1 ///////////////////////////////////////////////////////////////////////////
2 //
3 // Copyright (c) 2002-2012, Industrial Light & Magic, a division of Lucas
4 // Digital Ltd. LLC
5 //
6 // All rights reserved.
7 //
8 // Redistribution and use in source and binary forms, with or without
9 // modification, are permitted provided that the following conditions are
10 // met:
11 // *       Redistributions of source code must retain the above copyright
12 // notice, this list of conditions and the following disclaimer.
13 // *       Redistributions in binary form must reproduce the above
14 // copyright notice, this list of conditions and the following disclaimer
15 // in the documentation and/or other materials provided with the
16 // distribution.
17 // *       Neither the name of Industrial Light & Magic nor the names of
18 // its contributors may be used to endorse or promote products derived
19 // from this software without specific prior written permission.
20 //
21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 //
33 ///////////////////////////////////////////////////////////////////////////
34 
35 //-----------------------------------------------------------------------------
36 //
37 //	Routines that generate pseudo-random numbers compatible
38 //	with the standard erand48(), nrand48(), etc. functions.
39 //
40 //-----------------------------------------------------------------------------
41 
42 #include "ImathRandom.h"
43 #include "ImathInt64.h"
44 
45 IMATH_INTERNAL_NAMESPACE_SOURCE_ENTER
46 namespace {
47 
48 //
49 // Static state used by Imath::drand48(), Imath::lrand48() and Imath::srand48()
50 //
51 
52 unsigned short staticState[3] = {0, 0, 0};
53 
54 
55 void
rand48Next(unsigned short state[3])56 rand48Next (unsigned short state[3])
57 {
58     //
59     // drand48() and friends are all based on a linear congruential
60     // sequence,
61     //
62     //   x[n+1] = (a * x[n] + c) % m,
63     //
64     // where a and c are as specified below, and m == (1 << 48)
65     //
66 
67     static const Int64 a = Int64 (0x5deece66dLL);
68     static const Int64 c = Int64 (0xbLL);
69 
70     //
71     // Assemble the 48-bit value x[n] from the
72     // three 16-bit values stored in state.
73     //
74 
75     Int64 x = (Int64 (state[2]) << 32) |
76 	      (Int64 (state[1]) << 16) |
77 	       Int64 (state[0]);
78 
79     //
80     // Compute x[n+1], except for the "modulo m" part.
81     //
82 
83     x = a * x + c;
84 
85     //
86     // Disassemble the 48 least significant bits of x[n+1] into
87     // three 16-bit values.  Discard the 16 most significant bits;
88     // this takes care of the "modulo m" operation.
89     //
90     // We assume that sizeof (unsigned short) == 2.
91     //
92 
93     state[2] = (unsigned short)(x >> 32);
94     state[1] = (unsigned short)(x >> 16);
95     state[0] = (unsigned short)(x);
96 }
97 
98 } // namespace
99 
100 
101 double
erand48(unsigned short state[3])102 erand48 (unsigned short state[3])
103 {
104     //
105     // Generate double-precision floating-point values between 0.0 and 1.0:
106     //
107     // The exponent is set to 0x3ff, which indicates a value greater
108     // than or equal to 1.0, and less than 2.0.  The 48 most significant
109     // bits of the significand (mantissa) are filled with pseudo-random
110     // bits generated by rand48Next().  The remaining 4 bits are a copy
111     // of the 4 most significant bits of the significand.  This results
112     // in bit patterns between 0x3ff0000000000000 and 0x3fffffffffffffff,
113     // which correspond to uniformly distributed floating-point values
114     // between 1.0 and 1.99999999999999978.  Subtracting 1.0 from those
115     // values produces numbers between 0.0 and 0.99999999999999978, that
116     // is, between 0.0 and 1.0-DBL_EPSILON.
117     //
118 
119     rand48Next (state);
120 
121     union {double d; Int64 i;} u;
122 
123     u.i = (Int64 (0x3ff)    << 52) |	// sign and exponent
124 	  (Int64 (state[2]) << 36) |	// significand
125 	  (Int64 (state[1]) << 20) |
126 	  (Int64 (state[0]) <<  4) |
127 	  (Int64 (state[2]) >> 12);
128 
129     return u.d - 1;
130 }
131 
132 
133 double
drand48()134 drand48 ()
135 {
136     return IMATH_INTERNAL_NAMESPACE::erand48 (staticState);
137 }
138 
139 
140 long int
nrand48(unsigned short state[3])141 nrand48 (unsigned short state[3])
142 {
143     //
144     // Generate uniformly distributed integers between 0 and 0x7fffffff.
145     //
146 
147     rand48Next (state);
148 
149     return ((long int) (state[2]) << 15) |
150 	   ((long int) (state[1]) >>  1);
151 }
152 
153 
154 long int
lrand48()155 lrand48 ()
156 {
157     return IMATH_INTERNAL_NAMESPACE::nrand48 (staticState);
158 }
159 
160 
161 void
srand48(long int seed)162 srand48 (long int seed)
163 {
164     staticState[2] = (unsigned short)(seed >> 16);
165     staticState[1] = (unsigned short)(seed);
166     staticState[0] = 0x330e;
167 }
168 
169 
170 float
nextf()171 Rand32::nextf ()
172 {
173     //
174     // Generate single-precision floating-point values between 0.0 and 1.0:
175     //
176     // The exponent is set to 0x7f, which indicates a value greater than
177     // or equal to 1.0, and less than 2.0.  The 23 bits of the significand
178     // (mantissa) are filled with pseudo-random bits generated by
179     // Rand32::next().  This results in in bit patterns between 0x3f800000
180     // and 0x3fffffff, which correspond to uniformly distributed floating-
181     // point values between 1.0 and 1.99999988.  Subtracting 1.0 from
182     // those values produces numbers between 0.0 and 0.99999988, that is,
183     // between 0.0 and 1.0-FLT_EPSILON.
184     //
185 
186     next ();
187 
188     union {float f; unsigned int i;} u;
189 
190     u.i = 0x3f800000 | (_state & 0x7fffff);
191     return u.f - 1;
192 }
193 
194 IMATH_INTERNAL_NAMESPACE_SOURCE_EXIT
195