1 //===- StatepointLowering.cpp - SDAGBuilder's statepoint code -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file includes support code use by SelectionDAGBuilder when lowering a
10 // statepoint sequence in SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "StatepointLowering.h"
15 #include "SelectionDAGBuilder.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallBitVector.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/FunctionLoweringInfo.h"
24 #include "llvm/CodeGen/GCMetadata.h"
25 #include "llvm/CodeGen/ISDOpcodes.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/RuntimeLibcalls.h"
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/CodeGen/SelectionDAGNodes.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/CodeGen/TargetLowering.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/GCStrategy.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/Statepoint.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/MachineValueType.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include <cassert>
49 #include <cstddef>
50 #include <cstdint>
51 #include <iterator>
52 #include <tuple>
53 #include <utility>
54
55 using namespace llvm;
56
57 #define DEBUG_TYPE "statepoint-lowering"
58
59 STATISTIC(NumSlotsAllocatedForStatepoints,
60 "Number of stack slots allocated for statepoints");
61 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
62 STATISTIC(StatepointMaxSlotsRequired,
63 "Maximum number of stack slots required for a singe statepoint");
64
65 cl::opt<bool> UseRegistersForDeoptValues(
66 "use-registers-for-deopt-values", cl::Hidden, cl::init(false),
67 cl::desc("Allow using registers for non pointer deopt args"));
68
69 cl::opt<bool> UseRegistersForGCPointersInLandingPad(
70 "use-registers-for-gc-values-in-landing-pad", cl::Hidden, cl::init(false),
71 cl::desc("Allow using registers for gc pointer in landing pad"));
72
73 cl::opt<unsigned> MaxRegistersForGCPointers(
74 "max-registers-for-gc-values", cl::Hidden, cl::init(0),
75 cl::desc("Max number of VRegs allowed to pass GC pointer meta args in"));
76
77 typedef FunctionLoweringInfo::StatepointRelocationRecord RecordType;
78
pushStackMapConstant(SmallVectorImpl<SDValue> & Ops,SelectionDAGBuilder & Builder,uint64_t Value)79 static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
80 SelectionDAGBuilder &Builder, uint64_t Value) {
81 SDLoc L = Builder.getCurSDLoc();
82 Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
83 MVT::i64));
84 Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
85 }
86
startNewStatepoint(SelectionDAGBuilder & Builder)87 void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
88 // Consistency check
89 assert(PendingGCRelocateCalls.empty() &&
90 "Trying to visit statepoint before finished processing previous one");
91 Locations.clear();
92 NextSlotToAllocate = 0;
93 // Need to resize this on each safepoint - we need the two to stay in sync and
94 // the clear patterns of a SelectionDAGBuilder have no relation to
95 // FunctionLoweringInfo. Also need to ensure used bits get cleared.
96 AllocatedStackSlots.clear();
97 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
98 }
99
clear()100 void StatepointLoweringState::clear() {
101 Locations.clear();
102 AllocatedStackSlots.clear();
103 assert(PendingGCRelocateCalls.empty() &&
104 "cleared before statepoint sequence completed");
105 }
106
107 SDValue
allocateStackSlot(EVT ValueType,SelectionDAGBuilder & Builder)108 StatepointLoweringState::allocateStackSlot(EVT ValueType,
109 SelectionDAGBuilder &Builder) {
110 NumSlotsAllocatedForStatepoints++;
111 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
112
113 unsigned SpillSize = ValueType.getStoreSize();
114 assert((SpillSize * 8) ==
115 (-8u & (7 + ValueType.getSizeInBits())) && // Round up modulo 8.
116 "Size not in bytes?");
117
118 // First look for a previously created stack slot which is not in
119 // use (accounting for the fact arbitrary slots may already be
120 // reserved), or to create a new stack slot and use it.
121
122 const size_t NumSlots = AllocatedStackSlots.size();
123 assert(NextSlotToAllocate <= NumSlots && "Broken invariant");
124
125 assert(AllocatedStackSlots.size() ==
126 Builder.FuncInfo.StatepointStackSlots.size() &&
127 "Broken invariant");
128
129 for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
130 if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
131 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
132 if (MFI.getObjectSize(FI) == SpillSize) {
133 AllocatedStackSlots.set(NextSlotToAllocate);
134 // TODO: Is ValueType the right thing to use here?
135 return Builder.DAG.getFrameIndex(FI, ValueType);
136 }
137 }
138 }
139
140 // Couldn't find a free slot, so create a new one:
141
142 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
143 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
144 MFI.markAsStatepointSpillSlotObjectIndex(FI);
145
146 Builder.FuncInfo.StatepointStackSlots.push_back(FI);
147 AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true);
148 assert(AllocatedStackSlots.size() ==
149 Builder.FuncInfo.StatepointStackSlots.size() &&
150 "Broken invariant");
151
152 StatepointMaxSlotsRequired.updateMax(
153 Builder.FuncInfo.StatepointStackSlots.size());
154
155 return SpillSlot;
156 }
157
158 /// Utility function for reservePreviousStackSlotForValue. Tries to find
159 /// stack slot index to which we have spilled value for previous statepoints.
160 /// LookUpDepth specifies maximum DFS depth this function is allowed to look.
findPreviousSpillSlot(const Value * Val,SelectionDAGBuilder & Builder,int LookUpDepth)161 static std::optional<int> findPreviousSpillSlot(const Value *Val,
162 SelectionDAGBuilder &Builder,
163 int LookUpDepth) {
164 // Can not look any further - give up now
165 if (LookUpDepth <= 0)
166 return std::nullopt;
167
168 // Spill location is known for gc relocates
169 if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
170 const Value *Statepoint = Relocate->getStatepoint();
171 assert((isa<GCStatepointInst>(Statepoint) || isa<UndefValue>(Statepoint)) &&
172 "GetStatepoint must return one of two types");
173 if (isa<UndefValue>(Statepoint))
174 return std::nullopt;
175
176 const auto &RelocationMap = Builder.FuncInfo.StatepointRelocationMaps
177 [cast<GCStatepointInst>(Statepoint)];
178
179 auto It = RelocationMap.find(Relocate);
180 if (It == RelocationMap.end())
181 return std::nullopt;
182
183 auto &Record = It->second;
184 if (Record.type != RecordType::Spill)
185 return std::nullopt;
186
187 return Record.payload.FI;
188 }
189
190 // Look through bitcast instructions.
191 if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
192 return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
193
194 // Look through phi nodes
195 // All incoming values should have same known stack slot, otherwise result
196 // is unknown.
197 if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
198 std::optional<int> MergedResult;
199
200 for (const auto &IncomingValue : Phi->incoming_values()) {
201 std::optional<int> SpillSlot =
202 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
203 if (!SpillSlot)
204 return std::nullopt;
205
206 if (MergedResult && *MergedResult != *SpillSlot)
207 return std::nullopt;
208
209 MergedResult = SpillSlot;
210 }
211 return MergedResult;
212 }
213
214 // TODO: We can do better for PHI nodes. In cases like this:
215 // ptr = phi(relocated_pointer, not_relocated_pointer)
216 // statepoint(ptr)
217 // We will return that stack slot for ptr is unknown. And later we might
218 // assign different stack slots for ptr and relocated_pointer. This limits
219 // llvm's ability to remove redundant stores.
