContigPutFunc(putcontig8bitYCbCr11tile)2226 DECLAREContigPutFunc(putcontig8bitYCbCr11tile)
2227 {
2228 	(void) y;
2229 	fromskew = (fromskew / 1) * (1 * 1 + 2);
2230 	do {
2231 		x = w; /* was x = w>>1; patched 2000/09/25 warmerda@home.com */
2232 		do {
2233 			int32 Cb = pp[1];
2234 			int32 Cr = pp[2];
2235 
2236 			YCbCrtoRGB(*cp++, pp[0]);
2237 
2238 			pp += 3;
2239 		} while (--x);
2240 		cp += toskew;
2241 		pp += fromskew;
2242 	} while (--h);
2243 }
2244 
2245 /*
2246  * 8-bit packed YCbCr samples w/ no subsampling => RGB
2247  */
DECLARESepPutFunc(putseparate8bitYCbCr11tile)2248 DECLARESepPutFunc(putseparate8bitYCbCr11tile)
2249 {
2250 	(void) y;
2251 	(void) a;
2252 	/* TODO: naming of input vars is still off, change obfuscating declaration inside define, or resolve obfuscation */
2253 	for( ; h > 0; --h) {
2254 		x = w;
2255 		do {
2256 			uint32 dr, dg, db;
2257 			TIFFYCbCrtoRGB(img->ycbcr,*r++,*g++,*b++,&dr,&dg,&db);
2258 			*cp++ = PACK(dr,dg,db);
2259 		} while (--x);
2260 		SKEW(r, g, b, fromskew);
2261 		cp += toskew;
2262 	}
2263 }
2264 #undef YCbCrtoRGB
2265 
isInRefBlackWhiteRange(float f)2266 static int isInRefBlackWhiteRange(float f)
2267 {
2268     return f > (float)(-0x7FFFFFFF + 128) && f < (float)0x7FFFFFFF;
2269 }
2270 
2271 static int
initYCbCrConversion(TIFFRGBAImage * img)2272 initYCbCrConversion(TIFFRGBAImage* img)
2273 {
2274 	static const char module[] = "initYCbCrConversion";
2275 
2276 	float *luma, *refBlackWhite;
2277 
2278 	if (img->ycbcr == NULL) {
2279 		img->ycbcr = (TIFFYCbCrToRGB*) _TIFFmalloc(
2280 		    TIFFroundup_32(sizeof (TIFFYCbCrToRGB), sizeof (long))
2281 		    + 4*256*sizeof (TIFFRGBValue)
2282 		    + 2*256*sizeof (int)
2283 		    + 3*256*sizeof (int32)
2284 		    );
2285 		if (img->ycbcr == NULL) {
2286 			TIFFErrorExt(img->tif->tif_clientdata, module,
2287 			    "No space for YCbCr->RGB conversion state");
2288 			return (0);
2289 		}
2290 	}
2291 
2292 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &luma);
2293 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_REFERENCEBLACKWHITE,
2294 	    &refBlackWhite);
2295 
2296         /* Do some validation to avoid later issues. Detect NaN for now */
2297         /* and also if lumaGreen is zero since we divide by it later */
2298         if( luma[0] != luma[0] ||
2299             luma[1] != luma[1] ||
2300             luma[1] == 0.0 ||
2301             luma[2] != luma[2] )
2302         {
2303             TIFFErrorExt(img->tif->tif_clientdata, module,
2304                 "Invalid values for YCbCrCoefficients tag");
2305             return (0);
2306         }
2307 
2308         if( !isInRefBlackWhiteRange(refBlackWhite[0]) ||
2309             !isInRefBlackWhiteRange(refBlackWhite[1]) ||
2310             !isInRefBlackWhiteRange(refBlackWhite[2]) ||
2311             !isInRefBlackWhiteRange(refBlackWhite[3]) ||
2312             !isInRefBlackWhiteRange(refBlackWhite[4]) ||
2313             !isInRefBlackWhiteRange(refBlackWhite[5]) )
2314         {
2315             TIFFErrorExt(img->tif->tif_clientdata, module,
2316                 "Invalid values for ReferenceBlackWhite tag");
2317             return (0);
2318         }
2319 
2320 	if (TIFFYCbCrToRGBInit(img->ycbcr, luma, refBlackWhite) < 0)
