1 /**
2  *  @file WaterProps.h
3  *   Header for a class used to house several approximation
4  *   routines for properties of water.
5  *  (see \ref thermoprops
6  *   and class \link Cantera::WaterProps WaterProps\endlink).
7  */
8 
9 // This file is part of Cantera. See License.txt in the top-level directory or
10 // at https://cantera.org/license.txt for license and copyright information.
11 
12 #ifndef CT_WATERPROPS_H
13 #define CT_WATERPROPS_H
14 
15 
16 #include "cantera/base/ct_defs.h"
17 namespace Cantera
18 {
19 class WaterPropsIAPWS;
20 class PDSS_Water;
21 
22 /**
23  * @defgroup relatedProps Electric Properties of Phases
24  *
25  * Computation of the electric properties of phases
26  *
27  * ### Treatment of the phase potential and the electrochemical potential of a species
28  *
29  * The electrochemical potential of species \f$k\f$ in a phase \f$p\f$, \f$ \zeta_k \f$,
30  * is related to the chemical potential via the following equation,
31  *
32  *       \f[
33  *            \zeta_{k}(T,P) = \mu_{k}(T,P) + z_k \phi_p
34  *       \f]
35  *
36  * where  \f$ \nu_k \f$ is the charge of species \f$k\f$, and \f$ \phi_p \f$ is
37  * the electric potential of phase \f$p\f$.
38  *
39  * The potential  \f$ \phi_p \f$ is tracked and internally stored within the
40  * base ThermoPhase object. It constitutes a specification of the internal state
41  * of the phase; it's the third state variable, the first two being temperature
42  * and density (or, pressure, for incompressible equations of state). It may be
43  * set with the function, ThermoPhase::setElectricPotential(), and may be
44  * queried with the function ThermoPhase::electricPotential().
45  *
46  * Note, the overall electrochemical potential of a phase may not be changed
47  * by the potential because many phases enforce charge neutrality:
48  *
49  *       \f[
50  *            0 = \sum_k z_k X_k
51  *       \f]
52  *
53  * Whether charge neutrality is necessary for a phase is also specified within
54  * the ThermoPhase object, by the function call
55  * ThermoPhase::chargeNeutralityNecessary(). Note, that it is not necessary for
56  * the IdealGas phase, currently. However, it is necessary for liquid phases
57  * such as DebyeHuckel and HMWSoln for the proper specification of the chemical
58  * potentials.
59  *
60  * This equation, when applied to the \f$ \zeta_k \f$ equation described
61  * above, results in a zero net change in the effective Gibbs free energy of
62  * the phase. However, specific charged species in the phase may increase or
63  * decrease their electrochemical potentials, which will have an effect on
64  * interfacial reactions involving charged species, when there is a potential
65  * drop between phases. This effect is used within the InterfaceKinetics and
66  * EdgeKinetics kinetics objects classes.
67  *
68  * ### Electrothermochemical Properties of Phases of Matter
69  *
70  * The following classes are used to compute the electrical and
71  * electrothermochemical properties of phases of matter. The main property
72  * currently is the dielectric constant, which is an important parameter for
73  * electrolyte solutions. The class WaterProps calculate the dielectric
74  * constant of water as a function of temperature and pressure.
75  *
76  * WaterProps also calculate the constant A_debye used in the Debye Huckel and
77  * Pitzer activity coefficient calculations.
78  *
79  * @ingroup phases
80  */
81 //@{
82 
83 //! The WaterProps class is used to house several approximation routines for
84 //! properties of water.
85 /*!
86  * This is a helper class for WaterSSTP and PDSS_Water and does not constitute
87  * a complete implementation of a thermo phase by itself (see \ref thermoprops
88  * and classes \link Cantera::WaterSSTP WaterSSTP\endlink and
89  * \link Cantera::PDSS_Water PDSS_Water\endlink).
90  *
91  * The class is also a wrapper around the WaterPropsIAPWS class which provides
92  * the calculations for the equation of state properties for water.
93  *
94  * In particular, this class house routine for the calculation of the dielectric
95  * constant of water
96  *
97  * Most if not all of the member functions are static.
98  */
99 class WaterProps
100 {
101 public:
102     //! Default constructor
103     WaterProps();
104 
105     //! Constructor
106     /*!
107      * @param wptr Pointer to WaterPropsIAPWS object
108      */
109     WaterProps(WaterPropsIAPWS* wptr);
110 
111     //! Constructor with pointer to Water PDSS object
112     /*!
113      * @param wptr Pointer to water standard state object
114      */
115     WaterProps(PDSS_Water* wptr);
116 
117     // WaterProps objects are not copyable or assignable
118     WaterProps(const WaterProps& b) = delete;
119     WaterProps& operator=(const WaterProps& b) = delete;
120     virtual ~WaterProps();
121 
122     //! Simple calculation of water density at atmospheric pressure.
123     //! Valid up to boiling point.
124     /*!
125      * This formulation has no dependence on the pressure and shouldn't be used
126      * where accuracy is needed.