220 // Unfortunately it's hard to accomplish in current infrastructure.
221 // We use this function to eliminate spill store completely, while
222 // in example we still need to emit store, but instead of any location
223 // we need to use special "preferred" location.
224
225 // TODO: handle simple updates. If a value is modified and the original
226 // value is no longer live, it would be nice to put the modified value in the
227 // same slot. This allows folding of the memory accesses for some
228 // instructions types (like an increment).
229 // statepoint (i)
230 // i1 = i+1
231 // statepoint (i1)
232 // However we need to be careful for cases like this:
233 // statepoint(i)
234 // i1 = i+1
235 // statepoint(i, i1)
236 // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
237 // put handling of simple modifications in this function like it's done
238 // for bitcasts we might end up reserving i's slot for 'i+1' because order in
239 // which we visit values is unspecified.
240
241 // Don't know any information about this instruction
242 return std::nullopt;
243 }
244
245 /// Return true if-and-only-if the given SDValue can be lowered as either a
246 /// constant argument or a stack reference. The key point is that the value
247 /// doesn't need to be spilled or tracked as a vreg use.
willLowerDirectly(SDValue Incoming)248 static bool willLowerDirectly(SDValue Incoming) {
249 // We are making an unchecked assumption that the frame size <= 2^16 as that
250 // is the largest offset which can be encoded in the stackmap format.
251 if (isa<FrameIndexSDNode>(Incoming))
252 return true;
253
254 // The largest constant describeable in the StackMap format is 64 bits.
255 // Potential Optimization: Constants values are sign extended by consumer,
256 // and thus there are many constants of static type > 64 bits whose value
257 // happens to be sext(Con64) and could thus be lowered directly.
258 if (Incoming.getValueType().getSizeInBits() > 64)
259 return false;
260
261 return (isa<ConstantSDNode>(Incoming) || isa<ConstantFPSDNode>(Incoming) ||
262 Incoming.isUndef());
263 }
264
265 /// Try to find existing copies of the incoming values in stack slots used for
266 /// statepoint spilling. If we can find a spill slot for the incoming value,
267 /// mark that slot as allocated, and reuse the same slot for this safepoint.
268 /// This helps to avoid series of loads and stores that only serve to reshuffle
269 /// values on the stack between calls.
reservePreviousStackSlotForValue(const Value * IncomingValue,SelectionDAGBuilder & Builder)270 static void reservePreviousStackSlotForValue(const Value *IncomingValue,
271 SelectionDAGBuilder &Builder) {
272 SDValue Incoming = Builder.getValue(IncomingValue);
273
274 // If we won't spill this, we don't need to check for previously allocated
275 // stack slots.
276 if (willLowerDirectly(Incoming))
277 return;
278
279 SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
280 if (OldLocation.getNode())
281 // Duplicates in input
282 return;
283
284 const int LookUpDepth = 6;
285 std::optional<int> Index =
286 findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
287 if (!Index)
288 return;
289
290 const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;
291
292 auto SlotIt = find(StatepointSlots, *Index);
293 assert(SlotIt != StatepointSlots.end() &&
294 "Value spilled to the unknown stack slot");
295
296 // This is one of our dedicated lowering slots
297 const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
298 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
299 // stack slot already assigned to someone else, can't use it!
300 // TODO: currently we reserve space for gc arguments after doing
301 // normal allocation for deopt arguments. We should reserve for
302 // _all_ deopt and gc arguments, then start allocating. This
303 // will prevent some moves being inserted when vm state changes,
304 // but gc state doesn't between two calls.
305 return;
306 }
307 // Reserve this stack slot
308 Builder.StatepointLowering.reserveStackSlot(Offset);
309
310 // Cache this slot so we find it when going through the normal
311 // assignment loop.
312 SDValue Loc =
313 Builder.DAG.getTargetFrameIndex(*Index, Builder.getFrameIndexTy());
314 Builder.StatepointLowering.setLocation(Incoming, Loc);
315 }
316
317 /// Extract call from statepoint, lower it and return pointer to the
318 /// call node. Also update NodeMap so that getValue(statepoint) will
319 /// reference lowered call result
lowerCallFromStatepointLoweringInfo(SelectionDAGBuilder::StatepointLoweringInfo & SI,SelectionDAGBuilder & Builder)320 static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo(
321 SelectionDAGBuilder::StatepointLoweringInfo &SI,
322 SelectionDAGBuilder &Builder) {
323 SDValue ReturnValue, CallEndVal;
324 std::tie(ReturnValue, CallEndVal) =
325 Builder.lowerInvokable(SI.CLI, SI.EHPadBB);
326 SDNode *CallEnd = CallEndVal.getNode();
327
328 // Get a call instruction from the call sequence chain. Tail calls are not
329 // allowed. The following code is essentially reverse engineering X86's
330 // LowerCallTo.
331 //
332 // We are expecting DAG to have the following form:
333 //
334 // ch = eh_label (only in case of invoke statepoint)
335 // ch, glue = callseq_start ch
336 // ch, glue = X86::Call ch, glue
337 // ch, glue = callseq_end ch, glue
338 // get_return_value ch, glue
339 //
340 // get_return_value can either be a sequence of CopyFromReg instructions
341 // to grab the return value from the return register(s), or it can be a LOAD
342 // to load a value returned by reference via a stack slot.
343
344 bool HasDef = !SI.CLI.RetTy->isVoidTy();
345 if (HasDef) {
346 if (CallEnd->getOpcode() == ISD::LOAD)
347 CallEnd = CallEnd->getOperand(0).getNode();
348 else
349 while (CallEnd->getOpcode() == ISD::CopyFromReg)
350 CallEnd = CallEnd->getOperand(0).getNode();
351 }
352
353 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
354 return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode());
355 }
356
getMachineMemOperand(MachineFunction & MF,FrameIndexSDNode & FI)357 static MachineMemOperand* getMachineMemOperand(MachineFunction &MF,
358 FrameIndexSDNode &FI) {
359 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI.getIndex());
360 auto MMOFlags = MachineMemOperand::MOStore |
361 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
362 auto &MFI = MF.getFrameInfo();
363 return MF.getMachineMemOperand(PtrInfo, MMOFlags,
364 MFI.getObjectSize(FI.getIndex()),
365 MFI.getObjectAlign(FI.getIndex()));
366 }
367
368 /// Spill a value incoming to the statepoint. It might be either part of
369 /// vmstate
370 /// or gcstate. In both cases unconditionally spill it on the stack unless it
371 /// is a null constant. Return pair with first element being frame index
372 /// containing saved value and second element with outgoing chain from the
373 /// emitted store
374 static std::tuple<SDValue, SDValue, MachineMemOperand*>
spillIncomingStatepointValue(SDValue Incoming,SDValue Chain,SelectionDAGBuilder & Builder)375 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
376 SelectionDAGBuilder &Builder) {
377 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
378 MachineMemOperand* MMO = nullptr;
379
380 // Emit new store if we didn't do it for this ptr before
381 if (!Loc.getNode()) {
382 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
383 Builder);
384 int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
385 // We use TargetFrameIndex so that isel will not select it into LEA
386 Loc = Builder.DAG.getTargetFrameIndex(Index, Builder.getFrameIndexTy());
387
388 // Right now we always allocate spill slots that are of the same
389 // size as the value we're about to spill (the size of spillee can
390 // vary since we spill vectors of pointers too). At some point we
391 // can consider allowing spills of smaller values to larger slots
392 // (i.e. change the '==' in the assert below to a '>=').