2321 		return(0);
2322 	return (1);
2323 }
2324 
2325 static tileContigRoutine
initCIELabConversion(TIFFRGBAImage * img)2326 initCIELabConversion(TIFFRGBAImage* img)
2327 {
2328 	static const char module[] = "initCIELabConversion";
2329 
2330 	float   *whitePoint;
2331 	float   refWhite[3];
2332 
2333 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_WHITEPOINT, &whitePoint);
2334 	if (whitePoint[1] == 0.0f ) {
2335 		TIFFErrorExt(img->tif->tif_clientdata, module,
2336 		    "Invalid value for WhitePoint tag.");
2337 		return NULL;
2338         }
2339 
2340 	if (!img->cielab) {
2341 		img->cielab = (TIFFCIELabToRGB *)
2342 			_TIFFmalloc(sizeof(TIFFCIELabToRGB));
2343 		if (!img->cielab) {
2344 			TIFFErrorExt(img->tif->tif_clientdata, module,
2345 			    "No space for CIE L*a*b*->RGB conversion state.");
2346 			return NULL;
2347 		}
2348 	}
2349 
2350 	refWhite[1] = 100.0F;
2351 	refWhite[0] = whitePoint[0] / whitePoint[1] * refWhite[1];
2352 	refWhite[2] = (1.0F - whitePoint[0] - whitePoint[1])
2353 		      / whitePoint[1] * refWhite[1];
2354 	if (TIFFCIELabToRGBInit(img->cielab, &display_sRGB, refWhite) < 0) {
2355 		TIFFErrorExt(img->tif->tif_clientdata, module,
2356 		    "Failed to initialize CIE L*a*b*->RGB conversion state.");
2357 		_TIFFfree(img->cielab);
2358 		return NULL;
2359 	}
2360 
2361 	return putcontig8bitCIELab;
2362 }
2363 
2364 /*
2365  * Greyscale images with less than 8 bits/sample are handled
2366  * with a table to avoid lots of shifts and masks.  The table
2367  * is setup so that put*bwtile (below) can retrieve 8/bitspersample
2368  * pixel values simply by indexing into the table with one
2369  * number.
2370  */
2371 static int
makebwmap(TIFFRGBAImage * img)2372 makebwmap(TIFFRGBAImage* img)
2373 {
2374     TIFFRGBValue* Map = img->Map;
2375     int bitspersample = img->bitspersample;
2376     int nsamples = 8 / bitspersample;
2377     int i;
2378     uint32* p;
2379 
2380     if( nsamples == 0 )
2381         nsamples = 1;
2382 
2383     img->BWmap = (uint32**) _TIFFmalloc(
2384 	256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
2385     if (img->BWmap == NULL) {
2386 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for B&W mapping table");
2387 		return (0);
2388     }
2389     p = (uint32*)(img->BWmap + 256);
2390     for (i = 0; i < 256; i++) {
2391 	TIFFRGBValue c;
2392 	img->BWmap[i] = p;
2393 	switch (bitspersample) {
2394 #define	GREY(x)	c = Map[x]; *p++ = PACK(c,c,c);
2395 	case 1:
2396 	    GREY(i>>7);
2397 	    GREY((i>>6)&1);
2398 	    GREY((i>>5)&1);
2399 	    GREY((i>>4)&1);
2400 	    GREY((i>>3)&1);
2401 	    GREY((i>>2)&1);
2402 	    GREY((i>>1)&1);
2403 	    GREY(i&1);
2404 	    break;
2405 	case 2:
2406 	    GREY(i>>6);
2407 	    GREY((i>>4)&3);
2408 	    GREY((i>>2)&3);
2409 	    GREY(i&3);
2410 	    break;
2411 	case 4:
2412 	    GREY(i>>4);
2413 	    GREY(i&0xf);
2414 	    break;
2415 	case 8:
2416         case 16:
2417 	    GREY(i);
2418 	    break;
2419 	}
2420 #undef	GREY
2421     }
2422     return (1);
2423 }
2424 
2425 /*
2426  * Construct a mapping table to convert from the range
2427  * of the data samples to [0,255] --for display.  This
2428  * process also handles inverting B&W images when needed.
