1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2          "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5  <title>Checker Developer Manual</title>
6  <link type="text/css" rel="stylesheet" href="menu.css">
7  <link type="text/css" rel="stylesheet" href="content.css">
8  <script type="text/javascript" src="scripts/menu.js"></script>
9</head>
10<body>
11
12<div id="page">
13<!--#include virtual="menu.html.incl"-->
14
15<div id="content">
16
17<h3 style="color:red">This Page Is Under Construction</h3>
18
19<h1>Checker Developer Manual</h1>
20
21<p>The static analyzer engine performs path-sensitive exploration of the program and
22relies on a set of checkers to implement the logic for detecting and
23constructing specific bug reports. Anyone who is interested in implementing their own
24checker, should check out the Building a Checker in 24 Hours talk
25(<a href="https://llvm.org/devmtg/2012-11/Zaks-Rose-Checker24Hours.pdf">slides</a>
26 <a href="https://youtu.be/kdxlsP5QVPw">video</a>)
27and refer to this page for additional information on writing a checker. The static analyzer is a
28part of the Clang project, so consult <a href="https://clang.llvm.org/hacking.html">Hacking on Clang</a>
29and <a href="https://llvm.org/docs/ProgrammersManual.html">LLVM Programmer's Manual</a>
30for developer guidelines and post your questions and proposals to the
31<a href="https://discourse.llvm.org/c/clang/static-analyzer/"> Static Analyzer</a> subcategory at
32the official <a href="https://discourse.llvm.org/"> LLVM Discourse server</a>.
33</p>
34
35    <ul>
36      <li><a href="#start">Getting Started</a></li>
37      <li><a href="#analyzer">Static Analyzer Overview</a>
38      <ul>
39        <li><a href="#interaction">Interaction with Checkers</a></li>
40        <li><a href="#values">Representing Values</a></li>
41      </ul></li>
42      <li><a href="#idea">Idea for a Checker</a></li>
43      <li><a href="#registration">Checker Registration</a></li>
44      <li><a href="#events_callbacks">Events, Callbacks, and Checker Class Structure</a></li>
45      <li><a href="#extendingstates">Custom Program States</a></li>
46      <li><a href="#bugs">Bug Reports</a></li>
47      <li><a href="#ast">AST Visitors</a></li>
48      <li><a href="#testing">Testing</a></li>
49      <li><a href="#commands">Useful Commands/Debugging Hints</a>
50      <ul>
51        <li><a href="#attaching">Attaching the Debugger</a></li>
52        <li><a href="#narrowing">Narrowing Down the Problem</a></li>
53        <li><a href="#visualizing">Visualizing the Analysis</a></li>
54        <li><a href="#debugprints">Debug Prints and Tricks</a></li>
55      </ul></li>
56      <li><a href="#additioninformation">Additional Sources of Information</a></li>
57      <li><a href="#links">Useful Links</a></li>
58    </ul>
59
60<h2 id=start>Getting Started</h2>
61  <ul>
62    <li>To check out the source code and build the project, follow steps 1-4 of
63    the <a href="https://clang.llvm.org/get_started.html">Clang Getting Started</a>
64  page.</li>
65
66    <li>The analyzer source code is located under the Clang source tree:
67    <br><tt>
68    $ <b>cd llvm/tools/clang</b>
69    </tt>
70    <br>See: <tt>include/clang/StaticAnalyzer</tt>, <tt>lib/StaticAnalyzer</tt>,
71     <tt>test/Analysis</tt>.</li>
72
73    <li>The analyzer regression tests can be executed from the Clang's build
74    directory:
75    <br><tt>
76    $ <b>cd ../../../; cd build/tools/clang; TESTDIRS=Analysis make test</b>
77    </tt></li>
78
79    <li>Analyze a file with the specified checker:
80    <br><tt>
81    $ <b>clang -cc1 -analyze -analyzer-checker=core.DivideZero test.c</b>
82    </tt></li>
83
84    <li>List the available checkers:
85    <br><tt>
86    $ <b>clang -cc1 -analyzer-checker-help</b>
87    </tt></li>
88
89    <li>See the analyzer help for different output formats, fine tuning, and
90    debug options:
91    <br><tt>
92    $ <b>clang -cc1 -help | grep "analyzer"</b>
93    </tt></li>
94
95  </ul>
96
97<h2 id=analyzer>Static Analyzer Overview</h2>
98  The analyzer core performs symbolic execution of the given program. All the
99  input values are represented with symbolic values; further, the engine deduces
100  the values of all the expressions in the program based on the input symbols
101  and the path. The execution is path sensitive and every possible path through
102  the program is explored. The explored execution traces are represented with
103  <a href="https://clang.llvm.org/doxygen/classclang_1_1ento_1_1ExplodedGraph.html">ExplodedGraph</a> object.