393 MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
394 assert((MFI.getObjectSize(Index) * 8) ==
395 (-8 & (7 + // Round up modulo 8.
396 (int64_t)Incoming.getValueSizeInBits())) &&
397 "Bad spill: stack slot does not match!");
398
399 // Note: Using the alignment of the spill slot (rather than the abi or
400 // preferred alignment) is required for correctness when dealing with spill
401 // slots with preferred alignments larger than frame alignment..
402 auto &MF = Builder.DAG.getMachineFunction();
403 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
404 auto *StoreMMO = MF.getMachineMemOperand(
405 PtrInfo, MachineMemOperand::MOStore, MFI.getObjectSize(Index),
406 MFI.getObjectAlign(Index));
407 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
408 StoreMMO);
409
410 MMO = getMachineMemOperand(MF, *cast<FrameIndexSDNode>(Loc));
411
412 Builder.StatepointLowering.setLocation(Incoming, Loc);
413 }
414
415 assert(Loc.getNode());
416 return std::make_tuple(Loc, Chain, MMO);
417 }
418
419 /// Lower a single value incoming to a statepoint node. This value can be
420 /// either a deopt value or a gc value, the handling is the same. We special
421 /// case constants and allocas, then fall back to spilling if required.
422 static void
lowerIncomingStatepointValue(SDValue Incoming,bool RequireSpillSlot,SmallVectorImpl<SDValue> & Ops,SmallVectorImpl<MachineMemOperand * > & MemRefs,SelectionDAGBuilder & Builder)423 lowerIncomingStatepointValue(SDValue Incoming, bool RequireSpillSlot,
424 SmallVectorImpl<SDValue> &Ops,
425 SmallVectorImpl<MachineMemOperand *> &MemRefs,
426 SelectionDAGBuilder &Builder) {
427
428 if (willLowerDirectly(Incoming)) {
429 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
430 // This handles allocas as arguments to the statepoint (this is only
431 // really meaningful for a deopt value. For GC, we'd be trying to
432 // relocate the address of the alloca itself?)
433 assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
434 "Incoming value is a frame index!");
435 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
436 Builder.getFrameIndexTy()));
437
438 auto &MF = Builder.DAG.getMachineFunction();
439 auto *MMO = getMachineMemOperand(MF, *FI);
440 MemRefs.push_back(MMO);
441 return;
442 }
443
444 assert(Incoming.getValueType().getSizeInBits() <= 64);
445
446 if (Incoming.isUndef()) {
447 // Put an easily recognized constant that's unlikely to be a valid
448 // value so that uses of undef by the consumer of the stackmap is
449 // easily recognized. This is legal since the compiler is always
450 // allowed to chose an arbitrary value for undef.
451 pushStackMapConstant(Ops, Builder, 0xFEFEFEFE);
452 return;
453 }
454
455 // If the original value was a constant, make sure it gets recorded as
456 // such in the stackmap. This is required so that the consumer can
457 // parse any internal format to the deopt state. It also handles null
458 // pointers and other constant pointers in GC states.
459 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
460 pushStackMapConstant(Ops, Builder, C->getSExtValue());
461 return;
462 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Incoming)) {
463 pushStackMapConstant(Ops, Builder,
464 C->getValueAPF().bitcastToAPInt().getZExtValue());
465 return;
466 }
467
468 llvm_unreachable("unhandled direct lowering case");
469 }
470
471
472
473 if (!RequireSpillSlot) {
474 // If this value is live in (not live-on-return, or live-through), we can
475 // treat it the same way patchpoint treats it's "live in" values. We'll
476 // end up folding some of these into stack references, but they'll be
477 // handled by the register allocator. Note that we do not have the notion
478 // of a late use so these values might be placed in registers which are
479 // clobbered by the call. This is fine for live-in. For live-through
480 // fix-up pass should be executed to force spilling of such registers.
481 Ops.push_back(Incoming);
482 } else {
483 // Otherwise, locate a spill slot and explicitly spill it so it can be
484 // found by the runtime later. Note: We know all of these spills are
485 // independent, but don't bother to exploit that chain wise. DAGCombine
486 // will happily do so as needed, so doing it here would be a small compile
487 // time win at most.
488 SDValue Chain = Builder.getRoot();
489 auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
490 Ops.push_back(std::get<0>(Res));
491 if (auto *MMO = std::get<2>(Res))
492 MemRefs.push_back(MMO);
493 Chain = std::get<1>(Res);;
494 Builder.DAG.setRoot(Chain);
495 }
496
497 }
498
499 /// Return true if value V represents the GC value. The behavior is conservative
500 /// in case it is not sure that value is not GC the function returns true.
isGCValue(const Value * V,SelectionDAGBuilder & Builder)501 static bool isGCValue(const Value *V, SelectionDAGBuilder &Builder) {
502 auto *Ty = V->getType();
503 if (!Ty->isPtrOrPtrVectorTy())
504 return false;
505 if (auto *GFI = Builder.GFI)
506 if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
507 return *IsManaged;
508 return true; // conservative
509 }
510
511 /// Lower deopt state and gc pointer arguments of the statepoint. The actual
512 /// lowering is described in lowerIncomingStatepointValue. This function is
513 /// responsible for lowering everything in the right position and playing some
514 /// tricks to avoid redundant stack manipulation where possible. On
515 /// completion, 'Ops' will contain ready to use operands for machine code
516 /// statepoint. The chain nodes will have already been created and the DAG root
517 /// will be set to the last value spilled (if any were).
518 static void
lowerStatepointMetaArgs(SmallVectorImpl<SDValue> & Ops,SmallVectorImpl<MachineMemOperand * > & MemRefs,SmallVectorImpl<SDValue> & GCPtrs,DenseMap<SDValue,int> & LowerAsVReg,SelectionDAGBuilder::StatepointLoweringInfo & SI,SelectionDAGBuilder & Builder)519 lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
520 SmallVectorImpl<MachineMemOperand *> &MemRefs,
521 SmallVectorImpl<SDValue> &GCPtrs,
522 DenseMap<SDValue, int> &LowerAsVReg,
523 SelectionDAGBuilder::StatepointLoweringInfo &SI,
524 SelectionDAGBuilder &Builder) {
525 // Lower the deopt and gc arguments for this statepoint. Layout will be:
526 // deopt argument length, deopt arguments.., gc arguments...
