1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // sanity checking of input to the system.
11 //
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
14 //
15 //  * Both of a binary operator's parameters are of the same type
16 //  * Verify that the indices of mem access instructions match other operands
17 //  * Verify that arithmetic and other things are only performed on first-class
18 //    types.  Verify that shifts & logicals only happen on integrals f.e.
19 //  * All of the constants in a switch statement are of the correct type
20 //  * The code is in valid SSA form
21 //  * It should be illegal to put a label into any other type (like a structure)
22 //    or to return one. [except constant arrays!]
23 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 //  * PHI nodes must have an entry for each predecessor, with no extras.
25 //  * PHI nodes must be the first thing in a basic block, all grouped together
26 //  * PHI nodes must have at least one entry
27 //  * All basic blocks should only end with terminator insts, not contain them
28 //  * The entry node to a function must not have predecessors
29 //  * All Instructions must be embedded into a basic block
30 //  * Functions cannot take a void-typed parameter
31 //  * Verify that a function's argument list agrees with it's declared type.
32 //  * It is illegal to specify a name for a void value.
33 //  * It is illegal to have a internal global value with no initializer
34 //  * It is illegal to have a ret instruction that returns a value that does not
35 //    agree with the function return value type.
36 //  * Function call argument types match the function prototype
37 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
38 //    only by the unwind edge of an invoke instruction.
39 //  * A landingpad instruction must be the first non-PHI instruction in the
40 //    block.
41 //  * Landingpad instructions must be in a function with a personality function.
42 //  * All other things that are tested by asserts spread about the code...
43 //
44 //===----------------------------------------------------------------------===//
45 
46 #include "llvm/IR/Verifier.h"
47 #include "llvm/ADT/APFloat.h"
48 #include "llvm/ADT/APInt.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/ADT/StringMap.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/ADT/ilist.h"
62 #include "llvm/BinaryFormat/Dwarf.h"
63 #include "llvm/IR/Argument.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Comdat.h"
69 #include "llvm/IR/Constant.h"
70 #include "llvm/IR/ConstantRange.h"
71 #include "llvm/IR/Constants.h"
72 #include "llvm/IR/DataLayout.h"
73 #include "llvm/IR/DebugInfo.h"
74 #include "llvm/IR/DebugInfoMetadata.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstVisitor.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/IntrinsicsWebAssembly.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/Metadata.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/ModuleSlotTracker.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Statepoint.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/Use.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/InitializePasses.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Support/AtomicOrdering.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/Debug.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include <algorithm>
110 #include <cassert>
111 #include <cstdint>
112 #include <memory>
113 #include <string>
114 #include <utility>
115 
116 using namespace llvm;
117 
118 static cl::opt<bool> VerifyNoAliasScopeDomination(
119     "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false),
120     cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
121              "scopes are not dominating"));
122 
123 namespace llvm {
124 
125 struct VerifierSupport {
126   raw_ostream *OS;
127   const Module &M;
128   ModuleSlotTracker MST;
129   Triple TT;
130   const DataLayout &DL;
131   LLVMContext &Context;
132 
133   /// Track the brokenness of the module while recursively visiting.
134   bool Broken = false;
135   /// Broken debug info can be "recovered" from by stripping the debug info.
136   bool BrokenDebugInfo = false;
137   /// Whether to treat broken debug info as an error.
138   bool TreatBrokenDebugInfoAsError = true;
139 
VerifierSupportllvm::VerifierSupport140   explicit VerifierSupport(raw_ostream *OS, const Module &M)
141       : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
142         Context(M.getContext()) {}
143 
144 private:
Writellvm::VerifierSupport145   void Write(const Module *M) {
146     *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
147   }
148 
Writellvm::VerifierSupport149   void Write(const Value *V) {
150     if (V)
151       Write(*V);
152   }
153 
Writellvm::VerifierSupport154   void Write(const Value &V) {
155     if (isa<Instruction>(V)) {
156       V.print(*OS, MST);
157       *OS << '\n';
158     } else {
159       V.printAsOperand(*OS, true, MST);
160       *OS << '\n';
161     }
162   }
163 
Writellvm::VerifierSupport164   void Write(const Metadata *MD) {
165     if (!MD)
166       return;
167     MD->print(*OS, MST, &M);
168     *OS << '\n';
169   }
170 
Writellvm::VerifierSupport171   template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
172     Write(MD.get());
173   }
174 
Writellvm::VerifierSupport175   void Write(const NamedMDNode *NMD) {
176     if (!NMD)
177       return;
178     NMD->print(*OS, MST);
179     *OS << '\n';
180   }
181 
Writellvm::VerifierSupport182   void Write(Type *T) {
183     if (!T)
184       return;
185     *OS << ' ' << *T;
186   }
187 
Writellvm::VerifierSupport188   void Write(const Comdat *C) {
189     if (!C)
190       return;
191     *OS << *C;
192   }
193 
Writellvm::VerifierSupport194   void Write(const APInt *AI) {
195     if (!AI)
196       return;
197     *OS << *AI << '\n';
198   }
199 
Writellvm::VerifierSupport200   void Write(const unsigned i) { *OS << i << '\n'; }
201 
202   // NOLINTNEXTLINE(readability-identifier-naming)
Writellvm::VerifierSupport203   void Write(const Attribute *A) {
204     if (!A)
205       return;
206     *OS << A->getAsString() << '\n';
207   }
208 
209   // NOLINTNEXTLINE(readability-identifier-naming)
Writellvm::VerifierSupport210   void Write(const AttributeSet *AS) {
211     if (!AS)
212       return;
213     *OS << AS->getAsString() << '\n';
214   }
215 
216   // NOLINTNEXTLINE(readability-identifier-naming)
Writellvm::VerifierSupport217   void Write(const AttributeList *AL) {
218     if (!AL)
219       return;
220     AL->print(*OS);
221   }
222 
Writellvm::VerifierSupport223   template <typename T> void Write(ArrayRef<T> Vs) {
224     for (const T &V : Vs)
225       Write(V);
226   }
227 
228   template <typename T1, typename... Ts>
WriteTsllvm::VerifierSupport229   void WriteTs(const T1 &V1, const Ts &... Vs) {
230     Write(V1);
231     WriteTs(Vs...);
232   }
233 
WriteTsllvm::VerifierSupport234   template <typename... Ts> void WriteTs() {}
235 
236 public:
237   /// A check failed, so printout out the condition and the message.
238   ///
239   /// This provides a nice place to put a breakpoint if you want to see why
240   /// something is not correct.
CheckFailedllvm::VerifierSupport241   void CheckFailed(const Twine &Message) {
242     if (OS)
243       *OS << Message << '\n';
244     Broken = true;
245   }
246 
247   /// A check failed (with values to print).
248   ///
249   /// This calls the Message-only version so that the above is easier to set a
250   /// breakpoint on.
251   template <typename T1, typename... Ts>
CheckFailedllvm::VerifierSupport252   void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
253     CheckFailed(Message);
254     if (OS)
255       WriteTs(V1, Vs...);
256   }
257 
258   /// A debug info check failed.
DebugInfoCheckFailedllvm::VerifierSupport259   void DebugInfoCheckFailed(const Twine &Message) {
260     if (OS)
261       *OS << Message << '\n';
262     Broken |= TreatBrokenDebugInfoAsError;
263     BrokenDebugInfo = true;
264   }
265 
266   /// A debug info check failed (with values to print).
267   template <typename T1, typename... Ts>
DebugInfoCheckFailedllvm::VerifierSupport268   void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
269                             const Ts &... Vs) {
270     DebugInfoCheckFailed(Message);
271     if (OS)
272       WriteTs(V1, Vs...);
273   }
274 };
275 
276 } // namespace llvm
277 
278 namespace {
279 
280 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
281   friend class InstVisitor<Verifier>;
282 
283   DominatorTree DT;
284 
285   /// When verifying a basic block, keep track of all of the
286   /// instructions we have seen so far.
287   ///
288   /// This allows us to do efficient dominance checks for the case when an
289   /// instruction has an operand that is an instruction in the same block.
290   SmallPtrSet<Instruction *, 16> InstsInThisBlock;
291 
292   /// Keep track of the metadata nodes that have been checked already.
293   SmallPtrSet<const Metadata *, 32> MDNodes;
294 
295   /// Keep track which DISubprogram is attached to which function.
296   DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
297 
298   /// Track all DICompileUnits visited.
299   SmallPtrSet<const Metadata *, 2> CUVisited;
300 
301   /// The result type for a landingpad.
302   Type *LandingPadResultTy;
303 
304   /// Whether we've seen a call to @llvm.localescape in this function
305   /// already.
306   bool SawFrameEscape;
307 
308   /// Whether the current function has a DISubprogram attached to it.
309   bool HasDebugInfo = false;
310 
311   /// The current source language.
312   dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user;
313 
314   /// Whether source was present on the first DIFile encountered in each CU.
315   DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
316 
317   /// Stores the count of how many objects were passed to llvm.localescape for a
318   /// given function and the largest index passed to llvm.localrecover.
319   DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
320 
321   // Maps catchswitches and cleanuppads that unwind to siblings to the
322   // terminators that indicate the unwind, used to detect cycles therein.
323   MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
324 
325   /// Cache of constants visited in search of ConstantExprs.
326   SmallPtrSet<const Constant *, 32> ConstantExprVisited;
327 
328   /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
329   SmallVector<const Function *, 4> DeoptimizeDeclarations;
330 
331   /// Cache of attribute lists verified.
332   SmallPtrSet<const void *, 32> AttributeListsVisited;
333 
334   // Verify that this GlobalValue is only used in this module.
335   // This map is used to avoid visiting uses twice. We can arrive at a user
336   // twice, if they have multiple operands. In particular for very large
337   // constant expressions, we can arrive at a particular user many times.
338   SmallPtrSet<const Value *, 32> GlobalValueVisited;
339 
340   // Keeps track of duplicate function argument debug info.
341   SmallVector<const DILocalVariable *, 16> DebugFnArgs;
342 
343   TBAAVerifier TBAAVerifyHelper;
344 
345   SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls;
346 
347   void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
348 
349 public:
Verifier(raw_ostream * OS,bool ShouldTreatBrokenDebugInfoAsError,const Module & M)350   explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
351                     const Module &M)
352       : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
353         SawFrameEscape(false), TBAAVerifyHelper(this) {
354     TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
355   }
356 
hasBrokenDebugInfo() const357   bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
358 
verify(const Function & F)359   bool verify(const Function &F) {
360     assert(F.getParent() == &M &&
361            "An instance of this class only works with a specific module!");
362 
363     // First ensure the function is well-enough formed to compute dominance
364     // information, and directly compute a dominance tree. We don't rely on the
365     // pass manager to provide this as it isolates us from a potentially
366     // out-of-date dominator tree and makes it significantly more complex to run
367     // this code outside of a pass manager.
368     // FIXME: It's really gross that we have to cast away constness here.
369     if (!F.empty())
370       DT.recalculate(const_cast<Function &>(F));
371 
372     for (const BasicBlock &BB : F) {
373       if (!BB.empty() && BB.back().isTerminator())
374         continue;
375 
376       if (OS) {
377         *OS << "Basic Block in function '" << F.getName()
378             << "' does not have terminator!\n";
379         BB.printAsOperand(*OS, true, MST);
380         *OS << "\n";
381       }
382       return false;
383     }
384 
385     Broken = false;
386     // FIXME: We strip const here because the inst visitor strips const.
387     visit(const_cast<Function &>(F));
388     verifySiblingFuncletUnwinds();
389     InstsInThisBlock.clear();
390     DebugFnArgs.clear();
391     LandingPadResultTy = nullptr;
392     SawFrameEscape = false;
393     SiblingFuncletInfo.clear();
394     verifyNoAliasScopeDecl();
395     NoAliasScopeDecls.clear();
396 
397     return !Broken;
398   }
399 
400   /// Verify the module that this instance of \c Verifier was initialized with.
verify()401   bool verify() {
402     Broken = false;
403 
404     // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
405     for (const Function &F : M)
406       if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
407         DeoptimizeDeclarations.push_back(&F);
408 
409     // Now that we've visited every function, verify that we never asked to
410     // recover a frame index that wasn't escaped.
411     verifyFrameRecoverIndices();
412     for (const GlobalVariable &GV : M.globals())
413       visitGlobalVariable(GV);
414 
415     for (const GlobalAlias &GA : M.aliases())
416       visitGlobalAlias(GA);
417 
418     for (const NamedMDNode &NMD : M.named_metadata())
419       visitNamedMDNode(NMD);
420 
421     for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
422       visitComdat(SMEC.getValue());
423 
424     visitModuleFlags(M);
425     visitModuleIdents(M);
426     visitModuleCommandLines(M);
427 
428     verifyCompileUnits();
429 
430     verifyDeoptimizeCallingConvs();
431     DISubprogramAttachments.clear();
432     return !Broken;
433   }
434 
435 private:
436   /// Whether a metadata node is allowed to be, or contain, a DILocation.
437   enum class AreDebugLocsAllowed { No, Yes };
438 
439   // Verification methods...
440   void visitGlobalValue(const GlobalValue &GV);
441   void visitGlobalVariable(const GlobalVariable &GV);
442   void visitGlobalAlias(const GlobalAlias &GA);
443   void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
444   void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
445                            const GlobalAlias &A, const Constant &C);
446   void visitNamedMDNode(const NamedMDNode &NMD);
447   void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
448   void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
449   void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
450   void visitComdat(const Comdat &C);
451   void visitModuleIdents(const Module &M);
452   void visitModuleCommandLines(const Module &M);
453   void visitModuleFlags(const Module &M);
454   void visitModuleFlag(const MDNode *Op,
455                        DenseMap<const MDString *, const MDNode *> &SeenIDs,
456                        SmallVectorImpl<const MDNode *> &Requirements);
457   void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
458   void visitFunction(const Function &F);
459   void visitBasicBlock(BasicBlock &BB);
460   void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
461   void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
462   void visitProfMetadata(Instruction &I, MDNode *MD);
463   void visitAnnotationMetadata(MDNode *Annotation);
464 
465   template <class Ty> bool isValidMetadataArray(const MDTuple &N);
466 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
467 #include "llvm/IR/Metadata.def"
468   void visitDIScope(const DIScope &N);
469   void visitDIVariable(const DIVariable &N);
470   void visitDILexicalBlockBase(const DILexicalBlockBase &N);
471   void visitDITemplateParameter(const DITemplateParameter &N);
472 
473   void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
474 
475   // InstVisitor overrides...
476   using InstVisitor<Verifier>::visit;
477   void visit(Instruction &I);
478 
479   void visitTruncInst(TruncInst &I);
480   void visitZExtInst(ZExtInst &I);
481   void visitSExtInst(SExtInst &I);
482   void visitFPTruncInst(FPTruncInst &I);
483   void visitFPExtInst(FPExtInst &I);
484   void visitFPToUIInst(FPToUIInst &I);
485   void visitFPToSIInst(FPToSIInst &I);
486   void visitUIToFPInst(UIToFPInst &I);
487   void visitSIToFPInst(SIToFPInst &I);
488   void visitIntToPtrInst(IntToPtrInst &I);
489   void visitPtrToIntInst(PtrToIntInst &I);
490   void visitBitCastInst(BitCastInst &I);
491   void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
492   void visitPHINode(PHINode &PN);
493   void visitCallBase(CallBase &Call);
494   void visitUnaryOperator(UnaryOperator &U);
495   void visitBinaryOperator(BinaryOperator &B);
496   void visitICmpInst(ICmpInst &IC);
497   void visitFCmpInst(FCmpInst &FC);
498   void visitExtractElementInst(ExtractElementInst &EI);
499   void visitInsertElementInst(InsertElementInst &EI);
500   void visitShuffleVectorInst(ShuffleVectorInst &EI);
visitVAArgInst(VAArgInst & VAA)501   void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
502   void visitCallInst(CallInst &CI);
503   void visitInvokeInst(InvokeInst &II);
504   void visitGetElementPtrInst(GetElementPtrInst &GEP);
505   void visitLoadInst(LoadInst &LI);
506   void visitStoreInst(StoreInst &SI);
507   void verifyDominatesUse(Instruction &I, unsigned i);
508   void visitInstruction(Instruction &I);
509   void visitTerminator(Instruction &I);
510   void visitBranchInst(BranchInst &BI);
511   void visitReturnInst(ReturnInst &RI);
512   void visitSwitchInst(SwitchInst &SI);
513   void visitIndirectBrInst(IndirectBrInst &BI);
514   void visitCallBrInst(CallBrInst &CBI);
515   void visitSelectInst(SelectInst &SI);
516   void visitUserOp1(Instruction &I);
visitUserOp2(Instruction & I)517   void visitUserOp2(Instruction &I) { visitUserOp1(I); }
518   void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
519   void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
520   void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
521   void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
522   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
523   void visitAtomicRMWInst(AtomicRMWInst &RMWI);
524   void visitFenceInst(FenceInst &FI);
525   void visitAllocaInst(AllocaInst &AI);
526   void visitExtractValueInst(ExtractValueInst &EVI);
527   void visitInsertValueInst(InsertValueInst &IVI);
528   void visitEHPadPredecessors(Instruction &I);
529   void visitLandingPadInst(LandingPadInst &LPI);
530   void visitResumeInst(ResumeInst &RI);
531   void visitCatchPadInst(CatchPadInst &CPI);
532   void visitCatchReturnInst(CatchReturnInst &CatchReturn);
533   void visitCleanupPadInst(CleanupPadInst &CPI);
534   void visitFuncletPadInst(FuncletPadInst &FPI);
535   void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
536   void visitCleanupReturnInst(CleanupReturnInst &CRI);
537 
538   void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
539   void verifySwiftErrorValue(const Value *SwiftErrorVal);
540   void verifyMustTailCall(CallInst &CI);
541   bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
542   void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
543                             const Value *V);
544   void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
545   void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
546                            const Value *V, bool IsIntrinsic);
547   void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
548 
549   void visitConstantExprsRecursively(const Constant *EntryC);
550   void visitConstantExpr(const ConstantExpr *CE);
551   void verifyStatepoint(const CallBase &Call);
552   void verifyFrameRecoverIndices();
553   void verifySiblingFuncletUnwinds();
554 
555   void verifyFragmentExpression(const DbgVariableIntrinsic &I);
556   template <typename ValueOrMetadata>
557   void verifyFragmentExpression(const DIVariable &V,
558                                 DIExpression::FragmentInfo Fragment,
559                                 ValueOrMetadata *Desc);
560   void verifyFnArgs(const DbgVariableIntrinsic &I);
561   void verifyNotEntryValue(const DbgVariableIntrinsic &I);
562 
563   /// Module-level debug info verification...
564   void verifyCompileUnits();
565 
566   /// Module-level verification that all @llvm.experimental.deoptimize
567   /// declarations share the same calling convention.
568   void verifyDeoptimizeCallingConvs();
569 
570   /// Verify all-or-nothing property of DIFile source attribute within a CU.
571   void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
572 
573   /// Verify the llvm.experimental.noalias.scope.decl declarations
574   void verifyNoAliasScopeDecl();
575 };
576 
577 } // end anonymous namespace
578 
579 /// We know that cond should be true, if not print an error message.
580 #define Assert(C, ...) \
581   do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
582 
583 /// We know that a debug info condition should be true, if not print
584 /// an error message.
585 #define AssertDI(C, ...) \
586   do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
587 
visit(Instruction & I)588 void Verifier::visit(Instruction &I) {
589   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
590     Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
591   InstVisitor<Verifier>::visit(I);
592 }
593 
594 // Helper to recursively iterate over indirect users. By
595 // returning false, the callback can ask to stop recursing
596 // further.
forEachUser(const Value * User,SmallPtrSet<const Value *,32> & Visited,llvm::function_ref<bool (const Value *)> Callback)597 static void forEachUser(const Value *User,
598                         SmallPtrSet<const Value *, 32> &Visited,
599                         llvm::function_ref<bool(const Value *)> Callback) {
600   if (!Visited.insert(User).second)
601     return;
602   for (const Value *TheNextUser : User->materialized_users())
603     if (Callback(TheNextUser))
604       forEachUser(TheNextUser, Visited, Callback);
605 }
606 
visitGlobalValue(const GlobalValue & GV)607 void Verifier::visitGlobalValue(const GlobalValue &GV) {
608   Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
609          "Global is external, but doesn't have external or weak linkage!", &GV);
610 
611   if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV))
612     Assert(GO->getAlignment() <= Value::MaximumAlignment,
613            "huge alignment values are unsupported", GO);
614   Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
615          "Only global variables can have appending linkage!", &GV);
616 
617   if (GV.hasAppendingLinkage()) {
618     const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
619     Assert(GVar && GVar->getValueType()->isArrayTy(),
620            "Only global arrays can have appending linkage!", GVar);
621   }
622 
623   if (GV.isDeclarationForLinker())
624     Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
625 
626   if (GV.hasDLLImportStorageClass()) {
627     Assert(!GV.isDSOLocal(),
628            "GlobalValue with DLLImport Storage is dso_local!", &GV);
629 
630     Assert((GV.isDeclaration() &&
631             (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||
632                GV.hasAvailableExternallyLinkage(),
633            "Global is marked as dllimport, but not external", &GV);
634   }
635 
636   if (GV.isImplicitDSOLocal())
637     Assert(GV.isDSOLocal(),
638            "GlobalValue with local linkage or non-default "
639            "visibility must be dso_local!",
640            &GV);
641 
642   forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
643     if (const Instruction *I = dyn_cast<Instruction>(V)) {
644       if (!I->getParent() || !I->getParent()->getParent())
645         CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
646                     I);
647       else if (I->getParent()->getParent()->getParent() != &M)
648         CheckFailed("Global is referenced in a different module!", &GV, &M, I,
649                     I->getParent()->getParent(),
650                     I->getParent()->getParent()->getParent());
651       return false;
652     } else if (const Function *F = dyn_cast<Function>(V)) {
653       if (F->getParent() != &M)
654         CheckFailed("Global is used by function in a different module", &GV, &M,
655                     F, F->getParent());
656       return false;
657     }
658     return true;
659   });
660 }
661 
visitGlobalVariable(const GlobalVariable & GV)662 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
663   if (GV.hasInitializer()) {
664     Assert(GV.getInitializer()->getType() == GV.getValueType(),
665            "Global variable initializer type does not match global "
666            "variable type!",
667            &GV);
668     // If the global has common linkage, it must have a zero initializer and
669     // cannot be constant.
670     if (GV.hasCommonLinkage()) {
671       Assert(GV.getInitializer()->isNullValue(),
672              "'common' global must have a zero initializer!", &GV);
673       Assert(!GV.isConstant(), "'common' global may not be marked constant!",
674              &GV);
675       Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
676     }
677   }
678 
679   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
680                        GV.getName() == "llvm.global_dtors")) {
681     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
682            "invalid linkage for intrinsic global variable", &GV);
683     // Don't worry about emitting an error for it not being an array,
684     // visitGlobalValue will complain on appending non-array.
685     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
686       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
687       PointerType *FuncPtrTy =
688           FunctionType::get(Type::getVoidTy(Context), false)->
689           getPointerTo(DL.getProgramAddressSpace());
690       Assert(STy &&
691                  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
692                  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
693                  STy->getTypeAtIndex(1) == FuncPtrTy,
694              "wrong type for intrinsic global variable", &GV);
695       Assert(STy->getNumElements() == 3,
696              "the third field of the element type is mandatory, "
697              "specify i8* null to migrate from the obsoleted 2-field form");
698       Type *ETy = STy->getTypeAtIndex(2);
699       Assert(ETy->isPointerTy() &&
700                  cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
701              "wrong type for intrinsic global variable", &GV);
702     }
703   }
704 
705   if (GV.hasName() && (GV.getName() == "llvm.used" ||
706                        GV.getName() == "llvm.compiler.used")) {
707     Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
708            "invalid linkage for intrinsic global variable", &GV);
709     Type *GVType = GV.getValueType();
710     if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
711       PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
712       Assert(PTy, "wrong type for intrinsic global variable", &GV);
713       if (GV.hasInitializer()) {
714         const Constant *Init = GV.getInitializer();
715         const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
716         Assert(InitArray, "wrong initalizer for intrinsic global variable",
717                Init);
718         for (Value *Op : InitArray->operands()) {
719           Value *V = Op->stripPointerCasts();
720           Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
721                      isa<GlobalAlias>(V),
722                  "invalid llvm.used member", V);
723           Assert(V->hasName(), "members of llvm.used must be named", V);
724         }
725       }
726     }
727   }
728 
729   // Visit any debug info attachments.
730   SmallVector<MDNode *, 1> MDs;
731   GV.getMetadata(LLVMContext::MD_dbg, MDs);
732   for (auto *MD : MDs) {
733     if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
734       visitDIGlobalVariableExpression(*GVE);
735     else
736       AssertDI(false, "!dbg attachment of global variable must be a "
737                       "DIGlobalVariableExpression");
738   }
739 
740   // Scalable vectors cannot be global variables, since we don't know
741   // the runtime size. If the global is an array containing scalable vectors,
742   // that will be caught by the isValidElementType methods in StructType or
743   // ArrayType instead.
744   Assert(!isa<ScalableVectorType>(GV.getValueType()),
745          "Globals cannot contain scalable vectors", &GV);
746 
747   if (auto *STy = dyn_cast<StructType>(GV.getValueType()))
748     Assert(!STy->containsScalableVectorType(),
749            "Globals cannot contain scalable vectors", &GV);
750 
751   if (!GV.hasInitializer()) {
752     visitGlobalValue(GV);
753     return;
754   }
755 
756   // Walk any aggregate initializers looking for bitcasts between address spaces
757   visitConstantExprsRecursively(GV.getInitializer());
758 
759   visitGlobalValue(GV);
760 }
761 
visitAliaseeSubExpr(const GlobalAlias & GA,const Constant & C)762 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
763   SmallPtrSet<const GlobalAlias*, 4> Visited;
764   Visited.insert(&GA);
765   visitAliaseeSubExpr(Visited, GA, C);
766 }
767 
visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias * > & Visited,const GlobalAlias & GA,const Constant & C)768 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
769                                    const GlobalAlias &GA, const Constant &C) {
770   if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
771     Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
772            &GA);
773 
774     if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
775       Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
776 
777       Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
778              &GA);
779     } else {
780       // Only continue verifying subexpressions of GlobalAliases.
781       // Do not recurse into global initializers.
782       return;
783     }
784   }
785 
786   if (const auto *CE = dyn_cast<ConstantExpr>(&C))
787     visitConstantExprsRecursively(CE);
788 
789   for (const Use &U : C.operands()) {
790     Value *V = &*U;
791     if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
792       visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
793     else if (const auto *C2 = dyn_cast<Constant>(V))
794       visitAliaseeSubExpr(Visited, GA, *C2);
795   }
796 }
797 
visitGlobalAlias(const GlobalAlias & GA)798 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
799   Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
800          "Alias should have private, internal, linkonce, weak, linkonce_odr, "
801          "weak_odr, or external linkage!",
802          &GA);
803   const Constant *Aliasee = GA.getAliasee();
804   Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
805   Assert(GA.getType() == Aliasee->getType(),
806          "Alias and aliasee types should match!", &GA);
807 
808   Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
809          "Aliasee should be either GlobalValue or ConstantExpr", &GA);
810 
811   visitAliaseeSubExpr(GA, *Aliasee);
812 
813   visitGlobalValue(GA);
814 }
815 
visitNamedMDNode(const NamedMDNode & NMD)816 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
817   // There used to be various other llvm.dbg.* nodes, but we don't support
818   // upgrading them and we want to reserve the namespace for future uses.
819   if (NMD.getName().startswith("llvm.dbg."))
820     AssertDI(NMD.getName() == "llvm.dbg.cu",
821              "unrecognized named metadata node in the llvm.dbg namespace",
822              &NMD);
823   for (const MDNode *MD : NMD.operands()) {
824     if (NMD.getName() == "llvm.dbg.cu")
825       AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
826 
827     if (!MD)
828       continue;
829 
830     visitMDNode(*MD, AreDebugLocsAllowed::Yes);
831   }
832 }
833 
visitMDNode(const MDNode & MD,AreDebugLocsAllowed AllowLocs)834 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
835   // Only visit each node once.  Metadata can be mutually recursive, so this
836   // avoids infinite recursion here, as well as being an optimization.
