1 // Copyright 2015 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 variant of methods for lossless encoder
11 //
12 // Author: Skal (pascal.massimino@gmail.com)
13 
14 #include "src/dsp/dsp.h"
15 
16 #if defined(WEBP_USE_SSE2)
17 #include <assert.h>
18 #include <emmintrin.h>
19 #include "src/dsp/lossless.h"
20 #include "src/dsp/common_sse2.h"
21 #include "src/dsp/lossless_common.h"
22 
23 // For sign-extended multiplying constants, pre-shifted by 5:
24 #define CST_5b(X)  (((int16_t)((uint16_t)(X) << 8)) >> 5)
25 
26 //------------------------------------------------------------------------------
27 // Subtract-Green Transform
28 
SubtractGreenFromBlueAndRed_SSE2(uint32_t * argb_data,int num_pixels)29 static void SubtractGreenFromBlueAndRed_SSE2(uint32_t* argb_data,
30                                              int num_pixels) {
31   int i;
32   for (i = 0; i + 4 <= num_pixels; i += 4) {
33     const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb
34     const __m128i A = _mm_srli_epi16(in, 8);     // 0 a 0 g
35     const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
36     const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0));  // 0g0g
37     const __m128i out = _mm_sub_epi8(in, C);
38     _mm_storeu_si128((__m128i*)&argb_data[i], out);
39   }
40   // fallthrough and finish off with plain-C
41   if (i != num_pixels) {
42     VP8LSubtractGreenFromBlueAndRed_C(argb_data + i, num_pixels - i);
43   }
44 }
45 
46 //------------------------------------------------------------------------------
47 // Color Transform
48 
49 #define MK_CST_16(HI, LO) \
50   _mm_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff)))
51 
TransformColor_SSE2(const VP8LMultipliers * const m,uint32_t * argb_data,int num_pixels)52 static void TransformColor_SSE2(const VP8LMultipliers* const m,
53                                 uint32_t* argb_data, int num_pixels) {
54   const __m128i mults_rb = MK_CST_16(CST_5b(m->green_to_red_),
55                                      CST_5b(m->green_to_blue_));
56   const __m128i mults_b2 = MK_CST_16(CST_5b(m->red_to_blue_), 0);
57   const __m128i mask_ag = _mm_set1_epi32(0xff00ff00);  // alpha-green masks
58   const __m128i mask_rb = _mm_set1_epi32(0x00ff00ff);  // red-blue masks
59   int i;
60   for (i = 0; i + 4 <= num_pixels; i += 4) {
61     const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb
62     const __m128i A = _mm_and_si128(in, mask_ag);     // a   0   g   0
63     const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
64     const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0));  // g0g0
65     const __m128i D = _mm_mulhi_epi16(C, mults_rb);    // x dr  x db1
66     const __m128i E = _mm_slli_epi16(in, 8);           // r 0   b   0
67     const __m128i F = _mm_mulhi_epi16(E, mults_b2);    // x db2 0   0
68     const __m128i G = _mm_srli_epi32(F, 16);           // 0 0   x db2
69     const __m128i H = _mm_add_epi8(G, D);              // x dr  x  db
70     const __m128i I = _mm_and_si128(H, mask_rb);       // 0 dr  0  db
71     const __m128i out = _mm_sub_epi8(in, I);
72     _mm_storeu_si128((__m128i*)&argb_data[i], out);
73   }
74   // fallthrough and finish off with plain-C
75   if (i != num_pixels) {
76     VP8LTransformColor_C(m, argb_data + i, num_pixels - i);
77   }
78 }
79 
80 //------------------------------------------------------------------------------
81 #define SPAN 8
CollectColorBlueTransforms_SSE2(const uint32_t * argb,int stride,int tile_width,int tile_height,int green_to_blue,int red_to_blue,int histo[])82 static void CollectColorBlueTransforms_SSE2(const uint32_t* argb, int stride,
83                                             int tile_width, int tile_height,
84                                             int green_to_blue, int red_to_blue,
85                                             int histo[]) {
86   const __m128i mults_r = MK_CST_16(CST_5b(red_to_blue), 0);
87   const __m128i mults_g = MK_CST_16(0, CST_5b(green_to_blue));
88   const __m128i mask_g = _mm_set1_epi32(0x00ff00);  // green mask
89   const __m128i mask_b = _mm_set1_epi32(0x0000ff);  // blue mask
90   int y;
91   for (y = 0; y < tile_height; ++y) {