527
528 // Figure out what lowering strategy we're going to use for each part
529 // Note: Is is conservatively correct to lower both "live-in" and "live-out"
530 // as "live-through". A "live-through" variable is one which is "live-in",
531 // "live-out", and live throughout the lifetime of the call (i.e. we can find
532 // it from any PC within the transitive callee of the statepoint). In
533 // particular, if the callee spills callee preserved registers we may not
534 // be able to find a value placed in that register during the call. This is
535 // fine for live-out, but not for live-through. If we were willing to make
536 // assumptions about the code generator producing the callee, we could
537 // potentially allow live-through values in callee saved registers.
538 const bool LiveInDeopt =
539 SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn;
540
541 // Decide which deriver pointers will go on VRegs
542 unsigned MaxVRegPtrs = MaxRegistersForGCPointers.getValue();
543
544 // Pointers used on exceptional path of invoke statepoint.
545 // We cannot assing them to VRegs.
546 SmallSet<SDValue, 8> LPadPointers;
547 if (!UseRegistersForGCPointersInLandingPad)
548 if (const auto *StInvoke =
549 dyn_cast_or_null<InvokeInst>(SI.StatepointInstr)) {
550 LandingPadInst *LPI = StInvoke->getLandingPadInst();
551 for (const auto *Relocate : SI.GCRelocates)
552 if (Relocate->getOperand(0) == LPI) {
553 LPadPointers.insert(Builder.getValue(Relocate->getBasePtr()));
554 LPadPointers.insert(Builder.getValue(Relocate->getDerivedPtr()));
555 }
556 }
557
558 LLVM_DEBUG(dbgs() << "Deciding how to lower GC Pointers:\n");
559
560 // List of unique lowered GC Pointer values.
561 SmallSetVector<SDValue, 16> LoweredGCPtrs;
562 // Map lowered GC Pointer value to the index in above vector
563 DenseMap<SDValue, unsigned> GCPtrIndexMap;
564
565 unsigned CurNumVRegs = 0;
566
567 auto canPassGCPtrOnVReg = [&](SDValue SD) {
568 if (SD.getValueType().isVector())
569 return false;
570 if (LPadPointers.count(SD))
571 return false;
572 return !willLowerDirectly(SD);
573 };
574
575 auto processGCPtr = [&](const Value *V) {
576 SDValue PtrSD = Builder.getValue(V);
577 if (!LoweredGCPtrs.insert(PtrSD))
578 return; // skip duplicates
579 GCPtrIndexMap[PtrSD] = LoweredGCPtrs.size() - 1;
580
581 assert(!LowerAsVReg.count(PtrSD) && "must not have been seen");
582 if (LowerAsVReg.size() == MaxVRegPtrs)
583 return;
584 assert(V->getType()->isVectorTy() == PtrSD.getValueType().isVector() &&
585 "IR and SD types disagree");
586 if (!canPassGCPtrOnVReg(PtrSD)) {
587 LLVM_DEBUG(dbgs() << "direct/spill "; PtrSD.dump(&Builder.DAG));
588 return;
589 }
590 LLVM_DEBUG(dbgs() << "vreg "; PtrSD.dump(&Builder.DAG));
591 LowerAsVReg[PtrSD] = CurNumVRegs++;
592 };
593
594 // Process derived pointers first to give them more chance to go on VReg.
595 for (const Value *V : SI.Ptrs)
596 processGCPtr(V);
597 for (const Value *V : SI.Bases)
598 processGCPtr(V);
599
600 LLVM_DEBUG(dbgs() << LowerAsVReg.size() << " pointers will go in vregs\n");
601
602 auto requireSpillSlot = [&](const Value *V) {
603 if (!Builder.DAG.getTargetLoweringInfo().isTypeLegal(
604 Builder.getValue(V).getValueType()))
605 return true;
606 if (isGCValue(V, Builder))
607 return !LowerAsVReg.count(Builder.getValue(V));
608 return !(LiveInDeopt || UseRegistersForDeoptValues);
609 };
610
611 // Before we actually start lowering (and allocating spill slots for values),
612 // reserve any stack slots which we judge to be profitable to reuse for a
613 // particular value. This is purely an optimization over the code below and
614 // doesn't change semantics at all. It is important for performance that we
615 // reserve slots for both deopt and gc values before lowering either.
616 for (const Value *V : SI.DeoptState) {
617 if (requireSpillSlot(V))
618 reservePreviousStackSlotForValue(V, Builder);
619 }
620
621 for (const Value *V : SI.Ptrs) {
622 SDValue SDV = Builder.getValue(V);
623 if (!LowerAsVReg.count(SDV))
624 reservePreviousStackSlotForValue(V, Builder);
625 }
626
627 for (const Value *V : SI.Bases) {
628 SDValue SDV = Builder.getValue(V);
629 if (!LowerAsVReg.count(SDV))
630 reservePreviousStackSlotForValue(V, Builder);
631 }
632
633 // First, prefix the list with the number of unique values to be
634 // lowered. Note that this is the number of *Values* not the
635 // number of SDValues required to lower them.
636 const int NumVMSArgs = SI.DeoptState.size();
637 pushStackMapConstant(Ops, Builder, NumVMSArgs);
638
639 // The vm state arguments are lowered in an opaque manner. We do not know
640 // what type of values are contained within.
641 LLVM_DEBUG(dbgs() << "Lowering deopt state\n");
642 for (const Value *V : SI.DeoptState) {
643 SDValue Incoming;
644 // If this is a function argument at a static frame index, generate it as
645 // the frame index.
646 if (const Argument *Arg = dyn_cast<Argument>(V)) {
647 int FI = Builder.FuncInfo.getArgumentFrameIndex(Arg);
648 if (FI != INT_MAX)
649 Incoming = Builder.DAG.getFrameIndex(FI, Builder.getFrameIndexTy());
650 }
651 if (!Incoming.getNode())
652 Incoming = Builder.getValue(V);
653 LLVM_DEBUG(dbgs() << "Value " << *V
654 << " requireSpillSlot = " << requireSpillSlot(V) << "\n");
655 lowerIncomingStatepointValue(Incoming, requireSpillSlot(V), Ops, MemRefs,
656 Builder);
657 }
658
659 // Finally, go ahead and lower all the gc arguments.
660 pushStackMapConstant(Ops, Builder, LoweredGCPtrs.size());
661 for (SDValue SDV : LoweredGCPtrs)
662 lowerIncomingStatepointValue(SDV, !LowerAsVReg.count(SDV), Ops, MemRefs,
663 Builder);
664
665 // Copy to out vector. LoweredGCPtrs will be empty after this point.
