xref: /netbsd/sys/arch/hpcmips/vr/rtc.c (revision 18d78589)
1 /*	$NetBSD: rtc.c,v 1.36 2022/07/21 10:09:21 andvar Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 Shin Takemura. All rights reserved.
5  * Copyright (c) 1999 SATO Kazumi. All rights reserved.
6  * Copyright (c) 1999 PocketBSD Project. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the PocketBSD project
19  *	and its contributors.
20  * 4. Neither the name of the project nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: rtc.c,v 1.36 2022/07/21 10:09:21 andvar Exp $");
40 
41 #include "opt_vr41xx.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/timetc.h>
46 #include <sys/device.h>
47 #include <sys/cpu.h>
48 
49 #include <machine/sysconf.h>
50 #include <machine/bus.h>
51 
52 #include <dev/clock_subr.h>
53 
54 #include <hpcmips/vr/vr.h>
55 #include <hpcmips/vr/vrcpudef.h>
56 #include <hpcmips/vr/vripif.h>
57 #include <hpcmips/vr/vripreg.h>
58 #include <hpcmips/vr/rtcreg.h>
59 
60 /*
61  * for debugging definitions
62  * 	VRRTCDEBUG	print rtc debugging information
63  */
64 #ifdef VRRTCDEBUG
65 #ifndef VRRTCDEBUG_CONF
66 #define VRRTCDEBUG_CONF 0
67 #endif
68 int vrrtc_debug = VRRTCDEBUG_CONF;
69 #define DPRINTF(arg) if (vrrtc_debug) printf arg;
70 #define DDUMP_REGS(arg) if (vrrtc_debug) vrrtc_dump_regs(arg);
71 #else /* VRRTCDEBUG */
72 #define DPRINTF(arg)
73 #define DDUMP_REGS(arg)
74 #endif /* VRRTCDEBUG */
75 
76 struct vrrtc_softc {
77 	device_t sc_dev;
78 	bus_space_tag_t sc_iot;
79 	bus_space_handle_t sc_ioh;
80 	void *sc_ih;
81 #ifndef SINGLE_VRIP_BASE
82 	int sc_rtcint_reg;
83 	int sc_tclk_h_reg, sc_tclk_l_reg;
84 	int sc_tclk_cnt_h_reg, sc_tclk_cnt_l_reg;
85 #endif /* SINGLE_VRIP_BASE */
86 	int64_t sc_epoch;
87 	struct todr_chip_handle sc_todr;
88 	struct timecounter sc_tc;
89 };
90 
91 void	vrrtc_init(device_t);
92 int	vrrtc_get(todr_chip_handle_t, struct timeval *);
93 int	vrrtc_set(todr_chip_handle_t, struct timeval *);
94 uint32_t vrrtc_get_timecount(struct timecounter *);
95 
96 struct platform_clock vr_clock = {
97 #define CLOCK_RATE	128
98 	CLOCK_RATE, vrrtc_init,
99 };
100 
101 int	vrrtc_match(device_t, cfdata_t, void *);
102 void	vrrtc_attach(device_t, device_t, void *);
103 int	vrrtc_intr(void*, vaddr_t, uint32_t);
104 void	vrrtc_dump_regs(struct vrrtc_softc *);
105 
106 CFATTACH_DECL_NEW(vrrtc, sizeof(struct vrrtc_softc),
107     vrrtc_match, vrrtc_attach, NULL, NULL);
108 
109 int
vrrtc_match(device_t parent,cfdata_t cf,void * aux)110 vrrtc_match(device_t parent, cfdata_t cf, void *aux)
111 {
112 
113 	return 1;
114 }
115 
116 #ifndef SINGLE_VRIP_BASE
117 #define RTCINT_REG_W		(sc->sc_rtcint_reg)
118 #define TCLK_H_REG_W		(sc->sc_tclk_h_reg)
119 #define TCLK_L_REG_W		(sc->sc_tclk_l_reg)
120 #define TCLK_CNT_H_REG_W	(sc->sc_tclk_cnt_h_reg)
121 #define TCLK_CNT_L_REG_W	(sc->sc_tclk_cnt_l_reg)
122 #endif /* SINGLE_VRIP_BASE */
123 
124 void