104  Each node of the graph is
105  <a href="https://clang.llvm.org/doxygen/classclang_1_1ento_1_1ExplodedNode.html">ExplodedNode</a>,
106  which consists of a <tt>ProgramPoint</tt> and a <tt>ProgramState</tt>.
107  <p>
108  <a href="https://clang.llvm.org/doxygen/classclang_1_1ProgramPoint.html">ProgramPoint</a>
109  represents the corresponding location in the program (or the CFG).
110  <tt>ProgramPoint</tt> is also used to record additional information on
111  when/how the state was added. For example, <tt>PostPurgeDeadSymbolsKind</tt>
112  kind means that the state is the result of purging dead symbols - the
113  analyzer's equivalent of garbage collection.
114  <p>
115  <a href="https://clang.llvm.org/doxygen/classclang_1_1ento_1_1ProgramState.html">ProgramState</a>
116  represents abstract state of the program. It consists of:
117  <ul>
118    <li><tt>Environment</tt> - a mapping from source code expressions to symbolic
119    values
120    <li><tt>Store</tt> - a mapping from memory locations to symbolic values
121    <li><tt>GenericDataMap</tt> - constraints on symbolic values
122  </ul>
123
124  <h3 id=interaction>Interaction with Checkers</h3>
125
126  <p>
127  Checkers are not merely passive receivers of the analyzer core changes - they
128  actively participate in the <tt>ProgramState</tt> construction through the
129  <tt>GenericDataMap</tt> which can be used to store the checker-defined part
130  of the state. Each time the analyzer engine explores a new statement, it
131  notifies each checker registered to listen for that statement, giving it an
132  opportunity to either report a bug or modify the state. (As a rule of thumb,
133  the checker itself should be stateless.) The checkers are called one after another
134  in the predefined order; thus, calling all the checkers adds a chain to the
135  <tt>ExplodedGraph</tt>.
136  </p>
137
138  <h3 id=values>Representing Values</h3>
139
140  <p>
141  During symbolic execution, <a href="https://clang.llvm.org/doxygen/classclang_1_1ento_1_1SVal.html">SVal</a>
142  objects are used to represent the semantic evaluation of expressions.
143  They can represent things like concrete
144  integers, symbolic values, or memory locations (which are memory regions).
145  They are a discriminated union of "values", symbolic and otherwise.
146  If a value isn't symbolic, usually that means there is no symbolic
147  information to track. For example, if the value was an integer, such as
148  <tt>42</tt>, it would be a <a href="https://clang.llvm.org/doxygen/classclang_1_1ento_1_1nonloc_1_1ConcreteInt.html">ConcreteInt</a>,
149  and the checker doesn't usually need to track any state with the concrete
150  number. In some cases, <tt>SVal</tt> is not a symbol, but it really should be
151  a symbolic value. This happens when the analyzer cannot reason about something
152  (yet). An example is floating point numbers. In such cases, the
153  <tt>SVal</tt> will evaluate to <a href="https://clang.llvm.org/doxygen/classclang_1_1ento_1_1UnknownVal.html">UnknownVal</a>.
154  This represents a case that is outside the realm of the analyzer's reasoning
155  capabilities. <tt>SVals</tt> are value objects and their values can be viewed
156  using the <tt>.dump()</tt> method. Often they wrap persistent objects such as
157  symbols or regions.