666 GCPtrs = LoweredGCPtrs.takeVector();
667
668 // If there are any explicit spill slots passed to the statepoint, record
669 // them, but otherwise do not do anything special. These are user provided
670 // allocas and give control over placement to the consumer. In this case,
671 // it is the contents of the slot which may get updated, not the pointer to
672 // the alloca
673 SmallVector<SDValue, 4> Allocas;
674 for (Value *V : SI.GCArgs) {
675 SDValue Incoming = Builder.getValue(V);
676 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
677 // This handles allocas as arguments to the statepoint
678 assert(Incoming.getValueType() == Builder.getFrameIndexTy() &&
679 "Incoming value is a frame index!");
680 Allocas.push_back(Builder.DAG.getTargetFrameIndex(
681 FI->getIndex(), Builder.getFrameIndexTy()));
682
683 auto &MF = Builder.DAG.getMachineFunction();
684 auto *MMO = getMachineMemOperand(MF, *FI);
685 MemRefs.push_back(MMO);
686 }
687 }
688 pushStackMapConstant(Ops, Builder, Allocas.size());
689 Ops.append(Allocas.begin(), Allocas.end());
690
691 // Now construct GC base/derived map;
692 pushStackMapConstant(Ops, Builder, SI.Ptrs.size());
693 SDLoc L = Builder.getCurSDLoc();
694 for (unsigned i = 0; i < SI.Ptrs.size(); ++i) {
695 SDValue Base = Builder.getValue(SI.Bases[i]);
696 assert(GCPtrIndexMap.count(Base) && "base not found in index map");
697 Ops.push_back(
698 Builder.DAG.getTargetConstant(GCPtrIndexMap[Base], L, MVT::i64));
699 SDValue Derived = Builder.getValue(SI.Ptrs[i]);
700 assert(GCPtrIndexMap.count(Derived) && "derived not found in index map");
701 Ops.push_back(
702 Builder.DAG.getTargetConstant(GCPtrIndexMap[Derived], L, MVT::i64));
703 }
704 }
705
LowerAsSTATEPOINT(SelectionDAGBuilder::StatepointLoweringInfo & SI)706 SDValue SelectionDAGBuilder::LowerAsSTATEPOINT(
707 SelectionDAGBuilder::StatepointLoweringInfo &SI) {
708 // The basic scheme here is that information about both the original call and
709 // the safepoint is encoded in the CallInst. We create a temporary call and
710 // lower it, then reverse engineer the calling sequence.
711
712 NumOfStatepoints++;
713 // Clear state
714 StatepointLowering.startNewStatepoint(*this);
715 assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!");
716 assert((GFI || SI.Bases.empty()) &&
717 "No gc specified, so cannot relocate pointers!");
718
719 LLVM_DEBUG(dbgs() << "Lowering statepoint " << *SI.StatepointInstr << "\n");
720 #ifndef NDEBUG
721 for (const auto *Reloc : SI.GCRelocates)
722 if (Reloc->getParent() == SI.StatepointInstr->getParent())
723 StatepointLowering.scheduleRelocCall(*Reloc);
724 #endif
725
726 // Lower statepoint vmstate and gcstate arguments
727
728 // All lowered meta args.
729 SmallVector<SDValue, 10> LoweredMetaArgs;
730 // Lowered GC pointers (subset of above).
731 SmallVector<SDValue, 16> LoweredGCArgs;
732 SmallVector<MachineMemOperand*, 16> MemRefs;
733 // Maps derived pointer SDValue to statepoint result of relocated pointer.
734 DenseMap<SDValue, int> LowerAsVReg;
735 lowerStatepointMetaArgs(LoweredMetaArgs, MemRefs, LoweredGCArgs, LowerAsVReg,
736 SI, *this);
737
738 // Now that we've emitted the spills, we need to update the root so that the
739 // call sequence is ordered correctly.
740 SI.CLI.setChain(getRoot());
741
742 // Get call node, we will replace it later with statepoint
743 SDValue ReturnVal;
744 SDNode *CallNode;
745 std::tie(ReturnVal, CallNode) = lowerCallFromStatepointLoweringInfo(SI, *this);
746
747 // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
748 // nodes with all the appropriate arguments and return values.
749
750 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
751 SDValue Chain = CallNode->getOperand(0);
752
753 SDValue Glue;
754 bool CallHasIncomingGlue = CallNode->getGluedNode();
755 if (CallHasIncomingGlue) {
756 // Glue is always last operand
757 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
758 }
759
760 // Build the GC_TRANSITION_START node if necessary.
761 //
762 // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
763 // order in which they appear in the call to the statepoint intrinsic. If
764 // any of the operands is a pointer-typed, that operand is immediately
765 // followed by a SRCVALUE for the pointer that may be used during lowering
766 // (e.g. to form MachinePointerInfo values for loads/stores).
767 const bool IsGCTransition =
768 (SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) ==
769 (uint64_t)StatepointFlags::GCTransition;
770 if (IsGCTransition) {
771 SmallVector<SDValue, 8> TSOps;
772
773 // Add chain
774 TSOps.push_back(Chain);
775
776 // Add GC transition arguments
777 for (const Value *V : SI.GCTransitionArgs) {
778 TSOps.push_back(getValue(V));
779 if (V->getType()->isPointerTy())
780 TSOps.push_back(DAG.getSrcValue(V));
781 }
782
783 // Add glue if necessary
784 if (CallHasIncomingGlue)
785 TSOps.push_back(Glue);
786
787 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
788
789 SDValue GCTransitionStart =
790 DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
791
792 Chain = GCTransitionStart.getValue(0);
793 Glue = GCTransitionStart.getValue(1);
794 }
795
796 // TODO: Currently, all of these operands are being marked as read/write in
797 // PrologEpilougeInserter.cpp, we should special case the VMState arguments
798 // and flags to be read-only.
799 SmallVector<SDValue, 40> Ops;
800
801 // Add the <id> and <numBytes> constants.
802 Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64));
803 Ops.push_back(
804 DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32));
805
806 // Calculate and push starting position of vmstate arguments
807 // Get number of arguments incoming directly into call node
808 unsigned NumCallRegArgs =
809 CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
810 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
811
812 // Add call target
813 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
814 Ops.push_back(CallTarget);
815
816 // Add call arguments
817 // Get position of register mask in the call
818 SDNode::op_iterator RegMaskIt;
819 if (CallHasIncomingGlue)
820 RegMaskIt = CallNode->op_end() - 2;
821 else
822 RegMaskIt = CallNode->op_end() - 1;
823 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
824
825 // Add a constant argument for the calling convention
826 pushStackMapConstant(Ops, *this, SI.CLI.CallConv);
827
828 // Add a constant argument for the flags
829 uint64_t Flags = SI.StatepointFlags;
830 assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
831 "Unknown flag used");
832 pushStackMapConstant(Ops, *this, Flags);
833
834 // Insert all vmstate and gcstate arguments
835 llvm::append_range(Ops, LoweredMetaArgs);
836
837 // Add register mask from call node
838 Ops.push_back(*RegMaskIt);
839
840 // Add chain
841 Ops.push_back(Chain);
842
843 // Same for the glue, but we add it only if original call had it
844 if (Glue.getNode())
845 Ops.push_back(Glue);
846
847 // Compute return values. Provide a glue output since we consume one as
848 // input. This allows someone else to chain off us as needed.