92     const uint32_t* const src = argb + y * stride;
93     int i, x;
94     for (x = 0; x + SPAN <= tile_width; x += SPAN) {
95       uint16_t values[SPAN];
96       const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x +        0]);
97       const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]);
98       const __m128i A0 = _mm_slli_epi16(in0, 8);        // r 0  | b 0
99       const __m128i A1 = _mm_slli_epi16(in1, 8);
100       const __m128i B0 = _mm_and_si128(in0, mask_g);    // 0 0  | g 0
101       const __m128i B1 = _mm_and_si128(in1, mask_g);
102       const __m128i C0 = _mm_mulhi_epi16(A0, mults_r);  // x db | 0 0
103       const __m128i C1 = _mm_mulhi_epi16(A1, mults_r);
104       const __m128i D0 = _mm_mulhi_epi16(B0, mults_g);  // 0 0  | x db
105       const __m128i D1 = _mm_mulhi_epi16(B1, mults_g);
106       const __m128i E0 = _mm_sub_epi8(in0, D0);         // x x  | x b'
107       const __m128i E1 = _mm_sub_epi8(in1, D1);
108       const __m128i F0 = _mm_srli_epi32(C0, 16);        // 0 0  | x db
109       const __m128i F1 = _mm_srli_epi32(C1, 16);
110       const __m128i G0 = _mm_sub_epi8(E0, F0);          // 0 0  | x b'
111       const __m128i G1 = _mm_sub_epi8(E1, F1);
112       const __m128i H0 = _mm_and_si128(G0, mask_b);     // 0 0  | 0 b
113       const __m128i H1 = _mm_and_si128(G1, mask_b);
114       const __m128i I = _mm_packs_epi32(H0, H1);        // 0 b' | 0 b'
115       _mm_storeu_si128((__m128i*)values, I);
116       for (i = 0; i < SPAN; ++i) ++histo[values[i]];
117     }
118   }
119   {
120     const int left_over = tile_width & (SPAN - 1);
121     if (left_over > 0) {
122       VP8LCollectColorBlueTransforms_C(argb + tile_width - left_over, stride,
123                                        left_over, tile_height,
124                                        green_to_blue, red_to_blue, histo);
125     }
126   }
127 }
128 
CollectColorRedTransforms_SSE2(const uint32_t * argb,int stride,int tile_width,int tile_height,int green_to_red,int histo[])129 static void CollectColorRedTransforms_SSE2(const uint32_t* argb, int stride,
130                                            int tile_width, int tile_height,
131                                            int green_to_red, int histo[]) {
132   const __m128i mults_g = MK_CST_16(0, CST_5b(green_to_red));
133   const __m128i mask_g = _mm_set1_epi32(0x00ff00);  // green mask
134   const __m128i mask = _mm_set1_epi32(0xff);
135 
136   int y;
137   for (y = 0; y < tile_height; ++y) {
138     const uint32_t* const src = argb + y * stride;
139     int i, x;
140     for (x = 0; x + SPAN <= tile_width; x += SPAN) {
141       uint16_t values[SPAN];
142       const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x +        0]);
143       const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]);
144       const __m128i A0 = _mm_and_si128(in0, mask_g);    // 0 0  | g 0
145       const __m128i A1 = _mm_and_si128(in1, mask_g);
146       const __m128i B0 = _mm_srli_epi32(in0, 16);       // 0 0  | x r
147       const __m128i B1 = _mm_srli_epi32(in1, 16);
148       const __m128i C0 = _mm_mulhi_epi16(A0, mults_g);  // 0 0  | x dr
149       const __m128i C1 = _mm_mulhi_epi16(A1, mults_g);
150       const __m128i E0 = _mm_sub_epi8(B0, C0);          // x x  | x r'
151       const __m128i E1 = _mm_sub_epi8(B1, C1);
152       const __m128i F0 = _mm_and_si128(E0, mask);       // 0 0  | 0 r'
153       const __m128i F1 = _mm_and_si128(E1, mask);
154       const __m128i I = _mm_packs_epi32(F0, F1);
155       _mm_storeu_si128((__m128i*)values, I);
156       for (i = 0; i < SPAN; ++i) ++histo[values[i]];
157     }
158   }
159   {
160     const int left_over = tile_width & (SPAN - 1);
161     if (left_over > 0) {
162       VP8LCollectColorRedTransforms_C(argb + tile_width - left_over, stride,
163                                       left_over, tile_height,
164                                       green_to_red, histo);
165     }
166   }
167 }
168 #undef SPAN
169 #undef MK_CST_16
170 
171 //------------------------------------------------------------------------------
172 
173 #define LINE_SIZE 16    // 8 or 16
