1 //===--- StringMap.cpp - String Hash table map implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the StringMap class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/ADT/StringMap.h"
14 #include "llvm/Support/DJB.h"
15 #include "llvm/Support/MathExtras.h"
16
17 using namespace llvm;
18
19 /// Returns the number of buckets to allocate to ensure that the DenseMap can
20 /// accommodate \p NumEntries without need to grow().
getMinBucketToReserveForEntries(unsigned NumEntries)21 static inline unsigned getMinBucketToReserveForEntries(unsigned NumEntries) {
22 // Ensure that "NumEntries * 4 < NumBuckets * 3"
23 if (NumEntries == 0)
24 return 0;
25 // +1 is required because of the strict equality.
26 // For example if NumEntries is 48, we need to return 401.
27 return NextPowerOf2(NumEntries * 4 / 3 + 1);
28 }
29
createTable(unsigned NewNumBuckets)30 static inline StringMapEntryBase **createTable(unsigned NewNumBuckets) {
31 auto **Table = static_cast<StringMapEntryBase **>(safe_calloc(
32 NewNumBuckets + 1, sizeof(StringMapEntryBase **) + sizeof(unsigned)));
33
34 // Allocate one extra bucket, set it to look filled so the iterators stop at
35 // end.
36 Table[NewNumBuckets] = (StringMapEntryBase *)2;
37 return Table;
38 }
39
getHashTable(StringMapEntryBase ** TheTable,unsigned NumBuckets)40 static inline unsigned *getHashTable(StringMapEntryBase **TheTable,
41 unsigned NumBuckets) {
42 return reinterpret_cast<unsigned *>(TheTable + NumBuckets + 1);
43 }
44
StringMapImpl(unsigned InitSize,unsigned itemSize)45 StringMapImpl::StringMapImpl(unsigned InitSize, unsigned itemSize) {
46 ItemSize = itemSize;
47
48 // If a size is specified, initialize the table with that many buckets.
49 if (InitSize) {
50 // The table will grow when the number of entries reach 3/4 of the number of
51 // buckets. To guarantee that "InitSize" number of entries can be inserted
52 // in the table without growing, we allocate just what is needed here.
53 init(getMinBucketToReserveForEntries(InitSize));
54 return;
55 }
56
57 // Otherwise, initialize it with zero buckets to avoid the allocation.
58 TheTable = nullptr;
59 NumBuckets = 0;
60 NumItems = 0;
61 NumTombstones = 0;
62 }
63
init(unsigned InitSize)64 void StringMapImpl::init(unsigned InitSize) {
65 assert((InitSize & (InitSize - 1)) == 0 &&
66 "Init Size must be a power of 2 or zero!");
67
68 unsigned NewNumBuckets = InitSize ? InitSize : 16;
69 NumItems = 0;
70 NumTombstones = 0;
71
72 TheTable = createTable(NewNumBuckets);
73
74 // Set the member only if TheTable was successfully allocated
75 NumBuckets = NewNumBuckets;
76 }
77
78 /// LookupBucketFor - Look up the bucket that the specified string should end
79 /// up in. If it already exists as a key in the map, the Item pointer for the
80 /// specified bucket will be non-null. Otherwise, it will be null. In either
81 /// case, the FullHashValue field of the bucket will be set to the hash value
82 /// of the string.
LookupBucketFor(StringRef Name)83 unsigned StringMapImpl::LookupBucketFor(StringRef Name) {
84 // Hash table unallocated so far?
85 if (NumBuckets == 0)
86 init(16);
87 unsigned FullHashValue = djbHash(Name, 0);
88 unsigned BucketNo = FullHashValue & (NumBuckets - 1);
89 unsigned *HashTable = getHashTable(TheTable, NumBuckets);
90
91 unsigned ProbeAmt = 1;
92 int FirstTombstone = -1;
93 while (true) {
94 StringMapEntryBase *BucketItem = TheTable[BucketNo];
95 // If we found an empty bucket, this key isn't in the table yet, return it.
96 if (LLVM_LIKELY(!BucketItem)) {
97 // If we found a tombstone, we want to reuse the tombstone instead of an
98 // empty bucket. This reduces probing.
99 if (FirstTombstone != -1) {
100 HashTable[FirstTombstone] = FullHashValue;
101 return FirstTombstone;
102 }
103
104 HashTable[BucketNo] = FullHashValue;
105 return BucketNo;
106 }
107
108 if (BucketItem == getTombstoneVal()) {
109 // Skip over tombstones. However, remember the first one we see.
110 if (FirstTombstone == -1)
111 FirstTombstone = BucketNo;
112 } else if (LLVM_LIKELY(HashTable[BucketNo] == FullHashValue)) {
113 // If the full hash value matches, check deeply for a match. The common
114 // case here is that we are only looking at the buckets (for item info
115 // being non-null and for the full hash value) not at the items. This
116 // is important for cache locality.
117
118 // Do the comparison like this because Name isn't necessarily
119 // null-terminated!
120 char *ItemStr = (char *)BucketItem + ItemSize;
121 if (Name == StringRef(ItemStr, BucketItem->getKeyLength())) {
122 // We found a match!
123 return BucketNo;
124 }
125 }
126
127 // Okay, we didn't find the item. Probe to the next bucket.
128 BucketNo = (BucketNo + ProbeAmt) & (NumBuckets - 1);
129
130 // Use quadratic probing, it has fewer clumping artifacts than linear
131 // probing and has good cache behavior in the common case.