158  </p>
159
160  <p>
161  <a href="https://clang.llvm.org/doxygen/classclang_1_1ento_1_1SymExpr.html">SymExpr</a> (symbol)
162  is meant to represent abstract, but named, symbolic value. Symbols represent
163  an actual (immutable) value. We might not know what its specific value is, but
164  we can associate constraints with that value as we analyze a path. For
165  example, we might record that the value of a symbol is greater than
166  <tt>0</tt>, etc.
167  </p>
168
169  <p>
170  <a href="https://clang.llvm.org/doxygen/classclang_1_1ento_1_1MemRegion.html">MemRegion</a> is similar to a symbol.
171  It is used to provide a lexicon of how to describe abstract memory. Regions can
172  layer on top of other regions, providing a layered approach to representing memory.
173  For example, a struct object on the stack might be represented by a <tt>VarRegion</tt>,
174  but a <tt>FieldRegion</tt> which is a subregion of the <tt>VarRegion</tt> could
175  be used to represent the memory associated with a specific field of that object.
176  So how do we represent symbolic memory regions? That's what
177  <a href="https://clang.llvm.org/doxygen/classclang_1_1ento_1_1SymbolicRegion.html">SymbolicRegion</a>
178  is for. It is a <tt>MemRegion</tt> that has an associated symbol. Since the
179  symbol is unique and has a unique name; that symbol names the region.
180  </p>
181
182  <p>
183  Let's see how the analyzer processes the expressions in the following example:
184  </p>
185
186  <p>
187  <pre class="code_example">
188  int foo(int x) {
189     int y = x * 2;
190     int z = x;
191     ...
192  }
193  </pre>
194  </p>
195
196  <p>
197Let's look at how <tt>x*2</tt> gets evaluated. When <tt>x</tt> is evaluated,
198we first construct an <tt>SVal</tt> that represents the lvalue of <tt>x</tt>, in
199this case it is an <tt>SVal</tt> that references the <tt>MemRegion</tt> for <tt>x</tt>.
200Afterwards, when we do the lvalue-to-rvalue conversion, we get a new <tt>SVal</tt>,
201which references the value <b>currently bound</b> to <tt>x</tt>. That value is
202symbolic; it's whatever <tt>x</tt> was bound to at the start of the function.
203Let's call that symbol <tt>$0</tt>. Similarly, we evaluate the expression for <tt>2</tt>,
204and get an <tt>SVal</tt> that references the concrete number <tt>2</tt>. When
205we evaluate <tt>x*2</tt>, we take the two <tt>SVals</tt> of the subexpressions,
206and create a new <tt>SVal</tt> that represents their multiplication (which in
207this case is a new symbolic expression, which we might call <tt>$1</tt>). When we
208evaluate the assignment to <tt>y</tt>, we again compute its lvalue (a <tt>MemRegion</tt>),
209and then bind the <tt>SVal</tt> for the RHS (which references the symbolic value <tt>$1</tt>)
210to the <tt>MemRegion</tt> in the symbolic store.
211<br>
212The second line is similar. When we evaluate <tt>x</tt> again, we do the same
213dance, and create an <tt>SVal</tt> that references the symbol <tt>$0</tt>. Note, two <tt>SVals</tt>
214might reference the same underlying values.
215  </p>
216
217<p>
218To summarize, MemRegions are unique names for blocks of memory. Symbols are
219unique names for abstract symbolic values. Some MemRegions represents abstract
220symbolic chunks of memory, and thus are also based on symbols. SVals are just
221references to values, and can reference either MemRegions, Symbols, or concrete
222values (e.g., the number 1).