837   if (!MDNodes.insert(&MD).second)
838     return;
839 
840   Assert(&MD.getContext() == &Context,
841          "MDNode context does not match Module context!", &MD);
842 
843   switch (MD.getMetadataID()) {
844   default:
845     llvm_unreachable("Invalid MDNode subclass");
846   case Metadata::MDTupleKind:
847     break;
848 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
849   case Metadata::CLASS##Kind:                                                  \
850     visit##CLASS(cast<CLASS>(MD));                                             \
851     break;
852 #include "llvm/IR/Metadata.def"
853   }
854 
855   for (const Metadata *Op : MD.operands()) {
856     if (!Op)
857       continue;
858     Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
859            &MD, Op);
860     AssertDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
861              "DILocation not allowed within this metadata node", &MD, Op);
862     if (auto *N = dyn_cast<MDNode>(Op)) {
863       visitMDNode(*N, AllowLocs);
864       continue;
865     }
866     if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
867       visitValueAsMetadata(*V, nullptr);
868       continue;
869     }
870   }
871 
872   // Check these last, so we diagnose problems in operands first.
873   Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
874   Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
875 }
876 
visitValueAsMetadata(const ValueAsMetadata & MD,Function * F)877 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
878   Assert(MD.getValue(), "Expected valid value", &MD);
879   Assert(!MD.getValue()->getType()->isMetadataTy(),
880          "Unexpected metadata round-trip through values", &MD, MD.getValue());
881 
882   auto *L = dyn_cast<LocalAsMetadata>(&MD);
883   if (!L)
884     return;
885 
886   Assert(F, "function-local metadata used outside a function", L);
887 
888   // If this was an instruction, bb, or argument, verify that it is in the
889   // function that we expect.
890   Function *ActualF = nullptr;
891   if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
892     Assert(I->getParent(), "function-local metadata not in basic block", L, I);
893     ActualF = I->getParent()->getParent();
894   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
895     ActualF = BB->getParent();
896   else if (Argument *A = dyn_cast<Argument>(L->getValue()))
897     ActualF = A->getParent();
898   assert(ActualF && "Unimplemented function local metadata case!");
899 
900   Assert(ActualF == F, "function-local metadata used in wrong function", L);
901 }
902 
visitMetadataAsValue(const MetadataAsValue & MDV,Function * F)903 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
904   Metadata *MD = MDV.getMetadata();
905   if (auto *N = dyn_cast<MDNode>(MD)) {
906     visitMDNode(*N, AreDebugLocsAllowed::No);
907     return;
908   }
909 
910   // Only visit each node once.  Metadata can be mutually recursive, so this
911   // avoids infinite recursion here, as well as being an optimization.
912   if (!MDNodes.insert(MD).second)
913     return;
914 
915   if (auto *V = dyn_cast<ValueAsMetadata>(MD))
916     visitValueAsMetadata(*V, F);
917 }
918 
isType(const Metadata * MD)919 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
isScope(const Metadata * MD)920 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
isDINode(const Metadata * MD)921 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
922 
visitDILocation(const DILocation & N)923 void Verifier::visitDILocation(const DILocation &N) {
924   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
925            "location requires a valid scope", &N, N.getRawScope());
926   if (auto *IA = N.getRawInlinedAt())
927     AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
928   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
929     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
930 }
931 
visitGenericDINode(const GenericDINode & N)932 void Verifier::visitGenericDINode(const GenericDINode &N) {
933   AssertDI(N.getTag(), "invalid tag", &N);
934 }
935 
visitDIScope(const DIScope & N)936 void Verifier::visitDIScope(const DIScope &N) {
937   if (auto *F = N.getRawFile())
938     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
939 }
940 
visitDISubrange(const DISubrange & N)941 void Verifier::visitDISubrange(const DISubrange &N) {
942   AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
943   bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang);
944   AssertDI(HasAssumedSizedArraySupport || N.getRawCountNode() ||
945                N.getRawUpperBound(),
946            "Subrange must contain count or upperBound", &N);
947   AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),
948            "Subrange can have any one of count or upperBound", &N);
949   auto *CBound = N.getRawCountNode();
950   AssertDI(!CBound || isa<ConstantAsMetadata>(CBound) ||
951                isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
952            "Count must be signed constant or DIVariable or DIExpression", &N);
953   auto Count = N.getCount();
954   AssertDI(!Count || !Count.is<ConstantInt *>() ||
955                Count.get<ConstantInt *>()->getSExtValue() >= -1,
956            "invalid subrange count", &N);
957   auto *LBound = N.getRawLowerBound();
958   AssertDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
959                isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
960            "LowerBound must be signed constant or DIVariable or DIExpression",
961            &N);
962   auto *UBound = N.getRawUpperBound();
963   AssertDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
964                isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
965            "UpperBound must be signed constant or DIVariable or DIExpression",
966            &N);
967   auto *Stride = N.getRawStride();
968   AssertDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
969                isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
970            "Stride must be signed constant or DIVariable or DIExpression", &N);
971 }
972 
visitDIGenericSubrange(const DIGenericSubrange & N)973 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) {
974   AssertDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N);
975   AssertDI(N.getRawCountNode() || N.getRawUpperBound(),
976            "GenericSubrange must contain count or upperBound", &N);
977   AssertDI(!N.getRawCountNode() || !N.getRawUpperBound(),
978            "GenericSubrange can have any one of count or upperBound", &N);
979   auto *CBound = N.getRawCountNode();
980   AssertDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
981            "Count must be signed constant or DIVariable or DIExpression", &N);
982   auto *LBound = N.getRawLowerBound();
983   AssertDI(LBound, "GenericSubrange must contain lowerBound", &N);
984   AssertDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
985            "LowerBound must be signed constant or DIVariable or DIExpression",
986            &N);
987   auto *UBound = N.getRawUpperBound();
988   AssertDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
989            "UpperBound must be signed constant or DIVariable or DIExpression",
990            &N);
991   auto *Stride = N.getRawStride();
992   AssertDI(Stride, "GenericSubrange must contain stride", &N);
993   AssertDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
994            "Stride must be signed constant or DIVariable or DIExpression", &N);
995 }
996 
visitDIEnumerator(const DIEnumerator & N)997 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
998   AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
999 }
1000 
visitDIBasicType(const DIBasicType & N)1001 void Verifier::visitDIBasicType(const DIBasicType &N) {
1002   AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
1003                N.getTag() == dwarf::DW_TAG_unspecified_type ||
1004                N.getTag() == dwarf::DW_TAG_string_type,
1005            "invalid tag", &N);
1006 }
1007 
visitDIStringType(const DIStringType & N)1008 void Verifier::visitDIStringType(const DIStringType &N) {
1009   AssertDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N);
1010   AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
1011             "has conflicting flags", &N);
1012 }
1013 
visitDIDerivedType(const DIDerivedType & N)1014 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
1015   // Common scope checks.
1016   visitDIScope(N);
1017 
1018   AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
1019                N.getTag() == dwarf::DW_TAG_pointer_type ||
1020                N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
1021                N.getTag() == dwarf::DW_TAG_reference_type ||
1022                N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
1023                N.getTag() == dwarf::DW_TAG_const_type ||
1024                N.getTag() == dwarf::DW_TAG_volatile_type ||
1025                N.getTag() == dwarf::DW_TAG_restrict_type ||
1026                N.getTag() == dwarf::DW_TAG_atomic_type ||
1027                N.getTag() == dwarf::DW_TAG_member ||
1028                N.getTag() == dwarf::DW_TAG_inheritance ||
1029                N.getTag() == dwarf::DW_TAG_friend ||
1030                N.getTag() == dwarf::DW_TAG_set_type,
1031            "invalid tag", &N);
1032   if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
1033     AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
1034              N.getRawExtraData());
1035   }
1036 
1037   if (N.getTag() == dwarf::DW_TAG_set_type) {
1038     if (auto *T = N.getRawBaseType()) {
1039       auto *Enum = dyn_cast_or_null<DICompositeType>(T);
1040       auto *Basic = dyn_cast_or_null<DIBasicType>(T);
1041       AssertDI(
1042           (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
1043               (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
1044                          Basic->getEncoding() == dwarf::DW_ATE_signed ||
1045                          Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
1046                          Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
1047                          Basic->getEncoding() == dwarf::DW_ATE_boolean)),
1048           "invalid set base type", &N, T);
1049     }
1050   }
1051 
1052   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1053   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
1054            N.getRawBaseType());
1055 
1056   if (N.getDWARFAddressSpace()) {
1057     AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
1058                  N.getTag() == dwarf::DW_TAG_reference_type ||
1059                  N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
1060              "DWARF address space only applies to pointer or reference types",
1061              &N);
1062   }
1063 }
1064 
1065 /// Detect mutually exclusive flags.
hasConflictingReferenceFlags(unsigned Flags)1066 static bool hasConflictingReferenceFlags(unsigned Flags) {
1067   return ((Flags & DINode::FlagLValueReference) &&
1068           (Flags & DINode::FlagRValueReference)) ||
1069          ((Flags & DINode::FlagTypePassByValue) &&
1070           (Flags & DINode::FlagTypePassByReference));
1071 }
1072 
visitTemplateParams(const MDNode & N,const Metadata & RawParams)1073 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
1074   auto *Params = dyn_cast<MDTuple>(&RawParams);
1075   AssertDI(Params, "invalid template params", &N, &RawParams);
1076   for (Metadata *Op : Params->operands()) {
1077     AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
1078              &N, Params, Op);
1079   }
1080 }
1081 
visitDICompositeType(const DICompositeType & N)1082 void Verifier::visitDICompositeType(const DICompositeType &N) {
1083   // Common scope checks.
1084   visitDIScope(N);
1085 
1086   AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
1087                N.getTag() == dwarf::DW_TAG_structure_type ||
1088                N.getTag() == dwarf::DW_TAG_union_type ||
1089                N.getTag() == dwarf::DW_TAG_enumeration_type ||
1090                N.getTag() == dwarf::DW_TAG_class_type ||
1091                N.getTag() == dwarf::DW_TAG_variant_part,
1092            "invalid tag", &N);
1093 
1094   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1095   AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
1096            N.getRawBaseType());
1097 
1098   AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
1099            "invalid composite elements", &N, N.getRawElements());
1100   AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
1101            N.getRawVTableHolder());
1102   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1103            "invalid reference flags", &N);
1104   unsigned DIBlockByRefStruct = 1 << 4;
1105   AssertDI((N.getFlags() & DIBlockByRefStruct) == 0,
1106            "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
1107 
1108   if (N.isVector()) {
1109     const DINodeArray Elements = N.getElements();
1110     AssertDI(Elements.size() == 1 &&
1111              Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1112              "invalid vector, expected one element of type subrange", &N);
1113   }
1114 
1115   if (auto *Params = N.getRawTemplateParams())
1116     visitTemplateParams(N, *Params);
1117 
1118   if (auto *D = N.getRawDiscriminator()) {
1119     AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1120              "discriminator can only appear on variant part");
1121   }
1122 
1123   if (N.getRawDataLocation()) {
1124     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1125              "dataLocation can only appear in array type");
1126   }
1127 
1128   if (N.getRawAssociated()) {
1129     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1130              "associated can only appear in array type");
1131   }
1132 
1133   if (N.getRawAllocated()) {
1134     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1135              "allocated can only appear in array type");
1136   }
1137 
1138   if (N.getRawRank()) {
1139     AssertDI(N.getTag() == dwarf::DW_TAG_array_type,
1140              "rank can only appear in array type");
1141   }
1142 }
1143 
visitDISubroutineType(const DISubroutineType & N)1144 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1145   AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1146   if (auto *Types = N.getRawTypeArray()) {
1147     AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1148     for (Metadata *Ty : N.getTypeArray()->operands()) {
1149       AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1150     }
1151   }
1152   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1153            "invalid reference flags", &N);
1154 }
1155 
visitDIFile(const DIFile & N)1156 void Verifier::visitDIFile(const DIFile &N) {
1157   AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1158   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1159   if (Checksum) {
1160     AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1161              "invalid checksum kind", &N);
1162     size_t Size;
1163     switch (Checksum->Kind) {
1164     case DIFile::CSK_MD5:
1165       Size = 32;
1166       break;
1167     case DIFile::CSK_SHA1:
1168       Size = 40;
1169       break;
1170     case DIFile::CSK_SHA256:
1171       Size = 64;
1172       break;
1173     }
1174     AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1175     AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1176              "invalid checksum", &N);
1177   }
1178 }
1179 
visitDICompileUnit(const DICompileUnit & N)1180 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1181   AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1182   AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1183 
1184   // Don't bother verifying the compilation directory or producer string
1185   // as those could be empty.
1186   AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1187            N.getRawFile());
1188   AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1189            N.getFile());
1190 
1191   CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage();
1192 
1193   verifySourceDebugInfo(N, *N.getFile());
1194 
1195   AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1196            "invalid emission kind", &N);
1197 
1198   if (auto *Array = N.getRawEnumTypes()) {
1199     AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1200     for (Metadata *Op : N.getEnumTypes()->operands()) {
1201       auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1202       AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1203                "invalid enum type", &N, N.getEnumTypes(), Op);
1204     }
1205   }
1206   if (auto *Array = N.getRawRetainedTypes()) {
1207     AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1208     for (Metadata *Op : N.getRetainedTypes()->operands()) {
1209       AssertDI(Op && (isa<DIType>(Op) ||
1210                       (isa<DISubprogram>(Op) &&
1211                        !cast<DISubprogram>(Op)->isDefinition())),
1212                "invalid retained type", &N, Op);
1213     }
1214   }
1215   if (auto *Array = N.getRawGlobalVariables()) {
1216     AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1217     for (Metadata *Op : N.getGlobalVariables()->operands()) {
1218       AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1219                "invalid global variable ref", &N, Op);
1220     }
1221   }
1222   if (auto *Array = N.getRawImportedEntities()) {
1223     AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1224     for (Metadata *Op : N.getImportedEntities()->operands()) {
1225       AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1226                &N, Op);
1227     }
1228   }
1229   if (auto *Array = N.getRawMacros()) {
1230     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1231     for (Metadata *Op : N.getMacros()->operands()) {
1232       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1233     }
1234   }
1235   CUVisited.insert(&N);
1236 }
1237 
visitDISubprogram(const DISubprogram & N)1238 void Verifier::visitDISubprogram(const DISubprogram &N) {
1239   AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1240   AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1241   if (auto *F = N.getRawFile())
1242     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1243   else
1244     AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1245   if (auto *T = N.getRawType())
1246     AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1247   AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1248            N.getRawContainingType());
1249   if (auto *Params = N.getRawTemplateParams())
1250     visitTemplateParams(N, *Params);
1251   if (auto *S = N.getRawDeclaration())
1252     AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1253              "invalid subprogram declaration", &N, S);
1254   if (auto *RawNode = N.getRawRetainedNodes()) {
1255     auto *Node = dyn_cast<MDTuple>(RawNode);
1256     AssertDI(Node, "invalid retained nodes list", &N, RawNode);
1257     for (Metadata *Op : Node->operands()) {
1258       AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1259                "invalid retained nodes, expected DILocalVariable or DILabel",
1260                &N, Node, Op);
1261     }
1262   }
1263   AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1264            "invalid reference flags", &N);
1265 
1266   auto *Unit = N.getRawUnit();
1267   if (N.isDefinition()) {
1268     // Subprogram definitions (not part of the type hierarchy).
1269     AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1270     AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1271     AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1272     if (N.getFile())
1273       verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1274   } else {
1275     // Subprogram declarations (part of the type hierarchy).
1276     AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1277   }
1278 
1279   if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1280     auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1281     AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1282     for (Metadata *Op : ThrownTypes->operands())
1283       AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1284                Op);
1285   }
1286 
1287   if (N.areAllCallsDescribed())
1288     AssertDI(N.isDefinition(),
1289              "DIFlagAllCallsDescribed must be attached to a definition");
1290 }
1291 
visitDILexicalBlockBase(const DILexicalBlockBase & N)1292 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1293   AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1294   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1295            "invalid local scope", &N, N.getRawScope());
1296   if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1297     AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1298 }
1299 
visitDILexicalBlock(const DILexicalBlock & N)1300 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1301   visitDILexicalBlockBase(N);
1302 
1303   AssertDI(N.getLine() || !N.getColumn(),
1304            "cannot have column info without line info", &N);
1305 }
1306 
visitDILexicalBlockFile(const DILexicalBlockFile & N)1307 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1308   visitDILexicalBlockBase(N);
1309 }
1310 
visitDICommonBlock(const DICommonBlock & N)1311 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1312   AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1313   if (auto *S = N.getRawScope())
1314     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1315   if (auto *S = N.getRawDecl())
1316     AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1317 }
1318 
visitDINamespace(const DINamespace & N)1319 void Verifier::visitDINamespace(const DINamespace &N) {
1320   AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1321   if (auto *S = N.getRawScope())
1322     AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1323 }
1324 
visitDIMacro(const DIMacro & N)1325 void Verifier::visitDIMacro(const DIMacro &N) {
1326   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1327                N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1328            "invalid macinfo type", &N);
1329   AssertDI(!N.getName().empty(), "anonymous macro", &N);
1330   if (!N.getValue().empty()) {
1331     assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1332   }
1333 }
1334 
visitDIMacroFile(const DIMacroFile & N)1335 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1336   AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1337            "invalid macinfo type", &N);
1338   if (auto *F = N.getRawFile())
1339     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1340 
1341   if (auto *Array = N.getRawElements()) {
1342     AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1343     for (Metadata *Op : N.getElements()->operands()) {
1344       AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1345     }
1346   }
1347 }
1348 
visitDIArgList(const DIArgList & N)1349 void Verifier::visitDIArgList(const DIArgList &N) {
1350   AssertDI(!N.getNumOperands(),
1351            "DIArgList should have no operands other than a list of "
1352            "ValueAsMetadata",
1353            &N);
1354 }
1355 
visitDIModule(const DIModule & N)1356 void Verifier::visitDIModule(const DIModule &N) {
1357   AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1358   AssertDI(!N.getName().empty(), "anonymous module", &N);
1359 }
1360 
visitDITemplateParameter(const DITemplateParameter & N)1361 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1362   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1363 }
1364 
visitDITemplateTypeParameter(const DITemplateTypeParameter & N)1365 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1366   visitDITemplateParameter(N);
1367 
1368   AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1369            &N);
1370 }
1371 
visitDITemplateValueParameter(const DITemplateValueParameter & N)1372 void Verifier::visitDITemplateValueParameter(
1373     const DITemplateValueParameter &N) {
1374   visitDITemplateParameter(N);
1375 
1376   AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1377                N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1378                N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1379            "invalid tag", &N);
1380 }
1381 
visitDIVariable(const DIVariable & N)1382 void Verifier::visitDIVariable(const DIVariable &N) {
1383   if (auto *S = N.getRawScope())
1384     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1385   if (auto *F = N.getRawFile())
1386     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1387 }
1388 
visitDIGlobalVariable(const DIGlobalVariable & N)1389 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1390   // Checks common to all variables.
1391   visitDIVariable(N);
1392 
1393   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1394   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1395   // Assert only if the global variable is not an extern
1396   if (N.isDefinition())
1397     AssertDI(N.getType(), "missing global variable type", &N);
1398   if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1399     AssertDI(isa<DIDerivedType>(Member),
1400              "invalid static data member declaration", &N, Member);
1401   }
1402 }
1403 
visitDILocalVariable(const DILocalVariable & N)1404 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1405   // Checks common to all variables.
1406   visitDIVariable(N);
1407 
1408   AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1409   AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1410   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1411            "local variable requires a valid scope", &N, N.getRawScope());
1412   if (auto Ty = N.getType())
1413     AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1414 }
1415 
visitDILabel(const DILabel & N)1416 void Verifier::visitDILabel(const DILabel &N) {
1417   if (auto *S = N.getRawScope())
1418     AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1419   if (auto *F = N.getRawFile())
1420     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1421 
1422   AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1423   AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1424            "label requires a valid scope", &N, N.getRawScope());
1425 }
1426 
visitDIExpression(const DIExpression & N)1427 void Verifier::visitDIExpression(const DIExpression &N) {
1428   AssertDI(N.isValid(), "invalid expression", &N);
1429 }
1430 
visitDIGlobalVariableExpression(const DIGlobalVariableExpression & GVE)1431 void Verifier::visitDIGlobalVariableExpression(
1432     const DIGlobalVariableExpression &GVE) {
1433   AssertDI(GVE.getVariable(), "missing variable");
1434   if (auto *Var = GVE.getVariable())
1435     visitDIGlobalVariable(*Var);
1436   if (auto *Expr = GVE.getExpression()) {
1437     visitDIExpression(*Expr);
1438     if (auto Fragment = Expr->getFragmentInfo())
1439       verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1440   }
1441 }
1442 
visitDIObjCProperty(const DIObjCProperty & N)1443 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1444   AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1445   if (auto *T = N.getRawType())
1446     AssertDI(isType(T), "invalid type ref", &N, T);
1447   if (auto *F = N.getRawFile())
1448     AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1449 }
1450 
visitDIImportedEntity(const DIImportedEntity & N)1451 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1452   AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1453                N.getTag() == dwarf::DW_TAG_imported_declaration,
1454            "invalid tag", &N);
1455   if (auto *S = N.getRawScope())
1456     AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1457   AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1458            N.getRawEntity());
1459 }
1460 
visitComdat(const Comdat & C)1461 void Verifier::visitComdat(const Comdat &C) {
1462   // In COFF the Module is invalid if the GlobalValue has private linkage.
1463   // Entities with private linkage don't have entries in the symbol table.
1464   if (TT.isOSBinFormatCOFF())
1465     if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1466       Assert(!GV->hasPrivateLinkage(),
1467              "comdat global value has private linkage", GV);
1468 }
1469 
visitModuleIdents(const Module & M)1470 void Verifier::visitModuleIdents(const Module &M) {
1471   const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1472   if (!Idents)
1473     return;
1474 
1475   // llvm.ident takes a list of metadata entry. Each entry has only one string.
1476   // Scan each llvm.ident entry and make sure that this requirement is met.
1477   for (const MDNode *N : Idents->operands()) {
1478     Assert(N->getNumOperands() == 1,
1479            "incorrect number of operands in llvm.ident metadata", N);
1480     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1481            ("invalid value for llvm.ident metadata entry operand"
1482             "(the operand should be a string)"),
1483            N->getOperand(0));
1484   }
1485 }
1486 
visitModuleCommandLines(const Module & M)1487 void Verifier::visitModuleCommandLines(const Module &M) {
1488   const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1489   if (!CommandLines)
1490     return;
1491 
1492   // llvm.commandline takes a list of metadata entry. Each entry has only one
1493   // string. Scan each llvm.commandline entry and make sure that this
1494   // requirement is met.
1495   for (const MDNode *N : CommandLines->operands()) {
1496     Assert(N->getNumOperands() == 1,
1497            "incorrect number of operands in llvm.commandline metadata", N);
1498     Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1499            ("invalid value for llvm.commandline metadata entry operand"
1500             "(the operand should be a string)"),
1501            N->getOperand(0));
1502   }
1503 }
1504 
visitModuleFlags(const Module & M)1505 void Verifier::visitModuleFlags(const Module &M) {
1506   const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1507   if (!Flags) return;
1508 
1509   // Scan each flag, and track the flags and requirements.
1510   DenseMap<const MDString*, const MDNode*> SeenIDs;
1511   SmallVector<const MDNode*, 16> Requirements;
1512   for (const MDNode *MDN : Flags->operands())
1513     visitModuleFlag(MDN, SeenIDs, Requirements);
1514 
1515   // Validate that the requirements in the module are valid.
1516   for (const MDNode *Requirement : Requirements) {
1517     const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1518     const Metadata *ReqValue = Requirement->getOperand(1);
1519 
1520     const MDNode *Op = SeenIDs.lookup(Flag);
1521     if (!Op) {
1522       CheckFailed("invalid requirement on flag, flag is not present in module",
1523                   Flag);
1524       continue;
1525     }
1526 
1527     if (Op->getOperand(2) != ReqValue) {
1528       CheckFailed(("invalid requirement on flag, "
1529                    "flag does not have the required value"),
1530                   Flag);
1531       continue;
1532     }
1533   }
1534 }
1535 
1536 void
visitModuleFlag(const MDNode * Op,DenseMap<const MDString *,const MDNode * > & SeenIDs,SmallVectorImpl<const MDNode * > & Requirements)1537 Verifier::visitModuleFlag(const MDNode *Op,
1538                           DenseMap<const MDString *, const MDNode *> &SeenIDs,
1539                           SmallVectorImpl<const MDNode *> &Requirements) {
1540   // Each module flag should have three arguments, the merge behavior (a
1541   // constant int), the flag ID (an MDString), and the value.
1542   Assert(Op->getNumOperands() == 3,
1543          "incorrect number of operands in module flag", Op);
1544   Module::ModFlagBehavior MFB;
1545   if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1546     Assert(
1547         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1548         "invalid behavior operand in module flag (expected constant integer)",
1549         Op->getOperand(0));
1550     Assert(false,
1551            "invalid behavior operand in module flag (unexpected constant)",
1552            Op->getOperand(0));
1553   }
1554   MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1555   Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1556          Op->getOperand(1));
1557 
1558   // Sanity check the values for behaviors with additional requirements.
1559   switch (MFB) {
1560   case Module::Error:
1561   case Module::Warning:
1562   case Module::Override:
1563     // These behavior types accept any value.
1564     break;
1565 
1566   case Module::Max: {
1567     Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1568            "invalid value for 'max' module flag (expected constant integer)",
1569            Op->getOperand(2));
1570     break;
1571   }
1572 
1573   case Module::Require: {
1574     // The value should itself be an MDNode with two operands, a flag ID (an
1575     // MDString), and a value.
1576     MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1577     Assert(Value && Value->getNumOperands() == 2,
1578            "invalid value for 'require' module flag (expected metadata pair)",
1579            Op->getOperand(2));
1580     Assert(isa<MDString>(Value->getOperand(0)),
1581            ("invalid value for 'require' module flag "
1582             "(first value operand should be a string)"),
1583            Value->getOperand(0));
1584 
1585     // Append it to the list of requirements, to check once all module flags are
1586     // scanned.
1587     Requirements.push_back(Value);
1588     break;
1589   }
1590 
1591   case Module::Append:
1592   case Module::AppendUnique: {
1593     // These behavior types require the operand be an MDNode.
1594     Assert(isa<MDNode>(Op->getOperand(2)),
1595            "invalid value for 'append'-type module flag "
1596            "(expected a metadata node)",
1597            Op->getOperand(2));
1598     break;
1599   }
1600   }
1601 
1602   // Unless this is a "requires" flag, check the ID is unique.
1603   if (MFB != Module::Require) {
1604     bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1605     Assert(Inserted,
1606            "module flag identifiers must be unique (or of 'require' type)", ID);
1607   }
1608 
1609   if (ID->getString() == "wchar_size") {
1610     ConstantInt *Value
1611       = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1612     Assert(Value, "wchar_size metadata requires constant integer argument");
1613   }
1614 
1615   if (ID->getString() == "Linker Options") {
1616     // If the llvm.linker.options named metadata exists, we assume that the
1617     // bitcode reader has upgraded the module flag. Otherwise the flag might
1618     // have been created by a client directly.