vrrtc_attach(device_t parent,device_t self,void * aux)125 vrrtc_attach(device_t parent, device_t self, void *aux)
126 {
127 	struct vrip_attach_args *va = aux;
128 	struct vrrtc_softc *sc = device_private(self);
129 	int year;
130 
131 #ifndef SINGLE_VRIP_BASE
132 	if (va->va_addr == VR4102_RTC_ADDR) {
133 		sc->sc_rtcint_reg = VR4102_RTCINT_REG_W;
134 		sc->sc_tclk_h_reg = VR4102_TCLK_H_REG_W;
135 		sc->sc_tclk_l_reg = VR4102_TCLK_L_REG_W;
136 		sc->sc_tclk_cnt_h_reg = VR4102_TCLK_CNT_H_REG_W;
137 		sc->sc_tclk_cnt_l_reg = VR4102_TCLK_CNT_L_REG_W;
138 	} else if (va->va_addr == VR4122_RTC_ADDR) {
139 		sc->sc_rtcint_reg = VR4122_RTCINT_REG_W;
140 		sc->sc_tclk_h_reg = VR4122_TCLK_H_REG_W;
141 		sc->sc_tclk_l_reg = VR4122_TCLK_L_REG_W;
142 		sc->sc_tclk_cnt_h_reg = VR4122_TCLK_CNT_H_REG_W;
143 		sc->sc_tclk_cnt_l_reg = VR4122_TCLK_CNT_L_REG_W;
144 	} else if (va->va_addr == VR4181_RTC_ADDR) {
145 		sc->sc_rtcint_reg = VR4181_RTCINT_REG_W;
146 		sc->sc_tclk_h_reg = RTC_NO_REG_W;
147 		sc->sc_tclk_l_reg = RTC_NO_REG_W;
148 		sc->sc_tclk_cnt_h_reg = RTC_NO_REG_W;
149 		sc->sc_tclk_cnt_l_reg = RTC_NO_REG_W;
150 	} else {
151 		panic("%s: unknown base address 0x%lx",
152 		    device_xname(self), va->va_addr);
153 	}
154 #endif /* SINGLE_VRIP_BASE */
155 
156 	sc->sc_iot = va->va_iot;
157 	if (bus_space_map(sc->sc_iot, va->va_addr, va->va_size,
158 	    0 /* no flags */, &sc->sc_ioh)) {
159 		printf("vrrtc_attach: can't map i/o space\n");
160 		return;
161 	}
162 	/* RTC interrupt handler is directly dispatched from CPU intr */
163 	vr_intr_establish(VR_INTR1, vrrtc_intr, sc);
164 	/* But need to set level 1 interrupt mask register,
165 	 * so register fake interrurpt handler
166 	 */
167 	if (!(sc->sc_ih = vrip_intr_establish(va->va_vc, va->va_unit, 0,
168 	    IPL_CLOCK, 0, 0))) {
169 		printf (":can't map interrupt.\n");
170 		return;
171 	}
172 	/*
173 	 *  Rtc is attached to call this routine
174 	 *  before cpu_initclock() calls clock_init().
175 	 *  So we must disable all interrupt for now.
176 	 */
177 	/*
178 	 * Disable all rtc interrupts
179 	 */
180 	/* Disable Elapse compare intr */
181 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W, 0);
182 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W, 0);
183 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W, 0);
184 	/* Disable RTC Long1 intr */
185 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
186 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W, 0);
187 	/* Disable RTC Long2 intr */
188 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W, 0);
189 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W, 0);
190 	/* Disable RTC TCLK intr */
191 	if (TCLK_H_REG_W != RTC_NO_REG_W) {
192 		bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W, 0);
193 		bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W, 0);
194 	}
195 	/*
196 	 * Clear all rtc interrupts.