849 SmallVector<EVT, 8> NodeTys;
850 for (auto SD : LoweredGCArgs) {
851 if (!LowerAsVReg.count(SD))
852 continue;
853 NodeTys.push_back(SD.getValueType());
854 }
855 LLVM_DEBUG(dbgs() << "Statepoint has " << NodeTys.size() << " results\n");
856 assert(NodeTys.size() == LowerAsVReg.size() && "Inconsistent GC Ptr lowering");
857 NodeTys.push_back(MVT::Other);
858 NodeTys.push_back(MVT::Glue);
859
860 unsigned NumResults = NodeTys.size();
861 MachineSDNode *StatepointMCNode =
862 DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
863 DAG.setNodeMemRefs(StatepointMCNode, MemRefs);
864
865 // For values lowered to tied-defs, create the virtual registers if used
866 // in other blocks. For local gc.relocate record appropriate statepoint
867 // result in StatepointLoweringState.
868 DenseMap<SDValue, Register> VirtRegs;
869 for (const auto *Relocate : SI.GCRelocates) {
870 Value *Derived = Relocate->getDerivedPtr();
871 SDValue SD = getValue(Derived);
872 if (!LowerAsVReg.count(SD))
873 continue;
874
875 SDValue Relocated = SDValue(StatepointMCNode, LowerAsVReg[SD]);
876
877 // Handle local relocate. Note that different relocates might
878 // map to the same SDValue.
879 if (SI.StatepointInstr->getParent() == Relocate->getParent()) {
880 SDValue Res = StatepointLowering.getLocation(SD);
881 if (Res)
882 assert(Res == Relocated);
883 else
884 StatepointLowering.setLocation(SD, Relocated);
885 continue;
886 }
887
888 // Handle multiple gc.relocates of the same input efficiently.
889 if (VirtRegs.count(SD))
890 continue;
891
892 auto *RetTy = Relocate->getType();
893 Register Reg = FuncInfo.CreateRegs(RetTy);
894 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
895 DAG.getDataLayout(), Reg, RetTy, std::nullopt);
896 SDValue Chain = DAG.getRoot();
897 RFV.getCopyToRegs(Relocated, DAG, getCurSDLoc(), Chain, nullptr);
898 PendingExports.push_back(Chain);
899
900 VirtRegs[SD] = Reg;
901 }
902
903 // Record for later use how each relocation was lowered. This is needed to
904 // allow later gc.relocates to mirror the lowering chosen.
905 const Instruction *StatepointInstr = SI.StatepointInstr;
906 auto &RelocationMap = FuncInfo.StatepointRelocationMaps[StatepointInstr];
907 for (const GCRelocateInst *Relocate : SI.GCRelocates) {
908 const Value *V = Relocate->getDerivedPtr();
909 SDValue SDV = getValue(V);
910 SDValue Loc = StatepointLowering.getLocation(SDV);
911
912 bool IsLocal = (Relocate->getParent() == StatepointInstr->getParent());
913
914 RecordType Record;
915 if (IsLocal && LowerAsVReg.count(SDV)) {
916 // Result is already stored in StatepointLowering
917 Record.type = RecordType::SDValueNode;
918 } else if (LowerAsVReg.count(SDV)) {
919 Record.type = RecordType::VReg;
920 assert(VirtRegs.count(SDV));
921 Record.payload.Reg = VirtRegs[SDV];
922 } else if (Loc.getNode()) {
923 Record.type = RecordType::Spill;
924 Record.payload.FI = cast<FrameIndexSDNode>(Loc)->getIndex();
925 } else {
926 Record.type = RecordType::NoRelocate;
927 // If we didn't relocate a value, we'll essentialy end up inserting an
928 // additional use of the original value when lowering the gc.relocate.
929 // We need to make sure the value is available at the new use, which
930 // might be in another block.
931 if (Relocate->getParent() != StatepointInstr->getParent())
932 ExportFromCurrentBlock(V);
933 }
934 RelocationMap[Relocate] = Record;
935 }
936
937
938
939 SDNode *SinkNode = StatepointMCNode;
940
941 // Build the GC_TRANSITION_END node if necessary.
942 //
943 // See the comment above regarding GC_TRANSITION_START for the layout of
944 // the operands to the GC_TRANSITION_END node.
945 if (IsGCTransition) {
946 SmallVector<SDValue, 8> TEOps;
947
948 // Add chain
949 TEOps.push_back(SDValue(StatepointMCNode, NumResults - 2));
950
951 // Add GC transition arguments
952 for (const Value *V : SI.GCTransitionArgs) {
953 TEOps.push_back(getValue(V));
954 if (V->getType()->isPointerTy())
955 TEOps.push_back(DAG.getSrcValue(V));
956 }
957
958 // Add glue
959 TEOps.push_back(SDValue(StatepointMCNode, NumResults - 1));
960
961 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
962
963 SDValue GCTransitionStart =
964 DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
965
966 SinkNode = GCTransitionStart.getNode();
967 }
968
969 // Replace original call
970 // Call: ch,glue = CALL ...
971 // Statepoint: [gc relocates],ch,glue = STATEPOINT ...
972 unsigned NumSinkValues = SinkNode->getNumValues();
973 SDValue StatepointValues[2] = {SDValue(SinkNode, NumSinkValues - 2),
974 SDValue(SinkNode, NumSinkValues - 1)};
975 DAG.ReplaceAllUsesWith(CallNode, StatepointValues);
976 // Remove original call node
977 DAG.DeleteNode(CallNode);
978
979 // Since we always emit CopyToRegs (even for local relocates), we must
980 // update root, so that they are emitted before any local uses.
981 (void)getControlRoot();
982
983 // TODO: A better future implementation would be to emit a single variable
984 // argument, variable return value STATEPOINT node here and then hookup the
985 // return value of each gc.relocate to the respective output of the
986 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear
987 // to actually be possible today.
988
989 return ReturnVal;
990 }
991
992 /// Return two gc.results if present. First result is a block local
993 /// gc.result, second result is a non-block local gc.result. Corresponding
994 /// entry will be nullptr if not present.
995 static std::pair<const GCResultInst*, const GCResultInst*>
getGCResultLocality(const GCStatepointInst & S)996 getGCResultLocality(const GCStatepointInst &S) {
997 std::pair<const GCResultInst *, const GCResultInst*> Res(nullptr, nullptr);
998 for (const auto *U : S.users()) {
999 auto *GRI = dyn_cast<GCResultInst>(U);
1000 if (!GRI)
1001 continue;
1002 if (GRI->getParent() == S.getParent())
1003 Res.first = GRI;
1004 else
1005 Res.second = GRI;
1006 }
1007 return Res;
1008 }
1009
1010 void
LowerStatepoint(const GCStatepointInst & I,const BasicBlock * EHPadBB)1011 SelectionDAGBuilder::LowerStatepoint(const GCStatepointInst &I,
1012 const BasicBlock *EHPadBB /*= nullptr*/) {
1013 assert(I.getCallingConv() != CallingConv::AnyReg &&
1014 "anyregcc is not supported on statepoints!");
1015
1016 #ifndef NDEBUG
1017 // Check that the associated GCStrategy expects to encounter statepoints.