1619     Assert(M.getNamedMetadata("llvm.linker.options"),
1620            "'Linker Options' named metadata no longer supported");
1621   }
1622 
1623   if (ID->getString() == "SemanticInterposition") {
1624     ConstantInt *Value =
1625         mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1626     Assert(Value,
1627            "SemanticInterposition metadata requires constant integer argument");
1628   }
1629 
1630   if (ID->getString() == "CG Profile") {
1631     for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1632       visitModuleFlagCGProfileEntry(MDO);
1633   }
1634 }
1635 
visitModuleFlagCGProfileEntry(const MDOperand & MDO)1636 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1637   auto CheckFunction = [&](const MDOperand &FuncMDO) {
1638     if (!FuncMDO)
1639       return;
1640     auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1641     Assert(F && isa<Function>(F->getValue()->stripPointerCasts()),
1642            "expected a Function or null", FuncMDO);
1643   };
1644   auto Node = dyn_cast_or_null<MDNode>(MDO);
1645   Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1646   CheckFunction(Node->getOperand(0));
1647   CheckFunction(Node->getOperand(1));
1648   auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1649   Assert(Count && Count->getType()->isIntegerTy(),
1650          "expected an integer constant", Node->getOperand(2));
1651 }
1652 
1653 /// Return true if this attribute kind only applies to functions.
isFuncOnlyAttr(Attribute::AttrKind Kind)1654 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
1655   switch (Kind) {
1656   case Attribute::NoMerge:
1657   case Attribute::NoReturn:
1658   case Attribute::NoSync:
1659   case Attribute::WillReturn:
1660   case Attribute::NoCallback:
1661   case Attribute::NoCfCheck:
1662   case Attribute::NoUnwind:
1663   case Attribute::NoInline:
1664   case Attribute::AlwaysInline:
1665   case Attribute::OptimizeForSize:
1666   case Attribute::StackProtect:
1667   case Attribute::StackProtectReq:
1668   case Attribute::StackProtectStrong:
1669   case Attribute::SafeStack:
1670   case Attribute::ShadowCallStack:
1671   case Attribute::NoRedZone:
1672   case Attribute::NoImplicitFloat:
1673   case Attribute::Naked:
1674   case Attribute::InlineHint:
1675   case Attribute::UWTable:
1676   case Attribute::VScaleRange:
1677   case Attribute::NonLazyBind:
1678   case Attribute::ReturnsTwice:
1679   case Attribute::SanitizeAddress:
1680   case Attribute::SanitizeHWAddress:
1681   case Attribute::SanitizeMemTag:
1682   case Attribute::SanitizeThread:
1683   case Attribute::SanitizeMemory:
1684   case Attribute::MinSize:
1685   case Attribute::NoDuplicate:
1686   case Attribute::Builtin:
1687   case Attribute::NoBuiltin:
1688   case Attribute::Cold:
1689   case Attribute::Hot:
1690   case Attribute::OptForFuzzing:
1691   case Attribute::OptimizeNone:
1692   case Attribute::JumpTable:
1693   case Attribute::Convergent:
1694   case Attribute::ArgMemOnly:
1695   case Attribute::NoRecurse:
1696   case Attribute::InaccessibleMemOnly:
1697   case Attribute::InaccessibleMemOrArgMemOnly:
1698   case Attribute::AllocSize:
1699   case Attribute::SpeculativeLoadHardening:
1700   case Attribute::Speculatable:
1701   case Attribute::StrictFP:
1702   case Attribute::NullPointerIsValid:
1703   case Attribute::MustProgress:
1704   case Attribute::NoProfile:
1705     return true;
1706   default:
1707     break;
1708   }
1709   return false;
1710 }
1711 
1712 /// Return true if this is a function attribute that can also appear on
1713 /// arguments.
isFuncOrArgAttr(Attribute::AttrKind Kind)1714 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
1715   return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1716          Kind == Attribute::ReadNone || Kind == Attribute::NoFree ||
1717          Kind == Attribute::Preallocated || Kind == Attribute::StackAlignment;
1718 }
1719 
verifyAttributeTypes(AttributeSet Attrs,bool IsFunction,const Value * V)1720 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1721                                     const Value *V) {
1722   for (Attribute A : Attrs) {
1723 
1724     if (A.isStringAttribute()) {
1725 #define GET_ATTR_NAMES
1726 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
1727 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME)                             \
1728   if (A.getKindAsString() == #DISPLAY_NAME) {                                  \
1729     auto V = A.getValueAsString();                                             \
1730     if (!(V.empty() || V == "true" || V == "false"))                           \
1731       CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V +    \
1732                   "");                                                         \
1733   }
1734 
1735 #include "llvm/IR/Attributes.inc"
1736       continue;
1737     }
1738 
1739     if (A.isIntAttribute() !=
1740         Attribute::doesAttrKindHaveArgument(A.getKindAsEnum())) {
1741       CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1742                   V);
1743       return;
1744     }
1745 
1746     if (isFuncOnlyAttr(A.getKindAsEnum())) {
1747       if (!IsFunction) {
1748         CheckFailed("Attribute '" + A.getAsString() +
1749                         "' only applies to functions!",
1750                     V);
1751         return;
1752       }
1753     } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1754       CheckFailed("Attribute '" + A.getAsString() +
1755                       "' does not apply to functions!",
1756                   V);
1757       return;
1758     }
1759   }
1760 }
1761 
1762 // VerifyParameterAttrs - Check the given attributes for an argument or return
1763 // value of the specified type.  The value V is printed in error messages.
verifyParameterAttrs(AttributeSet Attrs,Type * Ty,const Value * V)1764 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1765                                     const Value *V) {
1766   if (!Attrs.hasAttributes())
1767     return;
1768 
1769   verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1770 
1771   if (Attrs.hasAttribute(Attribute::ImmArg)) {
1772     Assert(Attrs.getNumAttributes() == 1,
1773            "Attribute 'immarg' is incompatible with other attributes", V);
1774   }
1775 
1776   // Check for mutually incompatible attributes.  Only inreg is compatible with
1777   // sret.
1778   unsigned AttrCount = 0;
1779   AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1780   AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1781   AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
1782   AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1783                Attrs.hasAttribute(Attribute::InReg);
1784   AttrCount += Attrs.hasAttribute(Attribute::Nest);
1785   AttrCount += Attrs.hasAttribute(Attribute::ByRef);
1786   Assert(AttrCount <= 1,
1787          "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1788          "'byref', and 'sret' are incompatible!",
1789          V);
1790 
1791   Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1792            Attrs.hasAttribute(Attribute::ReadOnly)),
1793          "Attributes "
1794          "'inalloca and readonly' are incompatible!",
1795          V);
1796 
1797   Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1798            Attrs.hasAttribute(Attribute::Returned)),
1799          "Attributes "
1800          "'sret and returned' are incompatible!",
1801          V);
1802 
1803   Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1804            Attrs.hasAttribute(Attribute::SExt)),
1805          "Attributes "
1806          "'zeroext and signext' are incompatible!",
1807          V);
1808 
1809   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1810            Attrs.hasAttribute(Attribute::ReadOnly)),
1811          "Attributes "
1812          "'readnone and readonly' are incompatible!",
1813          V);
1814 
1815   Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1816            Attrs.hasAttribute(Attribute::WriteOnly)),
1817          "Attributes "
1818          "'readnone and writeonly' are incompatible!",
1819          V);
1820 
1821   Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1822            Attrs.hasAttribute(Attribute::WriteOnly)),
1823          "Attributes "
1824          "'readonly and writeonly' are incompatible!",
1825          V);
1826 
1827   Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1828            Attrs.hasAttribute(Attribute::AlwaysInline)),
1829          "Attributes "
1830          "'noinline and alwaysinline' are incompatible!",
1831          V);
1832 
1833   AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1834   Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
1835          "Wrong types for attribute: " +
1836              AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
1837          V);
1838 
1839   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1840     SmallPtrSet<Type*, 4> Visited;
1841     if (!PTy->getElementType()->isSized(&Visited)) {
1842       Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
1843              !Attrs.hasAttribute(Attribute::ByRef) &&
1844              !Attrs.hasAttribute(Attribute::InAlloca) &&
1845              !Attrs.hasAttribute(Attribute::Preallocated),
1846              "Attributes 'byval', 'byref', 'inalloca', and 'preallocated' do not "
1847              "support unsized types!",
1848              V);
1849     }
1850     if (!isa<PointerType>(PTy->getElementType()))
1851       Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1852              "Attribute 'swifterror' only applies to parameters "
1853              "with pointer to pointer type!",
1854              V);
1855 
1856     if (Attrs.hasAttribute(Attribute::ByRef)) {
1857       Assert(Attrs.getByRefType() == PTy->getElementType(),
1858              "Attribute 'byref' type does not match parameter!", V);
1859     }
1860 
1861     if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1862       Assert(Attrs.getByValType() == PTy->getElementType(),
1863              "Attribute 'byval' type does not match parameter!", V);
1864     }
1865 
1866     if (Attrs.hasAttribute(Attribute::Preallocated)) {
1867       Assert(Attrs.getPreallocatedType() == PTy->getElementType(),
1868              "Attribute 'preallocated' type does not match parameter!", V);
1869     }
1870 
1871     if (Attrs.hasAttribute(Attribute::InAlloca)) {
1872       Assert(Attrs.getInAllocaType() == PTy->getElementType(),
1873              "Attribute 'inalloca' type does not match parameter!", V);
1874     }
1875   } else {
1876     Assert(!Attrs.hasAttribute(Attribute::ByVal),
1877            "Attribute 'byval' only applies to parameters with pointer type!",
1878            V);
1879     Assert(!Attrs.hasAttribute(Attribute::ByRef),
1880            "Attribute 'byref' only applies to parameters with pointer type!",
1881            V);
1882     Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1883            "Attribute 'swifterror' only applies to parameters "
1884            "with pointer type!",
1885            V);
1886   }
1887 }
1888 
1889 // Check parameter attributes against a function type.
1890 // The value V is printed in error messages.
verifyFunctionAttrs(FunctionType * FT,AttributeList Attrs,const Value * V,bool IsIntrinsic)1891 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1892                                    const Value *V, bool IsIntrinsic) {
1893   if (Attrs.isEmpty())
1894     return;
1895 
1896   if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) {
1897     Assert(Attrs.hasParentContext(Context),
1898            "Attribute list does not match Module context!", &Attrs, V);
1899     for (const auto &AttrSet : Attrs) {
1900       Assert(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),
1901              "Attribute set does not match Module context!", &AttrSet, V);
1902       for (const auto &A : AttrSet) {
1903         Assert(A.hasParentContext(Context),
1904                "Attribute does not match Module context!", &A, V);
1905       }
1906     }
1907   }
1908 
1909   bool SawNest = false;
1910   bool SawReturned = false;
1911   bool SawSRet = false;
1912   bool SawSwiftSelf = false;
1913   bool SawSwiftAsync = false;
1914   bool SawSwiftError = false;
1915 
1916   // Verify return value attributes.
1917   AttributeSet RetAttrs = Attrs.getRetAttributes();
1918   Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
1919           !RetAttrs.hasAttribute(Attribute::Nest) &&
1920           !RetAttrs.hasAttribute(Attribute::StructRet) &&
1921           !RetAttrs.hasAttribute(Attribute::NoCapture) &&
1922           !RetAttrs.hasAttribute(Attribute::NoFree) &&
1923           !RetAttrs.hasAttribute(Attribute::Returned) &&
1924           !RetAttrs.hasAttribute(Attribute::InAlloca) &&
1925           !RetAttrs.hasAttribute(Attribute::Preallocated) &&
1926           !RetAttrs.hasAttribute(Attribute::ByRef) &&
1927           !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
1928           !RetAttrs.hasAttribute(Attribute::SwiftAsync) &&
1929           !RetAttrs.hasAttribute(Attribute::SwiftError)),
1930          "Attributes 'byval', 'inalloca', 'preallocated', 'byref', "
1931          "'nest', 'sret', 'nocapture', 'nofree', "
1932          "'returned', 'swiftself', 'swiftasync', and 'swifterror'"
1933          " do not apply to return values!",
1934          V);
1935   Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
1936           !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
1937           !RetAttrs.hasAttribute(Attribute::ReadNone)),
1938          "Attribute '" + RetAttrs.getAsString() +
1939              "' does not apply to function returns",
1940          V);
1941   verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1942 
1943   // Verify parameter attributes.
1944   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1945     Type *Ty = FT->getParamType(i);
1946     AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1947 
1948     if (!IsIntrinsic) {
1949       Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
1950              "immarg attribute only applies to intrinsics",V);
1951     }
1952 
1953     verifyParameterAttrs(ArgAttrs, Ty, V);
1954 
1955     if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1956       Assert(!SawNest, "More than one parameter has attribute nest!", V);
1957       SawNest = true;
1958     }
1959 
1960     if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1961       Assert(!SawReturned, "More than one parameter has attribute returned!",
1962              V);
1963       Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1964              "Incompatible argument and return types for 'returned' attribute",
1965              V);
1966       SawReturned = true;
1967     }
1968 
1969     if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1970       Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1971       Assert(i == 0 || i == 1,
1972              "Attribute 'sret' is not on first or second parameter!", V);
1973       SawSRet = true;
1974     }
1975 
1976     if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1977       Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1978       SawSwiftSelf = true;
1979     }
1980 
1981     if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) {
1982       Assert(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V);
1983       SawSwiftAsync = true;
1984     }
1985 
1986     if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1987       Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1988              V);
1989       SawSwiftError = true;
1990     }
1991 
1992     if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1993       Assert(i == FT->getNumParams() - 1,
1994              "inalloca isn't on the last parameter!", V);
1995     }
1996   }
1997 
1998   if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1999     return;
2000 
2001   verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
2002 
2003   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
2004            Attrs.hasFnAttribute(Attribute::ReadOnly)),
2005          "Attributes 'readnone and readonly' are incompatible!", V);
2006 
2007   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
2008            Attrs.hasFnAttribute(Attribute::WriteOnly)),
2009          "Attributes 'readnone and writeonly' are incompatible!", V);
2010 
2011   Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
2012            Attrs.hasFnAttribute(Attribute::WriteOnly)),
2013          "Attributes 'readonly and writeonly' are incompatible!", V);
2014 
2015   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
2016            Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
2017          "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
2018          "incompatible!",
2019          V);
2020 
2021   Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
2022            Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
2023          "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
2024 
2025   Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
2026            Attrs.hasFnAttribute(Attribute::AlwaysInline)),
2027          "Attributes 'noinline and alwaysinline' are incompatible!", V);
2028 
2029   if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
2030     Assert(Attrs.hasFnAttribute(Attribute::NoInline),
2031            "Attribute 'optnone' requires 'noinline'!", V);
2032 
2033     Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
2034            "Attributes 'optsize and optnone' are incompatible!", V);
2035 
2036     Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
2037            "Attributes 'minsize and optnone' are incompatible!", V);
2038   }
2039 
2040   if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
2041     const GlobalValue *GV = cast<GlobalValue>(V);
2042     Assert(GV->hasGlobalUnnamedAddr(),
2043            "Attribute 'jumptable' requires 'unnamed_addr'", V);
2044   }
2045 
2046   if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
2047     std::pair<unsigned, Optional<unsigned>> Args =
2048         Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
2049 
2050     auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
2051       if (ParamNo >= FT->getNumParams()) {
2052         CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
2053         return false;
2054       }
2055 
2056       if (!FT->getParamType(ParamNo)->isIntegerTy()) {
2057         CheckFailed("'allocsize' " + Name +
2058                         " argument must refer to an integer parameter",
2059                     V);
2060         return false;
2061       }
2062 
2063       return true;
2064     };
2065 
2066     if (!CheckParam("element size", Args.first))
2067       return;
2068 
2069     if (Args.second && !CheckParam("number of elements", *Args.second))
2070       return;
2071   }
2072 
2073   if (Attrs.hasFnAttribute(Attribute::VScaleRange)) {
2074     std::pair<unsigned, unsigned> Args =
2075         Attrs.getVScaleRangeArgs(AttributeList::FunctionIndex);
2076 
2077     if (Args.first > Args.second && Args.second != 0)
2078       CheckFailed("'vscale_range' minimum cannot be greater than maximum", V);
2079   }
2080 
2081   if (Attrs.hasFnAttribute("frame-pointer")) {
2082     StringRef FP = Attrs.getAttribute(AttributeList::FunctionIndex,
2083                                       "frame-pointer").getValueAsString();
2084     if (FP != "all" && FP != "non-leaf" && FP != "none")
2085       CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
2086   }
2087 
2088   if (Attrs.hasFnAttribute("patchable-function-prefix")) {
2089     StringRef S = Attrs
2090                       .getAttribute(AttributeList::FunctionIndex,
2091                                     "patchable-function-prefix")
2092                       .getValueAsString();
2093     unsigned N;
2094     if (S.getAsInteger(10, N))
2095       CheckFailed(
2096           "\"patchable-function-prefix\" takes an unsigned integer: " + S, V);
2097   }
2098   if (Attrs.hasFnAttribute("patchable-function-entry")) {
2099     StringRef S = Attrs
2100                       .getAttribute(AttributeList::FunctionIndex,
2101                                     "patchable-function-entry")
2102                       .getValueAsString();
2103     unsigned N;
2104     if (S.getAsInteger(10, N))
2105       CheckFailed(
2106           "\"patchable-function-entry\" takes an unsigned integer: " + S, V);
2107   }
2108 }
2109 
verifyFunctionMetadata(ArrayRef<std::pair<unsigned,MDNode * >> MDs)2110 void Verifier::verifyFunctionMetadata(
2111     ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
2112   for (const auto &Pair : MDs) {
2113     if (Pair.first == LLVMContext::MD_prof) {
2114       MDNode *MD = Pair.second;
2115       Assert(MD->getNumOperands() >= 2,
2116              "!prof annotations should have no less than 2 operands", MD);
2117 
2118       // Check first operand.
2119       Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
2120              MD);
2121       Assert(isa<MDString>(MD->getOperand(0)),
2122              "expected string with name of the !prof annotation", MD);
2123       MDString *MDS = cast<MDString>(MD->getOperand(0));
2124       StringRef ProfName = MDS->getString();
2125       Assert(ProfName.equals("function_entry_count") ||
2126                  ProfName.equals("synthetic_function_entry_count"),
2127              "first operand should be 'function_entry_count'"
2128              " or 'synthetic_function_entry_count'",
2129              MD);
2130 
2131       // Check second operand.
2132       Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
2133              MD);
2134       Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
2135              "expected integer argument to function_entry_count", MD);
2136     }
2137   }
2138 }
2139 
visitConstantExprsRecursively(const Constant * EntryC)2140 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
2141   if (!ConstantExprVisited.insert(EntryC).second)
2142     return;
2143 
2144   SmallVector<const Constant *, 16> Stack;
2145   Stack.push_back(EntryC);
2146 
2147   while (!Stack.empty()) {
2148     const Constant *C = Stack.pop_back_val();
2149 
2150     // Check this constant expression.
2151     if (const auto *CE = dyn_cast<ConstantExpr>(C))
2152       visitConstantExpr(CE);
2153 
2154     if (const auto *GV = dyn_cast<GlobalValue>(C)) {
2155       // Global Values get visited separately, but we do need to make sure
2156       // that the global value is in the correct module
2157       Assert(GV->getParent() == &M, "Referencing global in another module!",
2158              EntryC, &M, GV, GV->getParent());
2159       continue;
2160     }
2161 
2162     // Visit all sub-expressions.
2163     for (const Use &U : C->operands()) {
2164       const auto *OpC = dyn_cast<Constant>(U);
2165       if (!OpC)
2166         continue;
2167       if (!ConstantExprVisited.insert(OpC).second)
2168         continue;
2169       Stack.push_back(OpC);
2170     }
2171   }
2172 }
2173 
visitConstantExpr(const ConstantExpr * CE)2174 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
2175   if (CE->getOpcode() == Instruction::BitCast)
2176     Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
2177                                  CE->getType()),
2178            "Invalid bitcast", CE);
2179 
2180   if (CE->getOpcode() == Instruction::IntToPtr ||
2181       CE->getOpcode() == Instruction::PtrToInt) {
2182     auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
2183                       ? CE->getType()
2184                       : CE->getOperand(0)->getType();
2185     StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
2186                         ? "inttoptr not supported for non-integral pointers"
2187                         : "ptrtoint not supported for non-integral pointers";
2188     Assert(
2189         !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
2190         Msg);
2191   }
2192 }
2193 
verifyAttributeCount(AttributeList Attrs,unsigned Params)2194 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
2195   // There shouldn't be more attribute sets than there are parameters plus the
2196   // function and return value.
2197   return Attrs.getNumAttrSets() <= Params + 2;
2198 }
2199 
2200 /// Verify that statepoint intrinsic is well formed.
verifyStatepoint(const CallBase & Call)2201 void Verifier::verifyStatepoint(const CallBase &Call) {
2202   assert(Call.getCalledFunction() &&
2203          Call.getCalledFunction()->getIntrinsicID() ==
2204              Intrinsic::experimental_gc_statepoint);
2205 
2206   Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
2207              !Call.onlyAccessesArgMemory(),
2208          "gc.statepoint must read and write all memory to preserve "
2209          "reordering restrictions required by safepoint semantics",
2210          Call);
2211 
2212   const int64_t NumPatchBytes =
2213       cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
2214   assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
2215   Assert(NumPatchBytes >= 0,
2216          "gc.statepoint number of patchable bytes must be "
2217          "positive",
2218          Call);
2219 
2220   const Value *Target = Call.getArgOperand(2);
2221   auto *PT = dyn_cast<PointerType>(Target->getType());
2222   Assert(PT && PT->getElementType()->isFunctionTy(),
2223          "gc.statepoint callee must be of function pointer type", Call, Target);
2224   FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
2225 
2226   const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
2227   Assert(NumCallArgs >= 0,
2228          "gc.statepoint number of arguments to underlying call "
2229          "must be positive",
2230          Call);
2231   const int NumParams = (int)TargetFuncType->getNumParams();
2232   if (TargetFuncType->isVarArg()) {
2233     Assert(NumCallArgs >= NumParams,
2234            "gc.statepoint mismatch in number of vararg call args", Call);
2235 
2236     // TODO: Remove this limitation
2237     Assert(TargetFuncType->getReturnType()->isVoidTy(),
2238            "gc.statepoint doesn't support wrapping non-void "
2239            "vararg functions yet",
2240            Call);
2241   } else
2242     Assert(NumCallArgs == NumParams,
2243            "gc.statepoint mismatch in number of call args", Call);
2244 
2245   const uint64_t Flags
2246     = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2247   Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2248          "unknown flag used in gc.statepoint flags argument", Call);
2249 
2250   // Verify that the types of the call parameter arguments match
2251   // the type of the wrapped callee.
2252   AttributeList Attrs = Call.getAttributes();
2253   for (int i = 0; i < NumParams; i++) {
2254     Type *ParamType = TargetFuncType->getParamType(i);
2255     Type *ArgType = Call.getArgOperand(5 + i)->getType();
2256     Assert(ArgType == ParamType,
2257            "gc.statepoint call argument does not match wrapped "
2258            "function type",
2259            Call);
2260 
2261     if (TargetFuncType->isVarArg()) {
2262       AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i);
2263       Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2264              "Attribute 'sret' cannot be used for vararg call arguments!",
2265              Call);
2266     }
2267   }
2268 
2269   const int EndCallArgsInx = 4 + NumCallArgs;
2270 
2271   const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2272   Assert(isa<ConstantInt>(NumTransitionArgsV),
2273          "gc.statepoint number of transition arguments "
2274          "must be constant integer",
2275          Call);
2276   const int NumTransitionArgs =
2277       cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2278   Assert(NumTransitionArgs == 0,
2279          "gc.statepoint w/inline transition bundle is deprecated", Call);
2280   const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2281 
2282   const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2283   Assert(isa<ConstantInt>(NumDeoptArgsV),
2284          "gc.statepoint number of deoptimization arguments "
2285          "must be constant integer",
2286          Call);
2287   const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2288   Assert(NumDeoptArgs == 0,
2289          "gc.statepoint w/inline deopt operands is deprecated", Call);
2290 
2291   const int ExpectedNumArgs = 7 + NumCallArgs;
2292   Assert(ExpectedNumArgs == (int)Call.arg_size(),
2293          "gc.statepoint too many arguments", Call);
2294 
2295   // Check that the only uses of this gc.statepoint are gc.result or
2296   // gc.relocate calls which are tied to this statepoint and thus part
2297   // of the same statepoint sequence
2298   for (const User *U : Call.users()) {
2299     const CallInst *UserCall = dyn_cast<const CallInst>(U);
2300     Assert(UserCall, "illegal use of statepoint token", Call, U);
2301     if (!UserCall)
2302       continue;
2303     Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2304            "gc.result or gc.relocate are the only value uses "
2305            "of a gc.statepoint",
2306            Call, U);
2307     if (isa<GCResultInst>(UserCall)) {
2308       Assert(UserCall->getArgOperand(0) == &Call,
2309              "gc.result connected to wrong gc.statepoint", Call, UserCall);
2310     } else if (isa<GCRelocateInst>(Call)) {
2311       Assert(UserCall->getArgOperand(0) == &Call,
2312              "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2313     }
2314   }
2315 
2316   // Note: It is legal for a single derived pointer to be listed multiple
2317   // times.  It's non-optimal, but it is legal.  It can also happen after
2318   // insertion if we strip a bitcast away.
2319   // Note: It is really tempting to check that each base is relocated and
2320   // that a derived pointer is never reused as a base pointer.  This turns
2321   // out to be problematic since optimizations run after safepoint insertion
2322   // can recognize equality properties that the insertion logic doesn't know
2323   // about.  See example statepoint.ll in the verifier subdirectory
2324 }
2325 
verifyFrameRecoverIndices()2326 void Verifier::verifyFrameRecoverIndices() {
2327   for (auto &Counts : FrameEscapeInfo) {
2328     Function *F = Counts.first;
2329     unsigned EscapedObjectCount = Counts.second.first;
2330     unsigned MaxRecoveredIndex = Counts.second.second;
2331     Assert(MaxRecoveredIndex <= EscapedObjectCount,
2332            "all indices passed to llvm.localrecover must be less than the "
2333            "number of arguments passed to llvm.localescape in the parent "
2334            "function",
2335            F);
2336   }
2337 }
2338 
getSuccPad(Instruction * Terminator)2339 static Instruction *getSuccPad(Instruction *Terminator) {
2340   BasicBlock *UnwindDest;
2341   if (auto *II = dyn_cast<InvokeInst>(Terminator))
2342     UnwindDest = II->getUnwindDest();
2343   else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2344     UnwindDest = CSI->getUnwindDest();
2345   else
2346     UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2347   return UnwindDest->getFirstNonPHI();
2348 }
2349 
verifySiblingFuncletUnwinds()2350 void Verifier::verifySiblingFuncletUnwinds() {
2351   SmallPtrSet<Instruction *, 8> Visited;
2352   SmallPtrSet<Instruction *, 8> Active;
2353   for (const auto &Pair : SiblingFuncletInfo) {
2354     Instruction *PredPad = Pair.first;
2355     if (Visited.count(PredPad))
2356       continue;
2357     Active.insert(PredPad);
2358     Instruction *Terminator = Pair.second;
2359     do {
2360       Instruction *SuccPad = getSuccPad(Terminator);
2361       if (Active.count(SuccPad)) {
2362         // Found a cycle; report error
2363         Instruction *CyclePad = SuccPad;
2364         SmallVector<Instruction *, 8> CycleNodes;
2365         do {
2366           CycleNodes.push_back(CyclePad);
2367           Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2368           if (CycleTerminator != CyclePad)
2369             CycleNodes.push_back(CycleTerminator);
2370           CyclePad = getSuccPad(CycleTerminator);
2371         } while (CyclePad != SuccPad);
2372         Assert(false, "EH pads can't handle each other's exceptions",
2373                ArrayRef<Instruction *>(CycleNodes));
2374       }
2375       // Don't re-walk a node we've already checked
2376       if (!Visited.insert(SuccPad).second)
2377         break;
2378       // Walk to this successor if it has a map entry.
2379       PredPad = SuccPad;
2380       auto TermI = SiblingFuncletInfo.find(PredPad);
2381       if (TermI == SiblingFuncletInfo.end())
2382         break;
2383       Terminator = TermI->second;
2384       Active.insert(PredPad);
2385     } while (true);
2386     // Each node only has one successor, so we've walked all the active
2387     // nodes' successors.
2388     Active.clear();
2389   }
2390 }
2391 
2392 // visitFunction - Verify that a function is ok.
2393 //
visitFunction(const Function & F)2394 void Verifier::visitFunction(const Function &F) {
2395   visitGlobalValue(F);
2396 
2397   // Check function arguments.
2398   FunctionType *FT = F.getFunctionType();
2399   unsigned NumArgs = F.arg_size();
2400 
2401   Assert(&Context == &F.getContext(),
2402          "Function context does not match Module context!", &F);
2403 
2404   Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2405   Assert(FT->getNumParams() == NumArgs,
2406          "# formal arguments must match # of arguments for function type!", &F,
2407          FT);
2408   Assert(F.getReturnType()->isFirstClassType() ||
2409              F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2410          "Functions cannot return aggregate values!", &F);
2411 
2412   Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2413          "Invalid struct return type!", &F);
2414 
2415   AttributeList Attrs = F.getAttributes();
2416 
2417   Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2418          "Attribute after last parameter!", &F);
2419 
2420   bool isLLVMdotName = F.getName().size() >= 5 &&
2421                        F.getName().substr(0, 5) == "llvm.";
2422 
2423   // Check function attributes.