2429  */
2430 static int
setupMap(TIFFRGBAImage * img)2431 setupMap(TIFFRGBAImage* img)
2432 {
2433     int32 x, range;
2434 
2435     range = (int32)((1L<<img->bitspersample)-1);
2436 
2437     /* treat 16 bit the same as eight bit */
2438     if( img->bitspersample == 16 )
2439         range = (int32) 255;
2440 
2441     img->Map = (TIFFRGBValue*) _TIFFmalloc((range+1) * sizeof (TIFFRGBValue));
2442     if (img->Map == NULL) {
2443 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif),
2444 			"No space for photometric conversion table");
2445 		return (0);
2446     }
2447     if (img->photometric == PHOTOMETRIC_MINISWHITE) {
2448 	for (x = 0; x <= range; x++)
2449 	    img->Map[x] = (TIFFRGBValue) (((range - x) * 255) / range);
2450     } else {
2451 	for (x = 0; x <= range; x++)
2452 	    img->Map[x] = (TIFFRGBValue) ((x * 255) / range);
2453     }
2454     if (img->bitspersample <= 16 &&
2455 	(img->photometric == PHOTOMETRIC_MINISBLACK ||
2456 	 img->photometric == PHOTOMETRIC_MINISWHITE)) {
2457 	/*
2458 	 * Use photometric mapping table to construct
2459 	 * unpacking tables for samples <= 8 bits.
2460 	 */
2461 	if (!makebwmap(img))
2462 	    return (0);
2463 	/* no longer need Map, free it */
2464 	_TIFFfree(img->Map);
2465 	img->Map = NULL;
2466     }
2467     return (1);
2468 }
2469 
2470 static int
checkcmap(TIFFRGBAImage * img)2471 checkcmap(TIFFRGBAImage* img)
2472 {
2473     uint16* r = img->redcmap;
2474     uint16* g = img->greencmap;
2475     uint16* b = img->bluecmap;
2476     long n = 1L<<img->bitspersample;
2477 
2478     while (n-- > 0)
2479 	if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256)
2480 	    return (16);
2481     return (8);
2482 }
2483 
2484 static void
cvtcmap(TIFFRGBAImage * img)2485 cvtcmap(TIFFRGBAImage* img)
2486 {
2487     uint16* r = img->redcmap;
2488     uint16* g = img->greencmap;
2489     uint16* b = img->bluecmap;
2490     long i;
2491 
2492     for (i = (1L<<img->bitspersample)-1; i >= 0; i--) {
2493 #define	CVT(x)		((uint16)((x)>>8))
2494 	r[i] = CVT(r[i]);
2495 	g[i] = CVT(g[i]);
2496 	b[i] = CVT(b[i]);
2497 #undef	CVT
2498     }
2499 }
2500 
2501 /*
2502  * Palette images with <= 8 bits/sample are handled
2503  * with a table to avoid lots of shifts and masks.  The table
2504  * is setup so that put*cmaptile (below) can retrieve 8/bitspersample
2505  * pixel values simply by indexing into the table with one
2506  * number.