1018 assert(GFI->getStrategy().useStatepoints() &&
1019 "GCStrategy does not expect to encounter statepoints");
1020 #endif
1021
1022 SDValue ActualCallee;
1023 SDValue Callee = getValue(I.getActualCalledOperand());
1024
1025 if (I.getNumPatchBytes() > 0) {
1026 // If we've been asked to emit a nop sequence instead of a call instruction
1027 // for this statepoint then don't lower the call target, but use a constant
1028 // `undef` instead. Not lowering the call target lets statepoint clients
1029 // get away without providing a physical address for the symbolic call
1030 // target at link time.
1031 ActualCallee = DAG.getUNDEF(Callee.getValueType());
1032 } else {
1033 ActualCallee = Callee;
1034 }
1035
1036 StatepointLoweringInfo SI(DAG);
1037 populateCallLoweringInfo(SI.CLI, &I, GCStatepointInst::CallArgsBeginPos,
1038 I.getNumCallArgs(), ActualCallee,
1039 I.getActualReturnType(), false /* IsPatchPoint */);
1040
1041 // There may be duplication in the gc.relocate list; such as two copies of
1042 // each relocation on normal and exceptional path for an invoke. We only
1043 // need to spill once and record one copy in the stackmap, but we need to
1044 // reload once per gc.relocate. (Dedupping gc.relocates is trickier and best
1045 // handled as a CSE problem elsewhere.)
1046 // TODO: There a couple of major stackmap size optimizations we could do
1047 // here if we wished.
1048 // 1) If we've encountered a derived pair {B, D}, we don't need to actually
1049 // record {B,B} if it's seen later.
1050 // 2) Due to rematerialization, actual derived pointers are somewhat rare;
1051 // given that, we could change the format to record base pointer relocations
1052 // separately with half the space. This would require a format rev and a
1053 // fairly major rework of the STATEPOINT node though.
1054 SmallSet<SDValue, 8> Seen;
1055 for (const GCRelocateInst *Relocate : I.getGCRelocates()) {
1056 SI.GCRelocates.push_back(Relocate);
1057
1058 SDValue DerivedSD = getValue(Relocate->getDerivedPtr());
1059 if (Seen.insert(DerivedSD).second) {
1060 SI.Bases.push_back(Relocate->getBasePtr());
1061 SI.Ptrs.push_back(Relocate->getDerivedPtr());
1062 }
1063 }
1064
1065 // If we find a deopt value which isn't explicitly added, we need to
1066 // ensure it gets lowered such that gc cycles occurring before the
1067 // deoptimization event during the lifetime of the call don't invalidate
1068 // the pointer we're deopting with. Note that we assume that all
1069 // pointers passed to deopt are base pointers; relaxing that assumption
1070 // would require relatively large changes to how we represent relocations.
1071 for (Value *V : I.deopt_operands()) {
1072 if (!isGCValue(V, *this))
1073 continue;
1074 if (Seen.insert(getValue(V)).second) {
1075 SI.Bases.push_back(V);
1076 SI.Ptrs.push_back(V);
1077 }
1078 }
1079
1080 SI.GCArgs = ArrayRef<const Use>(I.gc_args_begin(), I.gc_args_end());
1081 SI.StatepointInstr = &I;
1082 SI.ID = I.getID();
1083
1084 SI.DeoptState = ArrayRef<const Use>(I.deopt_begin(), I.deopt_end());
1085 SI.GCTransitionArgs = ArrayRef<const Use>(I.gc_transition_args_begin(),
1086 I.gc_transition_args_end());
1087
1088 SI.StatepointFlags = I.getFlags();
1089 SI.NumPatchBytes = I.getNumPatchBytes();
1090 SI.EHPadBB = EHPadBB;
1091
1092 SDValue ReturnValue = LowerAsSTATEPOINT(SI);
1093
1094 // Export the result value if needed
1095 const auto GCResultLocality = getGCResultLocality(I);
1096
1097 if (!GCResultLocality.first && !GCResultLocality.second) {
1098 // The return value is not needed, just generate a poison value.
1099 // Note: This covers the void return case.
1100 setValue(&I, DAG.getIntPtrConstant(-1, getCurSDLoc()));
1101 return;
1102 }
1103
1104 if (GCResultLocality.first) {
1105 // Result value will be used in a same basic block. Don't export it or
1106 // perform any explicit register copies. The gc_result will simply grab
1107 // this value.
1108 setValue(&I, ReturnValue);
1109 }
1110
1111 if (!GCResultLocality.second)
1112 return;
1113 // Result value will be used in a different basic block so we need to export
1114 // it now. Default exporting mechanism will not work here because statepoint
1115 // call has a different type than the actual call. It means that by default
1116 // llvm will create export register of the wrong type (always i32 in our
1117 // case). So instead we need to create export register with correct type
1118 // manually.
1119 // TODO: To eliminate this problem we can remove gc.result intrinsics
1120 // completely and make statepoint call to return a tuple.
1121 Type *RetTy = GCResultLocality.second->getType();
1122 Register Reg = FuncInfo.CreateRegs(RetTy);
1123 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1124 DAG.getDataLayout(), Reg, RetTy,
1125 I.getCallingConv());
1126 SDValue Chain = DAG.getEntryNode();
1127
1128 RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr);
1129 PendingExports.push_back(Chain);
1130 FuncInfo.ValueMap[&I] = Reg;
1131 }
1132
LowerCallSiteWithDeoptBundleImpl(const CallBase * Call,SDValue Callee,const BasicBlock * EHPadBB,bool VarArgDisallowed,bool ForceVoidReturnTy)1133 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
1134 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB,
1135 bool VarArgDisallowed, bool ForceVoidReturnTy) {
1136 StatepointLoweringInfo SI(DAG);
1137 unsigned ArgBeginIndex = Call->arg_begin() - Call->op_begin();
1138 populateCallLoweringInfo(
1139 SI.CLI, Call, ArgBeginIndex, Call->arg_size(), Callee,
1140 ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : Call->getType(),
1141 false);
1142 if (!VarArgDisallowed)
1143 SI.CLI.IsVarArg = Call->getFunctionType()->isVarArg();
1144
1145 auto DeoptBundle = *Call->getOperandBundle(LLVMContext::OB_deopt);
1146
1147 unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID;
1148
1149 auto SD = parseStatepointDirectivesFromAttrs(Call->getAttributes());
1150 SI.ID = SD.StatepointID.value_or(DefaultID);
1151 SI.NumPatchBytes = SD.NumPatchBytes.value_or(0);
1152
1153 SI.DeoptState =
1154 ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end());
1155 SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None);
1156 SI.EHPadBB = EHPadBB;
1157
1158 // NB! The GC arguments are deliberately left empty.