2424   verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName);
2425 
2426   // On function declarations/definitions, we do not support the builtin
2427   // attribute. We do not check this in VerifyFunctionAttrs since that is
2428   // checking for Attributes that can/can not ever be on functions.
2429   Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
2430          "Attribute 'builtin' can only be applied to a callsite.", &F);
2431 
2432   // Check that this function meets the restrictions on this calling convention.
2433   // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2434   // restrictions can be lifted.
2435   switch (F.getCallingConv()) {
2436   default:
2437   case CallingConv::C:
2438     break;
2439   case CallingConv::X86_INTR: {
2440     Assert(F.arg_empty() || Attrs.hasParamAttribute(0, Attribute::ByVal),
2441            "Calling convention parameter requires byval", &F);
2442     break;
2443   }
2444   case CallingConv::AMDGPU_KERNEL:
2445   case CallingConv::SPIR_KERNEL:
2446     Assert(F.getReturnType()->isVoidTy(),
2447            "Calling convention requires void return type", &F);
2448     LLVM_FALLTHROUGH;
2449   case CallingConv::AMDGPU_VS:
2450   case CallingConv::AMDGPU_HS:
2451   case CallingConv::AMDGPU_GS:
2452   case CallingConv::AMDGPU_PS:
2453   case CallingConv::AMDGPU_CS:
2454     Assert(!F.hasStructRetAttr(),
2455            "Calling convention does not allow sret", &F);
2456     if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2457       const unsigned StackAS = DL.getAllocaAddrSpace();
2458       unsigned i = 0;
2459       for (const Argument &Arg : F.args()) {
2460         Assert(!Attrs.hasParamAttribute(i, Attribute::ByVal),
2461                "Calling convention disallows byval", &F);
2462         Assert(!Attrs.hasParamAttribute(i, Attribute::Preallocated),
2463                "Calling convention disallows preallocated", &F);
2464         Assert(!Attrs.hasParamAttribute(i, Attribute::InAlloca),
2465                "Calling convention disallows inalloca", &F);
2466 
2467         if (Attrs.hasParamAttribute(i, Attribute::ByRef)) {
2468           // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2469           // value here.
2470           Assert(Arg.getType()->getPointerAddressSpace() != StackAS,
2471                  "Calling convention disallows stack byref", &F);
2472         }
2473 
2474         ++i;
2475       }
2476     }
2477 
2478     LLVM_FALLTHROUGH;
2479   case CallingConv::Fast:
2480   case CallingConv::Cold:
2481   case CallingConv::Intel_OCL_BI:
2482   case CallingConv::PTX_Kernel:
2483   case CallingConv::PTX_Device:
2484     Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2485                           "perfect forwarding!",
2486            &F);
2487     break;
2488   }
2489 
2490   // Check that the argument values match the function type for this function...
2491   unsigned i = 0;
2492   for (const Argument &Arg : F.args()) {
2493     Assert(Arg.getType() == FT->getParamType(i),
2494            "Argument value does not match function argument type!", &Arg,
2495            FT->getParamType(i));
2496     Assert(Arg.getType()->isFirstClassType(),
2497            "Function arguments must have first-class types!", &Arg);
2498     if (!isLLVMdotName) {
2499       Assert(!Arg.getType()->isMetadataTy(),
2500              "Function takes metadata but isn't an intrinsic", &Arg, &F);
2501       Assert(!Arg.getType()->isTokenTy(),
2502              "Function takes token but isn't an intrinsic", &Arg, &F);
2503       Assert(!Arg.getType()->isX86_AMXTy(),
2504              "Function takes x86_amx but isn't an intrinsic", &Arg, &F);
2505     }
2506 
2507     // Check that swifterror argument is only used by loads and stores.
2508     if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2509       verifySwiftErrorValue(&Arg);
2510     }
2511     ++i;
2512   }
2513 
2514   if (!isLLVMdotName) {
2515     Assert(!F.getReturnType()->isTokenTy(),
2516            "Function returns a token but isn't an intrinsic", &F);
2517     Assert(!F.getReturnType()->isX86_AMXTy(),
2518            "Function returns a x86_amx but isn't an intrinsic", &F);
2519   }
2520 
2521   // Get the function metadata attachments.
2522   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2523   F.getAllMetadata(MDs);
2524   assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2525   verifyFunctionMetadata(MDs);
2526 
2527   // Check validity of the personality function
2528   if (F.hasPersonalityFn()) {
2529     auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2530     if (Per)
2531       Assert(Per->getParent() == F.getParent(),
2532              "Referencing personality function in another module!",
2533              &F, F.getParent(), Per, Per->getParent());
2534   }
2535 
2536   if (F.isMaterializable()) {
2537     // Function has a body somewhere we can't see.
2538     Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2539            MDs.empty() ? nullptr : MDs.front().second);
2540   } else if (F.isDeclaration()) {
2541     for (const auto &I : MDs) {
2542       // This is used for call site debug information.
2543       AssertDI(I.first != LLVMContext::MD_dbg ||
2544                    !cast<DISubprogram>(I.second)->isDistinct(),
2545                "function declaration may only have a unique !dbg attachment",
2546                &F);
2547       Assert(I.first != LLVMContext::MD_prof,
2548              "function declaration may not have a !prof attachment", &F);
2549 
2550       // Verify the metadata itself.
2551       visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
2552     }
2553     Assert(!F.hasPersonalityFn(),
2554            "Function declaration shouldn't have a personality routine", &F);
2555   } else {
2556     // Verify that this function (which has a body) is not named "llvm.*".  It
2557     // is not legal to define intrinsics.
2558     Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2559 
2560     // Check the entry node
2561     const BasicBlock *Entry = &F.getEntryBlock();
2562     Assert(pred_empty(Entry),
2563            "Entry block to function must not have predecessors!", Entry);
2564 
2565     // The address of the entry block cannot be taken, unless it is dead.
2566     if (Entry->hasAddressTaken()) {
2567       Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2568              "blockaddress may not be used with the entry block!", Entry);
2569     }
2570 
2571     unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2572     // Visit metadata attachments.
2573     for (const auto &I : MDs) {
2574       // Verify that the attachment is legal.
2575       auto AllowLocs = AreDebugLocsAllowed::No;
2576       switch (I.first) {
2577       default:
2578         break;
2579       case LLVMContext::MD_dbg: {
2580         ++NumDebugAttachments;
2581         AssertDI(NumDebugAttachments == 1,
2582                  "function must have a single !dbg attachment", &F, I.second);
2583         AssertDI(isa<DISubprogram>(I.second),
2584                  "function !dbg attachment must be a subprogram", &F, I.second);
2585         AssertDI(cast<DISubprogram>(I.second)->isDistinct(),
2586                  "function definition may only have a distinct !dbg attachment",
2587                  &F);
2588 
2589         auto *SP = cast<DISubprogram>(I.second);
2590         const Function *&AttachedTo = DISubprogramAttachments[SP];
2591         AssertDI(!AttachedTo || AttachedTo == &F,
2592                  "DISubprogram attached to more than one function", SP, &F);
2593         AttachedTo = &F;
2594         AllowLocs = AreDebugLocsAllowed::Yes;
2595         break;
2596       }
2597       case LLVMContext::MD_prof:
2598         ++NumProfAttachments;
2599         Assert(NumProfAttachments == 1,
2600                "function must have a single !prof attachment", &F, I.second);
2601         break;
2602       }
2603 
2604       // Verify the metadata itself.
2605       visitMDNode(*I.second, AllowLocs);
2606     }
2607   }
2608 
2609   // If this function is actually an intrinsic, verify that it is only used in
2610   // direct call/invokes, never having its "address taken".
2611   // Only do this if the module is materialized, otherwise we don't have all the
2612   // uses.
2613   if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2614     const User *U;
2615     if (F.hasAddressTaken(&U))
2616       Assert(false, "Invalid user of intrinsic instruction!", U);
2617   }
2618 
2619   auto *N = F.getSubprogram();
2620   HasDebugInfo = (N != nullptr);
2621   if (!HasDebugInfo)
2622     return;
2623 
2624   // Check that all !dbg attachments lead to back to N.
2625   //
2626   // FIXME: Check this incrementally while visiting !dbg attachments.
2627   // FIXME: Only check when N is the canonical subprogram for F.
2628   SmallPtrSet<const MDNode *, 32> Seen;
2629   auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2630     // Be careful about using DILocation here since we might be dealing with
2631     // broken code (this is the Verifier after all).
2632     const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
2633     if (!DL)
2634       return;
2635     if (!Seen.insert(DL).second)
2636       return;
2637 
2638     Metadata *Parent = DL->getRawScope();
2639     AssertDI(Parent && isa<DILocalScope>(Parent),
2640              "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
2641              Parent);
2642 
2643     DILocalScope *Scope = DL->getInlinedAtScope();
2644     Assert(Scope, "Failed to find DILocalScope", DL);
2645 
2646     if (!Seen.insert(Scope).second)
2647       return;
2648 
2649     DISubprogram *SP = Scope->getSubprogram();
2650 
2651     // Scope and SP could be the same MDNode and we don't want to skip
2652     // validation in that case
2653     if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2654       return;
2655 
2656     AssertDI(SP->describes(&F),
2657              "!dbg attachment points at wrong subprogram for function", N, &F,
2658              &I, DL, Scope, SP);
2659   };
2660   for (auto &BB : F)
2661     for (auto &I : BB) {
2662       VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
2663       // The llvm.loop annotations also contain two DILocations.
2664       if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2665         for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2666           VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2667       if (BrokenDebugInfo)
2668         return;
2669     }
2670 }
2671 
2672 // verifyBasicBlock - Verify that a basic block is well formed...
2673 //
visitBasicBlock(BasicBlock & BB)2674 void Verifier::visitBasicBlock(BasicBlock &BB) {
2675   InstsInThisBlock.clear();
2676 
2677   // Ensure that basic blocks have terminators!
2678   Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2679 
2680   // Check constraints that this basic block imposes on all of the PHI nodes in
2681   // it.
2682   if (isa<PHINode>(BB.front())) {
2683     SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
2684     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2685     llvm::sort(Preds);
2686     for (const PHINode &PN : BB.phis()) {
2687       Assert(PN.getNumIncomingValues() == Preds.size(),
2688              "PHINode should have one entry for each predecessor of its "
2689              "parent basic block!",
2690              &PN);
2691 
2692       // Get and sort all incoming values in the PHI node...
2693       Values.clear();
2694       Values.reserve(PN.getNumIncomingValues());
2695       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2696         Values.push_back(
2697             std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2698       llvm::sort(Values);
2699 
2700       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2701         // Check to make sure that if there is more than one entry for a
2702         // particular basic block in this PHI node, that the incoming values are
2703         // all identical.
2704         //
2705         Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2706                    Values[i].second == Values[i - 1].second,
2707                "PHI node has multiple entries for the same basic block with "
2708                "different incoming values!",
2709                &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2710 
2711         // Check to make sure that the predecessors and PHI node entries are
2712         // matched up.
2713         Assert(Values[i].first == Preds[i],
2714                "PHI node entries do not match predecessors!", &PN,
2715                Values[i].first, Preds[i]);
2716       }
2717     }
2718   }
2719 
2720   // Check that all instructions have their parent pointers set up correctly.
2721   for (auto &I : BB)
2722   {
2723     Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2724   }
2725 }
2726 
visitTerminator(Instruction & I)2727 void Verifier::visitTerminator(Instruction &I) {
2728   // Ensure that terminators only exist at the end of the basic block.
2729   Assert(&I == I.getParent()->getTerminator(),
2730          "Terminator found in the middle of a basic block!", I.getParent());
2731   visitInstruction(I);
2732 }
2733 
visitBranchInst(BranchInst & BI)2734 void Verifier::visitBranchInst(BranchInst &BI) {
2735   if (BI.isConditional()) {
2736     Assert(BI.getCondition()->getType()->isIntegerTy(1),
2737            "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2738   }
2739   visitTerminator(BI);
2740 }
2741 
visitReturnInst(ReturnInst & RI)2742 void Verifier::visitReturnInst(ReturnInst &RI) {
2743   Function *F = RI.getParent()->getParent();
2744   unsigned N = RI.getNumOperands();
2745   if (F->getReturnType()->isVoidTy())
2746     Assert(N == 0,
2747            "Found return instr that returns non-void in Function of void "
2748            "return type!",
2749            &RI, F->getReturnType());
2750   else
2751     Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2752            "Function return type does not match operand "
2753            "type of return inst!",
2754            &RI, F->getReturnType());
2755 
2756   // Check to make sure that the return value has necessary properties for
2757   // terminators...
2758   visitTerminator(RI);
2759 }
2760 
visitSwitchInst(SwitchInst & SI)2761 void Verifier::visitSwitchInst(SwitchInst &SI) {
2762   // Check to make sure that all of the constants in the switch instruction
2763   // have the same type as the switched-on value.
2764   Type *SwitchTy = SI.getCondition()->getType();
2765   SmallPtrSet<ConstantInt*, 32> Constants;
2766   for (auto &Case : SI.cases()) {
2767     Assert(Case.getCaseValue()->getType() == SwitchTy,
2768            "Switch constants must all be same type as switch value!", &SI);
2769     Assert(Constants.insert(Case.getCaseValue()).second,
2770            "Duplicate integer as switch case", &SI, Case.getCaseValue());
2771   }
2772 
2773   visitTerminator(SI);
2774 }
2775 
visitIndirectBrInst(IndirectBrInst & BI)2776 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2777   Assert(BI.getAddress()->getType()->isPointerTy(),
2778          "Indirectbr operand must have pointer type!", &BI);
2779   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2780     Assert(BI.getDestination(i)->getType()->isLabelTy(),
2781            "Indirectbr destinations must all have pointer type!", &BI);
2782 
2783   visitTerminator(BI);
2784 }
2785 
visitCallBrInst(CallBrInst & CBI)2786 void Verifier::visitCallBrInst(CallBrInst &CBI) {
2787   Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
2788          &CBI);
2789   const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand());
2790   Assert(!IA->canThrow(), "Unwinding from Callbr is not allowed");
2791   for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2792     Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
2793            "Callbr successors must all have pointer type!", &CBI);
2794   for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2795     Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),
2796            "Using an unescaped label as a callbr argument!", &CBI);
2797     if (isa<BasicBlock>(CBI.getOperand(i)))
2798       for (unsigned j = i + 1; j != e; ++j)
2799         Assert(CBI.getOperand(i) != CBI.getOperand(j),
2800                "Duplicate callbr destination!", &CBI);
2801   }
2802   {
2803     SmallPtrSet<BasicBlock *, 4> ArgBBs;
2804     for (Value *V : CBI.args())
2805       if (auto *BA = dyn_cast<BlockAddress>(V))
2806         ArgBBs.insert(BA->getBasicBlock());
2807     for (BasicBlock *BB : CBI.getIndirectDests())
2808       Assert(ArgBBs.count(BB), "Indirect label missing from arglist.", &CBI);
2809   }
2810 
2811   visitTerminator(CBI);
2812 }
2813 
visitSelectInst(SelectInst & SI)2814 void Verifier::visitSelectInst(SelectInst &SI) {
2815   Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2816                                          SI.getOperand(2)),
2817          "Invalid operands for select instruction!", &SI);
2818 
2819   Assert(SI.getTrueValue()->getType() == SI.getType(),
2820          "Select values must have same type as select instruction!", &SI);
2821   visitInstruction(SI);
2822 }
2823 
2824 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2825 /// a pass, if any exist, it's an error.
2826 ///
visitUserOp1(Instruction & I)2827 void Verifier::visitUserOp1(Instruction &I) {
2828   Assert(false, "User-defined operators should not live outside of a pass!", &I);
2829 }
2830 
visitTruncInst(TruncInst & I)2831 void Verifier::visitTruncInst(TruncInst &I) {
2832   // Get the source and destination types
2833   Type *SrcTy = I.getOperand(0)->getType();
2834   Type *DestTy = I.getType();
2835 
2836   // Get the size of the types in bits, we'll need this later
2837   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2838   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2839 
2840   Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2841   Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2842   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2843          "trunc source and destination must both be a vector or neither", &I);
2844   Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2845 
2846   visitInstruction(I);
2847 }
2848 
visitZExtInst(ZExtInst & I)2849 void Verifier::visitZExtInst(ZExtInst &I) {
2850   // Get the source and destination types
2851   Type *SrcTy = I.getOperand(0)->getType();
2852   Type *DestTy = I.getType();
2853 
2854   // Get the size of the types in bits, we'll need this later
2855   Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2856   Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2857   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2858          "zext source and destination must both be a vector or neither", &I);
2859   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2860   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2861 
2862   Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2863 
2864   visitInstruction(I);
2865 }
2866 
visitSExtInst(SExtInst & I)2867 void Verifier::visitSExtInst(SExtInst &I) {
2868   // Get the source and destination types
2869   Type *SrcTy = I.getOperand(0)->getType();
2870   Type *DestTy = I.getType();
2871 
2872   // Get the size of the types in bits, we'll need this later
2873   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2874   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2875 
2876   Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2877   Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2878   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2879          "sext source and destination must both be a vector or neither", &I);
2880   Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2881 
2882   visitInstruction(I);
2883 }
2884 
visitFPTruncInst(FPTruncInst & I)2885 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2886   // Get the source and destination types
2887   Type *SrcTy = I.getOperand(0)->getType();
2888   Type *DestTy = I.getType();
2889   // Get the size of the types in bits, we'll need this later
2890   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2891   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2892 
2893   Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2894   Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2895   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2896          "fptrunc source and destination must both be a vector or neither", &I);
2897   Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2898 
2899   visitInstruction(I);
2900 }
2901 
visitFPExtInst(FPExtInst & I)2902 void Verifier::visitFPExtInst(FPExtInst &I) {
2903   // Get the source and destination types
2904   Type *SrcTy = I.getOperand(0)->getType();
2905   Type *DestTy = I.getType();
2906 
2907   // Get the size of the types in bits, we'll need this later
2908   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2909   unsigned DestBitSize = DestTy->getScalarSizeInBits();
2910 
2911   Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2912   Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2913   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2914          "fpext source and destination must both be a vector or neither", &I);
2915   Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2916 
2917   visitInstruction(I);
2918 }
2919 
visitUIToFPInst(UIToFPInst & I)2920 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2921   // Get the source and destination types
2922   Type *SrcTy = I.getOperand(0)->getType();
2923   Type *DestTy = I.getType();
2924 
2925   bool SrcVec = SrcTy->isVectorTy();
2926   bool DstVec = DestTy->isVectorTy();
2927 
2928   Assert(SrcVec == DstVec,
2929          "UIToFP source and dest must both be vector or scalar", &I);
2930   Assert(SrcTy->isIntOrIntVectorTy(),
2931          "UIToFP source must be integer or integer vector", &I);
2932   Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2933          &I);
2934 
2935   if (SrcVec && DstVec)
2936     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2937                cast<VectorType>(DestTy)->getElementCount(),
2938            "UIToFP source and dest vector length mismatch", &I);
2939 
2940   visitInstruction(I);
2941 }
2942 
visitSIToFPInst(SIToFPInst & I)2943 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2944   // Get the source and destination types
2945   Type *SrcTy = I.getOperand(0)->getType();
2946   Type *DestTy = I.getType();
2947 
2948   bool SrcVec = SrcTy->isVectorTy();
2949   bool DstVec = DestTy->isVectorTy();
2950 
2951   Assert(SrcVec == DstVec,
2952          "SIToFP source and dest must both be vector or scalar", &I);
2953   Assert(SrcTy->isIntOrIntVectorTy(),
2954          "SIToFP source must be integer or integer vector", &I);
2955   Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2956          &I);
2957 
2958   if (SrcVec && DstVec)
2959     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2960                cast<VectorType>(DestTy)->getElementCount(),
2961            "SIToFP source and dest vector length mismatch", &I);
2962 
2963   visitInstruction(I);
2964 }
2965 
visitFPToUIInst(FPToUIInst & I)2966 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2967   // Get the source and destination types
2968   Type *SrcTy = I.getOperand(0)->getType();
2969   Type *DestTy = I.getType();
2970 
2971   bool SrcVec = SrcTy->isVectorTy();
2972   bool DstVec = DestTy->isVectorTy();
2973 
2974   Assert(SrcVec == DstVec,
2975          "FPToUI source and dest must both be vector or scalar", &I);
2976   Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2977          &I);
2978   Assert(DestTy->isIntOrIntVectorTy(),
2979          "FPToUI result must be integer or integer vector", &I);
2980 
2981   if (SrcVec && DstVec)
2982     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
2983                cast<VectorType>(DestTy)->getElementCount(),
2984            "FPToUI source and dest vector length mismatch", &I);
2985 
2986   visitInstruction(I);
2987 }
2988 
visitFPToSIInst(FPToSIInst & I)2989 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2990   // Get the source and destination types
2991   Type *SrcTy = I.getOperand(0)->getType();
2992   Type *DestTy = I.getType();
2993 
2994   bool SrcVec = SrcTy->isVectorTy();
2995   bool DstVec = DestTy->isVectorTy();
2996 
2997   Assert(SrcVec == DstVec,
2998          "FPToSI source and dest must both be vector or scalar", &I);
2999   Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
3000          &I);
3001   Assert(DestTy->isIntOrIntVectorTy(),
3002          "FPToSI result must be integer or integer vector", &I);
3003 
3004   if (SrcVec && DstVec)
3005     Assert(cast<VectorType>(SrcTy)->getElementCount() ==
3006                cast<VectorType>(DestTy)->getElementCount(),
3007            "FPToSI source and dest vector length mismatch", &I);
3008 
3009   visitInstruction(I);
3010 }
3011 
visitPtrToIntInst(PtrToIntInst & I)3012 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
3013   // Get the source and destination types
3014   Type *SrcTy = I.getOperand(0)->getType();
3015   Type *DestTy = I.getType();
3016 
3017   Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
3018 
3019   if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
3020     Assert(!DL.isNonIntegralPointerType(PTy),
3021            "ptrtoint not supported for non-integral pointers");
3022 
3023   Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
3024   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
3025          &I);
3026 
3027   if (SrcTy->isVectorTy()) {
3028     auto *VSrc = cast<VectorType>(SrcTy);
3029     auto *VDest = cast<VectorType>(DestTy);
3030     Assert(VSrc->getElementCount() == VDest->getElementCount(),
3031            "PtrToInt Vector width mismatch", &I);
3032   }
3033 
3034   visitInstruction(I);
3035 }
3036 
visitIntToPtrInst(IntToPtrInst & I)3037 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
3038   // Get the source and destination types
3039   Type *SrcTy = I.getOperand(0)->getType();
3040   Type *DestTy = I.getType();
3041 
3042   Assert(SrcTy->isIntOrIntVectorTy(),
3043          "IntToPtr source must be an integral", &I);
3044   Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
3045 
3046   if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
3047     Assert(!DL.isNonIntegralPointerType(PTy),
3048            "inttoptr not supported for non-integral pointers");
3049 
3050   Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
3051          &I);
3052   if (SrcTy->isVectorTy()) {
3053     auto *VSrc = cast<VectorType>(SrcTy);
3054     auto *VDest = cast<VectorType>(DestTy);
3055     Assert(VSrc->getElementCount() == VDest->getElementCount(),
3056            "IntToPtr Vector width mismatch", &I);
3057   }
3058   visitInstruction(I);
3059 }
3060 
visitBitCastInst(BitCastInst & I)3061 void Verifier::visitBitCastInst(BitCastInst &I) {
3062   Assert(
3063       CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
3064       "Invalid bitcast", &I);
3065   visitInstruction(I);
3066 }
3067 
visitAddrSpaceCastInst(AddrSpaceCastInst & I)3068 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
3069   Type *SrcTy = I.getOperand(0)->getType();
3070   Type *DestTy = I.getType();
3071 
3072   Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
3073          &I);
3074   Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
3075          &I);
3076   Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
3077          "AddrSpaceCast must be between different address spaces", &I);
3078   if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
3079     Assert(SrcVTy->getElementCount() ==
3080                cast<VectorType>(DestTy)->getElementCount(),
3081            "AddrSpaceCast vector pointer number of elements mismatch", &I);
3082   visitInstruction(I);
3083 }
3084 
3085 /// visitPHINode - Ensure that a PHI node is well formed.
3086 ///
visitPHINode(PHINode & PN)3087 void Verifier::visitPHINode(PHINode &PN) {
3088   // Ensure that the PHI nodes are all grouped together at the top of the block.
3089   // This can be tested by checking whether the instruction before this is
3090   // either nonexistent (because this is begin()) or is a PHI node.  If not,
3091   // then there is some other instruction before a PHI.
3092   Assert(&PN == &PN.getParent()->front() ||
3093              isa<PHINode>(--BasicBlock::iterator(&PN)),
3094          "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
3095 
3096   // Check that a PHI doesn't yield a Token.
3097   Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
3098 
3099   // Check that all of the values of the PHI node have the same type as the
3100   // result, and that the incoming blocks are really basic blocks.
3101   for (Value *IncValue : PN.incoming_values()) {
3102     Assert(PN.getType() == IncValue->getType(),
3103            "PHI node operands are not the same type as the result!", &PN);
3104   }
3105 
3106   // All other PHI node constraints are checked in the visitBasicBlock method.
3107 
3108   visitInstruction(PN);
3109 }
3110 
visitCallBase(CallBase & Call)3111 void Verifier::visitCallBase(CallBase &Call) {
3112   Assert(Call.getCalledOperand()->getType()->isPointerTy(),
3113          "Called function must be a pointer!", Call);
3114   PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType());
3115 
3116   Assert(FPTy->getElementType()->isFunctionTy(),
3117          "Called function is not pointer to function type!", Call);
3118 
3119   Assert(FPTy->getElementType() == Call.getFunctionType(),
3120          "Called function is not the same type as the call!", Call);
3121 
3122   FunctionType *FTy = Call.getFunctionType();
3123 
3124   // Verify that the correct number of arguments are being passed
3125   if (FTy->isVarArg())
3126     Assert(Call.arg_size() >= FTy->getNumParams(),
3127            "Called function requires more parameters than were provided!",
3128            Call);
3129   else
3130     Assert(Call.arg_size() == FTy->getNumParams(),
3131            "Incorrect number of arguments passed to called function!", Call);
3132 
3133   // Verify that all arguments to the call match the function type.
3134   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3135     Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
3136            "Call parameter type does not match function signature!",
3137            Call.getArgOperand(i), FTy->getParamType(i), Call);
3138 
3139   AttributeList Attrs = Call.getAttributes();
3140 
3141   Assert(verifyAttributeCount(Attrs, Call.arg_size()),
3142          "Attribute after last parameter!", Call);
3143 
3144   bool IsIntrinsic = Call.getCalledFunction() &&
3145                      Call.getCalledFunction()->getName().startswith("llvm.");
3146 
3147   Function *Callee =
3148       dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3149 
3150   if (Attrs.hasFnAttribute(Attribute::Speculatable)) {
3151     // Don't allow speculatable on call sites, unless the underlying function
3152     // declaration is also speculatable.
3153     Assert(Callee && Callee->isSpeculatable(),
3154            "speculatable attribute may not apply to call sites", Call);
3155   }
3156 
3157   if (Attrs.hasFnAttribute(Attribute::Preallocated)) {
3158     Assert(Call.getCalledFunction()->getIntrinsicID() ==
3159                Intrinsic::call_preallocated_arg,
3160            "preallocated as a call site attribute can only be on "
3161            "llvm.call.preallocated.arg");
3162   }
3163 
3164   // Verify call attributes.
3165   verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
3166 
3167   // Conservatively check the inalloca argument.
3168   // We have a bug if we can find that there is an underlying alloca without
3169   // inalloca.
3170   if (Call.hasInAllocaArgument()) {
3171     Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
3172     if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
3173       Assert(AI->isUsedWithInAlloca(),
3174              "inalloca argument for call has mismatched alloca", AI, Call);
3175   }
3176 
3177   // For each argument of the callsite, if it has the swifterror argument,
3178   // make sure the underlying alloca/parameter it comes from has a swifterror as
3179   // well.