AddVector_SSE2(const uint32_t * a,const uint32_t * b,uint32_t * out,int size)174 static void AddVector_SSE2(const uint32_t* a, const uint32_t* b, uint32_t* out,
175                            int size) {
176   int i;
177   assert(size % LINE_SIZE == 0);
178   for (i = 0; i < size; i += LINE_SIZE) {
179     const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i +  0]);
180     const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i +  4]);
181 #if (LINE_SIZE == 16)
182     const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i +  8]);
183     const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]);
184 #endif
185     const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[i +  0]);
186     const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[i +  4]);
187 #if (LINE_SIZE == 16)
188     const __m128i b2 = _mm_loadu_si128((const __m128i*)&b[i +  8]);
189     const __m128i b3 = _mm_loadu_si128((const __m128i*)&b[i + 12]);
190 #endif
191     _mm_storeu_si128((__m128i*)&out[i +  0], _mm_add_epi32(a0, b0));
192     _mm_storeu_si128((__m128i*)&out[i +  4], _mm_add_epi32(a1, b1));
193 #if (LINE_SIZE == 16)
194     _mm_storeu_si128((__m128i*)&out[i +  8], _mm_add_epi32(a2, b2));
195     _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3));
196 #endif
197   }
198 }
199 
AddVectorEq_SSE2(const uint32_t * a,uint32_t * out,int size)200 static void AddVectorEq_SSE2(const uint32_t* a, uint32_t* out, int size) {
201   int i;
202   assert(size % LINE_SIZE == 0);
203   for (i = 0; i < size; i += LINE_SIZE) {
204     const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i +  0]);
205     const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i +  4]);
206 #if (LINE_SIZE == 16)
207     const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i +  8]);
208     const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]);
209 #endif
210     const __m128i b0 = _mm_loadu_si128((const __m128i*)&out[i +  0]);
211     const __m128i b1 = _mm_loadu_si128((const __m128i*)&out[i +  4]);
212 #if (LINE_SIZE == 16)
213     const __m128i b2 = _mm_loadu_si128((const __m128i*)&out[i +  8]);
214     const __m128i b3 = _mm_loadu_si128((const __m128i*)&out[i + 12]);
215 #endif
216     _mm_storeu_si128((__m128i*)&out[i +  0], _mm_add_epi32(a0, b0));
217     _mm_storeu_si128((__m128i*)&out[i +  4], _mm_add_epi32(a1, b1));
218 #if (LINE_SIZE == 16)
219     _mm_storeu_si128((__m128i*)&out[i +  8], _mm_add_epi32(a2, b2));
220     _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3));
221 #endif
222   }
223 }
224 #undef LINE_SIZE
225 
226 // Note we are adding uint32_t's as *signed* int32's (using _mm_add_epi32). But
227 // that's ok since the histogram values are less than 1<<28 (max picture size).
HistogramAdd_SSE2(const VP8LHistogram * const a,const VP8LHistogram * const b,VP8LHistogram * const out)228 static void HistogramAdd_SSE2(const VP8LHistogram* const a,
229                               const VP8LHistogram* const b,
230                               VP8LHistogram* const out) {
231   int i;
232   const int literal_size = VP8LHistogramNumCodes(a->palette_code_bits_);
233   assert(a->palette_code_bits_ == b->palette_code_bits_);
234   if (b != out) {
235     AddVector_SSE2(a->literal_, b->literal_, out->literal_, NUM_LITERAL_CODES);
236     AddVector_SSE2(a->red_, b->red_, out->red_, NUM_LITERAL_CODES);
237     AddVector_SSE2(a->blue_, b->blue_, out->blue_, NUM_LITERAL_CODES);
238     AddVector_SSE2(a->alpha_, b->alpha_, out->alpha_, NUM_LITERAL_CODES);
239   } else {
240     AddVectorEq_SSE2(a->literal_, out->literal_, NUM_LITERAL_CODES);
241     AddVectorEq_SSE2(a->red_, out->red_, NUM_LITERAL_CODES);
242     AddVectorEq_SSE2(a->blue_, out->blue_, NUM_LITERAL_CODES);
243     AddVectorEq_SSE2(a->alpha_, out->alpha_, NUM_LITERAL_CODES);
244   }
245   for (i = NUM_LITERAL_CODES; i < literal_size; ++i) {
246     out->literal_[i] = a->literal_[i] + b->literal_[i];
247   }
248   for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
249     out->distance_[i] = a->distance_[i] + b->distance_[i];
250   }
251 }
252 
253 //------------------------------------------------------------------------------
254 // Entropy
255 
256 // Checks whether the X or Y contribution is worth computing and adding.