1159
1160 if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) {
1161 ReturnVal = lowerRangeToAssertZExt(DAG, *Call, ReturnVal);
1162 setValue(Call, ReturnVal);
1163 }
1164 }
1165
LowerCallSiteWithDeoptBundle(const CallBase * Call,SDValue Callee,const BasicBlock * EHPadBB)1166 void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
1167 const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB) {
1168 LowerCallSiteWithDeoptBundleImpl(Call, Callee, EHPadBB,
1169 /* VarArgDisallowed = */ false,
1170 /* ForceVoidReturnTy = */ false);
1171 }
1172
visitGCResult(const GCResultInst & CI)1173 void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
1174 // The result value of the gc_result is simply the result of the actual
1175 // call. We've already emitted this, so just grab the value.
1176 const Value *SI = CI.getStatepoint();
1177 assert((isa<GCStatepointInst>(SI) || isa<UndefValue>(SI)) &&
1178 "GetStatepoint must return one of two types");
1179 if (isa<UndefValue>(SI))
1180 return;
1181
1182 if (cast<GCStatepointInst>(SI)->getParent() == CI.getParent()) {
1183 setValue(&CI, getValue(SI));
1184 return;
1185 }
1186 // Statepoint is in different basic block so we should have stored call
1187 // result in a virtual register.
1188 // We can not use default getValue() functionality to copy value from this
1189 // register because statepoint and actual call return types can be
1190 // different, and getValue() will use CopyFromReg of the wrong type,
1191 // which is always i32 in our case.
1192 Type *RetTy = CI.getType();
1193 SDValue CopyFromReg = getCopyFromRegs(SI, RetTy);
1194
1195 assert(CopyFromReg.getNode());
1196 setValue(&CI, CopyFromReg);
1197 }
1198
visitGCRelocate(const GCRelocateInst & Relocate)1199 void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
1200 const Value *Statepoint = Relocate.getStatepoint();
1201 #ifndef NDEBUG
1202 // Consistency check
1203 // We skip this check for relocates not in the same basic block as their
1204 // statepoint. It would be too expensive to preserve validation info through
1205 // different basic blocks.
1206 assert((isa<GCStatepointInst>(Statepoint) || isa<UndefValue>(Statepoint)) &&
1207 "GetStatepoint must return one of two types");
1208 if (isa<UndefValue>(Statepoint))
1209 return;
1210
1211 if (cast<GCStatepointInst>(Statepoint)->getParent() == Relocate.getParent())
1212 StatepointLowering.relocCallVisited(Relocate);
1213 #endif
1214
1215 const Value *DerivedPtr = Relocate.getDerivedPtr();
1216 auto &RelocationMap =
1217 FuncInfo.StatepointRelocationMaps[cast<GCStatepointInst>(Statepoint)];
1218 auto SlotIt = RelocationMap.find(&Relocate);
1219 assert(SlotIt != RelocationMap.end() && "Relocating not lowered gc value");
1220 const RecordType &Record = SlotIt->second;
1221
1222 // If relocation was done via virtual register..
1223 if (Record.type == RecordType::SDValueNode) {
1224 assert(cast<GCStatepointInst>(Statepoint)->getParent() ==
1225 Relocate.getParent() &&
1226 "Nonlocal gc.relocate mapped via SDValue");
1227 SDValue SDV = StatepointLowering.getLocation(getValue(DerivedPtr));
1228 assert(SDV.getNode() && "empty SDValue");
1229 setValue(&Relocate, SDV);
1230 return;
1231 }
1232 if (Record.type == RecordType::VReg) {
1233 Register InReg = Record.payload.Reg;
1234 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1235 DAG.getDataLayout(), InReg, Relocate.getType(),
1236 std::nullopt); // This is not an ABI copy.
1237 // We generate copy to/from regs even for local uses, hence we must
1238 // chain with current root to ensure proper ordering of copies w.r.t.
1239 // statepoint.
1240 SDValue Chain = DAG.getRoot();
1241 SDValue Relocation = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
1242 Chain, nullptr, nullptr);
1243 setValue(&Relocate, Relocation);
1244 return;
1245 }
1246
1247 if (Record.type == RecordType::Spill) {
1248 unsigned Index = Record.payload.FI;
1249 SDValue SpillSlot = DAG.getTargetFrameIndex(Index, getFrameIndexTy());
1250
1251 // All the reloads are independent and are reading memory only modified by
1252 // statepoints (i.e. no other aliasing stores); informing SelectionDAG of
1253 // this this let's CSE kick in for free and allows reordering of
1254 // instructions if possible. The lowering for statepoint sets the root,
1255 // so this is ordering all reloads with the either
1256 // a) the statepoint node itself, or
1257 // b) the entry of the current block for an invoke statepoint.
1258 const SDValue Chain = DAG.getRoot(); // != Builder.getRoot()
1259
1260 auto &MF = DAG.getMachineFunction();
1261 auto &MFI = MF.getFrameInfo();
1262 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, Index);
1263 auto *LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
1264 MFI.getObjectSize(Index),
1265 MFI.getObjectAlign(Index));
1266
1267 auto LoadVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
1268 Relocate.getType());
1269
1270 SDValue SpillLoad =
1271 DAG.getLoad(LoadVT, getCurSDLoc(), Chain, SpillSlot, LoadMMO);
1272 PendingLoads.push_back(SpillLoad.getValue(1));
1273
1274 assert(SpillLoad.getNode());
1275 setValue(&Relocate, SpillLoad);
1276 return;
1277 }
1278
1279 assert(Record.type == RecordType::NoRelocate);
1280 SDValue SD = getValue(DerivedPtr);
1281
1282 if (SD.isUndef() && SD.getValueType().getSizeInBits() <= 64) {
1283 // Lowering relocate(undef) as arbitrary constant. Current constant value
1284 // is chosen such that it's unlikely to be a valid pointer.
1285 setValue(&Relocate, DAG.getTargetConstant(0xFEFEFEFE, SDLoc(SD), MVT::i64));
1286 return;
1287 }
1288
1289 // We didn't need to spill these special cases (constants and allocas).
1290 // See the handling in spillIncomingValueForStatepoint for detail.
1291 setValue(&Relocate, SD);
1292 }
1293
LowerDeoptimizeCall(const CallInst * CI)1294 void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) {
1295 const auto &TLI = DAG.getTargetLoweringInfo();
1296 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE),
1297 TLI.getPointerTy(DAG.getDataLayout()));
1298
1299 // We don't lower calls to __llvm_deoptimize as varargs, but as a regular
1300 // call. We also do not lower the return value to any virtual register, and
1301 // change the immediately following return to a trap instruction.
1302 LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr,
1303 /* VarArgDisallowed = */ true,
1304 /* ForceVoidReturnTy = */ true);
1305 }
1306
LowerDeoptimizingReturn()1307 void SelectionDAGBuilder::LowerDeoptimizingReturn() {
1308 // We do not lower the return value from llvm.deoptimize to any virtual
1309 // register, and change the immediately following return to a trap
1310 // instruction.
1311 if (DAG.getTarget().Options.TrapUnreachable)
1312 DAG.setRoot(
1313 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
1314 }
1315