3180   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3181     if (Call.paramHasAttr(i, Attribute::SwiftError)) {
3182       Value *SwiftErrorArg = Call.getArgOperand(i);
3183       if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
3184         Assert(AI->isSwiftError(),
3185                "swifterror argument for call has mismatched alloca", AI, Call);
3186         continue;
3187       }
3188       auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
3189       Assert(ArgI,
3190              "swifterror argument should come from an alloca or parameter",
3191              SwiftErrorArg, Call);
3192       Assert(ArgI->hasSwiftErrorAttr(),
3193              "swifterror argument for call has mismatched parameter", ArgI,
3194              Call);
3195     }
3196 
3197     if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) {
3198       // Don't allow immarg on call sites, unless the underlying declaration
3199       // also has the matching immarg.
3200       Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
3201              "immarg may not apply only to call sites",
3202              Call.getArgOperand(i), Call);
3203     }
3204 
3205     if (Call.paramHasAttr(i, Attribute::ImmArg)) {
3206       Value *ArgVal = Call.getArgOperand(i);
3207       Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
3208              "immarg operand has non-immediate parameter", ArgVal, Call);
3209     }
3210 
3211     if (Call.paramHasAttr(i, Attribute::Preallocated)) {
3212       Value *ArgVal = Call.getArgOperand(i);
3213       bool hasOB =
3214           Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
3215       bool isMustTail = Call.isMustTailCall();
3216       Assert(hasOB != isMustTail,
3217              "preallocated operand either requires a preallocated bundle or "
3218              "the call to be musttail (but not both)",
3219              ArgVal, Call);
3220     }
3221   }
3222 
3223   if (FTy->isVarArg()) {
3224     // FIXME? is 'nest' even legal here?
3225     bool SawNest = false;
3226     bool SawReturned = false;
3227 
3228     for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3229       if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
3230         SawNest = true;
3231       if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
3232         SawReturned = true;
3233     }
3234 
3235     // Check attributes on the varargs part.
3236     for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
3237       Type *Ty = Call.getArgOperand(Idx)->getType();
3238       AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
3239       verifyParameterAttrs(ArgAttrs, Ty, &Call);
3240 
3241       if (ArgAttrs.hasAttribute(Attribute::Nest)) {
3242         Assert(!SawNest, "More than one parameter has attribute nest!", Call);
3243         SawNest = true;
3244       }
3245 
3246       if (ArgAttrs.hasAttribute(Attribute::Returned)) {
3247         Assert(!SawReturned, "More than one parameter has attribute returned!",
3248                Call);
3249         Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
3250                "Incompatible argument and return types for 'returned' "
3251                "attribute",
3252                Call);
3253         SawReturned = true;
3254       }
3255 
3256       // Statepoint intrinsic is vararg but the wrapped function may be not.
3257       // Allow sret here and check the wrapped function in verifyStatepoint.
3258       if (!Call.getCalledFunction() ||
3259           Call.getCalledFunction()->getIntrinsicID() !=
3260               Intrinsic::experimental_gc_statepoint)
3261         Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
3262                "Attribute 'sret' cannot be used for vararg call arguments!",
3263                Call);
3264 
3265       if (ArgAttrs.hasAttribute(Attribute::InAlloca))
3266         Assert(Idx == Call.arg_size() - 1,
3267                "inalloca isn't on the last argument!", Call);
3268     }
3269   }
3270 
3271   // Verify that there's no metadata unless it's a direct call to an intrinsic.
3272   if (!IsIntrinsic) {
3273     for (Type *ParamTy : FTy->params()) {
3274       Assert(!ParamTy->isMetadataTy(),
3275              "Function has metadata parameter but isn't an intrinsic", Call);
3276       Assert(!ParamTy->isTokenTy(),
3277              "Function has token parameter but isn't an intrinsic", Call);
3278     }
3279   }
3280 
3281   // Verify that indirect calls don't return tokens.
3282   if (!Call.getCalledFunction()) {
3283     Assert(!FTy->getReturnType()->isTokenTy(),
3284            "Return type cannot be token for indirect call!");
3285     Assert(!FTy->getReturnType()->isX86_AMXTy(),
3286            "Return type cannot be x86_amx for indirect call!");
3287   }
3288 
3289   if (Function *F = Call.getCalledFunction())
3290     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3291       visitIntrinsicCall(ID, Call);
3292 
3293   // Verify that a callsite has at most one "deopt", at most one "funclet", at
3294   // most one "gc-transition", at most one "cfguardtarget",
3295   // and at most one "preallocated" operand bundle.
3296   bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3297        FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3298        FoundPreallocatedBundle = false, FoundGCLiveBundle = false,
3299        FoundAttachedCallBundle = false;
3300   for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3301     OperandBundleUse BU = Call.getOperandBundleAt(i);
3302     uint32_t Tag = BU.getTagID();
3303     if (Tag == LLVMContext::OB_deopt) {
3304       Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
3305       FoundDeoptBundle = true;
3306     } else if (Tag == LLVMContext::OB_gc_transition) {
3307       Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
3308              Call);
3309       FoundGCTransitionBundle = true;
3310     } else if (Tag == LLVMContext::OB_funclet) {
3311       Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
3312       FoundFuncletBundle = true;
3313       Assert(BU.Inputs.size() == 1,
3314              "Expected exactly one funclet bundle operand", Call);
3315       Assert(isa<FuncletPadInst>(BU.Inputs.front()),
3316              "Funclet bundle operands should correspond to a FuncletPadInst",
3317              Call);
3318     } else if (Tag == LLVMContext::OB_cfguardtarget) {
3319       Assert(!FoundCFGuardTargetBundle,
3320              "Multiple CFGuardTarget operand bundles", Call);
3321       FoundCFGuardTargetBundle = true;
3322       Assert(BU.Inputs.size() == 1,
3323              "Expected exactly one cfguardtarget bundle operand", Call);
3324     } else if (Tag == LLVMContext::OB_preallocated) {
3325       Assert(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
3326              Call);
3327       FoundPreallocatedBundle = true;
3328       Assert(BU.Inputs.size() == 1,
3329              "Expected exactly one preallocated bundle operand", Call);
3330       auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
3331       Assert(Input &&
3332                  Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
3333              "\"preallocated\" argument must be a token from "
3334              "llvm.call.preallocated.setup",
3335              Call);
3336     } else if (Tag == LLVMContext::OB_gc_live) {
3337       Assert(!FoundGCLiveBundle, "Multiple gc-live operand bundles",
3338              Call);
3339       FoundGCLiveBundle = true;
3340     } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) {
3341       Assert(!FoundAttachedCallBundle,
3342              "Multiple \"clang.arc.attachedcall\" operand bundles", Call);
3343       FoundAttachedCallBundle = true;
3344     }
3345   }
3346 
3347   if (FoundAttachedCallBundle)
3348     Assert(FTy->getReturnType()->isPointerTy(),
3349            "a call with operand bundle \"clang.arc.attachedcall\" must call a "
3350            "function returning a pointer",
3351            Call);
3352 
3353   // Verify that each inlinable callsite of a debug-info-bearing function in a
3354   // debug-info-bearing function has a debug location attached to it. Failure to
3355   // do so causes assertion failures when the inliner sets up inline scope info.
3356   if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3357       Call.getCalledFunction()->getSubprogram())
3358     AssertDI(Call.getDebugLoc(),
3359              "inlinable function call in a function with "
3360              "debug info must have a !dbg location",
3361              Call);
3362 
3363   visitInstruction(Call);
3364 }
3365 
3366 /// Two types are "congruent" if they are identical, or if they are both pointer
3367 /// types with different pointee types and the same address space.
isTypeCongruent(Type * L,Type * R)3368 static bool isTypeCongruent(Type *L, Type *R) {
3369   if (L == R)
3370     return true;
3371   PointerType *PL = dyn_cast<PointerType>(L);
3372   PointerType *PR = dyn_cast<PointerType>(R);
3373   if (!PL || !PR)
3374     return false;
3375   return PL->getAddressSpace() == PR->getAddressSpace();
3376 }
3377 
getParameterABIAttributes(int I,AttributeList Attrs)3378 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
3379   static const Attribute::AttrKind ABIAttrs[] = {
3380       Attribute::StructRet,  Attribute::ByVal,          Attribute::InAlloca,
3381       Attribute::InReg,      Attribute::StackAlignment, Attribute::SwiftSelf,
3382       Attribute::SwiftAsync, Attribute::SwiftError,     Attribute::Preallocated,
3383       Attribute::ByRef};
3384   AttrBuilder Copy;
3385   for (auto AK : ABIAttrs) {
3386     if (Attrs.hasParamAttribute(I, AK))
3387       Copy.addAttribute(AK);
3388   }
3389 
3390   // `align` is ABI-affecting only in combination with `byval` or `byref`.
3391   if (Attrs.hasParamAttribute(I, Attribute::Alignment) &&
3392       (Attrs.hasParamAttribute(I, Attribute::ByVal) ||
3393        Attrs.hasParamAttribute(I, Attribute::ByRef)))
3394     Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3395   return Copy;
3396 }
3397 
verifyMustTailCall(CallInst & CI)3398 void Verifier::verifyMustTailCall(CallInst &CI) {
3399   Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3400 
3401   // - The caller and callee prototypes must match.  Pointer types of
3402   //   parameters or return types may differ in pointee type, but not
3403   //   address space.
3404   Function *F = CI.getParent()->getParent();
3405   FunctionType *CallerTy = F->getFunctionType();
3406   FunctionType *CalleeTy = CI.getFunctionType();
3407   if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3408     Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3409            "cannot guarantee tail call due to mismatched parameter counts",
3410            &CI);
3411     for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3412       Assert(
3413           isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3414           "cannot guarantee tail call due to mismatched parameter types", &CI);
3415     }
3416   }
3417   Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3418          "cannot guarantee tail call due to mismatched varargs", &CI);
3419   Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3420          "cannot guarantee tail call due to mismatched return types", &CI);
3421 
3422   // - The calling conventions of the caller and callee must match.
3423   Assert(F->getCallingConv() == CI.getCallingConv(),
3424          "cannot guarantee tail call due to mismatched calling conv", &CI);
3425 
3426   // - All ABI-impacting function attributes, such as sret, byval, inreg,
3427   //   returned, preallocated, and inalloca, must match.
3428   AttributeList CallerAttrs = F->getAttributes();
3429   AttributeList CalleeAttrs = CI.getAttributes();
3430   for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3431     AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3432     AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3433     Assert(CallerABIAttrs == CalleeABIAttrs,
3434            "cannot guarantee tail call due to mismatched ABI impacting "
3435            "function attributes",
3436            &CI, CI.getOperand(I));
3437   }
3438 
3439   // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3440   //   or a pointer bitcast followed by a ret instruction.
3441   // - The ret instruction must return the (possibly bitcasted) value
3442   //   produced by the call or void.
3443   Value *RetVal = &CI;
3444   Instruction *Next = CI.getNextNode();
3445 
3446   // Handle the optional bitcast.
3447   if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3448     Assert(BI->getOperand(0) == RetVal,
3449            "bitcast following musttail call must use the call", BI);
3450     RetVal = BI;
3451     Next = BI->getNextNode();
3452   }
3453 
3454   // Check the return.
3455   ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3456   Assert(Ret, "musttail call must precede a ret with an optional bitcast",
3457          &CI);
3458   Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
3459          "musttail call result must be returned", Ret);
3460 }
3461 
visitCallInst(CallInst & CI)3462 void Verifier::visitCallInst(CallInst &CI) {
3463   visitCallBase(CI);
3464 
3465   if (CI.isMustTailCall())
3466     verifyMustTailCall(CI);
3467 }
3468 
visitInvokeInst(InvokeInst & II)3469 void Verifier::visitInvokeInst(InvokeInst &II) {
3470   visitCallBase(II);
3471 
3472   // Verify that the first non-PHI instruction of the unwind destination is an
3473   // exception handling instruction.
3474   Assert(
3475       II.getUnwindDest()->isEHPad(),
3476       "The unwind destination does not have an exception handling instruction!",
3477       &II);
3478 
3479   visitTerminator(II);
3480 }
3481 
3482 /// visitUnaryOperator - Check the argument to the unary operator.
3483 ///
visitUnaryOperator(UnaryOperator & U)3484 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3485   Assert(U.getType() == U.getOperand(0)->getType(),
3486          "Unary operators must have same type for"
3487          "operands and result!",
3488          &U);
3489 
3490   switch (U.getOpcode()) {
3491   // Check that floating-point arithmetic operators are only used with
3492   // floating-point operands.
3493   case Instruction::FNeg:
3494     Assert(U.getType()->isFPOrFPVectorTy(),
3495            "FNeg operator only works with float types!", &U);
3496     break;
3497   default:
3498     llvm_unreachable("Unknown UnaryOperator opcode!");
3499   }
3500 
3501   visitInstruction(U);
3502 }
3503 
3504 /// visitBinaryOperator - Check that both arguments to the binary operator are
3505 /// of the same type!
3506 ///
visitBinaryOperator(BinaryOperator & B)3507 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3508   Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3509          "Both operands to a binary operator are not of the same type!", &B);
3510 
3511   switch (B.getOpcode()) {
3512   // Check that integer arithmetic operators are only used with
3513   // integral operands.
3514   case Instruction::Add:
3515   case Instruction::Sub:
3516   case Instruction::Mul:
3517   case Instruction::SDiv:
3518   case Instruction::UDiv:
3519   case Instruction::SRem:
3520   case Instruction::URem:
3521     Assert(B.getType()->isIntOrIntVectorTy(),
3522            "Integer arithmetic operators only work with integral types!", &B);
3523     Assert(B.getType() == B.getOperand(0)->getType(),
3524            "Integer arithmetic operators must have same type "
3525            "for operands and result!",
3526            &B);
3527     break;
3528   // Check that floating-point arithmetic operators are only used with
3529   // floating-point operands.
3530   case Instruction::FAdd:
3531   case Instruction::FSub:
3532   case Instruction::FMul:
3533   case Instruction::FDiv:
3534   case Instruction::FRem:
3535     Assert(B.getType()->isFPOrFPVectorTy(),
3536            "Floating-point arithmetic operators only work with "
3537            "floating-point types!",
3538            &B);
3539     Assert(B.getType() == B.getOperand(0)->getType(),
3540            "Floating-point arithmetic operators must have same type "
3541            "for operands and result!",
3542            &B);
3543     break;
3544   // Check that logical operators are only used with integral operands.
3545   case Instruction::And:
3546   case Instruction::Or:
3547   case Instruction::Xor:
3548     Assert(B.getType()->isIntOrIntVectorTy(),
3549            "Logical operators only work with integral types!", &B);
3550     Assert(B.getType() == B.getOperand(0)->getType(),
3551            "Logical operators must have same type for operands and result!",
3552            &B);
3553     break;
3554   case Instruction::Shl:
3555   case Instruction::LShr:
3556   case Instruction::AShr:
3557     Assert(B.getType()->isIntOrIntVectorTy(),
3558            "Shifts only work with integral types!", &B);
3559     Assert(B.getType() == B.getOperand(0)->getType(),
3560            "Shift return type must be same as operands!", &B);
3561     break;
3562   default:
3563     llvm_unreachable("Unknown BinaryOperator opcode!");
3564   }
3565 
3566   visitInstruction(B);
3567 }
3568 
visitICmpInst(ICmpInst & IC)3569 void Verifier::visitICmpInst(ICmpInst &IC) {
3570   // Check that the operands are the same type
3571   Type *Op0Ty = IC.getOperand(0)->getType();
3572   Type *Op1Ty = IC.getOperand(1)->getType();
3573   Assert(Op0Ty == Op1Ty,
3574          "Both operands to ICmp instruction are not of the same type!", &IC);
3575   // Check that the operands are the right type
3576   Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3577          "Invalid operand types for ICmp instruction", &IC);
3578   // Check that the predicate is valid.
3579   Assert(IC.isIntPredicate(),
3580          "Invalid predicate in ICmp instruction!", &IC);
3581 
3582   visitInstruction(IC);
3583 }
3584 
visitFCmpInst(FCmpInst & FC)3585 void Verifier::visitFCmpInst(FCmpInst &FC) {
3586   // Check that the operands are the same type
3587   Type *Op0Ty = FC.getOperand(0)->getType();
3588   Type *Op1Ty = FC.getOperand(1)->getType();
3589   Assert(Op0Ty == Op1Ty,
3590          "Both operands to FCmp instruction are not of the same type!", &FC);
3591   // Check that the operands are the right type
3592   Assert(Op0Ty->isFPOrFPVectorTy(),
3593          "Invalid operand types for FCmp instruction", &FC);
3594   // Check that the predicate is valid.
3595   Assert(FC.isFPPredicate(),
3596          "Invalid predicate in FCmp instruction!", &FC);
3597 
3598   visitInstruction(FC);
3599 }
3600 
visitExtractElementInst(ExtractElementInst & EI)3601 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3602   Assert(
3603       ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3604       "Invalid extractelement operands!", &EI);
3605   visitInstruction(EI);
3606 }
3607 
visitInsertElementInst(InsertElementInst & IE)3608 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3609   Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3610                                             IE.getOperand(2)),
3611          "Invalid insertelement operands!", &IE);
3612   visitInstruction(IE);
3613 }
3614 
visitShuffleVectorInst(ShuffleVectorInst & SV)3615 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3616   Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3617                                             SV.getShuffleMask()),
3618          "Invalid shufflevector operands!", &SV);
3619   visitInstruction(SV);
3620 }
3621 
visitGetElementPtrInst(GetElementPtrInst & GEP)3622 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3623   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3624 
3625   Assert(isa<PointerType>(TargetTy),
3626          "GEP base pointer is not a vector or a vector of pointers", &GEP);
3627   Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3628 
3629   SmallVector<Value *, 16> Idxs(GEP.indices());
3630   Assert(all_of(
3631       Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3632       "GEP indexes must be integers", &GEP);
3633   Type *ElTy =
3634       GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3635   Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3636 
3637   Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3638              GEP.getResultElementType() == ElTy,
3639          "GEP is not of right type for indices!", &GEP, ElTy);
3640 
3641   if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
3642     // Additional checks for vector GEPs.
3643     ElementCount GEPWidth = GEPVTy->getElementCount();
3644     if (GEP.getPointerOperandType()->isVectorTy())
3645       Assert(
3646           GEPWidth ==
3647               cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
3648           "Vector GEP result width doesn't match operand's", &GEP);
3649     for (Value *Idx : Idxs) {
3650       Type *IndexTy = Idx->getType();
3651       if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
3652         ElementCount IndexWidth = IndexVTy->getElementCount();
3653         Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3654       }
3655       Assert(IndexTy->isIntOrIntVectorTy(),
3656              "All GEP indices should be of integer type");
3657     }
3658   }
3659 
3660   if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3661     Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
3662            "GEP address space doesn't match type", &GEP);
3663   }
3664 
3665   visitInstruction(GEP);
3666 }
3667 
isContiguous(const ConstantRange & A,const ConstantRange & B)3668 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3669   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3670 }
3671 
visitRangeMetadata(Instruction & I,MDNode * Range,Type * Ty)3672 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3673   assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3674          "precondition violation");
3675 
3676   unsigned NumOperands = Range->getNumOperands();
3677   Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3678   unsigned NumRanges = NumOperands / 2;
3679   Assert(NumRanges >= 1, "It should have at least one range!", Range);
3680 
3681   ConstantRange LastRange(1, true); // Dummy initial value
3682   for (unsigned i = 0; i < NumRanges; ++i) {
3683     ConstantInt *Low =
3684         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3685     Assert(Low, "The lower limit must be an integer!", Low);
3686     ConstantInt *High =
3687         mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3688     Assert(High, "The upper limit must be an integer!", High);
3689     Assert(High->getType() == Low->getType() && High->getType() == Ty,
3690            "Range types must match instruction type!", &I);
3691 
3692     APInt HighV = High->getValue();
3693     APInt LowV = Low->getValue();
3694     ConstantRange CurRange(LowV, HighV);
3695     Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3696            "Range must not be empty!", Range);
3697     if (i != 0) {
3698       Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3699              "Intervals are overlapping", Range);
3700       Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3701              Range);
3702       Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3703              Range);
3704     }
3705     LastRange = ConstantRange(LowV, HighV);
3706   }
3707   if (NumRanges > 2) {
3708     APInt FirstLow =
3709         mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3710     APInt FirstHigh =
3711         mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3712     ConstantRange FirstRange(FirstLow, FirstHigh);
3713     Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3714            "Intervals are overlapping", Range);
3715     Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3716            Range);
3717   }
3718 }
3719 
checkAtomicMemAccessSize(Type * Ty,const Instruction * I)3720 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3721   unsigned Size = DL.getTypeSizeInBits(Ty);
3722   Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3723   Assert(!(Size & (Size - 1)),
3724          "atomic memory access' operand must have a power-of-two size", Ty, I);
3725 }
3726 
visitLoadInst(LoadInst & LI)3727 void Verifier::visitLoadInst(LoadInst &LI) {
3728   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3729   Assert(PTy, "Load operand must be a pointer.", &LI);
3730   Type *ElTy = LI.getType();
3731   Assert(LI.getAlignment() <= Value::MaximumAlignment,
3732          "huge alignment values are unsupported", &LI);
3733   Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3734   if (LI.isAtomic()) {
3735     Assert(LI.getOrdering() != AtomicOrdering::Release &&
3736                LI.getOrdering() != AtomicOrdering::AcquireRelease,
3737            "Load cannot have Release ordering", &LI);
3738     Assert(LI.getAlignment() != 0,
3739            "Atomic load must specify explicit alignment", &LI);
3740     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3741            "atomic load operand must have integer, pointer, or floating point "
3742            "type!",
3743            ElTy, &LI);
3744     checkAtomicMemAccessSize(ElTy, &LI);
3745   } else {
3746     Assert(LI.getSyncScopeID() == SyncScope::System,
3747            "Non-atomic load cannot have SynchronizationScope specified", &LI);
3748   }
3749 
3750   visitInstruction(LI);
3751 }
3752 
visitStoreInst(StoreInst & SI)3753 void Verifier::visitStoreInst(StoreInst &SI) {
3754   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3755   Assert(PTy, "Store operand must be a pointer.", &SI);
3756   Type *ElTy = SI.getOperand(0)->getType();
3757   Assert(PTy->isOpaqueOrPointeeTypeMatches(ElTy),
3758          "Stored value type does not match pointer operand type!", &SI, ElTy);
3759   Assert(SI.getAlignment() <= Value::MaximumAlignment,
3760          "huge alignment values are unsupported", &SI);
3761   Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3762   if (SI.isAtomic()) {
3763     Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3764                SI.getOrdering() != AtomicOrdering::AcquireRelease,
3765            "Store cannot have Acquire ordering", &SI);
3766     Assert(SI.getAlignment() != 0,
3767            "Atomic store must specify explicit alignment", &SI);
3768     Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3769            "atomic store operand must have integer, pointer, or floating point "
3770            "type!",
3771            ElTy, &SI);
3772     checkAtomicMemAccessSize(ElTy, &SI);
3773   } else {
3774     Assert(SI.getSyncScopeID() == SyncScope::System,
3775            "Non-atomic store cannot have SynchronizationScope specified", &SI);
3776   }
3777   visitInstruction(SI);
3778 }
3779 
3780 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
verifySwiftErrorCall(CallBase & Call,const Value * SwiftErrorVal)3781 void Verifier::verifySwiftErrorCall(CallBase &Call,
3782                                     const Value *SwiftErrorVal) {
3783   for (const auto &I : llvm::enumerate(Call.args())) {
3784     if (I.value() == SwiftErrorVal) {
3785       Assert(Call.paramHasAttr(I.index(), Attribute::SwiftError),
3786              "swifterror value when used in a callsite should be marked "
3787              "with swifterror attribute",
3788              SwiftErrorVal, Call);
3789     }
3790   }
3791 }
3792 
verifySwiftErrorValue(const Value * SwiftErrorVal)3793 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3794   // Check that swifterror value is only used by loads, stores, or as
3795   // a swifterror argument.
3796   for (const User *U : SwiftErrorVal->users()) {
3797     Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3798            isa<InvokeInst>(U),
3799            "swifterror value can only be loaded and stored from, or "
3800            "as a swifterror argument!",
3801            SwiftErrorVal, U);
3802     // If it is used by a store, check it is the second operand.
3803     if (auto StoreI = dyn_cast<StoreInst>(U))
3804       Assert(StoreI->getOperand(1) == SwiftErrorVal,
3805              "swifterror value should be the second operand when used "
3806              "by stores", SwiftErrorVal, U);
3807     if (auto *Call = dyn_cast<CallBase>(U))
3808       verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3809   }
3810 }
3811 
visitAllocaInst(AllocaInst & AI)3812 void Verifier::visitAllocaInst(AllocaInst &AI) {
3813   SmallPtrSet<Type*, 4> Visited;
3814   Assert(AI.getAllocatedType()->isSized(&Visited),
3815          "Cannot allocate unsized type", &AI);
3816   Assert(AI.getArraySize()->getType()->isIntegerTy(),
3817          "Alloca array size must have integer type", &AI);
3818   Assert(AI.getAlignment() <= Value::MaximumAlignment,
3819          "huge alignment values are unsupported", &AI);
3820 
3821   if (AI.isSwiftError()) {
3822     verifySwiftErrorValue(&AI);
3823   }
3824 
3825   visitInstruction(AI);
3826 }
3827 
visitAtomicCmpXchgInst(AtomicCmpXchgInst & CXI)3828 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3829   Type *ElTy = CXI.getOperand(1)->getType();
3830   Assert(ElTy->isIntOrPtrTy(),
3831          "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3832   checkAtomicMemAccessSize(ElTy, &CXI);
3833   visitInstruction(CXI);
3834 }
3835 
visitAtomicRMWInst(AtomicRMWInst & RMWI)3836 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3837   Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
3838          "atomicrmw instructions cannot be unordered.", &RMWI);
3839   auto Op = RMWI.getOperation();
3840   Type *ElTy = RMWI.getOperand(1)->getType();
3841   if (Op == AtomicRMWInst::Xchg) {
3842     Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
3843            AtomicRMWInst::getOperationName(Op) +
3844            " operand must have integer or floating point type!",
3845            &RMWI, ElTy);
3846   } else if (AtomicRMWInst::isFPOperation(Op)) {
3847     Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
3848            AtomicRMWInst::getOperationName(Op) +
3849            " operand must have floating point type!",
3850            &RMWI, ElTy);
3851   } else {
3852     Assert(ElTy->isIntegerTy(), "atomicrmw " +
3853            AtomicRMWInst::getOperationName(Op) +
3854            " operand must have integer type!",
3855            &RMWI, ElTy);
3856   }
3857   checkAtomicMemAccessSize(ElTy, &RMWI);
3858   Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
3859          "Invalid binary operation!", &RMWI);
3860   visitInstruction(RMWI);
3861 }
3862 
visitFenceInst(FenceInst & FI)3863 void Verifier::visitFenceInst(FenceInst &FI) {
3864   const AtomicOrdering Ordering = FI.getOrdering();
3865   Assert(Ordering == AtomicOrdering::Acquire ||
3866              Ordering == AtomicOrdering::Release ||
3867              Ordering == AtomicOrdering::AcquireRelease ||
3868              Ordering == AtomicOrdering::SequentiallyConsistent,
3869          "fence instructions may only have acquire, release, acq_rel, or "
3870          "seq_cst ordering.",
3871          &FI);
3872   visitInstruction(FI);
3873 }
3874 
visitExtractValueInst(ExtractValueInst & EVI)3875 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3876   Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3877                                           EVI.getIndices()) == EVI.getType(),
3878          "Invalid ExtractValueInst operands!", &EVI);
3879 
3880   visitInstruction(EVI);
3881 }
3882 
visitInsertValueInst(InsertValueInst & IVI)3883 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3884   Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3885                                           IVI.getIndices()) ==
3886              IVI.getOperand(1)->getType(),
3887          "Invalid InsertValueInst operands!", &IVI);
3888 
3889   visitInstruction(IVI);
3890 }
3891 
getParentPad(Value * EHPad)3892 static Value *getParentPad(Value *EHPad) {
3893   if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3894     return FPI->getParentPad();
3895 
3896   return cast<CatchSwitchInst>(EHPad)->getParentPad();
3897 }
3898 
visitEHPadPredecessors(Instruction & I)3899 void Verifier::visitEHPadPredecessors(Instruction &I) {
3900   assert(I.isEHPad());
3901 
3902   BasicBlock *BB = I.getParent();
3903   Function *F = BB->getParent();
3904 
3905   Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3906 
3907   if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3908     // The landingpad instruction defines its parent as a landing pad block. The
3909     // landing pad block may be branched to only by the unwind edge of an
3910     // invoke.