257 // Used in loop unrolling.
258 #define ANALYZE_X_OR_Y(x_or_y, j)                                           \
259   do {                                                                      \
260     if ((x_or_y)[i + (j)] != 0) retval -= VP8LFastSLog2((x_or_y)[i + (j)]); \
261   } while (0)
262 
263 // Checks whether the X + Y contribution is worth computing and adding.
264 // Used in loop unrolling.
265 #define ANALYZE_XY(j)                  \
266   do {                                 \
267     if (tmp[j] != 0) {                 \
268       retval -= VP8LFastSLog2(tmp[j]); \
269       ANALYZE_X_OR_Y(X, j);            \
270     }                                  \
271   } while (0)
272 
CombinedShannonEntropy_SSE2(const int X[256],const int Y[256])273 static float CombinedShannonEntropy_SSE2(const int X[256], const int Y[256]) {
274   int i;
275   double retval = 0.;
276   int sumX, sumXY;
277   int32_t tmp[4];
278   __m128i zero = _mm_setzero_si128();
279   // Sums up X + Y, 4 ints at a time (and will merge it at the end for sumXY).
280   __m128i sumXY_128 = zero;
281   __m128i sumX_128 = zero;
282 
283   for (i = 0; i < 256; i += 4) {
284     const __m128i x = _mm_loadu_si128((const __m128i*)(X + i));
285     const __m128i y = _mm_loadu_si128((const __m128i*)(Y + i));
286 
287     // Check if any X is non-zero: this actually provides a speedup as X is
288     // usually sparse.
289     if (_mm_movemask_epi8(_mm_cmpeq_epi32(x, zero)) != 0xFFFF) {
290       const __m128i xy_128 = _mm_add_epi32(x, y);
291       sumXY_128 = _mm_add_epi32(sumXY_128, xy_128);
292 
293       sumX_128 = _mm_add_epi32(sumX_128, x);
294 
295       // Analyze the different X + Y.
296       _mm_storeu_si128((__m128i*)tmp, xy_128);
297 
298       ANALYZE_XY(0);
299       ANALYZE_XY(1);
300       ANALYZE_XY(2);
301       ANALYZE_XY(3);
302     } else {
303       // X is fully 0, so only deal with Y.
304       sumXY_128 = _mm_add_epi32(sumXY_128, y);
305 
306       ANALYZE_X_OR_Y(Y, 0);
307       ANALYZE_X_OR_Y(Y, 1);
308       ANALYZE_X_OR_Y(Y, 2);
309       ANALYZE_X_OR_Y(Y, 3);
310     }
311   }
312 
313   // Sum up sumX_128 to get sumX.
314   _mm_storeu_si128((__m128i*)tmp, sumX_128);
315   sumX = tmp[3] + tmp[2] + tmp[1] + tmp[0];
316 
317   // Sum up sumXY_128 to get sumXY.
318   _mm_storeu_si128((__m128i*)tmp, sumXY_128);
319   sumXY = tmp[3] + tmp[2] + tmp[1] + tmp[0];
320 
321   retval += VP8LFastSLog2(sumX) + VP8LFastSLog2(sumXY);
322   return (float)retval;
323 }
324 #undef ANALYZE_X_OR_Y
325 #undef ANALYZE_XY
326 
327 //------------------------------------------------------------------------------
328 
VectorMismatch_SSE2(const uint32_t * const array1,const uint32_t * const array2,int length)329 static int VectorMismatch_SSE2(const uint32_t* const array1,
330                                const uint32_t* const array2, int length) {
331   int match_len;
332 
333   if (length >= 12) {
334     __m128i A0 = _mm_loadu_si128((const __m128i*)&array1[0]);
335     __m128i A1 = _mm_loadu_si128((const __m128i*)&array2[0]);
336     match_len = 0;
337     do {
338       // Loop unrolling and early load both provide a speedup of 10% for the
339       // current function. Also, max_limit can be MAX_LENGTH=4096 at most.
340       const __m128i cmpA = _mm_cmpeq_epi32(A0, A1);
341       const __m128i B0 =
342           _mm_loadu_si128((const __m128i*)&array1[match_len + 4]);
343       const __m128i B1 =
344           _mm_loadu_si128((const __m128i*)&array2[match_len + 4]);
345       if (_mm_movemask_epi8(cmpA) != 0xffff) break;
346       match_len += 4;
347 
348       {
349         const __m128i cmpB = _mm_cmpeq_epi32(B0, B1);
350         A0 = _mm_loadu_si128((const __m128i*)&array1[match_len + 4]);
351         A1 = _mm_loadu_si128((const __m128i*)&array2[match_len + 4]);
352         if (_mm_movemask_epi8(cmpB) != 0xffff) break;
353         match_len += 4;
354       }
355     } while (match_len + 12 < length);
356   } else {
357     match_len = 0;
358     // Unroll the potential first two loops.