197 	 */
198 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
199 
200 	/*
201 	 * Figure out the epoch, which could be either forward or
202 	 * backwards in time.  We assume that the start date will always
203 	 * be on Jan 1.
204 	 */
205 	for (year = EPOCHYEAR; year < POSIX_BASE_YEAR; year++) {
206 		sc->sc_epoch += days_per_year(year) * SECS_PER_DAY;
207 	}
208 	for (year = POSIX_BASE_YEAR; year < EPOCHYEAR; year++) {
209 		sc->sc_epoch -= days_per_year(year) * SECS_PER_DAY;
210 	}
211 
212 	/*
213 	 * Initialize MI todr(9)
214 	 */
215 	sc->sc_todr.todr_settime = vrrtc_set;
216 	sc->sc_todr.todr_gettime = vrrtc_get;
217 	sc->sc_todr.cookie = sc;
218 	todr_attach(&sc->sc_todr);
219 
220 	platform_clock_attach(self, &vr_clock);
221 }
222 
223 int
vrrtc_intr(void * arg,vaddr_t pc,uint32_t status)224 vrrtc_intr(void *arg, vaddr_t pc, uint32_t status)
225 {
226 	struct vrrtc_softc *sc = arg;
227 	struct clockframe cf;
228 
229 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
230 	cf.pc = pc;
231 	cf.sr = status;
232 	cf.intr = (curcpu()->ci_idepth > 1);
233 	hardclock(&cf);
234 
235 	return 0;
236 }
237 
238 void
vrrtc_init(device_t self)239 vrrtc_init(device_t self)
240 {
241 	struct vrrtc_softc *sc = device_private(self);
242 
243 	DDUMP_REGS(sc);
244 	/*
245 	 * Set tick (CLOCK_RATE)
246 	 */
247 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
248 	bus_space_write_2(sc->sc_iot, sc->sc_ioh,
249 	    RTCL1_L_REG_W, RTCL1_L_HZ / CLOCK_RATE);
250 
251 	/*
252 	 * Initialize timecounter.
253 	 */
254 	sc->sc_tc.tc_get_timecount = vrrtc_get_timecount;
255 	sc->sc_tc.tc_name = "vrrtc";
256 	sc->sc_tc.tc_counter_mask = 0xffff;
257 	sc->sc_tc.tc_frequency = ETIME_L_HZ;
258 	sc->sc_tc.tc_priv = sc;
259 	sc->sc_tc.tc_quality = 100;
260 	tc_init(&sc->sc_tc);
261 }
262 
263 uint32_t
vrrtc_get_timecount(struct timecounter * tc)264 vrrtc_get_timecount(struct timecounter *tc)
265 {
266 	struct vrrtc_softc *sc = (struct vrrtc_softc *)tc->tc_priv;
267 	bus_space_tag_t iot = sc->sc_iot;
268 	bus_space_handle_t ioh = sc->sc_ioh;
269 
270 	return bus_space_read_2(iot, ioh, ETIME_L_REG_W);
271 }
272 
273 int
vrrtc_get(todr_chip_handle_t tch,struct timeval * tvp)274 vrrtc_get(todr_chip_handle_t tch, struct timeval *tvp)
275 {
276 	struct vrrtc_softc *sc = (struct vrrtc_softc *)tch->cookie;
277 	bus_space_tag_t iot = sc->sc_iot;
278 	bus_space_handle_t ioh = sc->sc_ioh;
279 	uint32_t timeh;		/* elapse time (2*timeh sec) */
280 	uint32_t timel;		/* timel/32768 sec */
281 	uint64_t sec, usec;
282 
283 	timeh = bus_space_read_2(iot, ioh, ETIME_H_REG_W);
284 	timeh = (timeh << 16) | bus_space_read_2(iot, ioh, ETIME_M_REG_W);
285 	timel = bus_space_read_2(iot, ioh, ETIME_L_REG_W);
286 
287 	DPRINTF(("clock_get: timeh %08x timel %08x\n", timeh, timel));
288 
289 	timeh -= EPOCHOFF;
290 	sec = (uint64_t)timeh * 2;
291 	sec -= sc->sc_epoch;
292 	tvp->tv_sec = sec;
293 	tvp->tv_sec += timel / ETIME_L_HZ;
294 
295 	/* scale from 32kHz to 1MHz */
296 	usec = (timel % ETIME_L_HZ);