3911     for (BasicBlock *PredBB : predecessors(BB)) {
3912       const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3913       Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3914              "Block containing LandingPadInst must be jumped to "
3915              "only by the unwind edge of an invoke.",
3916              LPI);
3917     }
3918     return;
3919   }
3920   if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3921     if (!pred_empty(BB))
3922       Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3923              "Block containg CatchPadInst must be jumped to "
3924              "only by its catchswitch.",
3925              CPI);
3926     Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3927            "Catchswitch cannot unwind to one of its catchpads",
3928            CPI->getCatchSwitch(), CPI);
3929     return;
3930   }
3931 
3932   // Verify that each pred has a legal terminator with a legal to/from EH
3933   // pad relationship.
3934   Instruction *ToPad = &I;
3935   Value *ToPadParent = getParentPad(ToPad);
3936   for (BasicBlock *PredBB : predecessors(BB)) {
3937     Instruction *TI = PredBB->getTerminator();
3938     Value *FromPad;
3939     if (auto *II = dyn_cast<InvokeInst>(TI)) {
3940       Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3941              "EH pad must be jumped to via an unwind edge", ToPad, II);
3942       if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3943         FromPad = Bundle->Inputs[0];
3944       else
3945         FromPad = ConstantTokenNone::get(II->getContext());
3946     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3947       FromPad = CRI->getOperand(0);
3948       Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3949     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3950       FromPad = CSI;
3951     } else {
3952       Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3953     }
3954 
3955     // The edge may exit from zero or more nested pads.
3956     SmallSet<Value *, 8> Seen;
3957     for (;; FromPad = getParentPad(FromPad)) {
3958       Assert(FromPad != ToPad,
3959              "EH pad cannot handle exceptions raised within it", FromPad, TI);
3960       if (FromPad == ToPadParent) {
3961         // This is a legal unwind edge.
3962         break;
3963       }
3964       Assert(!isa<ConstantTokenNone>(FromPad),
3965              "A single unwind edge may only enter one EH pad", TI);
3966       Assert(Seen.insert(FromPad).second,
3967              "EH pad jumps through a cycle of pads", FromPad);
3968     }
3969   }
3970 }
3971 
visitLandingPadInst(LandingPadInst & LPI)3972 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3973   // The landingpad instruction is ill-formed if it doesn't have any clauses and
3974   // isn't a cleanup.
3975   Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3976          "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3977 
3978   visitEHPadPredecessors(LPI);
3979 
3980   if (!LandingPadResultTy)
3981     LandingPadResultTy = LPI.getType();
3982   else
3983     Assert(LandingPadResultTy == LPI.getType(),
3984            "The landingpad instruction should have a consistent result type "
3985            "inside a function.",
3986            &LPI);
3987 
3988   Function *F = LPI.getParent()->getParent();
3989   Assert(F->hasPersonalityFn(),
3990          "LandingPadInst needs to be in a function with a personality.", &LPI);
3991 
3992   // The landingpad instruction must be the first non-PHI instruction in the
3993   // block.
3994   Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3995          "LandingPadInst not the first non-PHI instruction in the block.",
3996          &LPI);
3997 
3998   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3999     Constant *Clause = LPI.getClause(i);
4000     if (LPI.isCatch(i)) {
4001       Assert(isa<PointerType>(Clause->getType()),
4002              "Catch operand does not have pointer type!", &LPI);
4003     } else {
4004       Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
4005       Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
4006              "Filter operand is not an array of constants!", &LPI);
4007     }
4008   }
4009 
4010   visitInstruction(LPI);
4011 }
4012 
visitResumeInst(ResumeInst & RI)4013 void Verifier::visitResumeInst(ResumeInst &RI) {
4014   Assert(RI.getFunction()->hasPersonalityFn(),
4015          "ResumeInst needs to be in a function with a personality.", &RI);
4016 
4017   if (!LandingPadResultTy)
4018     LandingPadResultTy = RI.getValue()->getType();
4019   else
4020     Assert(LandingPadResultTy == RI.getValue()->getType(),
4021            "The resume instruction should have a consistent result type "
4022            "inside a function.",
4023            &RI);
4024 
4025   visitTerminator(RI);
4026 }
4027 
visitCatchPadInst(CatchPadInst & CPI)4028 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
4029   BasicBlock *BB = CPI.getParent();
4030 
4031   Function *F = BB->getParent();
4032   Assert(F->hasPersonalityFn(),
4033          "CatchPadInst needs to be in a function with a personality.", &CPI);
4034 
4035   Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
4036          "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
4037          CPI.getParentPad());
4038 
4039   // The catchpad instruction must be the first non-PHI instruction in the
4040   // block.
4041   Assert(BB->getFirstNonPHI() == &CPI,
4042          "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
4043 
4044   visitEHPadPredecessors(CPI);
4045   visitFuncletPadInst(CPI);
4046 }
4047 
visitCatchReturnInst(CatchReturnInst & CatchReturn)4048 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
4049   Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
4050          "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
4051          CatchReturn.getOperand(0));
4052 
4053   visitTerminator(CatchReturn);
4054 }
4055 
visitCleanupPadInst(CleanupPadInst & CPI)4056 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
4057   BasicBlock *BB = CPI.getParent();
4058 
4059   Function *F = BB->getParent();
4060   Assert(F->hasPersonalityFn(),
4061          "CleanupPadInst needs to be in a function with a personality.", &CPI);
4062 
4063   // The cleanuppad instruction must be the first non-PHI instruction in the
4064   // block.
4065   Assert(BB->getFirstNonPHI() == &CPI,
4066          "CleanupPadInst not the first non-PHI instruction in the block.",
4067          &CPI);
4068 
4069   auto *ParentPad = CPI.getParentPad();
4070   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4071          "CleanupPadInst has an invalid parent.", &CPI);
4072 
4073   visitEHPadPredecessors(CPI);
4074   visitFuncletPadInst(CPI);
4075 }
4076 
visitFuncletPadInst(FuncletPadInst & FPI)4077 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
4078   User *FirstUser = nullptr;
4079   Value *FirstUnwindPad = nullptr;
4080   SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
4081   SmallSet<FuncletPadInst *, 8> Seen;
4082 
4083   while (!Worklist.empty()) {
4084     FuncletPadInst *CurrentPad = Worklist.pop_back_val();
4085     Assert(Seen.insert(CurrentPad).second,
4086            "FuncletPadInst must not be nested within itself", CurrentPad);
4087     Value *UnresolvedAncestorPad = nullptr;
4088     for (User *U : CurrentPad->users()) {
4089       BasicBlock *UnwindDest;
4090       if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
4091         UnwindDest = CRI->getUnwindDest();
4092       } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
4093         // We allow catchswitch unwind to caller to nest
4094         // within an outer pad that unwinds somewhere else,
4095         // because catchswitch doesn't have a nounwind variant.
4096         // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
4097         if (CSI->unwindsToCaller())
4098           continue;
4099         UnwindDest = CSI->getUnwindDest();
4100       } else if (auto *II = dyn_cast<InvokeInst>(U)) {
4101         UnwindDest = II->getUnwindDest();
4102       } else if (isa<CallInst>(U)) {
4103         // Calls which don't unwind may be found inside funclet
4104         // pads that unwind somewhere else.  We don't *require*
4105         // such calls to be annotated nounwind.
4106         continue;
4107       } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
4108         // The unwind dest for a cleanup can only be found by
4109         // recursive search.  Add it to the worklist, and we'll
4110         // search for its first use that determines where it unwinds.
4111         Worklist.push_back(CPI);
4112         continue;
4113       } else {
4114         Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
4115         continue;
4116       }
4117 
4118       Value *UnwindPad;
4119       bool ExitsFPI;
4120       if (UnwindDest) {
4121         UnwindPad = UnwindDest->getFirstNonPHI();
4122         if (!cast<Instruction>(UnwindPad)->isEHPad())
4123           continue;
4124         Value *UnwindParent = getParentPad(UnwindPad);
4125         // Ignore unwind edges that don't exit CurrentPad.
4126         if (UnwindParent == CurrentPad)
4127           continue;
4128         // Determine whether the original funclet pad is exited,
4129         // and if we are scanning nested pads determine how many
4130         // of them are exited so we can stop searching their
4131         // children.
4132         Value *ExitedPad = CurrentPad;
4133         ExitsFPI = false;
4134         do {
4135           if (ExitedPad == &FPI) {
4136             ExitsFPI = true;
4137             // Now we can resolve any ancestors of CurrentPad up to
4138             // FPI, but not including FPI since we need to make sure
4139             // to check all direct users of FPI for consistency.
4140             UnresolvedAncestorPad = &FPI;
4141             break;
4142           }
4143           Value *ExitedParent = getParentPad(ExitedPad);
4144           if (ExitedParent == UnwindParent) {
4145             // ExitedPad is the ancestor-most pad which this unwind
4146             // edge exits, so we can resolve up to it, meaning that
4147             // ExitedParent is the first ancestor still unresolved.
4148             UnresolvedAncestorPad = ExitedParent;
4149             break;
4150           }
4151           ExitedPad = ExitedParent;
4152         } while (!isa<ConstantTokenNone>(ExitedPad));
4153       } else {
4154         // Unwinding to caller exits all pads.
4155         UnwindPad = ConstantTokenNone::get(FPI.getContext());
4156         ExitsFPI = true;
4157         UnresolvedAncestorPad = &FPI;
4158       }
4159 
4160       if (ExitsFPI) {
4161         // This unwind edge exits FPI.  Make sure it agrees with other
4162         // such edges.
4163         if (FirstUser) {
4164           Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
4165                                               "pad must have the same unwind "
4166                                               "dest",
4167                  &FPI, U, FirstUser);
4168         } else {
4169           FirstUser = U;
4170           FirstUnwindPad = UnwindPad;
4171           // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
4172           if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
4173               getParentPad(UnwindPad) == getParentPad(&FPI))
4174             SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
4175         }
4176       }
4177       // Make sure we visit all uses of FPI, but for nested pads stop as
4178       // soon as we know where they unwind to.
4179       if (CurrentPad != &FPI)
4180         break;
4181     }
4182     if (UnresolvedAncestorPad) {
4183       if (CurrentPad == UnresolvedAncestorPad) {
4184         // When CurrentPad is FPI itself, we don't mark it as resolved even if
4185         // we've found an unwind edge that exits it, because we need to verify
4186         // all direct uses of FPI.
4187         assert(CurrentPad == &FPI);
4188         continue;
4189       }
4190       // Pop off the worklist any nested pads that we've found an unwind
4191       // destination for.  The pads on the worklist are the uncles,
4192       // great-uncles, etc. of CurrentPad.  We've found an unwind destination
4193       // for all ancestors of CurrentPad up to but not including
4194       // UnresolvedAncestorPad.
4195       Value *ResolvedPad = CurrentPad;
4196       while (!Worklist.empty()) {
4197         Value *UnclePad = Worklist.back();
4198         Value *AncestorPad = getParentPad(UnclePad);
4199         // Walk ResolvedPad up the ancestor list until we either find the
4200         // uncle's parent or the last resolved ancestor.
4201         while (ResolvedPad != AncestorPad) {
4202           Value *ResolvedParent = getParentPad(ResolvedPad);
4203           if (ResolvedParent == UnresolvedAncestorPad) {
4204             break;
4205           }
4206           ResolvedPad = ResolvedParent;
4207         }
4208         // If the resolved ancestor search didn't find the uncle's parent,
4209         // then the uncle is not yet resolved.
4210         if (ResolvedPad != AncestorPad)
4211           break;
4212         // This uncle is resolved, so pop it from the worklist.
4213         Worklist.pop_back();
4214       }
4215     }
4216   }
4217 
4218   if (FirstUnwindPad) {
4219     if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
4220       BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
4221       Value *SwitchUnwindPad;
4222       if (SwitchUnwindDest)
4223         SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
4224       else
4225         SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
4226       Assert(SwitchUnwindPad == FirstUnwindPad,
4227              "Unwind edges out of a catch must have the same unwind dest as "
4228              "the parent catchswitch",
4229              &FPI, FirstUser, CatchSwitch);
4230     }
4231   }
4232 
4233   visitInstruction(FPI);
4234 }
4235 
visitCatchSwitchInst(CatchSwitchInst & CatchSwitch)4236 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
4237   BasicBlock *BB = CatchSwitch.getParent();
4238 
4239   Function *F = BB->getParent();
4240   Assert(F->hasPersonalityFn(),
4241          "CatchSwitchInst needs to be in a function with a personality.",
4242          &CatchSwitch);
4243 
4244   // The catchswitch instruction must be the first non-PHI instruction in the
4245   // block.
4246   Assert(BB->getFirstNonPHI() == &CatchSwitch,
4247          "CatchSwitchInst not the first non-PHI instruction in the block.",
4248          &CatchSwitch);
4249 
4250   auto *ParentPad = CatchSwitch.getParentPad();
4251   Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4252          "CatchSwitchInst has an invalid parent.", ParentPad);
4253 
4254   if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
4255     Instruction *I = UnwindDest->getFirstNonPHI();
4256     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
4257            "CatchSwitchInst must unwind to an EH block which is not a "
4258            "landingpad.",
4259            &CatchSwitch);
4260 
4261     // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
4262     if (getParentPad(I) == ParentPad)
4263       SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
4264   }
4265 
4266   Assert(CatchSwitch.getNumHandlers() != 0,
4267          "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
4268 
4269   for (BasicBlock *Handler : CatchSwitch.handlers()) {
4270     Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
4271            "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
4272   }
4273 
4274   visitEHPadPredecessors(CatchSwitch);
4275   visitTerminator(CatchSwitch);
4276 }
4277 
visitCleanupReturnInst(CleanupReturnInst & CRI)4278 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
4279   Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
4280          "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
4281          CRI.getOperand(0));
4282 
4283   if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
4284     Instruction *I = UnwindDest->getFirstNonPHI();
4285     Assert(I->isEHPad() && !isa<LandingPadInst>(I),
4286            "CleanupReturnInst must unwind to an EH block which is not a "
4287            "landingpad.",
4288            &CRI);
4289   }
4290 
4291   visitTerminator(CRI);
4292 }
4293 
verifyDominatesUse(Instruction & I,unsigned i)4294 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
4295   Instruction *Op = cast<Instruction>(I.getOperand(i));
4296   // If the we have an invalid invoke, don't try to compute the dominance.
4297   // We already reject it in the invoke specific checks and the dominance
4298   // computation doesn't handle multiple edges.
4299   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
4300     if (II->getNormalDest() == II->getUnwindDest())
4301       return;
4302   }
4303 
4304   // Quick check whether the def has already been encountered in the same block.
4305   // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
4306   // uses are defined to happen on the incoming edge, not at the instruction.
4307   //
4308   // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
4309   // wrapping an SSA value, assert that we've already encountered it.  See
4310   // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
4311   if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
4312     return;
4313 
4314   const Use &U = I.getOperandUse(i);
4315   Assert(DT.dominates(Op, U),
4316          "Instruction does not dominate all uses!", Op, &I);
4317 }
4318 
visitDereferenceableMetadata(Instruction & I,MDNode * MD)4319 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4320   Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
4321          "apply only to pointer types", &I);
4322   Assert((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4323          "dereferenceable, dereferenceable_or_null apply only to load"
4324          " and inttoptr instructions, use attributes for calls or invokes", &I);
4325   Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
4326          "take one operand!", &I);
4327   ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4328   Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
4329          "dereferenceable_or_null metadata value must be an i64!", &I);
4330 }
4331 
visitProfMetadata(Instruction & I,MDNode * MD)4332 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4333   Assert(MD->getNumOperands() >= 2,
4334          "!prof annotations should have no less than 2 operands", MD);
4335 
4336   // Check first operand.
4337   Assert(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4338   Assert(isa<MDString>(MD->getOperand(0)),
4339          "expected string with name of the !prof annotation", MD);
4340   MDString *MDS = cast<MDString>(MD->getOperand(0));
4341   StringRef ProfName = MDS->getString();
4342 
4343   // Check consistency of !prof branch_weights metadata.
4344   if (ProfName.equals("branch_weights")) {
4345     if (isa<InvokeInst>(&I)) {
4346       Assert(MD->getNumOperands() == 2 || MD->getNumOperands() == 3,
4347              "Wrong number of InvokeInst branch_weights operands", MD);
4348     } else {
4349       unsigned ExpectedNumOperands = 0;
4350       if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4351         ExpectedNumOperands = BI->getNumSuccessors();
4352       else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4353         ExpectedNumOperands = SI->getNumSuccessors();
4354       else if (isa<CallInst>(&I))
4355         ExpectedNumOperands = 1;
4356       else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4357         ExpectedNumOperands = IBI->getNumDestinations();
4358       else if (isa<SelectInst>(&I))
4359         ExpectedNumOperands = 2;
4360       else
4361         CheckFailed("!prof branch_weights are not allowed for this instruction",
4362                     MD);
4363 
4364       Assert(MD->getNumOperands() == 1 + ExpectedNumOperands,
4365              "Wrong number of operands", MD);
4366     }
4367     for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
4368       auto &MDO = MD->getOperand(i);
4369       Assert(MDO, "second operand should not be null", MD);
4370       Assert(mdconst::dyn_extract<ConstantInt>(MDO),
4371              "!prof brunch_weights operand is not a const int");
4372     }
4373   }
4374 }
4375 
visitAnnotationMetadata(MDNode * Annotation)4376 void Verifier::visitAnnotationMetadata(MDNode *Annotation) {
4377   Assert(isa<MDTuple>(Annotation), "annotation must be a tuple");
4378   Assert(Annotation->getNumOperands() >= 1,
4379          "annotation must have at least one operand");
4380   for (const MDOperand &Op : Annotation->operands())
4381     Assert(isa<MDString>(Op.get()), "operands must be strings");
4382 }
4383 
4384 /// verifyInstruction - Verify that an instruction is well formed.
4385 ///
visitInstruction(Instruction & I)4386 void Verifier::visitInstruction(Instruction &I) {
4387   BasicBlock *BB = I.getParent();
4388   Assert(BB, "Instruction not embedded in basic block!", &I);
4389 
4390   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
4391     for (User *U : I.users()) {
4392       Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
4393              "Only PHI nodes may reference their own value!", &I);
4394     }
4395   }
4396 
4397   // Check that void typed values don't have names
4398   Assert(!I.getType()->isVoidTy() || !I.hasName(),
4399          "Instruction has a name, but provides a void value!", &I);
4400 
4401   // Check that the return value of the instruction is either void or a legal
4402   // value type.
4403   Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
4404          "Instruction returns a non-scalar type!", &I);
4405 
4406   // Check that the instruction doesn't produce metadata. Calls are already
4407   // checked against the callee type.
4408   Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
4409          "Invalid use of metadata!", &I);
4410 
4411   // Check that all uses of the instruction, if they are instructions
4412   // themselves, actually have parent basic blocks.  If the use is not an
4413   // instruction, it is an error!
4414   for (Use &U : I.uses()) {
4415     if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4416       Assert(Used->getParent() != nullptr,
4417              "Instruction referencing"
4418              " instruction not embedded in a basic block!",
4419              &I, Used);
4420     else {
4421       CheckFailed("Use of instruction is not an instruction!", U);
4422       return;
4423     }
4424   }
4425 
4426   // Get a pointer to the call base of the instruction if it is some form of
4427   // call.
4428   const CallBase *CBI = dyn_cast<CallBase>(&I);
4429 
4430   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4431     Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4432 
4433     // Check to make sure that only first-class-values are operands to
4434     // instructions.
4435     if (!I.getOperand(i)->getType()->isFirstClassType()) {
4436       Assert(false, "Instruction operands must be first-class values!", &I);
4437     }
4438 
4439     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4440       // Check to make sure that the "address of" an intrinsic function is never
4441       // taken.
4442       Assert(!F->isIntrinsic() ||
4443                  (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)),
4444              "Cannot take the address of an intrinsic!", &I);
4445       Assert(
4446           !F->isIntrinsic() || isa<CallInst>(I) ||
4447               F->getIntrinsicID() == Intrinsic::donothing ||
4448               F->getIntrinsicID() == Intrinsic::seh_try_begin ||
4449               F->getIntrinsicID() == Intrinsic::seh_try_end ||
4450               F->getIntrinsicID() == Intrinsic::seh_scope_begin ||
4451               F->getIntrinsicID() == Intrinsic::seh_scope_end ||
4452               F->getIntrinsicID() == Intrinsic::coro_resume ||
4453               F->getIntrinsicID() == Intrinsic::coro_destroy ||
4454               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
4455               F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4456               F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4457               F->getIntrinsicID() == Intrinsic::wasm_rethrow,
4458           "Cannot invoke an intrinsic other than donothing, patchpoint, "
4459           "statepoint, coro_resume or coro_destroy",
4460           &I);
4461       Assert(F->getParent() == &M, "Referencing function in another module!",
4462              &I, &M, F, F->getParent());
4463     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4464       Assert(OpBB->getParent() == BB->getParent(),
4465              "Referring to a basic block in another function!", &I);
4466     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4467       Assert(OpArg->getParent() == BB->getParent(),
4468              "Referring to an argument in another function!", &I);
4469     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4470       Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
4471              &M, GV, GV->getParent());
4472     } else if (isa<Instruction>(I.getOperand(i))) {
4473       verifyDominatesUse(I, i);
4474     } else if (isa<InlineAsm>(I.getOperand(i))) {
4475       Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4476              "Cannot take the address of an inline asm!", &I);
4477     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4478       if (CE->getType()->isPtrOrPtrVectorTy() ||
4479           !DL.getNonIntegralAddressSpaces().empty()) {
4480         // If we have a ConstantExpr pointer, we need to see if it came from an
4481         // illegal bitcast.  If the datalayout string specifies non-integral
4482         // address spaces then we also need to check for illegal ptrtoint and
4483         // inttoptr expressions.
4484         visitConstantExprsRecursively(CE);
4485       }
4486     }
4487   }
4488 
4489   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4490     Assert(I.getType()->isFPOrFPVectorTy(),
4491            "fpmath requires a floating point result!", &I);
4492     Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4493     if (ConstantFP *CFP0 =
4494             mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4495       const APFloat &Accuracy = CFP0->getValueAPF();
4496       Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4497              "fpmath accuracy must have float type", &I);
4498       Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4499              "fpmath accuracy not a positive number!", &I);
4500     } else {
4501       Assert(false, "invalid fpmath accuracy!", &I);
4502     }
4503   }
4504 
4505   if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4506     Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4507            "Ranges are only for loads, calls and invokes!", &I);
4508     visitRangeMetadata(I, Range, I.getType());
4509   }
4510 
4511   if (I.getMetadata(LLVMContext::MD_nonnull)) {
4512     Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4513            &I);
4514     Assert(isa<LoadInst>(I),
4515            "nonnull applies only to load instructions, use attributes"
4516            " for calls or invokes",
4517            &I);
4518   }
4519 
4520   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4521     visitDereferenceableMetadata(I, MD);
4522 
4523   if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4524     visitDereferenceableMetadata(I, MD);
4525 
4526   if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4527     TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4528 
4529   if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4530     Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
4531            &I);
4532     Assert(isa<LoadInst>(I), "align applies only to load instructions, "
4533            "use attributes for calls or invokes", &I);
4534     Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4535     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4536     Assert(CI && CI->getType()->isIntegerTy(64),
4537            "align metadata value must be an i64!", &I);
4538     uint64_t Align = CI->getZExtValue();
4539     Assert(isPowerOf2_64(Align),
4540            "align metadata value must be a power of 2!", &I);
4541     Assert(Align <= Value::MaximumAlignment,
4542            "alignment is larger that implementation defined limit", &I);
4543   }
4544 
4545   if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
4546     visitProfMetadata(I, MD);
4547 
4548   if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation))
4549     visitAnnotationMetadata(Annotation);
4550 
4551   if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4552     AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4553     visitMDNode(*N, AreDebugLocsAllowed::Yes);
4554   }
4555 
4556   if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
4557     verifyFragmentExpression(*DII);
4558     verifyNotEntryValue(*DII);
4559   }
4560 
4561   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
4562   I.getAllMetadata(MDs);
4563   for (auto Attachment : MDs) {
4564     unsigned Kind = Attachment.first;
4565     auto AllowLocs =
4566         (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
4567             ? AreDebugLocsAllowed::Yes
4568             : AreDebugLocsAllowed::No;
4569     visitMDNode(*Attachment.second, AllowLocs);
4570   }
4571 
4572   InstsInThisBlock.insert(&I);
4573 }
4574 
4575 /// Allow intrinsics to be verified in different ways.
visitIntrinsicCall(Intrinsic::ID ID,CallBase & Call)4576 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4577   Function *IF = Call.getCalledFunction();
4578   Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4579          IF);
4580 
4581   // Verify that the intrinsic prototype lines up with what the .td files
4582   // describe.
4583   FunctionType *IFTy = IF->getFunctionType();
4584   bool IsVarArg = IFTy->isVarArg();
4585 
4586   SmallVector<Intrinsic::IITDescriptor, 8> Table;
4587   getIntrinsicInfoTableEntries(ID, Table);
4588   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4589 
4590   // Walk the descriptors to extract overloaded types.
4591   SmallVector<Type *, 4> ArgTys;
4592   Intrinsic::MatchIntrinsicTypesResult Res =
4593       Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
4594   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
4595          "Intrinsic has incorrect return type!", IF);
4596   Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
4597          "Intrinsic has incorrect argument type!", IF);
4598 
4599   // Verify if the intrinsic call matches the vararg property.
4600   if (IsVarArg)
4601     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4602            "Intrinsic was not defined with variable arguments!", IF);
4603   else
4604     Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4605            "Callsite was not defined with variable arguments!", IF);
4606 
4607   // All descriptors should be absorbed by now.
4608   Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4609 
4610   // Now that we have the intrinsic ID and the actual argument types (and we
4611   // know they are legal for the intrinsic!) get the intrinsic name through the
4612   // usual means.  This allows us to verify the mangling of argument types into
4613   // the name.
4614   const std::string ExpectedName =
4615       Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy);
4616   Assert(ExpectedName == IF->getName(),
4617          "Intrinsic name not mangled correctly for type arguments! "
4618          "Should be: " +
4619              ExpectedName,
4620          IF);
4621 
4622   // If the intrinsic takes MDNode arguments, verify that they are either global
4623   // or are local to *this* function.
