1 // Copyright 2013 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Implement gradient smoothing: we replace a current alpha value by its
11 // surrounding average if it's close enough (that is: the change will be less
12 // than the minimum distance between two quantized level).
13 // We use sliding window for computing the 2d moving average.
14 //
15 // Author: Skal (pascal.massimino@gmail.com)
16 
17 #include "src/utils/quant_levels_dec_utils.h"
18 
19 #include <string.h>   // for memset
20 
21 #include "src/utils/utils.h"
22 
23 // #define USE_DITHERING   // uncomment to enable ordered dithering (not vital)
24 
25 #define FIX 16     // fix-point precision for averaging
26 #define LFIX 2     // extra precision for look-up table
27 #define LUT_SIZE ((1 << (8 + LFIX)) - 1)  // look-up table size
28 
29 #if defined(USE_DITHERING)
30 
31 #define DFIX 4           // extra precision for ordered dithering
32 #define DSIZE 4          // dithering size (must be a power of two)
33 // cf. http://en.wikipedia.org/wiki/Ordered_dithering
34 static const uint8_t kOrderedDither[DSIZE][DSIZE] = {
35   {  0,  8,  2, 10 },     // coefficients are in DFIX fixed-point precision
36   { 12,  4, 14,  6 },
37   {  3, 11,  1,  9 },
38   { 15,  7, 13,  5 }
39 };
40 
41 #else
42 #define DFIX 0
43 #endif
44 
45 typedef struct {
46   int width_, height_;  // dimension
47   int stride_;          // stride in bytes
48   int row_;             // current input row being processed
49   uint8_t* src_;        // input pointer
50   uint8_t* dst_;        // output pointer
51 
52   int radius_;          // filter radius (=delay)
53   int scale_;           // normalization factor, in FIX bits precision
54 
55   void* mem_;           // all memory
56 
57   // various scratch buffers
58   uint16_t* start_;
59   uint16_t* cur_;
60   uint16_t* end_;
61   uint16_t* top_;
62   uint16_t* average_;
63 
64   // input levels distribution
65   int num_levels_;       // number of quantized levels
66   int min_, max_;        // min and max level values
67   int min_level_dist_;   // smallest distance between two consecutive levels
68 
69   int16_t* correction_;  // size = 1 + 2*LUT_SIZE  -> ~4k memory
70 } SmoothParams;
71 
72 //------------------------------------------------------------------------------
73 
74 #define CLIP_8b_MASK (int)(~0U << (8 + DFIX))
clip_8b(int v)75 static WEBP_INLINE uint8_t clip_8b(int v) {
76   return (!(v & CLIP_8b_MASK)) ? (uint8_t)(v >> DFIX) : (v < 0) ? 0u : 255u;
77 }
78 #undef CLIP_8b_MASK
79 
80 // vertical accumulation
VFilter(SmoothParams * const p)81 static void VFilter(SmoothParams* const p) {
82   const uint8_t* src = p->src_;
83   const int w = p->width_;
84   uint16_t* const cur = p->cur_;
85   const uint16_t* const top = p->top_;
86   uint16_t* const out = p->end_;
87   uint16_t sum = 0;               // all arithmetic is modulo 16bit
88   int x;
89 
90   for (x = 0; x < w; ++x) {
91     uint16_t new_value;
92     sum += src[x];
93     new_value = top[x] + sum;
94     out[x] = new_value - cur[x];  // vertical sum of 'r' pixels.
95     cur[x] = new_value;
96   }
97   // move input pointers one row down
98   p->top_ = p->cur_;
99   p->cur_ += w;
100   if (p->cur_ == p->end_) p->cur_ = p->start_;  // roll-over
101   // We replicate edges, as it's somewhat easier as a boundary condition.
102   // That's why we don't update the 'src' pointer on top/bottom area:
103   if (p->row_ >= 0 && p->row_ < p->height_ - 1) {
104     p->src_ += p->stride_;
105   }
106 }
107 
108 // horizontal accumulation. We use mirror replication of missing pixels, as it's
109 // a little easier to implement (surprisingly).
HFilter(SmoothParams * const p)110 static void HFilter(SmoothParams* const p) {
111   const uint16_t* const in = p->end_;
112   uint16_t* const out = p->average_;
113   const uint32_t scale = p->scale_;
114   const int w = p->width_;
115   const int r = p->radius_;
116 
117   int x;
118   for (x = 0; x <= r; ++x) {   // left mirroring
119     const uint16_t delta = in[x + r - 1] + in[r - x];
120     out[x] = (delta * scale) >> FIX;
121   }
122   for (; x < w - r; ++x) {     // bulk middle run
123     const uint16_t delta = in[x + r] - in[x - r - 1];
124     out[x] = (delta * scale) >> FIX;
125   }
126   for (; x < w; ++x) {         // right mirroring
127     const uint16_t delta =
128         2 * in[w - 1] - in[2 * w - 2 - r - x] - in[x - r - 1];
129     out[x] = (delta * scale) >> FIX;
130   }
131 }
132 
133 // emit one filtered output row
ApplyFilter(SmoothParams * const p)134 static void ApplyFilter(SmoothParams* const p) {
135   const uint16_t* const average = p->average_;
136   const int w = p->width_;
137   const int16_t* const correction = p->correction_;
138 #if defined(USE_DITHERING)
139   const uint8_t* const dither = kOrderedDither[p->row_ % DSIZE];
140 #endif
141   uint8_t* const dst = p->dst_;
142   int x;
143   for (x = 0; x < w; ++x) {
144     const int v = dst[x];
145     if (v < p->max_ && v > p->min_) {
146       const int c = (v << DFIX) + correction[average[x] - (v << LFIX)];
147 #if defined(USE_DITHERING)
148       dst[x] = clip_8b(c + dither[x % DSIZE]);
149 #else
150       dst[x] = clip_8b(c);
151 #endif
152     }
153   }
154   p->dst_ += p->stride_;  // advance output pointer
155 }
156 
157 //------------------------------------------------------------------------------
158 // Initialize correction table
159 
InitCorrectionLUT(int16_t * const lut,int min_dist)160 static void InitCorrectionLUT(int16_t* const lut, int min_dist) {
161   // The correction curve is:
162   //   f(x) = x for x <= threshold2
163   //   f(x) = 0 for x >= threshold1
164   // and a linear interpolation for range x=[threshold2, threshold1]
165   // (along with f(-x) = -f(x) symmetry).