2507  */
2508 static int
makecmap(TIFFRGBAImage * img)2509 makecmap(TIFFRGBAImage* img)
2510 {
2511     int bitspersample = img->bitspersample;
2512     int nsamples = 8 / bitspersample;
2513     uint16* r = img->redcmap;
2514     uint16* g = img->greencmap;
2515     uint16* b = img->bluecmap;
2516     uint32 *p;
2517     int i;
2518 
2519     img->PALmap = (uint32**) _TIFFmalloc(
2520 	256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
2521     if (img->PALmap == NULL) {
2522 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for Palette mapping table");
2523 		return (0);
2524 	}
2525     p = (uint32*)(img->PALmap + 256);
2526     for (i = 0; i < 256; i++) {
2527 	TIFFRGBValue c;
2528 	img->PALmap[i] = p;
2529 #define	CMAP(x)	c = (TIFFRGBValue) x; *p++ = PACK(r[c]&0xff, g[c]&0xff, b[c]&0xff);
2530 	switch (bitspersample) {
2531 	case 1:
2532 	    CMAP(i>>7);
2533 	    CMAP((i>>6)&1);
2534 	    CMAP((i>>5)&1);
2535 	    CMAP((i>>4)&1);
2536 	    CMAP((i>>3)&1);
2537 	    CMAP((i>>2)&1);
2538 	    CMAP((i>>1)&1);
2539 	    CMAP(i&1);
2540 	    break;
2541 	case 2:
2542 	    CMAP(i>>6);
2543 	    CMAP((i>>4)&3);
2544 	    CMAP((i>>2)&3);
2545 	    CMAP(i&3);
2546 	    break;
2547 	case 4:
2548 	    CMAP(i>>4);
2549 	    CMAP(i&0xf);
2550 	    break;
2551 	case 8:
2552 	    CMAP(i);
2553 	    break;
2554 	}
2555 #undef CMAP
2556     }
2557     return (1);
2558 }
2559 
2560 /*
2561  * Construct any mapping table used
2562  * by the associated put routine.
2563  */
2564 static int
buildMap(TIFFRGBAImage * img)2565 buildMap(TIFFRGBAImage* img)
2566 {
2567     switch (img->photometric) {
2568     case PHOTOMETRIC_RGB:
2569     case PHOTOMETRIC_YCBCR:
2570     case PHOTOMETRIC_SEPARATED:
2571 	if (img->bitspersample == 8)
2572 	    break;
2573 	/* fall through... */
2574     case PHOTOMETRIC_MINISBLACK:
2575     case PHOTOMETRIC_MINISWHITE:
2576 	if (!setupMap(img))
2577 	    return (0);
2578 	break;
2579     case PHOTOMETRIC_PALETTE:
2580 	/*
2581 	 * Convert 16-bit colormap to 8-bit (unless it looks
2582 	 * like an old-style 8-bit colormap).
2583 	 */
2584 	if (checkcmap(img) == 16)
2585 	    cvtcmap(img);
2586 	else
2587 	    TIFFWarningExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "Assuming 8-bit colormap");
2588 	/*
2589 	 * Use mapping table and colormap to construct
2590 	 * unpacking tables for samples < 8 bits.
2591 	 */
2592 	if (img->bitspersample <= 8 && !makecmap(img))
2593 	    return (0);
2594 	break;
2595     }
2596     return (1);
2597 }
2598 
2599 /*
2600  * Select the appropriate conversion routine for packed data.