4624   for (Value *V : Call.args()) {
4625     if (auto *MD = dyn_cast<MetadataAsValue>(V))
4626       visitMetadataAsValue(*MD, Call.getCaller());
4627     if (auto *Const = dyn_cast<Constant>(V))
4628       Assert(!Const->getType()->isX86_AMXTy(),
4629              "const x86_amx is not allowed in argument!");
4630   }
4631 
4632   switch (ID) {
4633   default:
4634     break;
4635   case Intrinsic::assume: {
4636     for (auto &Elem : Call.bundle_op_infos()) {
4637       Assert(Elem.Tag->getKey() == "ignore" ||
4638                  Attribute::isExistingAttribute(Elem.Tag->getKey()),
4639              "tags must be valid attribute names");
4640       Attribute::AttrKind Kind =
4641           Attribute::getAttrKindFromName(Elem.Tag->getKey());
4642       unsigned ArgCount = Elem.End - Elem.Begin;
4643       if (Kind == Attribute::Alignment) {
4644         Assert(ArgCount <= 3 && ArgCount >= 2,
4645                "alignment assumptions should have 2 or 3 arguments");
4646         Assert(Call.getOperand(Elem.Begin)->getType()->isPointerTy(),
4647                "first argument should be a pointer");
4648         Assert(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),
4649                "second argument should be an integer");
4650         if (ArgCount == 3)
4651           Assert(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),
4652                  "third argument should be an integer if present");
4653         return;
4654       }
4655       Assert(ArgCount <= 2, "to many arguments");
4656       if (Kind == Attribute::None)
4657         break;
4658       if (Attribute::doesAttrKindHaveArgument(Kind)) {
4659         Assert(ArgCount == 2, "this attribute should have 2 arguments");
4660         Assert(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
4661                "the second argument should be a constant integral value");
4662       } else if (isFuncOnlyAttr(Kind)) {
4663         Assert((ArgCount) == 0, "this attribute has no argument");
4664       } else if (!isFuncOrArgAttr(Kind)) {
4665         Assert((ArgCount) == 1, "this attribute should have one argument");
4666       }
4667     }
4668     break;
4669   }
4670   case Intrinsic::coro_id: {
4671     auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
4672     if (isa<ConstantPointerNull>(InfoArg))
4673       break;
4674     auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4675     Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4676            "info argument of llvm.coro.id must refer to an initialized "
4677            "constant");
4678     Constant *Init = GV->getInitializer();
4679     Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4680            "info argument of llvm.coro.id must refer to either a struct or "
4681            "an array");
4682     break;
4683   }
4684 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC)                        \
4685   case Intrinsic::INTRINSIC:
4686 #include "llvm/IR/ConstrainedOps.def"
4687     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
4688     break;
4689   case Intrinsic::dbg_declare: // llvm.dbg.declare
4690     Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
4691            "invalid llvm.dbg.declare intrinsic call 1", Call);
4692     visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
4693     break;
4694   case Intrinsic::dbg_addr: // llvm.dbg.addr
4695     visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
4696     break;
4697   case Intrinsic::dbg_value: // llvm.dbg.value
4698     visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
4699     break;
4700   case Intrinsic::dbg_label: // llvm.dbg.label
4701     visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
4702     break;
4703   case Intrinsic::memcpy:
4704   case Intrinsic::memcpy_inline:
4705   case Intrinsic::memmove:
4706   case Intrinsic::memset: {
4707     const auto *MI = cast<MemIntrinsic>(&Call);
4708     auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4709       return Alignment == 0 || isPowerOf2_32(Alignment);
4710     };
4711     Assert(IsValidAlignment(MI->getDestAlignment()),
4712            "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4713            Call);
4714     if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4715       Assert(IsValidAlignment(MTI->getSourceAlignment()),
4716              "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4717              Call);
4718     }
4719 
4720     break;
4721   }
4722   case Intrinsic::memcpy_element_unordered_atomic:
4723   case Intrinsic::memmove_element_unordered_atomic:
4724   case Intrinsic::memset_element_unordered_atomic: {
4725     const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
4726 
4727     ConstantInt *ElementSizeCI =
4728         cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4729     const APInt &ElementSizeVal = ElementSizeCI->getValue();
4730     Assert(ElementSizeVal.isPowerOf2(),
4731            "element size of the element-wise atomic memory intrinsic "
4732            "must be a power of 2",
4733            Call);
4734 
4735     auto IsValidAlignment = [&](uint64_t Alignment) {
4736       return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4737     };
4738     uint64_t DstAlignment = AMI->getDestAlignment();
4739     Assert(IsValidAlignment(DstAlignment),
4740            "incorrect alignment of the destination argument", Call);
4741     if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4742       uint64_t SrcAlignment = AMT->getSourceAlignment();
4743       Assert(IsValidAlignment(SrcAlignment),
4744              "incorrect alignment of the source argument", Call);
4745     }
4746     break;
4747   }
4748   case Intrinsic::call_preallocated_setup: {
4749     auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
4750     Assert(NumArgs != nullptr,
4751            "llvm.call.preallocated.setup argument must be a constant");
4752     bool FoundCall = false;
4753     for (User *U : Call.users()) {
4754       auto *UseCall = dyn_cast<CallBase>(U);
4755       Assert(UseCall != nullptr,
4756              "Uses of llvm.call.preallocated.setup must be calls");
4757       const Function *Fn = UseCall->getCalledFunction();
4758       if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
4759         auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
4760         Assert(AllocArgIndex != nullptr,
4761                "llvm.call.preallocated.alloc arg index must be a constant");
4762         auto AllocArgIndexInt = AllocArgIndex->getValue();
4763         Assert(AllocArgIndexInt.sge(0) &&
4764                    AllocArgIndexInt.slt(NumArgs->getValue()),
4765                "llvm.call.preallocated.alloc arg index must be between 0 and "
4766                "corresponding "
4767                "llvm.call.preallocated.setup's argument count");
4768       } else if (Fn && Fn->getIntrinsicID() ==
4769                            Intrinsic::call_preallocated_teardown) {
4770         // nothing to do
4771       } else {
4772         Assert(!FoundCall, "Can have at most one call corresponding to a "
4773                            "llvm.call.preallocated.setup");
4774         FoundCall = true;
4775         size_t NumPreallocatedArgs = 0;
4776         for (unsigned i = 0; i < UseCall->getNumArgOperands(); i++) {
4777           if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
4778             ++NumPreallocatedArgs;
4779           }
4780         }
4781         Assert(NumPreallocatedArgs != 0,
4782                "cannot use preallocated intrinsics on a call without "
4783                "preallocated arguments");
4784         Assert(NumArgs->equalsInt(NumPreallocatedArgs),
4785                "llvm.call.preallocated.setup arg size must be equal to number "
4786                "of preallocated arguments "
4787                "at call site",
4788                Call, *UseCall);
4789         // getOperandBundle() cannot be called if more than one of the operand
4790         // bundle exists. There is already a check elsewhere for this, so skip
4791         // here if we see more than one.
4792         if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
4793             1) {
4794           return;
4795         }
4796         auto PreallocatedBundle =
4797             UseCall->getOperandBundle(LLVMContext::OB_preallocated);
4798         Assert(PreallocatedBundle,
4799                "Use of llvm.call.preallocated.setup outside intrinsics "
4800                "must be in \"preallocated\" operand bundle");
4801         Assert(PreallocatedBundle->Inputs.front().get() == &Call,
4802                "preallocated bundle must have token from corresponding "
4803                "llvm.call.preallocated.setup");
4804       }
4805     }
4806     break;
4807   }
4808   case Intrinsic::call_preallocated_arg: {
4809     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
4810     Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
4811                         Intrinsic::call_preallocated_setup,
4812            "llvm.call.preallocated.arg token argument must be a "
4813            "llvm.call.preallocated.setup");
4814     Assert(Call.hasFnAttr(Attribute::Preallocated),
4815            "llvm.call.preallocated.arg must be called with a \"preallocated\" "
4816            "call site attribute");
4817     break;
4818   }
4819   case Intrinsic::call_preallocated_teardown: {
4820     auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
4821     Assert(Token && Token->getCalledFunction()->getIntrinsicID() ==
4822                         Intrinsic::call_preallocated_setup,
4823            "llvm.call.preallocated.teardown token argument must be a "
4824            "llvm.call.preallocated.setup");
4825     break;
4826   }
4827   case Intrinsic::gcroot:
4828   case Intrinsic::gcwrite:
4829   case Intrinsic::gcread:
4830     if (ID == Intrinsic::gcroot) {
4831       AllocaInst *AI =
4832           dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
4833       Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
4834       Assert(isa<Constant>(Call.getArgOperand(1)),
4835              "llvm.gcroot parameter #2 must be a constant.", Call);
4836       if (!AI->getAllocatedType()->isPointerTy()) {
4837         Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
4838                "llvm.gcroot parameter #1 must either be a pointer alloca, "
4839                "or argument #2 must be a non-null constant.",
4840                Call);
4841       }
4842     }
4843 
4844     Assert(Call.getParent()->getParent()->hasGC(),
4845            "Enclosing function does not use GC.", Call);
4846     break;
4847   case Intrinsic::init_trampoline:
4848     Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
4849            "llvm.init_trampoline parameter #2 must resolve to a function.",
4850            Call);
4851     break;
4852   case Intrinsic::prefetch:
4853     Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
4854            cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
4855            "invalid arguments to llvm.prefetch", Call);
4856     break;
4857   case Intrinsic::stackprotector:
4858     Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
4859            "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
4860     break;
4861   case Intrinsic::localescape: {
4862     BasicBlock *BB = Call.getParent();
4863     Assert(BB == &BB->getParent()->front(),
4864            "llvm.localescape used outside of entry block", Call);
4865     Assert(!SawFrameEscape,
4866            "multiple calls to llvm.localescape in one function", Call);
4867     for (Value *Arg : Call.args()) {
4868       if (isa<ConstantPointerNull>(Arg))
4869         continue; // Null values are allowed as placeholders.
4870       auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4871       Assert(AI && AI->isStaticAlloca(),
4872              "llvm.localescape only accepts static allocas", Call);
4873     }
4874     FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands();
4875     SawFrameEscape = true;
4876     break;
4877   }
4878   case Intrinsic::localrecover: {
4879     Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
4880     Function *Fn = dyn_cast<Function>(FnArg);
4881     Assert(Fn && !Fn->isDeclaration(),
4882            "llvm.localrecover first "
4883            "argument must be function defined in this module",
4884            Call);
4885     auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
4886     auto &Entry = FrameEscapeInfo[Fn];
4887     Entry.second = unsigned(
4888         std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4889     break;
4890   }
4891 
4892   case Intrinsic::experimental_gc_statepoint:
4893     if (auto *CI = dyn_cast<CallInst>(&Call))
4894       Assert(!CI->isInlineAsm(),
4895              "gc.statepoint support for inline assembly unimplemented", CI);
4896     Assert(Call.getParent()->getParent()->hasGC(),
4897            "Enclosing function does not use GC.", Call);
4898 
4899     verifyStatepoint(Call);
4900     break;
4901   case Intrinsic::experimental_gc_result: {
4902     Assert(Call.getParent()->getParent()->hasGC(),
4903            "Enclosing function does not use GC.", Call);
4904     // Are we tied to a statepoint properly?
4905     const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
4906     const Function *StatepointFn =
4907         StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
4908     Assert(StatepointFn && StatepointFn->isDeclaration() &&
4909                StatepointFn->getIntrinsicID() ==
4910                    Intrinsic::experimental_gc_statepoint,
4911            "gc.result operand #1 must be from a statepoint", Call,
4912            Call.getArgOperand(0));
4913 
4914     // Assert that result type matches wrapped callee.
4915     const Value *Target = StatepointCall->getArgOperand(2);
4916     auto *PT = cast<PointerType>(Target->getType());
4917     auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4918     Assert(Call.getType() == TargetFuncType->getReturnType(),
4919            "gc.result result type does not match wrapped callee", Call);
4920     break;
4921   }
4922   case Intrinsic::experimental_gc_relocate: {
4923     Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call);
4924 
4925     Assert(isa<PointerType>(Call.getType()->getScalarType()),
4926            "gc.relocate must return a pointer or a vector of pointers", Call);
4927 
4928     // Check that this relocate is correctly tied to the statepoint
4929 
4930     // This is case for relocate on the unwinding path of an invoke statepoint
4931     if (LandingPadInst *LandingPad =
4932             dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
4933 
4934       const BasicBlock *InvokeBB =
4935           LandingPad->getParent()->getUniquePredecessor();
4936 
4937       // Landingpad relocates should have only one predecessor with invoke
4938       // statepoint terminator
4939       Assert(InvokeBB, "safepoints should have unique landingpads",
4940              LandingPad->getParent());
4941       Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4942              InvokeBB);
4943       Assert(isa<GCStatepointInst>(InvokeBB->getTerminator()),
4944              "gc relocate should be linked to a statepoint", InvokeBB);
4945     } else {
4946       // In all other cases relocate should be tied to the statepoint directly.
4947       // This covers relocates on a normal return path of invoke statepoint and
4948       // relocates of a call statepoint.
4949       auto Token = Call.getArgOperand(0);
4950       Assert(isa<GCStatepointInst>(Token),
4951              "gc relocate is incorrectly tied to the statepoint", Call, Token);
4952     }
4953 
4954     // Verify rest of the relocate arguments.
4955     const CallBase &StatepointCall =
4956       *cast<GCRelocateInst>(Call).getStatepoint();
4957 
4958     // Both the base and derived must be piped through the safepoint.
4959     Value *Base = Call.getArgOperand(1);
4960     Assert(isa<ConstantInt>(Base),
4961            "gc.relocate operand #2 must be integer offset", Call);
4962 
4963     Value *Derived = Call.getArgOperand(2);
4964     Assert(isa<ConstantInt>(Derived),
4965            "gc.relocate operand #3 must be integer offset", Call);
4966 
4967     const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4968     const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4969 
4970     // Check the bounds
4971     if (auto Opt = StatepointCall.getOperandBundle(LLVMContext::OB_gc_live)) {
4972       Assert(BaseIndex < Opt->Inputs.size(),
4973              "gc.relocate: statepoint base index out of bounds", Call);
4974       Assert(DerivedIndex < Opt->Inputs.size(),
4975              "gc.relocate: statepoint derived index out of bounds", Call);
4976     }
4977 
4978     // Relocated value must be either a pointer type or vector-of-pointer type,
4979     // but gc_relocate does not need to return the same pointer type as the
4980     // relocated pointer. It can be casted to the correct type later if it's
4981     // desired. However, they must have the same address space and 'vectorness'
4982     GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
4983     Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
4984            "gc.relocate: relocated value must be a gc pointer", Call);
4985 
4986     auto ResultType = Call.getType();
4987     auto DerivedType = Relocate.getDerivedPtr()->getType();
4988     Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4989            "gc.relocate: vector relocates to vector and pointer to pointer",
4990            Call);
4991     Assert(
4992         ResultType->getPointerAddressSpace() ==
4993             DerivedType->getPointerAddressSpace(),
4994         "gc.relocate: relocating a pointer shouldn't change its address space",
4995         Call);
4996     break;
4997   }
4998   case Intrinsic::eh_exceptioncode:
4999   case Intrinsic::eh_exceptionpointer: {
5000     Assert(isa<CatchPadInst>(Call.getArgOperand(0)),
5001            "eh.exceptionpointer argument must be a catchpad", Call);
5002     break;
5003   }
5004   case Intrinsic::get_active_lane_mask: {
5005     Assert(Call.getType()->isVectorTy(), "get_active_lane_mask: must return a "
5006            "vector", Call);
5007     auto *ElemTy = Call.getType()->getScalarType();
5008     Assert(ElemTy->isIntegerTy(1), "get_active_lane_mask: element type is not "
5009            "i1", Call);
5010     break;
5011   }
5012   case Intrinsic::masked_load: {
5013     Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",
5014            Call);
5015 
5016     Value *Ptr = Call.getArgOperand(0);
5017     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
5018     Value *Mask = Call.getArgOperand(2);
5019     Value *PassThru = Call.getArgOperand(3);
5020     Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
5021            Call);
5022     Assert(Alignment->getValue().isPowerOf2(),
5023            "masked_load: alignment must be a power of 2", Call);
5024 
5025     // DataTy is the overloaded type
5026     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
5027     Assert(DataTy == Call.getType(),
5028            "masked_load: return must match pointer type", Call);
5029     Assert(PassThru->getType() == DataTy,
5030            "masked_load: pass through and data type must match", Call);
5031     Assert(cast<VectorType>(Mask->getType())->getElementCount() ==
5032                cast<VectorType>(DataTy)->getElementCount(),
5033            "masked_load: vector mask must be same length as data", Call);
5034     break;
5035   }
5036   case Intrinsic::masked_store: {
5037     Value *Val = Call.getArgOperand(0);
5038     Value *Ptr = Call.getArgOperand(1);
5039     ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
5040     Value *Mask = Call.getArgOperand(3);
5041     Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
5042            Call);
5043     Assert(Alignment->getValue().isPowerOf2(),
5044            "masked_store: alignment must be a power of 2", Call);
5045 
5046     // DataTy is the overloaded type
5047     Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
5048     Assert(DataTy == Val->getType(),
5049            "masked_store: storee must match pointer type", Call);
5050     Assert(cast<VectorType>(Mask->getType())->getElementCount() ==
5051                cast<VectorType>(DataTy)->getElementCount(),
5052            "masked_store: vector mask must be same length as data", Call);
5053     break;
5054   }
5055 
5056   case Intrinsic::masked_gather: {
5057     const APInt &Alignment =
5058         cast<ConstantInt>(Call.getArgOperand(1))->getValue();
5059     Assert(Alignment.isNullValue() || Alignment.isPowerOf2(),
5060            "masked_gather: alignment must be 0 or a power of 2", Call);
5061     break;
5062   }
5063   case Intrinsic::masked_scatter: {
5064     const APInt &Alignment =
5065         cast<ConstantInt>(Call.getArgOperand(2))->getValue();
5066     Assert(Alignment.isNullValue() || Alignment.isPowerOf2(),
5067            "masked_scatter: alignment must be 0 or a power of 2", Call);
5068     break;
5069   }
5070 
5071   case Intrinsic::experimental_guard: {
5072     Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
5073     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5074            "experimental_guard must have exactly one "
5075            "\"deopt\" operand bundle");
5076     break;
5077   }
5078 
5079   case Intrinsic::experimental_deoptimize: {
5080     Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
5081            Call);
5082     Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5083            "experimental_deoptimize must have exactly one "
5084            "\"deopt\" operand bundle");
5085     Assert(Call.getType() == Call.getFunction()->getReturnType(),
5086            "experimental_deoptimize return type must match caller return type");
5087 
5088     if (isa<CallInst>(Call)) {
5089       auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
5090       Assert(RI,
5091              "calls to experimental_deoptimize must be followed by a return");
5092 
5093       if (!Call.getType()->isVoidTy() && RI)
5094         Assert(RI->getReturnValue() == &Call,
5095                "calls to experimental_deoptimize must be followed by a return "
5096                "of the value computed by experimental_deoptimize");
5097     }
5098 
5099     break;
5100   }
5101   case Intrinsic::vector_reduce_and:
5102   case Intrinsic::vector_reduce_or:
5103   case Intrinsic::vector_reduce_xor:
5104   case Intrinsic::vector_reduce_add:
5105   case Intrinsic::vector_reduce_mul:
5106   case Intrinsic::vector_reduce_smax:
5107   case Intrinsic::vector_reduce_smin:
5108   case Intrinsic::vector_reduce_umax:
5109   case Intrinsic::vector_reduce_umin: {
5110     Type *ArgTy = Call.getArgOperand(0)->getType();
5111     Assert(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(),
5112            "Intrinsic has incorrect argument type!");
5113     break;
5114   }
5115   case Intrinsic::vector_reduce_fmax:
5116   case Intrinsic::vector_reduce_fmin: {
5117     Type *ArgTy = Call.getArgOperand(0)->getType();
5118     Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5119            "Intrinsic has incorrect argument type!");
5120     break;
5121   }
5122   case Intrinsic::vector_reduce_fadd:
5123   case Intrinsic::vector_reduce_fmul: {
5124     // Unlike the other reductions, the first argument is a start value. The
5125     // second argument is the vector to be reduced.
5126     Type *ArgTy = Call.getArgOperand(1)->getType();
5127     Assert(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5128            "Intrinsic has incorrect argument type!");
5129     break;
5130   }
5131   case Intrinsic::smul_fix:
5132   case Intrinsic::smul_fix_sat:
5133   case Intrinsic::umul_fix:
5134   case Intrinsic::umul_fix_sat:
5135   case Intrinsic::sdiv_fix:
5136   case Intrinsic::sdiv_fix_sat:
5137   case Intrinsic::udiv_fix:
5138   case Intrinsic::udiv_fix_sat: {
5139     Value *Op1 = Call.getArgOperand(0);
5140     Value *Op2 = Call.getArgOperand(1);
5141     Assert(Op1->getType()->isIntOrIntVectorTy(),
5142            "first operand of [us][mul|div]_fix[_sat] must be an int type or "
5143            "vector of ints");
5144     Assert(Op2->getType()->isIntOrIntVectorTy(),
5145            "second operand of [us][mul|div]_fix[_sat] must be an int type or "
5146            "vector of ints");
5147 
5148     auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
5149     Assert(Op3->getType()->getBitWidth() <= 32,
5150            "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits");
5151 
5152     if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
5153         ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
5154       Assert(
5155           Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
5156           "the scale of s[mul|div]_fix[_sat] must be less than the width of "
5157           "the operands");
5158     } else {
5159       Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
5160              "the scale of u[mul|div]_fix[_sat] must be less than or equal "
5161              "to the width of the operands");
5162     }
5163     break;
5164   }
5165   case Intrinsic::lround:
5166   case Intrinsic::llround:
5167   case Intrinsic::lrint:
5168   case Intrinsic::llrint: {
5169     Type *ValTy = Call.getArgOperand(0)->getType();
5170     Type *ResultTy = Call.getType();
5171     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5172            "Intrinsic does not support vectors", &Call);
5173     break;
5174   }
5175   case Intrinsic::bswap: {
5176     Type *Ty = Call.getType();
5177     unsigned Size = Ty->getScalarSizeInBits();
5178     Assert(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
5179     break;
5180   }
5181   case Intrinsic::invariant_start: {
5182     ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5183     Assert(InvariantSize &&
5184                (!InvariantSize->isNegative() || InvariantSize->isMinusOne()),
5185            "invariant_start parameter must be -1, 0 or a positive number",
5186            &Call);
5187     break;
5188   }
5189   case Intrinsic::matrix_multiply:
5190   case Intrinsic::matrix_transpose:
5191   case Intrinsic::matrix_column_major_load:
5192   case Intrinsic::matrix_column_major_store: {
5193     Function *IF = Call.getCalledFunction();
5194     ConstantInt *Stride = nullptr;
5195     ConstantInt *NumRows;
5196     ConstantInt *NumColumns;
5197     VectorType *ResultTy;
5198     Type *Op0ElemTy = nullptr;
5199     Type *Op1ElemTy = nullptr;
5200     switch (ID) {
5201     case Intrinsic::matrix_multiply:
5202       NumRows = cast<ConstantInt>(Call.getArgOperand(2));
5203       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5204       ResultTy = cast<VectorType>(Call.getType());
5205       Op0ElemTy =
5206           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5207       Op1ElemTy =
5208           cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType();
5209       break;
5210     case Intrinsic::matrix_transpose:
5211       NumRows = cast<ConstantInt>(Call.getArgOperand(1));
5212       NumColumns = cast<ConstantInt>(Call.getArgOperand(2));
5213       ResultTy = cast<VectorType>(Call.getType());
5214       Op0ElemTy =
5215           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5216       break;
5217     case Intrinsic::matrix_column_major_load:
5218       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1));
5219       NumRows = cast<ConstantInt>(Call.getArgOperand(3));
5220       NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5221       ResultTy = cast<VectorType>(Call.getType());
5222       Op0ElemTy =
5223           cast<PointerType>(Call.getArgOperand(0)->getType())->getElementType();
5224       break;
5225     case Intrinsic::matrix_column_major_store:
5226       Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2));
5227       NumRows = cast<ConstantInt>(Call.getArgOperand(4));
5228       NumColumns = cast<ConstantInt>(Call.getArgOperand(5));
5229       ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType());
5230       Op0ElemTy =
5231           cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5232       Op1ElemTy =
5233           cast<PointerType>(Call.getArgOperand(1)->getType())->getElementType();
5234       break;
5235     default:
5236       llvm_unreachable("unexpected intrinsic");
5237     }
5238 
5239     Assert(ResultTy->getElementType()->isIntegerTy() ||
5240            ResultTy->getElementType()->isFloatingPointTy(),
5241            "Result type must be an integer or floating-point type!", IF);
5242 
5243     Assert(ResultTy->getElementType() == Op0ElemTy,
5244            "Vector element type mismatch of the result and first operand "
5245            "vector!", IF);
5246 
5247     if (Op1ElemTy)
5248       Assert(ResultTy->getElementType() == Op1ElemTy,
5249              "Vector element type mismatch of the result and second operand "
5250              "vector!", IF);
5251 
5252     Assert(cast<FixedVectorType>(ResultTy)->getNumElements() ==
5253                NumRows->getZExtValue() * NumColumns->getZExtValue(),
5254            "Result of a matrix operation does not fit in the returned vector!");
5255 
5256     if (Stride)
5257       Assert(Stride->getZExtValue() >= NumRows->getZExtValue(),
5258              "Stride must be greater or equal than the number of rows!", IF);
5259 
5260     break;
5261   }
5262   case Intrinsic::experimental_stepvector: {
5263     VectorType *VecTy = dyn_cast<VectorType>(Call.getType());
5264     Assert(VecTy && VecTy->getScalarType()->isIntegerTy() &&
5265                VecTy->getScalarSizeInBits() >= 8,
5266            "experimental_stepvector only supported for vectors of integers "
5267            "with a bitwidth of at least 8.",
5268            &Call);
5269     break;
5270   }
5271   case Intrinsic::experimental_vector_insert: {
5272     VectorType *VecTy = cast<VectorType>(Call.getArgOperand(0)->getType());
5273     VectorType *SubVecTy = cast<VectorType>(Call.getArgOperand(1)->getType());
5274 
5275     Assert(VecTy->getElementType() == SubVecTy->getElementType(),
5276            "experimental_vector_insert parameters must have the same element "
5277            "type.",
5278            &Call);
5279     break;
5280   }
5281   case Intrinsic::experimental_vector_extract: {
5282     VectorType *ResultTy = cast<VectorType>(Call.getType());
5283     VectorType *VecTy = cast<VectorType>(Call.getArgOperand(0)->getType());
5284 
5285     Assert(ResultTy->getElementType() == VecTy->getElementType(),
5286            "experimental_vector_extract result must have the same element "
5287            "type as the input vector.",
5288            &Call);
5289     break;
5290   }
5291   case Intrinsic::experimental_noalias_scope_decl: {
5292     NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call));
5293     break;
5294   }
5295   };
5296 }
5297 
5298 /// Carefully grab the subprogram from a local scope.
5299 ///
5300 /// This carefully grabs the subprogram from a local scope, avoiding the
5301 /// built-in assertions that would typically fire.
getSubprogram(Metadata * LocalScope)5302 static DISubprogram *getSubprogram(Metadata *LocalScope) {
5303   if (!LocalScope)
5304     return nullptr;
5305 
5306   if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
5307     return SP;
5308 
5309   if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
5310     return getSubprogram(LB->getRawScope());
5311 
5312   // Just return null; broken scope chains are checked elsewhere.
5313   assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
5314   return nullptr;
5315 }
5316 
visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic & FPI)5317 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
5318   unsigned NumOperands;
5319   bool HasRoundingMD;
5320   switch (FPI.getIntrinsicID()) {
5321 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
5322   case Intrinsic::INTRINSIC:                                                   \
5323     NumOperands = NARG;                                                        \
5324     HasRoundingMD = ROUND_MODE;                                                \
5325     break;
5326 #include "llvm/IR/ConstrainedOps.def"
5327   default:
5328     llvm_unreachable("Invalid constrained FP intrinsic!");
5329   }
5330   NumOperands += (1 + HasRoundingMD);
5331   // Compare intrinsics carry an extra predicate metadata operand.