297 	usec *= 1000000;
298 	usec /= ETIME_L_HZ;
299 	tvp->tv_usec = usec;
300 
301 	return 0;
302 }
303 
304 int
vrrtc_set(todr_chip_handle_t tch,struct timeval * tvp)305 vrrtc_set(todr_chip_handle_t tch, struct timeval *tvp)
306 {
307 	struct vrrtc_softc *sc = (struct vrrtc_softc *)tch->cookie;
308 	bus_space_tag_t iot = sc->sc_iot;
309 	bus_space_handle_t ioh = sc->sc_ioh;
310 	uint32_t timeh;		/* elapse time (2*timeh sec) */
311 	uint32_t timel;		/* timel/32768 sec */
312 	int64_t sec, cnt;
313 
314 	sec = tvp->tv_sec + sc->sc_epoch;
315 	sec += sc->sc_epoch;
316 	timeh = EPOCHOFF + (sec / 2);
317 	timel = sec % 2;
318 
319 	cnt = tvp->tv_usec;
320 	/* scale from 1MHz to 32kHz */
321 	cnt *= ETIME_L_HZ;
322 	cnt /= 1000000;
323 	timel += (uint32_t)cnt;
324 
325 	bus_space_write_2(iot, ioh, ETIME_H_REG_W, (timeh >> 16) & 0xffff);
326 	bus_space_write_2(iot, ioh, ETIME_M_REG_W, timeh & 0xffff);
327 	bus_space_write_2(iot, ioh, ETIME_L_REG_W, timel);
328 
329 	return 0;
330 }
331 
332 void
vrrtc_dump_regs(struct vrrtc_softc * sc)333 vrrtc_dump_regs(struct vrrtc_softc *sc)
334 {
335 	int timeh;
336 	int timel;
337 
338 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W);
339 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W);
340 	timel = (timel << 16)
341 	    | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W);
342 	printf("clock_init()  Elapse Time %04x%04x\n", timeh, timel);
343 
344 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W);
345 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W);
346 	timel = (timel << 16)
347 	    | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W);
348 	printf("clock_init()  Elapse Compare %04x%04x\n", timeh, timel);
349 
350 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W);
351 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W);
352 	printf("clock_init()  LONG1 %04x%04x\n", timeh, timel);
353 
354 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_H_REG_W);
355 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_L_REG_W);
356 	printf("clock_init()  LONG1 CNTL %04x%04x\n", timeh, timel);
357 
358 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W);
359 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W);
360 	printf("clock_init()  LONG2 %04x%04x\n", timeh, timel);
361 
362 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_H_REG_W);
363 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_L_REG_W);
364 	printf("clock_init()  LONG2 CNTL %04x%04x\n", timeh, timel);
365 
366 	if (TCLK_H_REG_W != RTC_NO_REG_W) {
367 		timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W);
368 		timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W);
369 		printf("clock_init()  TCLK %04x%04x\n", timeh, timel);
370 
371 		timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh,
372 		    TCLK_CNT_H_REG_W);
373 		timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh,
374 		    TCLK_CNT_L_REG_W);
375 		printf("clock_init()  TCLK CNTL %04x%04x\n", timeh, timel);
376 	}
377 }
378