2601  */
2602 static int
PickContigCase(TIFFRGBAImage * img)2603 PickContigCase(TIFFRGBAImage* img)
2604 {
2605 	img->get = TIFFIsTiled(img->tif) ? gtTileContig : gtStripContig;
2606 	img->put.contig = NULL;
2607 	switch (img->photometric) {
2608 		case PHOTOMETRIC_RGB:
2609 			switch (img->bitspersample) {
2610 				case 8:
2611 					if (img->alpha == EXTRASAMPLE_ASSOCALPHA &&
2612 						img->samplesperpixel >= 4)
2613 						img->put.contig = putRGBAAcontig8bittile;
2614 					else if (img->alpha == EXTRASAMPLE_UNASSALPHA &&
2615 							 img->samplesperpixel >= 4)
2616 					{
2617 						if (BuildMapUaToAa(img))
2618 							img->put.contig = putRGBUAcontig8bittile;
2619 					}
2620 					else if( img->samplesperpixel >= 3 )
2621 						img->put.contig = putRGBcontig8bittile;
2622 					break;
2623 				case 16:
2624 					if (img->alpha == EXTRASAMPLE_ASSOCALPHA &&
2625 						img->samplesperpixel >=4 )
2626 					{
2627 						if (BuildMapBitdepth16To8(img))
2628 							img->put.contig = putRGBAAcontig16bittile;
2629 					}
2630 					else if (img->alpha == EXTRASAMPLE_UNASSALPHA &&
2631 							 img->samplesperpixel >=4 )
2632 					{
2633 						if (BuildMapBitdepth16To8(img) &&
2634 						    BuildMapUaToAa(img))
2635 							img->put.contig = putRGBUAcontig16bittile;
2636 					}
2637 					else if( img->samplesperpixel >=3 )
2638 					{
2639 						if (BuildMapBitdepth16To8(img))
2640 							img->put.contig = putRGBcontig16bittile;
2641 					}
2642 					break;
2643 			}
2644 			break;
2645 		case PHOTOMETRIC_SEPARATED:
2646 			if (img->samplesperpixel >=4 && buildMap(img)) {
2647 				if (img->bitspersample == 8) {
2648 					if (!img->Map)
2649 						img->put.contig = putRGBcontig8bitCMYKtile;
2650 					else
2651 						img->put.contig = putRGBcontig8bitCMYKMaptile;
2652 				}
2653 			}
2654 			break;
2655 		case PHOTOMETRIC_PALETTE:
2656 			if (buildMap(img)) {
2657 				switch (img->bitspersample) {
2658 					case 8:
2659 						img->put.contig = put8bitcmaptile;
2660 						break;
2661 					case 4:
2662 						img->put.contig = put4bitcmaptile;
2663 						break;
2664 					case 2:
2665 						img->put.contig = put2bitcmaptile;
2666 						break;
2667 					case 1:
2668 						img->put.contig = put1bitcmaptile;
2669 						break;
2670 				}
2671 			}
2672 			break;
2673 		case PHOTOMETRIC_MINISWHITE:
2674 		case PHOTOMETRIC_MINISBLACK:
2675 			if (buildMap(img)) {
2676 				switch (img->bitspersample) {
2677 					case 16:
2678 						img->put.contig = put16bitbwtile;
2679 						break;
2680 					case 8:
2681 						if (img->alpha && img->samplesperpixel == 2)
2682 							img->put.contig = putagreytile;
2683 						else
2684 							img->put.contig = putgreytile;
2685 						break;
2686 					case 4:
2687 						img->put.contig = put4bitbwtile;
2688 						break;
2689 					case 2:
2690 						img->put.contig = put2bitbwtile;
2691 						break;
2692 					case 1:
2693 						img->put.contig = put1bitbwtile;
2694 						break;
2695 				}
2696 			}
2697 			break;
2698 		case PHOTOMETRIC_YCBCR:
2699 			if ((img->bitspersample==8) && (img->samplesperpixel==3))
2700 			{
2701 				if (initYCbCrConversion(img)!=0)
2702 				{
2703 					/*
2704 					 * The 6.0 spec says that subsampling must be
2705 					 * one of 1, 2, or 4, and that vertical subsampling
2706 					 * must always be <= horizontal subsampling; so
2707 					 * there are only a few possibilities and we just
2708 					 * enumerate the cases.