223</p>
224
225  <!--
226  TODO: Add a picture.
227  <br>
228  Symbols<br>
229  FunctionalObjects are used throughout.
230  -->
231
232<h2 id=idea>Idea for a Checker</h2>
233  Here are several questions which you should consider when evaluating your
234  checker idea:
235  <ul>
236    <li>Can the check be effectively implemented without path-sensitive
237    analysis? See <a href="#ast">AST Visitors</a>.</li>
238
239    <li>How high the false positive rate is going to be? Looking at the occurrences
240    of the issue you want to write a checker for in the existing code bases might
241    give you some ideas. </li>
242
243    <li>How the current limitations of the analysis will effect the false alarm
244    rate? Currently, the analyzer only reasons about one procedure at a time (no
245    inter-procedural analysis). Also, it uses a simple range tracking based
246    solver to model symbolic execution.</li>
247
248    <li>Consult the <a
249    href="https://github.com/llvm/llvm-project/labels/clang%3Astatic%20analyzer">GitHub Issues</a>
250    to get some ideas for new checkers and consider starting with improving/fixing
251    bugs in the existing checkers.</li>
252  </ul>
253
254<p>Once an idea for a checker has been chosen, there are two key decisions that
255need to be made:
256  <ul>
257    <li> Which events the checker should be tracking. This is discussed in more
258    detail in the section <a href="#events_callbacks">Events, Callbacks, and
259    Checker Class Structure</a>.
260    <li> What checker-specific data needs to be stored as part of the program
261    state (if any). This should be minimized as much as possible. More detail about
262    implementing custom program state is given in section <a
263    href="#extendingstates">Custom Program States</a>.
264  </ul>
265
266
267<h2 id=registration>Checker Registration</h2>
268  All checker implementation files are located in
269  <tt>clang/lib/StaticAnalyzer/Checkers</tt> folder. The steps below describe
270  how the checker <tt>SimpleStreamChecker</tt>, which checks for misuses of
271  stream APIs, was registered with the analyzer.
272  Similar steps should be followed for a new checker.
273<ol>
274  <li>A new checker implementation file, <tt>SimpleStreamChecker.cpp</tt>, was
275  created in the directory <tt>lib/StaticAnalyzer/Checkers</tt>.
276  <li>The following registration code was added to the implementation file:
277<pre class="code_example">
278void ento::registerSimpleStreamChecker(CheckerManager &amp;mgr) {
279  mgr.registerChecker&lt;SimpleStreamChecker&gt();
280}
281</pre>
282<li>A package was selected for the checker and the checker was defined in the
283table of checkers at <tt>include/clang/StaticAnalyzer/Checkers/Checkers.td</tt>.
284Since all checkers should first be developed as "alpha", and the SimpleStreamChecker
285performs UNIX API checks, the correct package is "alpha.unix", and the following
286was added to the corresponding <tt>UnixAlpha</tt> section of <tt>Checkers.td</tt>:
287<pre class="code_example">
288let ParentPackage = UnixAlpha in {
289...
290def SimpleStreamChecker : Checker<"SimpleStream">,
291  HelpText<"Check for misuses of stream APIs">,
292  DescFile<"SimpleStreamChecker.cpp">;
293...
294} // end "alpha.unix"
295</pre>
296
297<li>The source code file was made visible to CMake by adding it to
298<tt>lib/StaticAnalyzer/Checkers/CMakeLists.txt</tt>.
299
300</ol>
301
302After adding a new checker to the analyzer, one can verify that the new checker
303was successfully added by seeing if it appears in the list of available checkers:
304<br> <tt><b>$clang -cc1 -analyzer-checker-help</b></tt>
305
306<h2 id=events_callbacks>Events, Callbacks, and Checker Class Structure</h2>
307
308<p> All checkers inherit from the <tt><a
309href="https://clang.llvm.org/doxygen/classclang_1_1ento_1_1Checker.html">
310Checker</a></tt> template class; the template parameter(s) describe the type of
311events that the checker is interested in processing. The various types of events
312that are available are described in the file <a
313href="https://clang.llvm.org/doxygen/CheckerDocumentation_8cpp_source.html">
314CheckerDocumentation.cpp</a>
315
316<p> For each event type requested, a corresponding callback function must be
317defined in the checker class (<a
318href="https://clang.llvm.org/doxygen/CheckerDocumentation_8cpp_source.html">
319CheckerDocumentation.cpp</a> shows the
320correct function name and signature for each event type).