166   // Note that: threshold2 = 3/4 * threshold1
167   const int threshold1 = min_dist << LFIX;
168   const int threshold2 = (3 * threshold1) >> 2;
169   const int max_threshold = threshold2 << DFIX;
170   const int delta = threshold1 - threshold2;
171   int i;
172   for (i = 1; i <= LUT_SIZE; ++i) {
173     int c = (i <= threshold2) ? (i << DFIX)
174           : (i < threshold1) ? max_threshold * (threshold1 - i) / delta
175           : 0;
176     c >>= LFIX;
177     lut[+i] = +c;
178     lut[-i] = -c;
179   }
180   lut[0] = 0;
181 }
182 
CountLevels(SmoothParams * const p)183 static void CountLevels(SmoothParams* const p) {
184   int i, j, last_level;
185   uint8_t used_levels[256] = { 0 };
186   const uint8_t* data = p->src_;
187   p->min_ = 255;
188   p->max_ = 0;
189   for (j = 0; j < p->height_; ++j) {
190     for (i = 0; i < p->width_; ++i) {
191       const int v = data[i];
192       if (v < p->min_) p->min_ = v;
193       if (v > p->max_) p->max_ = v;
194       used_levels[v] = 1;
195     }
196     data += p->stride_;
197   }
198   // Compute the mininum distance between two non-zero levels.
199   p->min_level_dist_ = p->max_ - p->min_;
200   last_level = -1;
201   for (i = 0; i < 256; ++i) {
202     if (used_levels[i]) {
203       ++p->num_levels_;
204       if (last_level >= 0) {
205         const int level_dist = i - last_level;
206         if (level_dist < p->min_level_dist_) {
207           p->min_level_dist_ = level_dist;
208         }
209       }
210       last_level = i;
211     }
212   }
213 }
214 
215 // Initialize all params.
InitParams(uint8_t * const data,int width,int height,int stride,int radius,SmoothParams * const p)216 static int InitParams(uint8_t* const data, int width, int height, int stride,
217                       int radius, SmoothParams* const p) {
218   const int R = 2 * radius + 1;  // total size of the kernel
219 
220   const size_t size_scratch_m = (R + 1) * width * sizeof(*p->start_);
221   const size_t size_m =  width * sizeof(*p->average_);
222   const size_t size_lut = (1 + 2 * LUT_SIZE) * sizeof(*p->correction_);
223   const size_t total_size = size_scratch_m + size_m + size_lut;
224   uint8_t* mem = (uint8_t*)WebPSafeMalloc(1U, total_size);
225 
226   if (mem == NULL) return 0;
227   p->mem_ = (void*)mem;
228 
229   p->start_ = (uint16_t*)mem;
230   p->cur_ = p->start_;
231   p->end_ = p->start_ + R * width;
232   p->top_ = p->end_ - width;
233   memset(p->top_, 0, width * sizeof(*p->top_));
234   mem += size_scratch_m;
235 
236   p->average_ = (uint16_t*)mem;
237   mem += size_m;
238 
239   p->width_ = width;
240   p->height_ = height;
241   p->stride_ = stride;
242   p->src_ = data;
243   p->dst_ = data;
244   p->radius_ = radius;
245   p->scale_ = (1 << (FIX + LFIX)) / (R * R);  // normalization constant
246   p->row_ = -radius;
247 
248   // analyze the input distribution so we can best-fit the threshold
249   CountLevels(p);
250 
251   // correction table
252   p->correction_ = ((int16_t*)mem) + LUT_SIZE;
253   InitCorrectionLUT(p->correction_, p->min_level_dist_);
254 
255   return 1;
256 }
257 
CleanupParams(SmoothParams * const p)258 static void CleanupParams(SmoothParams* const p) {
259   WebPSafeFree(p->mem_);
260 }
261 
WebPDequantizeLevels(uint8_t * const data,int width,int height,int stride,int strength)262 int WebPDequantizeLevels(uint8_t* const data, int width, int height, int stride,
263                          int strength) {
264   int radius = 4 * strength / 100;
265 
266   if (strength < 0 || strength > 100) return 0;
267   if (data == NULL || width <= 0 || height <= 0) return 0;  // bad params
268 
269   // limit the filter size to not exceed the image dimensions
270   if (2 * radius + 1 > width) radius = (width - 1) >> 1;
271   if (2 * radius + 1 > height) radius = (height - 1) >> 1;
272 
273   if (radius > 0) {
274     SmoothParams p;
275     memset(&p, 0, sizeof(p));
276     if (!InitParams(data, width, height, stride, radius, &p)) return 0;
277     if (p.num_levels_ > 2) {
278       for (; p.row_ < p.height_; ++p.row_) {
279         VFilter(&p);  // accumulate average of input
280         // Need to wait few rows in order to prime the filter,
281         // before emitting some output.
282         if (p.row_ >= p.radius_) {
283           HFilter(&p);
284           ApplyFilter(&p);
285         }
286       }
287     }
288     CleanupParams(&p);
289   }
290   return 1;
291 }
292