2709 					 * Joris: added support for the [1,2] case, nonetheless, to accommodate
2710 					 * some OJPEG files
2711 					 */
2712 					uint16 SubsamplingHor;
2713 					uint16 SubsamplingVer;
2714 					TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &SubsamplingHor, &SubsamplingVer);
2715 					switch ((SubsamplingHor<<4)|SubsamplingVer) {
2716 						case 0x44:
2717 							img->put.contig = putcontig8bitYCbCr44tile;
2718 							break;
2719 						case 0x42:
2720 							img->put.contig = putcontig8bitYCbCr42tile;
2721 							break;
2722 						case 0x41:
2723 							img->put.contig = putcontig8bitYCbCr41tile;
2724 							break;
2725 						case 0x22:
2726 							img->put.contig = putcontig8bitYCbCr22tile;
2727 							break;
2728 						case 0x21:
2729 							img->put.contig = putcontig8bitYCbCr21tile;
2730 							break;
2731 						case 0x12:
2732 							img->put.contig = putcontig8bitYCbCr12tile;
2733 							break;
2734 						case 0x11:
2735 							img->put.contig = putcontig8bitYCbCr11tile;
2736 							break;
2737 					}
2738 				}
2739 			}
2740 			break;
2741 		case PHOTOMETRIC_CIELAB:
2742 			if (img->samplesperpixel == 3 && buildMap(img)) {
2743 				if (img->bitspersample == 8)
2744 					img->put.contig = initCIELabConversion(img);
2745 				break;
2746 			}
2747 	}
2748 	return ((img->get!=NULL) && (img->put.contig!=NULL));
2749 }
2750 
2751 /*
2752  * Select the appropriate conversion routine for unpacked data.
2753  *
2754  * NB: we assume that unpacked single channel data is directed
2755  *	 to the "packed routines.
2756  */
2757 static int
PickSeparateCase(TIFFRGBAImage * img)2758 PickSeparateCase(TIFFRGBAImage* img)
2759 {
2760 	img->get = TIFFIsTiled(img->tif) ? gtTileSeparate : gtStripSeparate;
2761 	img->put.separate = NULL;
2762 	switch (img->photometric) {
2763 	case PHOTOMETRIC_MINISWHITE:
2764 	case PHOTOMETRIC_MINISBLACK:
2765 		/* greyscale images processed pretty much as RGB by gtTileSeparate */
2766 	case PHOTOMETRIC_RGB:
2767 		switch (img->bitspersample) {
2768 		case 8:
2769 			if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
2770 				img->put.separate = putRGBAAseparate8bittile;
2771 			else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
2772 			{
2773 				if (BuildMapUaToAa(img))
2774 					img->put.separate = putRGBUAseparate8bittile;
2775 			}
2776 			else
2777 				img->put.separate = putRGBseparate8bittile;
2778 			break;
2779 		case 16:
2780 			if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
2781 			{
2782 				if (BuildMapBitdepth16To8(img))
2783 					img->put.separate = putRGBAAseparate16bittile;
2784 			}
2785 			else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
2786 			{
2787 				if (BuildMapBitdepth16To8(img) &&
2788 				    BuildMapUaToAa(img))
2789 					img->put.separate = putRGBUAseparate16bittile;
2790 			}
2791 			else
2792 			{
2793 				if (BuildMapBitdepth16To8(img))
2794 					img->put.separate = putRGBseparate16bittile;
2795 			}
2796 			break;
2797 		}
2798 		break;
2799 	case PHOTOMETRIC_SEPARATED:
2800 		if (img->bitspersample == 8 && img->samplesperpixel == 4)
2801 		{
2802 			img->alpha = 1; // Not alpha, but seems like the only way to get 4th band
2803 			img->put.separate = putCMYKseparate8bittile;
2804 		}
2805 		break;
2806 	case PHOTOMETRIC_YCBCR:
2807 		if ((img->bitspersample==8) && (img->samplesperpixel==3))
2808 		{
2809 			if (initYCbCrConversion(img)!=0)
2810 			{
2811 				uint16 hs, vs;
2812 				TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &hs, &vs);