321
322<p> As an example, consider <tt>SimpleStreamChecker</tt>. This checker needs to
323take action at the following times:
324
325<ul>
326<li>Before making a call to a function, check if the function is <tt>fclose</tt>.
327If so, check the parameter being passed.
328<li>After making a function call, check if the function is <tt>fopen</tt>. If
329so, process the return value.
330<li>When values go out of scope, check whether they are still-open file
331descriptors, and report a bug if so. In addition, remove any information about
332them from the program state in order to keep the state as small as possible.
333<li>When file pointers "escape" (are used in a way that the analyzer can no longer
334track them), mark them as such. This prevents false positives in the cases where
335the analyzer cannot be sure whether the file was closed or not.
336</ul>
337
338<p>These events that will be used for each of these actions are, respectively, <a
339href="https://clang.llvm.org/doxygen/classclang_1_1ento_1_1check_1_1PreCall.html">PreCall</a>,
340<a
341href="https://clang.llvm.org/doxygen/classclang_1_1ento_1_1check_1_1PostCall.html">PostCall</a>,
342<a
343href="https://clang.llvm.org/doxygen/classclang_1_1ento_1_1check_1_1DeadSymbols.html">DeadSymbols</a>,
344and <a
345href="https://clang.llvm.org/doxygen/classclang_1_1ento_1_1check_1_1PointerEscape.html">PointerEscape</a>.
346The high-level structure of the checker's class is thus:
347
348<pre class="code_example">
349class SimpleStreamChecker : public Checker&lt;check::PreCall,
350                                           check::PostCall,
351                                           check::DeadSymbols,
352                                           check::PointerEscape&gt; {
353public:
354
355  void checkPreCall(const CallEvent &amp;Call, CheckerContext &amp;C) const;
356
357  void checkPostCall(const CallEvent &amp;Call, CheckerContext &amp;C) const;
358
359  void checkDeadSymbols(SymbolReaper &amp;SR, CheckerContext &amp;C) const;
360
361  ProgramStateRef checkPointerEscape(ProgramStateRef State,
362                                     const InvalidatedSymbols &amp;Escaped,
363                                     const CallEvent *Call,
364                                     PointerEscapeKind Kind) const;
365};
366</pre>
367
368<h2 id=extendingstates>Custom Program States</h2>
369
370<p> Checkers often need to keep track of information specific to the checks they
371perform. However, since checkers have no guarantee about the order in which the
372program will be explored, or even that all possible paths will be explored, this
373state information cannot be kept within individual checkers. Therefore, if
374checkers need to store custom information, they need to add new categories of
375data to the <tt>ProgramState</tt>. The preferred way to do so is to use one of
376several macros designed for this purpose. They are:
377
378<ul>
379<li><a
380href="https://clang.llvm.org/doxygen/ProgramStateTrait_8h.html#ae4cddb54383cd702a045d7c61b009147">REGISTER_TRAIT_WITH_PROGRAMSTATE</a>:
381Used when the state information is a single value. The methods available for
382state types declared with this macro are <tt>get</tt>, <tt>set</tt>, and
383<tt>remove</tt>.
384<li><a
385href="https://clang.llvm.org/doxygen/ProgramStateTrait_8h.html#aa27656fa0ce65b0d9ba12eb3c02e8be9">REGISTER_LIST_WITH_PROGRAMSTATE</a>:
386Used when the state information is a list of values. The methods available for
387state types declared with this macro are <tt>add</tt>, <tt>get</tt>,
388<tt>remove</tt>, and <tt>contains</tt>.
389<li><a
390href="https://clang.llvm.org/doxygen/ProgramStateTrait_8h.html#ad90f9387b94b344eaaf499afec05f4d1">REGISTER_SET_WITH_PROGRAMSTATE</a>:
391Used when the state information is a set of values. The methods available for
392state types declared with this macro are <tt>add</tt>, <tt>get</tt>,
393<tt>remove</tt>, and <tt>contains</tt>.