132 ++ProbeAmt;
133 }
134 }
135
136 /// FindKey - Look up the bucket that contains the specified key. If it exists
137 /// in the map, return the bucket number of the key. Otherwise return -1.
138 /// This does not modify the map.
FindKey(StringRef Key) const139 int StringMapImpl::FindKey(StringRef Key) const {
140 if (NumBuckets == 0)
141 return -1; // Really empty table?
142 unsigned FullHashValue = djbHash(Key, 0);
143 unsigned BucketNo = FullHashValue & (NumBuckets - 1);
144 unsigned *HashTable = getHashTable(TheTable, NumBuckets);
145
146 unsigned ProbeAmt = 1;
147 while (true) {
148 StringMapEntryBase *BucketItem = TheTable[BucketNo];
149 // If we found an empty bucket, this key isn't in the table yet, return.
150 if (LLVM_LIKELY(!BucketItem))
151 return -1;
152
153 if (BucketItem == getTombstoneVal()) {
154 // Ignore tombstones.
155 } else if (LLVM_LIKELY(HashTable[BucketNo] == FullHashValue)) {
156 // If the full hash value matches, check deeply for a match. The common
157 // case here is that we are only looking at the buckets (for item info
158 // being non-null and for the full hash value) not at the items. This
159 // is important for cache locality.
160
161 // Do the comparison like this because NameStart isn't necessarily
162 // null-terminated!
163 char *ItemStr = (char *)BucketItem + ItemSize;
164 if (Key == StringRef(ItemStr, BucketItem->getKeyLength())) {
165 // We found a match!
166 return BucketNo;
167 }
168 }
169
170 // Okay, we didn't find the item. Probe to the next bucket.
171 BucketNo = (BucketNo + ProbeAmt) & (NumBuckets - 1);
172
173 // Use quadratic probing, it has fewer clumping artifacts than linear
174 // probing and has good cache behavior in the common case.
175 ++ProbeAmt;
176 }
177 }
178
179 /// RemoveKey - Remove the specified StringMapEntry from the table, but do not
180 /// delete it. This aborts if the value isn't in the table.
RemoveKey(StringMapEntryBase * V)181 void StringMapImpl::RemoveKey(StringMapEntryBase *V) {
182 const char *VStr = (char *)V + ItemSize;
183 StringMapEntryBase *V2 = RemoveKey(StringRef(VStr, V->getKeyLength()));
184 (void)V2;
185 assert(V == V2 && "Didn't find key?");
186 }
187
188 /// RemoveKey - Remove the StringMapEntry for the specified key from the
189 /// table, returning it. If the key is not in the table, this returns null.
RemoveKey(StringRef Key)190 StringMapEntryBase *StringMapImpl::RemoveKey(StringRef Key) {
191 int Bucket = FindKey(Key);
192 if (Bucket == -1)
193 return nullptr;
194
195 StringMapEntryBase *Result = TheTable[Bucket];
196 TheTable[Bucket] = getTombstoneVal();
197 --NumItems;
198 ++NumTombstones;
199 assert(NumItems + NumTombstones <= NumBuckets);
200
201 return Result;
202 }
203
204 /// RehashTable - Grow the table, redistributing values into the buckets with
205 /// the appropriate mod-of-hashtable-size.
RehashTable(unsigned BucketNo)206 unsigned StringMapImpl::RehashTable(unsigned BucketNo) {
207 unsigned NewSize;
208 // If the hash table is now more than 3/4 full, or if fewer than 1/8 of
209 // the buckets are empty (meaning that many are filled with tombstones),
210 // grow/rehash the table.
211 if (LLVM_UNLIKELY(NumItems * 4 > NumBuckets * 3)) {
212 NewSize = NumBuckets * 2;
213 } else if (LLVM_UNLIKELY(NumBuckets - (NumItems + NumTombstones) <=
214 NumBuckets / 8)) {
215 NewSize = NumBuckets;
216 } else {
217 return BucketNo;
218 }
219
220 unsigned NewBucketNo = BucketNo;
221 auto **NewTableArray = createTable(NewSize);
222 unsigned *NewHashArray = getHashTable(NewTableArray, NewSize);
223 unsigned *HashTable = getHashTable(TheTable, NumBuckets);
224
225 // Rehash all the items into their new buckets. Luckily :) we already have
226 // the hash values available, so we don't have to rehash any strings.
227 for (unsigned I = 0, E = NumBuckets; I != E; ++I) {
228 StringMapEntryBase *Bucket = TheTable[I];
229 if (Bucket && Bucket != getTombstoneVal()) {
230 // If the bucket is not available, probe for a spot.
231 unsigned FullHash = HashTable[I];
232 unsigned NewBucket = FullHash & (NewSize - 1);
233 if (NewTableArray[NewBucket]) {
234 unsigned ProbeSize = 1;
235 do {
236 NewBucket = (NewBucket + ProbeSize++) & (NewSize - 1);
237 } while (NewTableArray[NewBucket]);
238 }
239
240 // Finally found a slot. Fill it in.
241 NewTableArray[NewBucket] = Bucket;
242 NewHashArray[NewBucket] = FullHash;
243 if (I == BucketNo)
244 NewBucketNo = NewBucket;
245 }
246 }
247
248 free(TheTable);
249
250 TheTable = NewTableArray;
251 NumBuckets = NewSize;
252 NumTombstones = 0;
253 return NewBucketNo;
254 }
255