359     if (length >= 4 &&
360         _mm_movemask_epi8(_mm_cmpeq_epi32(
361             _mm_loadu_si128((const __m128i*)&array1[0]),
362             _mm_loadu_si128((const __m128i*)&array2[0]))) == 0xffff) {
363       match_len = 4;
364       if (length >= 8 &&
365           _mm_movemask_epi8(_mm_cmpeq_epi32(
366               _mm_loadu_si128((const __m128i*)&array1[4]),
367               _mm_loadu_si128((const __m128i*)&array2[4]))) == 0xffff) {
368         match_len = 8;
369       }
370     }
371   }
372 
373   while (match_len < length && array1[match_len] == array2[match_len]) {
374     ++match_len;
375   }
376   return match_len;
377 }
378 
379 // Bundles multiple (1, 2, 4 or 8) pixels into a single pixel.
BundleColorMap_SSE2(const uint8_t * const row,int width,int xbits,uint32_t * dst)380 static void BundleColorMap_SSE2(const uint8_t* const row, int width, int xbits,
381                                 uint32_t* dst) {
382   int x;
383   assert(xbits >= 0);
384   assert(xbits <= 3);
385   switch (xbits) {
386     case 0: {
387       const __m128i ff = _mm_set1_epi16(0xff00);
388       const __m128i zero = _mm_setzero_si128();
389       // Store 0xff000000 | (row[x] << 8).
390       for (x = 0; x + 16 <= width; x += 16, dst += 16) {
391         const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
392         const __m128i in_lo = _mm_unpacklo_epi8(zero, in);
393         const __m128i dst0 = _mm_unpacklo_epi16(in_lo, ff);
394         const __m128i dst1 = _mm_unpackhi_epi16(in_lo, ff);
395         const __m128i in_hi = _mm_unpackhi_epi8(zero, in);
396         const __m128i dst2 = _mm_unpacklo_epi16(in_hi, ff);
397         const __m128i dst3 = _mm_unpackhi_epi16(in_hi, ff);
398         _mm_storeu_si128((__m128i*)&dst[0], dst0);
399         _mm_storeu_si128((__m128i*)&dst[4], dst1);
400         _mm_storeu_si128((__m128i*)&dst[8], dst2);
401         _mm_storeu_si128((__m128i*)&dst[12], dst3);
402       }
403       break;
404     }
405     case 1: {
406       const __m128i ff = _mm_set1_epi16(0xff00);
407       const __m128i mul = _mm_set1_epi16(0x110);
408       for (x = 0; x + 16 <= width; x += 16, dst += 8) {
409         // 0a0b | (where a/b are 4 bits).
410         const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
411         const __m128i tmp = _mm_mullo_epi16(in, mul);  // aba0
412         const __m128i pack = _mm_and_si128(tmp, ff);   // ab00
413         const __m128i dst0 = _mm_unpacklo_epi16(pack, ff);
414         const __m128i dst1 = _mm_unpackhi_epi16(pack, ff);
415         _mm_storeu_si128((__m128i*)&dst[0], dst0);
416         _mm_storeu_si128((__m128i*)&dst[4], dst1);
417       }
418       break;
419     }
420     case 2: {
421       const __m128i mask_or = _mm_set1_epi32(0xff000000);
422       const __m128i mul_cst = _mm_set1_epi16(0x0104);
423       const __m128i mask_mul = _mm_set1_epi16(0x0f00);
424       for (x = 0; x + 16 <= width; x += 16, dst += 4) {
425         // 000a000b000c000d | (where a/b/c/d are 2 bits).
426         const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
427         const __m128i mul = _mm_mullo_epi16(in, mul_cst);  // 00ab00b000cd00d0
428         const __m128i tmp = _mm_and_si128(mul, mask_mul);  // 00ab000000cd0000
429         const __m128i shift = _mm_srli_epi32(tmp, 12);     // 00000000ab000000
430         const __m128i pack = _mm_or_si128(shift, tmp);     // 00000000abcd0000
431         // Convert to 0xff00**00.
432         const __m128i res = _mm_or_si128(pack, mask_or);
433         _mm_storeu_si128((__m128i*)dst, res);
434       }
435       break;
436     }
437     default: {
438       assert(xbits == 3);
439       for (x = 0; x + 16 <= width; x += 16, dst += 2) {
440         // 0000000a00000000b... | (where a/b are 1 bit).