394<li><a
395href="https://clang.llvm.org/doxygen/ProgramStateTrait_8h.html#a6d1893bb8c18543337b6c363c1319fcf">REGISTER_MAP_WITH_PROGRAMSTATE</a>:
396Used when the state information is a map from a key to a value. The methods
397available for state types declared with this macro are <tt>add</tt>,
398<tt>set</tt>, <tt>get</tt>, <tt>remove</tt>, and <tt>contains</tt>.
399</ul>
400
401<p>All of these macros take as parameters the name to be used for the custom
402category of state information and the data type(s) to be used for storage. The
403data type(s) specified will become the parameter type and/or return type of the
404methods that manipulate the new category of state information. Each of these
405methods are templated with the name of the custom data type.
406
407<p>For example, a common case is the need to track data associated with a
408symbolic expression; a map type is the most logical way to implement this. The
409key for this map will be a pointer to a symbolic expression
410(<tt>SymbolRef</tt>). If the data type to be associated with the symbolic
411expression is an integer, then the custom category of state information would be
412declared as
413
414<pre class="code_example">
415REGISTER_MAP_WITH_PROGRAMSTATE(ExampleDataType, SymbolRef, int)
416</pre>
417
418The data would be accessed with the function
419
420<pre class="code_example">
421ProgramStateRef state;
422SymbolRef Sym;
423...
424int currentlValue = state-&gt;get&lt;ExampleDataType&gt;(Sym);
425</pre>
426
427and set with the function
428
429<pre class="code_example">
430ProgramStateRef state;
431SymbolRef Sym;
432int newValue;
433...
434ProgramStateRef newState = state-&gt;set&lt;ExampleDataType&gt;(Sym, newValue);
435</pre>
436
437<p>In addition, the macros define a data type used for storing the data of the
438new data category; the name of this type is the name of the data category with
439"Ty" appended. For <tt>REGISTER_TRAIT_WITH_PROGRAMSTATE</tt>, this will simply
440be passed data type; for the other three macros, this will be a specialized
441version of the <a
442href="https://llvm.org/doxygen/classllvm_1_1ImmutableList.html">llvm::ImmutableList</a>,
443<a
444href="https://llvm.org/doxygen/classllvm_1_1ImmutableSet.html">llvm::ImmutableSet</a>,
445or <a
446href="https://llvm.org/doxygen/classllvm_1_1ImmutableMap.html">llvm::ImmutableMap</a>
447templated class. For the <tt>ExampleDataType</tt> example above, the type
448created would be equivalent to writing the declaration:
449
450<pre class="code_example">
451using ExampleDataTypeTy = llvm::ImmutableMap&lt;SymbolRef, int&gt;;
452</pre>
453
454<p>These macros will cover a majority of use cases; however, they still have a
455few limitations. They cannot be used inside namespaces (since they expand to
456contain top-level namespace references), and the data types that they define
457cannot be referenced from more than one file.
458
459<p>Note that <tt>ProgramStates</tt> are immutable; instead of modifying an existing
460one, functions that modify the state will return a copy of the previous state
461with the change applied. This updated state must be then provided to the
462analyzer core by calling the <tt>CheckerContext::addTransition</tt> function.
463<h2 id=bugs>Bug Reports</h2>
464
465
466<p> When a checker detects a mistake in the analyzed code, it needs a way to
467report it to the analyzer core so that it can be displayed. The two classes used
468to construct this report are <tt><a
469href="https://clang.llvm.org/doxygen/classclang_1_1ento_1_1BugType.html">BugType</a></tt>
470and <tt><a
471href="https://clang.llvm.org/doxygen/classclang_1_1ento_1_1BugReport.html">
472BugReport</a></tt>.
473
474<p>
475<tt>BugType</tt>, as the name would suggest, represents a type of bug. The
476constructor for <tt>BugType</tt> takes two parameters: The name of the bug
477type, and the name of the category of the bug. These are used (e.g.) in the
478summary page generated by the scan-build tool.
479
480<P>
481  The <tt>BugReport</tt> class represents a specific occurrence of a bug. In
482  the most common case, three parameters are used to form a <tt>BugReport</tt>:
483<ol>
484<li>The type of bug, specified as an instance of the <tt>BugType</tt> class.