127      *
128      * @param T temperature in kelvin
129      * @param P Pressure in pascal
130      * @param ifunc changes what's returned
131      *
132      * @return value returned depends on ifunc value:
133      *   - ifunc = 0 Returns the density in kg/m^3
134      *   - ifunc = 1 returns the derivative of the density wrt T.
135      *   - ifunc = 2 returns the 2nd derivative of the density wrt T
136      *   - ifunc = 3 returns the derivative of the density wrt P.
137      *
138      * Verification:
139      *   Agrees with the CRC values (6-10) for up to 4 sig digits.
140      *
141      * units = returns density in kg m-3.
142      */
143     static doublereal density_T(doublereal T, doublereal P, int ifunc);
144 
145     //! Bradley-Pitzer equation for the dielectric constant
146     //! of water as a function of temperature and pressure.
147     /*!
148      * Returns the dimensionless relative dielectric constant and its
149      * derivatives.
150      *
151      * Range of validity: 0 to 350C, 0 to 1 kbar pressure
152      *
153      * @param T temperature (kelvin)
154      * @param P_pascal pressure in pascal
155      * @param ifunc changes what's returned from the function
156      * @return Depends on the value of ifunc:
157      *   - ifunc = 0 return value
158      *   - ifunc = 1 return temperature derivative
159      *   - ifunc = 2 return temperature second derivative
160      *   - ifunc = 3 return pressure first derivative
161      *
162      * Validation: Numerical experiments indicate that this function agrees with
163      * the Archer and Wang data in the CRC p. 6-10 to all 4 significant digits
164      * shown (0 to 100C).
165      *
166      * value at 25C and 1 atm, relEps = 78.38
167      */
168     doublereal relEpsilon(doublereal T, doublereal P_pascal, int ifunc = 0);
169 
170     //! ADebye calculates the value of A_Debye as a function of temperature and
171     //! pressure according to relations that take into account the temperature
172     //! and pressure dependence of the water density and dielectric constant.
173     /*!
174      * The A_Debye expression appears on the top of the ln actCoeff term in the
175      * general Debye-Huckel expression It depends on temperature and pressure.
176      * And, therefore, most be recalculated whenever T or P changes. The units
177      * returned by this expression are sqrt(kg/gmol).
178      *
179      * \f[
180      *   A_{Debye} = \frac{1}{8 \pi} \sqrt{\frac{2 N_{Avog} \rho_w}{1000}}
181      *                     {\left(\frac{e^2}{\epsilon k_{boltz} T}\right)}^{\frac{3}{2}}
182      * \f]
183      *
184      * Nominal value at 25C and 1atm = 1.172576 sqrt(kg/gmol).
185      *
186      * Based on:
187      *    - epsilon/epsilon_0 = 78.54 (water at 25C)
188      *    - T = 298.15 K
189      *    - B_Debye = 3.28640E9 sqrt(kg/gmol)/m
190      *
191      * @param T  Temperature (kelvin)
192      * @param P  pressure (pascal)
193      * @param ifunc Changes what's returned from the routine
194      * @returns a double whose meaning depends on ifunc:
195      *   - ifunc = 0 return value
196      *   - ifunc = 1 return temperature derivative
197      *   - ifunc = 2 return temperature second derivative
198      *   - ifunc = 3 return pressure first derivative
199      *
200      * Verification: With the epsRelWater value from the Bradley-Pitzer
201      * relation, and the water density from the density_IAPWS() function, The
202      * A_Debye computed with this function agrees with the Pitzer table p. 99 to
203      * 4 significant digits at 25C. and 20C. (Aphi = ADebye/3)
204      */
205     doublereal ADebye(doublereal T, doublereal P, int ifunc);
206 
207     //! Returns the saturation pressure given the temperature
208     /*!
209      * @param T temperature (kelvin)
210      * @returns the saturation pressure (pascal)
211      */
212     doublereal satPressure(doublereal T);
213 
214     //! Returns the density of water
215     /*!
216      * This function sets the internal temperature and pressure
217      * of the underlying object at the same time.
218      *
219      * @param T Temperature (kelvin)
220      * @param P pressure (pascal)
221      */
222     doublereal density_IAPWS(doublereal T, doublereal P);
223 
224     //! Returns the density of water
225     /*!
226      * This function uses the internal state of the underlying water object
227      */
228     doublereal density_IAPWS() const;
229 
230     //! returns the coefficient of thermal expansion
231     /*!
232      * @param T Temperature (kelvin)
233      * @param P pressure (pascal)
234      */
235     doublereal coeffThermalExp_IAPWS(doublereal T, doublereal P);
236 
237     //! Returns the isothermal compressibility of water
238     /*!
239      * @param T  temperature in kelvin
240      * @param P  pressure in pascal
241      */
242     doublereal isothermalCompressibility_IAPWS(doublereal T, doublereal P);
243 
244 protected:
245     //! Pointer to the WaterPropsIAPWS object
246     WaterPropsIAPWS* m_waterIAPWS;
247 
248     //! true if we own the WaterPropsIAPWS object
249     bool m_own_sub;
250 };
251 
252 //@}
253 }
254 
255 #endif
256