5332   if (isa<ConstrainedFPCmpIntrinsic>(FPI))
5333     NumOperands += 1;
5334   Assert((FPI.getNumArgOperands() == NumOperands),
5335          "invalid arguments for constrained FP intrinsic", &FPI);
5336 
5337   switch (FPI.getIntrinsicID()) {
5338   case Intrinsic::experimental_constrained_lrint:
5339   case Intrinsic::experimental_constrained_llrint: {
5340     Type *ValTy = FPI.getArgOperand(0)->getType();
5341     Type *ResultTy = FPI.getType();
5342     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5343            "Intrinsic does not support vectors", &FPI);
5344   }
5345     break;
5346 
5347   case Intrinsic::experimental_constrained_lround:
5348   case Intrinsic::experimental_constrained_llround: {
5349     Type *ValTy = FPI.getArgOperand(0)->getType();
5350     Type *ResultTy = FPI.getType();
5351     Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5352            "Intrinsic does not support vectors", &FPI);
5353     break;
5354   }
5355 
5356   case Intrinsic::experimental_constrained_fcmp:
5357   case Intrinsic::experimental_constrained_fcmps: {
5358     auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
5359     Assert(CmpInst::isFPPredicate(Pred),
5360            "invalid predicate for constrained FP comparison intrinsic", &FPI);
5361     break;
5362   }
5363 
5364   case Intrinsic::experimental_constrained_fptosi:
5365   case Intrinsic::experimental_constrained_fptoui: {
5366     Value *Operand = FPI.getArgOperand(0);
5367     uint64_t NumSrcElem = 0;
5368     Assert(Operand->getType()->isFPOrFPVectorTy(),
5369            "Intrinsic first argument must be floating point", &FPI);
5370     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5371       NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
5372     }
5373 
5374     Operand = &FPI;
5375     Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5376            "Intrinsic first argument and result disagree on vector use", &FPI);
5377     Assert(Operand->getType()->isIntOrIntVectorTy(),
5378            "Intrinsic result must be an integer", &FPI);
5379     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5380       Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
5381              "Intrinsic first argument and result vector lengths must be equal",
5382              &FPI);
5383     }
5384   }
5385     break;
5386 
5387   case Intrinsic::experimental_constrained_sitofp:
5388   case Intrinsic::experimental_constrained_uitofp: {
5389     Value *Operand = FPI.getArgOperand(0);
5390     uint64_t NumSrcElem = 0;
5391     Assert(Operand->getType()->isIntOrIntVectorTy(),
5392            "Intrinsic first argument must be integer", &FPI);
5393     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5394       NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements();
5395     }
5396 
5397     Operand = &FPI;
5398     Assert((NumSrcElem > 0) == Operand->getType()->isVectorTy(),
5399            "Intrinsic first argument and result disagree on vector use", &FPI);
5400     Assert(Operand->getType()->isFPOrFPVectorTy(),
5401            "Intrinsic result must be a floating point", &FPI);
5402     if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
5403       Assert(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(),
5404              "Intrinsic first argument and result vector lengths must be equal",
5405              &FPI);
5406     }
5407   } break;
5408 
5409   case Intrinsic::experimental_constrained_fptrunc:
5410   case Intrinsic::experimental_constrained_fpext: {
5411     Value *Operand = FPI.getArgOperand(0);
5412     Type *OperandTy = Operand->getType();
5413     Value *Result = &FPI;
5414     Type *ResultTy = Result->getType();
5415     Assert(OperandTy->isFPOrFPVectorTy(),
5416            "Intrinsic first argument must be FP or FP vector", &FPI);
5417     Assert(ResultTy->isFPOrFPVectorTy(),
5418            "Intrinsic result must be FP or FP vector", &FPI);
5419     Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
5420            "Intrinsic first argument and result disagree on vector use", &FPI);
5421     if (OperandTy->isVectorTy()) {
5422       Assert(cast<FixedVectorType>(OperandTy)->getNumElements() ==
5423                  cast<FixedVectorType>(ResultTy)->getNumElements(),
5424              "Intrinsic first argument and result vector lengths must be equal",
5425              &FPI);
5426     }
5427     if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
5428       Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
5429              "Intrinsic first argument's type must be larger than result type",
5430              &FPI);
5431     } else {
5432       Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
5433              "Intrinsic first argument's type must be smaller than result type",
5434              &FPI);
5435     }
5436   }
5437     break;
5438 
5439   default:
5440     break;
5441   }
5442 
5443   // If a non-metadata argument is passed in a metadata slot then the
5444   // error will be caught earlier when the incorrect argument doesn't
5445   // match the specification in the intrinsic call table. Thus, no
5446   // argument type check is needed here.
5447 
5448   Assert(FPI.getExceptionBehavior().hasValue(),
5449          "invalid exception behavior argument", &FPI);
5450   if (HasRoundingMD) {
5451     Assert(FPI.getRoundingMode().hasValue(),
5452            "invalid rounding mode argument", &FPI);
5453   }
5454 }
5455 
visitDbgIntrinsic(StringRef Kind,DbgVariableIntrinsic & DII)5456 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
5457   auto *MD = DII.getRawLocation();
5458   AssertDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
5459                (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
5460            "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
5461   AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
5462          "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
5463          DII.getRawVariable());
5464   AssertDI(isa<DIExpression>(DII.getRawExpression()),
5465          "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
5466          DII.getRawExpression());
5467 
5468   // Ignore broken !dbg attachments; they're checked elsewhere.
5469   if (MDNode *N = DII.getDebugLoc().getAsMDNode())
5470     if (!isa<DILocation>(N))
5471       return;
5472 
5473   BasicBlock *BB = DII.getParent();
5474   Function *F = BB ? BB->getParent() : nullptr;
5475 
5476   // The scopes for variables and !dbg attachments must agree.
5477   DILocalVariable *Var = DII.getVariable();
5478   DILocation *Loc = DII.getDebugLoc();
5479   AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
5480            &DII, BB, F);
5481 
5482   DISubprogram *VarSP = getSubprogram(Var->getRawScope());
5483   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
5484   if (!VarSP || !LocSP)
5485     return; // Broken scope chains are checked elsewhere.
5486 
5487   AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
5488                                " variable and !dbg attachment",
5489            &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
5490            Loc->getScope()->getSubprogram());
5491 
5492   // This check is redundant with one in visitLocalVariable().
5493   AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
5494            Var->getRawType());
5495   verifyFnArgs(DII);
5496 }
5497 
visitDbgLabelIntrinsic(StringRef Kind,DbgLabelInst & DLI)5498 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
5499   AssertDI(isa<DILabel>(DLI.getRawLabel()),
5500          "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
5501          DLI.getRawLabel());
5502 
5503   // Ignore broken !dbg attachments; they're checked elsewhere.
5504   if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
5505     if (!isa<DILocation>(N))
5506       return;
5507 
5508   BasicBlock *BB = DLI.getParent();
5509   Function *F = BB ? BB->getParent() : nullptr;
5510 
5511   // The scopes for variables and !dbg attachments must agree.
5512   DILabel *Label = DLI.getLabel();
5513   DILocation *Loc = DLI.getDebugLoc();
5514   Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
5515          &DLI, BB, F);
5516 
5517   DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
5518   DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
5519   if (!LabelSP || !LocSP)
5520     return;
5521 
5522   AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
5523                              " label and !dbg attachment",
5524            &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
5525            Loc->getScope()->getSubprogram());
5526 }
5527 
verifyFragmentExpression(const DbgVariableIntrinsic & I)5528 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
5529   DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
5530   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5531 
5532   // We don't know whether this intrinsic verified correctly.
5533   if (!V || !E || !E->isValid())
5534     return;
5535 
5536   // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
5537   auto Fragment = E->getFragmentInfo();
5538   if (!Fragment)
5539     return;
5540 
5541   // The frontend helps out GDB by emitting the members of local anonymous
5542   // unions as artificial local variables with shared storage. When SROA splits
5543   // the storage for artificial local variables that are smaller than the entire
5544   // union, the overhang piece will be outside of the allotted space for the
5545   // variable and this check fails.
5546   // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
5547   if (V->isArtificial())
5548     return;
5549 
5550   verifyFragmentExpression(*V, *Fragment, &I);
5551 }
5552 
5553 template <typename ValueOrMetadata>
verifyFragmentExpression(const DIVariable & V,DIExpression::FragmentInfo Fragment,ValueOrMetadata * Desc)5554 void Verifier::verifyFragmentExpression(const DIVariable &V,
5555                                         DIExpression::FragmentInfo Fragment,
5556                                         ValueOrMetadata *Desc) {
5557   // If there's no size, the type is broken, but that should be checked
5558   // elsewhere.
5559   auto VarSize = V.getSizeInBits();
5560   if (!VarSize)
5561     return;
5562 
5563   unsigned FragSize = Fragment.SizeInBits;
5564   unsigned FragOffset = Fragment.OffsetInBits;
5565   AssertDI(FragSize + FragOffset <= *VarSize,
5566          "fragment is larger than or outside of variable", Desc, &V);
5567   AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
5568 }
5569 
verifyFnArgs(const DbgVariableIntrinsic & I)5570 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
5571   // This function does not take the scope of noninlined function arguments into
5572   // account. Don't run it if current function is nodebug, because it may
5573   // contain inlined debug intrinsics.
5574   if (!HasDebugInfo)
5575     return;
5576 
5577   // For performance reasons only check non-inlined ones.
5578   if (I.getDebugLoc()->getInlinedAt())
5579     return;
5580 
5581   DILocalVariable *Var = I.getVariable();
5582   AssertDI(Var, "dbg intrinsic without variable");
5583 
5584   unsigned ArgNo = Var->getArg();
5585   if (!ArgNo)
5586     return;
5587 
5588   // Verify there are no duplicate function argument debug info entries.
5589   // These will cause hard-to-debug assertions in the DWARF backend.
5590   if (DebugFnArgs.size() < ArgNo)
5591     DebugFnArgs.resize(ArgNo, nullptr);
5592 
5593   auto *Prev = DebugFnArgs[ArgNo - 1];
5594   DebugFnArgs[ArgNo - 1] = Var;
5595   AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
5596            Prev, Var);
5597 }
5598 
verifyNotEntryValue(const DbgVariableIntrinsic & I)5599 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
5600   DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
5601 
5602   // We don't know whether this intrinsic verified correctly.
5603   if (!E || !E->isValid())
5604     return;
5605 
5606   AssertDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I);
5607 }
5608 
verifyCompileUnits()5609 void Verifier::verifyCompileUnits() {
5610   // When more than one Module is imported into the same context, such as during
5611   // an LTO build before linking the modules, ODR type uniquing may cause types
5612   // to point to a different CU. This check does not make sense in this case.
5613   if (M.getContext().isODRUniquingDebugTypes())
5614     return;
5615   auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
5616   SmallPtrSet<const Metadata *, 2> Listed;
5617   if (CUs)
5618     Listed.insert(CUs->op_begin(), CUs->op_end());
5619   for (auto *CU : CUVisited)
5620     AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
5621   CUVisited.clear();
5622 }
5623 
verifyDeoptimizeCallingConvs()5624 void Verifier::verifyDeoptimizeCallingConvs() {
5625   if (DeoptimizeDeclarations.empty())
5626     return;
5627 
5628   const Function *First = DeoptimizeDeclarations[0];
5629   for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
5630     Assert(First->getCallingConv() == F->getCallingConv(),
5631            "All llvm.experimental.deoptimize declarations must have the same "
5632            "calling convention",
5633            First, F);
5634   }
5635 }
5636 
verifySourceDebugInfo(const DICompileUnit & U,const DIFile & F)5637 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
5638   bool HasSource = F.getSource().hasValue();
5639   if (!HasSourceDebugInfo.count(&U))
5640     HasSourceDebugInfo[&U] = HasSource;
5641   AssertDI(HasSource == HasSourceDebugInfo[&U],
5642            "inconsistent use of embedded source");
5643 }
5644 
verifyNoAliasScopeDecl()5645 void Verifier::verifyNoAliasScopeDecl() {
5646   if (NoAliasScopeDecls.empty())
5647     return;
5648 
5649   // only a single scope must be declared at a time.
5650   for (auto *II : NoAliasScopeDecls) {
5651     assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&
5652            "Not a llvm.experimental.noalias.scope.decl ?");
5653     const auto *ScopeListMV = dyn_cast<MetadataAsValue>(
5654         II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
5655     Assert(ScopeListMV != nullptr,
5656            "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
5657            "argument",
5658            II);
5659 
5660     const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata());
5661     Assert(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode",
5662            II);
5663     Assert(ScopeListMD->getNumOperands() == 1,
5664            "!id.scope.list must point to a list with a single scope", II);
5665   }
5666 
5667   // Only check the domination rule when requested. Once all passes have been
5668   // adapted this option can go away.
5669   if (!VerifyNoAliasScopeDomination)
5670     return;
5671 
5672   // Now sort the intrinsics based on the scope MDNode so that declarations of
5673   // the same scopes are next to each other.
5674   auto GetScope = [](IntrinsicInst *II) {
5675     const auto *ScopeListMV = cast<MetadataAsValue>(
5676         II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
5677     return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0);
5678   };
5679 
5680   // We are sorting on MDNode pointers here. For valid input IR this is ok.
5681   // TODO: Sort on Metadata ID to avoid non-deterministic error messages.
5682   auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) {
5683     return GetScope(Lhs) < GetScope(Rhs);
5684   };
5685 
5686   llvm::sort(NoAliasScopeDecls, Compare);
5687 
5688   // Go over the intrinsics and check that for the same scope, they are not
5689   // dominating each other.
5690   auto ItCurrent = NoAliasScopeDecls.begin();
5691   while (ItCurrent != NoAliasScopeDecls.end()) {
5692     auto CurScope = GetScope(*ItCurrent);
5693     auto ItNext = ItCurrent;
5694     do {
5695       ++ItNext;
5696     } while (ItNext != NoAliasScopeDecls.end() &&
5697              GetScope(*ItNext) == CurScope);
5698 
5699     // [ItCurrent, ItNext) represents the declarations for the same scope.
5700     // Ensure they are not dominating each other.. but only if it is not too
5701     // expensive.
5702     if (ItNext - ItCurrent < 32)
5703       for (auto *I : llvm::make_range(ItCurrent, ItNext))
5704         for (auto *J : llvm::make_range(ItCurrent, ItNext))
5705           if (I != J)
5706             Assert(!DT.dominates(I, J),
5707                    "llvm.experimental.noalias.scope.decl dominates another one "
5708                    "with the same scope",
5709                    I);
5710     ItCurrent = ItNext;
5711   }
5712 }
5713 
5714 //===----------------------------------------------------------------------===//
5715 //  Implement the public interfaces to this file...
5716 //===----------------------------------------------------------------------===//
5717 
verifyFunction(const Function & f,raw_ostream * OS)5718 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
5719   Function &F = const_cast<Function &>(f);
5720 
5721   // Don't use a raw_null_ostream.  Printing IR is expensive.
5722   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
5723 
5724   // Note that this function's return value is inverted from what you would
5725   // expect of a function called "verify".
5726   return !V.verify(F);
5727 }
5728 
verifyModule(const Module & M,raw_ostream * OS,bool * BrokenDebugInfo)5729 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
5730                         bool *BrokenDebugInfo) {
5731   // Don't use a raw_null_ostream.  Printing IR is expensive.
5732   Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
5733 
5734   bool Broken = false;
5735   for (const Function &F : M)
5736     Broken |= !V.verify(F);
5737 
5738   Broken |= !V.verify();
5739   if (BrokenDebugInfo)
5740     *BrokenDebugInfo = V.hasBrokenDebugInfo();
5741   // Note that this function's return value is inverted from what you would
5742   // expect of a function called "verify".
5743   return Broken;
5744 }
5745 
5746 namespace {
5747 
5748 struct VerifierLegacyPass : public FunctionPass {
5749   static char ID;
5750 
5751   std::unique_ptr<Verifier> V;
5752   bool FatalErrors = true;
5753 
VerifierLegacyPass__anona49007370b11::VerifierLegacyPass5754   VerifierLegacyPass() : FunctionPass(ID) {
5755     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5756   }
VerifierLegacyPass__anona49007370b11::VerifierLegacyPass5757   explicit VerifierLegacyPass(bool FatalErrors)
5758       : FunctionPass(ID),
5759         FatalErrors(FatalErrors) {
5760     initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5761   }
5762 
doInitialization__anona49007370b11::VerifierLegacyPass5763   bool doInitialization(Module &M) override {
5764     V = std::make_unique<Verifier>(
5765         &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
5766     return false;
5767   }
5768 
runOnFunction__anona49007370b11::VerifierLegacyPass5769   bool runOnFunction(Function &F) override {
5770     if (!V->verify(F) && FatalErrors) {
5771       errs() << "in function " << F.getName() << '\n';
5772       report_fatal_error("Broken function found, compilation aborted!");
5773     }
5774     return false;
5775   }
5776 
doFinalization__anona49007370b11::VerifierLegacyPass5777   bool doFinalization(Module &M) override {
5778     bool HasErrors = false;
5779     for (Function &F : M)
5780       if (F.isDeclaration())
5781         HasErrors |= !V->verify(F);
5782 
5783     HasErrors |= !V->verify();
5784     if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
5785       report_fatal_error("Broken module found, compilation aborted!");
5786     return false;
5787   }
5788 
getAnalysisUsage__anona49007370b11::VerifierLegacyPass5789   void getAnalysisUsage(AnalysisUsage &AU) const override {
5790     AU.setPreservesAll();
5791   }
5792 };
5793 
5794 } // end anonymous namespace
5795 
5796 /// Helper to issue failure from the TBAA verification
CheckFailed(Tys &&...Args)5797 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
5798   if (Diagnostic)
5799     return Diagnostic->CheckFailed(Args...);
5800 }
5801 
5802 #define AssertTBAA(C, ...)                                                     \
5803   do {                                                                         \
5804     if (!(C)) {                                                                \
5805       CheckFailed(__VA_ARGS__);                                                \
5806       return false;                                                            \
5807     }                                                                          \
5808   } while (false)
5809 
5810 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
5811 /// TBAA scheme.  This means \p BaseNode is either a scalar node, or a
5812 /// struct-type node describing an aggregate data structure (like a struct).
5813 TBAAVerifier::TBAABaseNodeSummary
verifyTBAABaseNode(Instruction & I,const MDNode * BaseNode,bool IsNewFormat)5814 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
5815                                  bool IsNewFormat) {
5816   if (BaseNode->getNumOperands() < 2) {
5817     CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
5818     return {true, ~0u};
5819   }
5820 
5821   auto Itr = TBAABaseNodes.find(BaseNode);
5822   if (Itr != TBAABaseNodes.end())
5823     return Itr->second;
5824 
5825   auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
5826   auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
5827   (void)InsertResult;
5828   assert(InsertResult.second && "We just checked!");
5829   return Result;
5830 }
5831 
5832 TBAAVerifier::TBAABaseNodeSummary
verifyTBAABaseNodeImpl(Instruction & I,const MDNode * BaseNode,bool IsNewFormat)5833 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
5834                                      bool IsNewFormat) {
5835   const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
5836 
5837   if (BaseNode->getNumOperands() == 2) {
5838     // Scalar nodes can only be accessed at offset 0.
5839     return isValidScalarTBAANode(BaseNode)
5840                ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
5841                : InvalidNode;
5842   }
5843 
5844   if (IsNewFormat) {
5845     if (BaseNode->getNumOperands() % 3 != 0) {
5846       CheckFailed("Access tag nodes must have the number of operands that is a "
5847                   "multiple of 3!", BaseNode);
5848       return InvalidNode;
5849     }
5850   } else {
5851     if (BaseNode->getNumOperands() % 2 != 1) {
5852       CheckFailed("Struct tag nodes must have an odd number of operands!",
5853                   BaseNode);
5854       return InvalidNode;
5855     }
5856   }
5857 
5858   // Check the type size field.
5859   if (IsNewFormat) {
5860     auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5861         BaseNode->getOperand(1));
5862     if (!TypeSizeNode) {
5863       CheckFailed("Type size nodes must be constants!", &I, BaseNode);
5864       return InvalidNode;
5865     }
5866   }
5867 
5868   // Check the type name field. In the new format it can be anything.
5869   if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
5870     CheckFailed("Struct tag nodes have a string as their first operand",
5871                 BaseNode);
5872     return InvalidNode;
5873   }
5874 
5875   bool Failed = false;
5876 
5877   Optional<APInt> PrevOffset;
5878   unsigned BitWidth = ~0u;
5879 
5880   // We've already checked that BaseNode is not a degenerate root node with one
5881   // operand in \c verifyTBAABaseNode, so this loop should run at least once.
5882   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5883   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5884   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5885            Idx += NumOpsPerField) {
5886     const MDOperand &FieldTy = BaseNode->getOperand(Idx);
5887     const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
5888     if (!isa<MDNode>(FieldTy)) {
5889       CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
5890       Failed = true;
5891       continue;
5892     }
5893 
5894     auto *OffsetEntryCI =
5895         mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
5896     if (!OffsetEntryCI) {
5897       CheckFailed("Offset entries must be constants!", &I, BaseNode);
5898       Failed = true;
5899       continue;
5900     }
5901 
5902     if (BitWidth == ~0u)
5903       BitWidth = OffsetEntryCI->getBitWidth();
5904 
5905     if (OffsetEntryCI->getBitWidth() != BitWidth) {
5906       CheckFailed(
5907           "Bitwidth between the offsets and struct type entries must match", &I,
5908           BaseNode);
5909       Failed = true;
5910       continue;
5911     }
5912 
5913     // NB! As far as I can tell, we generate a non-strictly increasing offset
5914     // sequence only from structs that have zero size bit fields.  When
5915     // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
5916     // pick the field lexically the latest in struct type metadata node.  This
5917     // mirrors the actual behavior of the alias analysis implementation.
5918     bool IsAscending =
5919         !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
5920 
5921     if (!IsAscending) {
5922       CheckFailed("Offsets must be increasing!", &I, BaseNode);
5923       Failed = true;
5924     }
5925 
5926     PrevOffset = OffsetEntryCI->getValue();
5927 
5928     if (IsNewFormat) {
5929       auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5930           BaseNode->getOperand(Idx + 2));
5931       if (!MemberSizeNode) {
5932         CheckFailed("Member size entries must be constants!", &I, BaseNode);
5933         Failed = true;
5934         continue;
5935       }
5936     }
5937   }
5938 
5939   return Failed ? InvalidNode
5940                 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
5941 }
5942 
IsRootTBAANode(const MDNode * MD)5943 static bool IsRootTBAANode(const MDNode *MD) {
5944   return MD->getNumOperands() < 2;
5945 }
5946 
IsScalarTBAANodeImpl(const MDNode * MD,SmallPtrSetImpl<const MDNode * > & Visited)5947 static bool IsScalarTBAANodeImpl(const MDNode *MD,
5948                                  SmallPtrSetImpl<const MDNode *> &Visited) {
5949   if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
5950     return false;
5951 
5952   if (!isa<MDString>(MD->getOperand(0)))
5953     return false;
5954 
5955   if (MD->getNumOperands() == 3) {
5956     auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
5957     if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
5958       return false;
5959   }
5960 
5961   auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5962   return Parent && Visited.insert(Parent).second &&
5963          (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
5964 }
5965 
isValidScalarTBAANode(const MDNode * MD)5966 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
5967   auto ResultIt = TBAAScalarNodes.find(MD);
5968   if (ResultIt != TBAAScalarNodes.end())
5969     return ResultIt->second;
5970 
5971   SmallPtrSet<const MDNode *, 4> Visited;
5972   bool Result = IsScalarTBAANodeImpl(MD, Visited);
5973   auto InsertResult = TBAAScalarNodes.insert({MD, Result});
5974   (void)InsertResult;
5975   assert(InsertResult.second && "Just checked!");
5976 
5977   return Result;
5978 }
5979 
5980 /// Returns the field node at the offset \p Offset in \p BaseNode.  Update \p
5981 /// Offset in place to be the offset within the field node returned.
5982 ///
5983 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
getFieldNodeFromTBAABaseNode(Instruction & I,const MDNode * BaseNode,APInt & Offset,bool IsNewFormat)5984 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
5985                                                    const MDNode *BaseNode,
5986                                                    APInt &Offset,
5987                                                    bool IsNewFormat) {
5988   assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
5989 
5990   // Scalar nodes have only one possible "field" -- their parent in the access
5991   // hierarchy.  Offset must be zero at this point, but our caller is supposed
5992   // to Assert that.
5993   if (BaseNode->getNumOperands() == 2)
5994     return cast<MDNode>(BaseNode->getOperand(1));
5995 
5996   unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5997   unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5998   for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5999            Idx += NumOpsPerField) {
6000     auto *OffsetEntryCI =
6001         mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
6002     if (OffsetEntryCI->getValue().ugt(Offset)) {
6003       if (Idx == FirstFieldOpNo) {
6004         CheckFailed("Could not find TBAA parent in struct type node", &I,
6005                     BaseNode, &Offset);
6006         return nullptr;
6007       }
6008 
6009       unsigned PrevIdx = Idx - NumOpsPerField;
6010       auto *PrevOffsetEntryCI =
6011           mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
6012       Offset -= PrevOffsetEntryCI->getValue();
6013       return cast<MDNode>(BaseNode->getOperand(PrevIdx));
6014     }
6015   }
6016 
6017   unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
6018   auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
6019       BaseNode->getOperand(LastIdx + 1));
6020   Offset -= LastOffsetEntryCI->getValue();
6021   return cast<MDNode>(BaseNode->getOperand(LastIdx));
6022 }
6023 
isNewFormatTBAATypeNode(llvm::MDNode * Type)6024 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
6025   if (!Type || Type->getNumOperands() < 3)
6026     return false;
6027 
6028   // In the new format type nodes shall have a reference to the parent type as
6029   // its first operand.
6030   MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
6031   if (!Parent)
6032     return false;
6033 
6034   return true;
6035 }
6036 
visitTBAAMetadata(Instruction & I,const MDNode * MD)6037 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
6038   AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
6039                  isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
6040                  isa<AtomicCmpXchgInst>(I),
6041              "This instruction shall not have a TBAA access tag!", &I);
6042 
6043   bool IsStructPathTBAA =
6044       isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
6045 
6046   AssertTBAA(
6047       IsStructPathTBAA,
6048       "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
6049 
6050   MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
6051   MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
6052 
6053   bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
6054 
6055   if (IsNewFormat) {
6056     AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
6057                "Access tag metadata must have either 4 or 5 operands", &I, MD);
6058   } else {
6059     AssertTBAA(MD->getNumOperands() < 5,
6060                "Struct tag metadata must have either 3 or 4 operands", &I, MD);
6061   }
6062 
6063   // Check the access size field.
6064   if (IsNewFormat) {
6065     auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6066         MD->getOperand(3));
6067     AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
6068   }
6069 
6070   // Check the immutability flag.
6071   unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
6072   if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
6073     auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
6074         MD->getOperand(ImmutabilityFlagOpNo));
6075     AssertTBAA(IsImmutableCI,
6076                "Immutability tag on struct tag metadata must be a constant",
6077                &I, MD);
6078     AssertTBAA(
6079         IsImmutableCI->isZero() || IsImmutableCI->isOne(),
6080         "Immutability part of the struct tag metadata must be either 0 or 1",
6081         &I, MD);
6082   }
6083 
6084   AssertTBAA(BaseNode && AccessType,
6085              "Malformed struct tag metadata: base and access-type "
6086              "should be non-null and point to Metadata nodes",
6087              &I, MD, BaseNode, AccessType);
6088 
6089   if (!IsNewFormat) {
6090     AssertTBAA(isValidScalarTBAANode(AccessType),
6091                "Access type node must be a valid scalar type", &I, MD,
6092                AccessType);
6093   }
6094 
6095   auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
6096   AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
6097 
6098   APInt Offset = OffsetCI->getValue();
6099   bool SeenAccessTypeInPath = false;
6100 
6101   SmallPtrSet<MDNode *, 4> StructPath;
6102 
6103   for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
6104        BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
6105                                                IsNewFormat)) {
6106     if (!StructPath.insert(BaseNode).second) {
6107       CheckFailed("Cycle detected in struct path", &I, MD);
6108       return false;
6109     }
6110 
6111     bool Invalid;
6112     unsigned BaseNodeBitWidth;
6113     std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
6114                                                              IsNewFormat);
6115 
6116     // If the base node is invalid in itself, then we've already printed all the
6117     // errors we wanted to print.
6118     if (Invalid)
6119       return false;
6120 
6121     SeenAccessTypeInPath |= BaseNode == AccessType;
6122 
6123     if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
6124       AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
6125                  &I, MD, &Offset);
6126 
6127     AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
6128                    (BaseNodeBitWidth == 0 && Offset == 0) ||
6129                    (IsNewFormat && BaseNodeBitWidth == ~0u),
6130                "Access bit-width not the same as description bit-width", &I, MD,
6131                BaseNodeBitWidth, Offset.getBitWidth());
6132 
6133     if (IsNewFormat && SeenAccessTypeInPath)
6134       break;
6135   }
6136 
6137   AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
6138              &I, MD);
6139   return true;
6140 }
6141 
6142 char VerifierLegacyPass::ID = 0;
6143 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
6144 
createVerifierPass(bool FatalErrors)6145 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
6146   return new VerifierLegacyPass(FatalErrors);
6147 }
6148 
6149 AnalysisKey VerifierAnalysis::Key;
run(Module & M,ModuleAnalysisManager &)6150 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
6151                                                ModuleAnalysisManager &) {
6152   Result Res;
6153   Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
6154   return Res;
6155 }
6156 
run(Function & F,FunctionAnalysisManager &)6157 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
6158                                                FunctionAnalysisManager &) {
6159   return { llvm::verifyFunction(F, &dbgs()), false };
6160 }
6161 
run(Module & M,ModuleAnalysisManager & AM)6162 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
6163   auto Res = AM.getResult<VerifierAnalysis>(M);
6164   if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
6165     report_fatal_error("Broken module found, compilation aborted!");
6166 
6167   return PreservedAnalyses::all();
6168 }
6169 
run(Function & F,FunctionAnalysisManager & AM)6170 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
6171   auto res = AM.getResult<VerifierAnalysis>(F);
6172   if (res.IRBroken && FatalErrors)
6173     report_fatal_error("Broken function found, compilation aborted!");
6174 
6175   return PreservedAnalyses::all();
6176 }
6177