441         const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
442         const __m128i shift = _mm_slli_epi64(in, 7);
443         const uint32_t move = _mm_movemask_epi8(shift);
444         dst[0] = 0xff000000 | ((move & 0xff) << 8);
445         dst[1] = 0xff000000 | (move & 0xff00);
446       }
447       break;
448     }
449   }
450   if (x != width) {
451     VP8LBundleColorMap_C(row + x, width - x, xbits, dst);
452   }
453 }
454 
455 //------------------------------------------------------------------------------
456 // Batch version of Predictor Transform subtraction
457 
Average2_m128i(const __m128i * const a0,const __m128i * const a1,__m128i * const avg)458 static WEBP_INLINE void Average2_m128i(const __m128i* const a0,
459                                        const __m128i* const a1,
460                                        __m128i* const avg) {
461   // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
462   const __m128i ones = _mm_set1_epi8(1);
463   const __m128i avg1 = _mm_avg_epu8(*a0, *a1);
464   const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones);
465   *avg = _mm_sub_epi8(avg1, one);
466 }
467 
468 // Predictor0: ARGB_BLACK.
PredictorSub0_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)469 static void PredictorSub0_SSE2(const uint32_t* in, const uint32_t* upper,
470                                int num_pixels, uint32_t* out) {
471   int i;
472   const __m128i black = _mm_set1_epi32(ARGB_BLACK);
473   for (i = 0; i + 4 <= num_pixels; i += 4) {
474     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
475     const __m128i res = _mm_sub_epi8(src, black);
476     _mm_storeu_si128((__m128i*)&out[i], res);
477   }
478   if (i != num_pixels) {
479     VP8LPredictorsSub_C[0](in + i, upper + i, num_pixels - i, out + i);
480   }
481 }
482 
483 #define GENERATE_PREDICTOR_1(X, IN)                                           \
484 static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
485                                    int num_pixels, uint32_t* out) {           \
486   int i;                                                                      \
487   for (i = 0; i + 4 <= num_pixels; i += 4) {                                  \
488     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);              \
489     const __m128i pred = _mm_loadu_si128((const __m128i*)&(IN));              \
490     const __m128i res = _mm_sub_epi8(src, pred);                              \
491     _mm_storeu_si128((__m128i*)&out[i], res);                                 \
492   }                                                                           \
493   if (i != num_pixels) {                                                      \
494     VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i);     \
495   }                                                                           \
496 }
497 
498 GENERATE_PREDICTOR_1(1, in[i - 1])       // Predictor1: L
499 GENERATE_PREDICTOR_1(2, upper[i])        // Predictor2: T
500 GENERATE_PREDICTOR_1(3, upper[i + 1])    // Predictor3: TR
501 GENERATE_PREDICTOR_1(4, upper[i - 1])    // Predictor4: TL
502 #undef GENERATE_PREDICTOR_1
503 
504 // Predictor5: avg2(avg2(L, TR), T)
PredictorSub5_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)505 static void PredictorSub5_SSE2(const uint32_t* in, const uint32_t* upper,
506                                int num_pixels, uint32_t* out) {
507   int i;
508   for (i = 0; i + 4 <= num_pixels; i += 4) {
509     const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
510     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
511     const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
512     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
513     __m128i avg, pred, res;
514     Average2_m128i(&L, &TR, &avg);
515     Average2_m128i(&avg, &T, &pred);
516     res = _mm_sub_epi8(src, pred);
517     _mm_storeu_si128((__m128i*)&out[i], res);
518   }
519   if (i != num_pixels) {
520     VP8LPredictorsSub_C[5](in + i, upper + i, num_pixels - i, out + i);
521   }
522 }
523 
524 #define GENERATE_PREDICTOR_2(X, A, B)                                         \
525 static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
526                                    int num_pixels, uint32_t* out) {           \
527   int i;                                                                      \
528   for (i = 0; i + 4 <= num_pixels; i += 4) {                                  \
529     const __m128i tA = _mm_loadu_si128((const __m128i*)&(A));                 \
530     const __m128i tB = _mm_loadu_si128((const __m128i*)&(B));                 \
531     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);              \
532     __m128i pred, res;                                                        \
533     Average2_m128i(&tA, &tB, &pred);                                          \
534     res = _mm_sub_epi8(src, pred);                                            \
535     _mm_storeu_si128((__m128i*)&out[i], res);                                 \
536   }                                                                           \
537   if (i != num_pixels) {                                                      \
538     VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i);     \
539   }                                                                           \
540 }
541 
542 GENERATE_PREDICTOR_2(6, in[i - 1], upper[i - 1])   // Predictor6: avg(L, TL)
543 GENERATE_PREDICTOR_2(7, in[i - 1], upper[i])       // Predictor7: avg(L, T)
544 GENERATE_PREDICTOR_2(8, upper[i - 1], upper[i])    // Predictor8: avg(TL, T)
545 GENERATE_PREDICTOR_2(9, upper[i], upper[i + 1])    // Predictor9: average(T, TR)
546 #undef GENERATE_PREDICTOR_2
547 
548 // Predictor10: avg(avg(L,TL), avg(T, TR)).