2813 				switch ((hs<<4)|vs) {
2814 				case 0x11:
2815 					img->put.separate = putseparate8bitYCbCr11tile;
2816 					break;
2817 					/* TODO: add other cases here */
2818 				}
2819 			}
2820 		}
2821 		break;
2822 	}
2823 	return ((img->get!=NULL) && (img->put.separate!=NULL));
2824 }
2825 
2826 static int
BuildMapUaToAa(TIFFRGBAImage * img)2827 BuildMapUaToAa(TIFFRGBAImage* img)
2828 {
2829 	static const char module[]="BuildMapUaToAa";
2830 	uint8* m;
2831 	uint16 na,nv;
2832 	assert(img->UaToAa==NULL);
2833 	img->UaToAa=_TIFFmalloc(65536);
2834 	if (img->UaToAa==NULL)
2835 	{
2836 		TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory");
2837 		return(0);
2838 	}
2839 	m=img->UaToAa;
2840 	for (na=0; na<256; na++)
2841 	{
2842 		for (nv=0; nv<256; nv++)
2843 			*m++=(uint8)((nv*na+127)/255);
2844 	}
2845 	return(1);
2846 }
2847 
2848 static int
BuildMapBitdepth16To8(TIFFRGBAImage * img)2849 BuildMapBitdepth16To8(TIFFRGBAImage* img)
2850 {
2851 	static const char module[]="BuildMapBitdepth16To8";
2852 	uint8* m;
2853 	uint32 n;
2854 	assert(img->Bitdepth16To8==NULL);
2855 	img->Bitdepth16To8=_TIFFmalloc(65536);
2856 	if (img->Bitdepth16To8==NULL)
2857 	{
2858 		TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory");
2859 		return(0);
2860 	}
2861 	m=img->Bitdepth16To8;
2862 	for (n=0; n<65536; n++)
2863 		*m++=(uint8)((n+128)/257);
2864 	return(1);
2865 }
2866 
2867 
2868 /*
2869  * Read a whole strip off data from the file, and convert to RGBA form.
2870  * If this is the last strip, then it will only contain the portion of
2871  * the strip that is actually within the image space.  The result is
2872  * organized in bottom to top form.
2873  */
2874 
2875 
2876 int
TIFFReadRGBAStrip(TIFF * tif,uint32 row,uint32 * raster)2877 TIFFReadRGBAStrip(TIFF* tif, uint32 row, uint32 * raster )
2878 
2879 {
2880     return TIFFReadRGBAStripExt(tif, row, raster, 0 );
2881 }
2882 
2883 int
TIFFReadRGBAStripExt(TIFF * tif,uint32 row,uint32 * raster,int stop_on_error)2884 TIFFReadRGBAStripExt(TIFF* tif, uint32 row, uint32 * raster, int stop_on_error)
2885 
2886 {
2887     char 	emsg[1024] = "";
2888     TIFFRGBAImage img;
2889     int 	ok;
2890     uint32	rowsperstrip, rows_to_read;
2891 
2892     if( TIFFIsTiled( tif ) )
2893     {
2894 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2895                   "Can't use TIFFReadRGBAStrip() with tiled file.");
2896 	return (0);
2897     }
2898 
2899     TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
2900     if( (row % rowsperstrip) != 0 )
2901     {
2902 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2903 				"Row passed to TIFFReadRGBAStrip() must be first in a strip.");
2904 		return (0);
2905     }
2906 
2907     if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop_on_error, emsg)) {
2908 
2909         img.row_offset = row;
2910         img.col_offset = 0;
2911 
2912         if( row + rowsperstrip > img.height )
2913             rows_to_read = img.height - row;
2914         else
2915             rows_to_read = rowsperstrip;
2916 
2917 	ok = TIFFRGBAImageGet(&img, raster, img.width, rows_to_read );
2918 
2919 	TIFFRGBAImageEnd(&img);
2920     } else {
2921 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
2922 		ok = 0;
2923     }
2924 
2925     return (ok);
2926 }
2927 
2928 /*
2929  * Read a whole tile off data from the file, and convert to RGBA form.
2930  * The returned RGBA data is organized from bottom to top of tile,
2931  * and may include zeroed areas if the tile extends off the image.