PredictorSub10_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)549 static void PredictorSub10_SSE2(const uint32_t* in, const uint32_t* upper,
550                                 int num_pixels, uint32_t* out) {
551   int i;
552   for (i = 0; i + 4 <= num_pixels; i += 4) {
553     const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
554     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
555     const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
556     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
557     const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
558     __m128i avgTTR, avgLTL, avg, res;
559     Average2_m128i(&T, &TR, &avgTTR);
560     Average2_m128i(&L, &TL, &avgLTL);
561     Average2_m128i(&avgTTR, &avgLTL, &avg);
562     res = _mm_sub_epi8(src, avg);
563     _mm_storeu_si128((__m128i*)&out[i], res);
564   }
565   if (i != num_pixels) {
566     VP8LPredictorsSub_C[10](in + i, upper + i, num_pixels - i, out + i);
567   }
568 }
569 
570 // Predictor11: select.
GetSumAbsDiff32_SSE2(const __m128i * const A,const __m128i * const B,__m128i * const out)571 static void GetSumAbsDiff32_SSE2(const __m128i* const A, const __m128i* const B,
572                                  __m128i* const out) {
573   // We can unpack with any value on the upper 32 bits, provided it's the same
574   // on both operands (to that their sum of abs diff is zero). Here we use *A.
575   const __m128i A_lo = _mm_unpacklo_epi32(*A, *A);
576   const __m128i B_lo = _mm_unpacklo_epi32(*B, *A);
577   const __m128i A_hi = _mm_unpackhi_epi32(*A, *A);
578   const __m128i B_hi = _mm_unpackhi_epi32(*B, *A);
579   const __m128i s_lo = _mm_sad_epu8(A_lo, B_lo);
580   const __m128i s_hi = _mm_sad_epu8(A_hi, B_hi);
581   *out = _mm_packs_epi32(s_lo, s_hi);
582 }
583 
PredictorSub11_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)584 static void PredictorSub11_SSE2(const uint32_t* in, const uint32_t* upper,
585                                 int num_pixels, uint32_t* out) {
586   int i;
587   for (i = 0; i + 4 <= num_pixels; i += 4) {
588     const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
589     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
590     const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
591     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
592     __m128i pa, pb;
593     GetSumAbsDiff32_SSE2(&T, &TL, &pa);   // pa = sum |T-TL|
594     GetSumAbsDiff32_SSE2(&L, &TL, &pb);   // pb = sum |L-TL|
595     {
596       const __m128i mask = _mm_cmpgt_epi32(pb, pa);
597       const __m128i A = _mm_and_si128(mask, L);
598       const __m128i B = _mm_andnot_si128(mask, T);
599       const __m128i pred = _mm_or_si128(A, B);    // pred = (L > T)? L : T
600       const __m128i res = _mm_sub_epi8(src, pred);
601       _mm_storeu_si128((__m128i*)&out[i], res);
602     }
603   }
604   if (i != num_pixels) {
605     VP8LPredictorsSub_C[11](in + i, upper + i, num_pixels - i, out + i);
606   }
607 }
608 
609 // Predictor12: ClampedSubSubtractFull.