2932  */
2933 
2934 int
TIFFReadRGBATile(TIFF * tif,uint32 col,uint32 row,uint32 * raster)2935 TIFFReadRGBATile(TIFF* tif, uint32 col, uint32 row, uint32 * raster)
2936 
2937 {
2938     return TIFFReadRGBATileExt(tif, col, row, raster, 0 );
2939 }
2940 
2941 
2942 int
TIFFReadRGBATileExt(TIFF * tif,uint32 col,uint32 row,uint32 * raster,int stop_on_error)2943 TIFFReadRGBATileExt(TIFF* tif, uint32 col, uint32 row, uint32 * raster, int stop_on_error )
2944 {
2945     char 	emsg[1024] = "";
2946     TIFFRGBAImage img;
2947     int 	ok;
2948     uint32	tile_xsize, tile_ysize;
2949     uint32	read_xsize, read_ysize;
2950     uint32	i_row;
2951 
2952     /*
2953      * Verify that our request is legal - on a tile file, and on a
2954      * tile boundary.
2955      */
2956 
2957     if( !TIFFIsTiled( tif ) )
2958     {
2959 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2960 				  "Can't use TIFFReadRGBATile() with stripped file.");
2961 		return (0);
2962     }
2963 
2964     TIFFGetFieldDefaulted(tif, TIFFTAG_TILEWIDTH, &tile_xsize);
2965     TIFFGetFieldDefaulted(tif, TIFFTAG_TILELENGTH, &tile_ysize);
2966     if( (col % tile_xsize) != 0 || (row % tile_ysize) != 0 )
2967     {
2968 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2969                   "Row/col passed to TIFFReadRGBATile() must be top"
2970                   "left corner of a tile.");
2971 	return (0);
2972     }
2973 
2974     /*
2975      * Setup the RGBA reader.
2976      */
2977 
2978     if (!TIFFRGBAImageOK(tif, emsg)
2979 	|| !TIFFRGBAImageBegin(&img, tif, stop_on_error, emsg)) {
2980 	    TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
2981 	    return( 0 );
2982     }
2983 
2984     /*
2985      * The TIFFRGBAImageGet() function doesn't allow us to get off the
2986      * edge of the image, even to fill an otherwise valid tile.  So we
2987      * figure out how much we can read, and fix up the tile buffer to
2988      * a full tile configuration afterwards.
2989      */
2990 
2991     if( row + tile_ysize > img.height )
2992         read_ysize = img.height - row;
2993     else
2994         read_ysize = tile_ysize;
2995 
2996     if( col + tile_xsize > img.width )
2997         read_xsize = img.width - col;
2998     else
2999         read_xsize = tile_xsize;
3000 
3001     /*
3002      * Read the chunk of imagery.
3003      */
3004 
3005     img.row_offset = row;
3006     img.col_offset = col;
3007 
3008     ok = TIFFRGBAImageGet(&img, raster, read_xsize, read_ysize );
3009 
3010     TIFFRGBAImageEnd(&img);
3011 
3012     /*
3013      * If our read was incomplete we will need to fix up the tile by
3014      * shifting the data around as if a full tile of data is being returned.
3015      *
3016      * This is all the more complicated because the image is organized in
3017      * bottom to top format.
3018      */
3019 
3020     if( read_xsize == tile_xsize && read_ysize == tile_ysize )
3021         return( ok );
3022 
3023     for( i_row = 0; i_row < read_ysize; i_row++ ) {
3024         memmove( raster + (tile_ysize - i_row - 1) * tile_xsize,
3025                  raster + (read_ysize - i_row - 1) * read_xsize,
3026                  read_xsize * sizeof(uint32) );
3027         _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize+read_xsize,
3028                      0, sizeof(uint32) * (tile_xsize - read_xsize) );
3029     }
3030 
3031     for( i_row = read_ysize; i_row < tile_ysize; i_row++ ) {
3032         _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize,
3033                      0, sizeof(uint32) * tile_xsize );
3034     }
3035 
3036     return (ok);
3037 }
3038 
3039 /* vim: set ts=8 sts=8 sw=8 noet: */
3040 /*
3041  * Local Variables:
3042  * mode: c
3043  * c-basic-offset: 8
3044  * fill-column: 78
3045  * End:
3046  */
3047