PredictorSub12_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)610 static void PredictorSub12_SSE2(const uint32_t* in, const uint32_t* upper,
611                                 int num_pixels, uint32_t* out) {
612   int i;
613   const __m128i zero = _mm_setzero_si128();
614   for (i = 0; i + 4 <= num_pixels; i += 4) {
615     const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
616     const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
617     const __m128i L_lo = _mm_unpacklo_epi8(L, zero);
618     const __m128i L_hi = _mm_unpackhi_epi8(L, zero);
619     const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
620     const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
621     const __m128i T_hi = _mm_unpackhi_epi8(T, zero);
622     const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
623     const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
624     const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero);
625     const __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo);
626     const __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi);
627     const __m128i pred_lo = _mm_add_epi16(L_lo, diff_lo);
628     const __m128i pred_hi = _mm_add_epi16(L_hi, diff_hi);
629     const __m128i pred = _mm_packus_epi16(pred_lo, pred_hi);
630     const __m128i res = _mm_sub_epi8(src, pred);
631     _mm_storeu_si128((__m128i*)&out[i], res);
632   }
633   if (i != num_pixels) {
634     VP8LPredictorsSub_C[12](in + i, upper + i, num_pixels - i, out + i);
635   }
636 }
637 
638 // Predictors13: ClampedAddSubtractHalf
PredictorSub13_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)639 static void PredictorSub13_SSE2(const uint32_t* in, const uint32_t* upper,
640                                 int num_pixels, uint32_t* out) {
641   int i;
642   const __m128i zero = _mm_setzero_si128();
643   for (i = 0; i + 2 <= num_pixels; i += 2) {
644     // we can only process two pixels at a time
645     const __m128i L = _mm_loadl_epi64((const __m128i*)&in[i - 1]);
646     const __m128i src = _mm_loadl_epi64((const __m128i*)&in[i]);
647     const __m128i T = _mm_loadl_epi64((const __m128i*)&upper[i]);
648     const __m128i TL = _mm_loadl_epi64((const __m128i*)&upper[i - 1]);
649     const __m128i L_lo = _mm_unpacklo_epi8(L, zero);
650     const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
651     const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
652     const __m128i sum = _mm_add_epi16(T_lo, L_lo);
653     const __m128i avg = _mm_srli_epi16(sum, 1);
654     const __m128i A1 = _mm_sub_epi16(avg, TL_lo);
655     const __m128i bit_fix = _mm_cmpgt_epi16(TL_lo, avg);
656     const __m128i A2 = _mm_sub_epi16(A1, bit_fix);
657     const __m128i A3 = _mm_srai_epi16(A2, 1);
658     const __m128i A4 = _mm_add_epi16(avg, A3);
659     const __m128i pred = _mm_packus_epi16(A4, A4);
660     const __m128i res = _mm_sub_epi8(src, pred);
661     _mm_storel_epi64((__m128i*)&out[i], res);
662   }
663   if (i != num_pixels) {
664     VP8LPredictorsSub_C[13](in + i, upper + i, num_pixels - i, out + i);
665   }
666 }
667 
668 //------------------------------------------------------------------------------
669 // Entry point
670 
671 extern void VP8LEncDspInitSSE2(void);
672 
VP8LEncDspInitSSE2(void)673 WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitSSE2(void) {
674   VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed_SSE2;
675   VP8LTransformColor = TransformColor_SSE2;
676   VP8LCollectColorBlueTransforms = CollectColorBlueTransforms_SSE2;
677   VP8LCollectColorRedTransforms = CollectColorRedTransforms_SSE2;
678   VP8LHistogramAdd = HistogramAdd_SSE2;
679   VP8LCombinedShannonEntropy = CombinedShannonEntropy_SSE2;
680   VP8LVectorMismatch = VectorMismatch_SSE2;
681   VP8LBundleColorMap = BundleColorMap_SSE2;
682 
683   VP8LPredictorsSub[0] = PredictorSub0_SSE2;
684   VP8LPredictorsSub[1] = PredictorSub1_SSE2;
685   VP8LPredictorsSub[2] = PredictorSub2_SSE2;
686   VP8LPredictorsSub[3] = PredictorSub3_SSE2;
687   VP8LPredictorsSub[4] = PredictorSub4_SSE2;
688   VP8LPredictorsSub[5] = PredictorSub5_SSE2;
689   VP8LPredictorsSub[6] = PredictorSub6_SSE2;
690   VP8LPredictorsSub[7] = PredictorSub7_SSE2;
691   VP8LPredictorsSub[8] = PredictorSub8_SSE2;
692   VP8LPredictorsSub[9] = PredictorSub9_SSE2;
693   VP8LPredictorsSub[10] = PredictorSub10_SSE2;
694   VP8LPredictorsSub[11] = PredictorSub11_SSE2;
695   VP8LPredictorsSub[12] = PredictorSub12_SSE2;
696   VP8LPredictorsSub[13] = PredictorSub13_SSE2;
697   VP8LPredictorsSub[14] = PredictorSub0_SSE2;  // <- padding security sentinels
698   VP8LPredictorsSub[15] = PredictorSub0_SSE2;
699 }
700 
701 #else  // !WEBP_USE_SSE2
702 
703 WEBP_DSP_INIT_STUB(VP8LEncDspInitSSE2)
704 
705 #endif  // WEBP_USE_SSE2
706