485<li>A short descriptive string. This is placed at the location of the bug in
486the detailed line-by-line output generated by scan-build.
487<li>The context in which the bug occurred. This includes both the location of
488the bug in the program and the program's state when the location is reached. These are
489both encapsulated in an <tt>ExplodedNode</tt>.
490</ol>
491
492<p>In order to obtain the correct <tt>ExplodedNode</tt>, a decision must be made
493as to whether or not analysis can continue along the current path. This decision
494is based on whether the detected bug is one that would prevent the program under
495analysis from continuing. For example, leaking of a resource should not stop
496analysis, as the program can continue to run after the leak. Dereferencing a
497null pointer, on the other hand, should stop analysis, as there is no way for
498the program to meaningfully continue after such an error.
499
500<p>If analysis can continue, then the most recent <tt>ExplodedNode</tt>
501generated by the checker can be passed to the <tt>BugReport</tt> constructor
502without additional modification. This <tt>ExplodedNode</tt> will be the one
503returned by the most recent call to <a
504href="https://clang.llvm.org/doxygen/classclang_1_1ento_1_1CheckerContext.html#a9717efea3fbc71523984160ae7ae9d41">CheckerContext::addTransition</a>.
505If no transition has been performed during the current callback, the checker should call <a
506href="https://clang.llvm.org/doxygen/classclang_1_1ento_1_1CheckerContext.html#a9717efea3fbc71523984160ae7ae9d41">CheckerContext::addTransition()</a>
507and use the returned node for bug reporting.
508
509<p>If analysis can not continue, then the current state should be transitioned
510into a so-called <i>sink node</i>, a node from which no further analysis will be
511performed. This is done by calling the <a
512href="https://clang.llvm.org/doxygen/classclang_1_1ento_1_1CheckerContext.html#a249245cdf2384738921f134c8d7d909a">
513CheckerContext::generateSink</a> function; this function is the same as the
514<tt>addTransition</tt> function, but marks the state as a sink node. Like
515<tt>addTransition</tt>, this returns an <tt>ExplodedNode</tt> with the updated
516state, which can then be passed to the <tt>BugReport</tt> constructor.
517
518<p>
519After a <tt>BugReport</tt> is created, it should be passed to the analyzer core
520by calling <a href="https://clang.llvm.org/doxygen/classclang_1_1ento_1_1CheckerContext.html#af50a9f46f6ea787a2a8e4ad7f86576e7">CheckerContext::emitReport</a>.
521
522<h2 id=ast>AST Visitors</h2>
523  Some checks might not require path-sensitivity to be effective. Simple AST walk
524  might be sufficient. If that is the case, consider implementing a Clang
525  compiler warning. On the other hand, a check might not be acceptable as a compiler
526  warning; for example, because of a relatively high false positive rate. In this
527  situation, AST callbacks <tt><b>checkASTDecl</b></tt> and
528  <tt><b>checkASTCodeBody</b></tt> are your best friends.
529
530<h2 id=testing>Testing</h2>
531  Every patch should be well tested with Clang regression tests. The checker tests
532  live in <tt>clang/test/Analysis</tt> folder. To run all of the analyzer tests,
533  execute the following from the <tt>clang</tt> build directory:
534    <pre class="code">
535    $ <b>bin/llvm-lit -sv ../llvm/tools/clang/test/Analysis</b>
536    </pre>
537
538<h2 id=commands>Useful Commands/Debugging Hints</h2>
539
540<h3 id=attaching>Attaching the Debugger</h3>
541
542<p>When your command contains the <tt><b>-cc1</b></tt> flag, you can attach the
543debugger to it directly:</p>
544
545<pre class="code">
546    $ <b>gdb --args clang -cc1 -analyze -analyzer-checker=core test.c</b>
547    $ <b>lldb -- clang -cc1 -analyze -analyzer-checker=core test.c</b>
548</pre>
549
550<p>
551Otherwise, if your command line contains <tt><b>--analyze</b></tt>,
552the actual clang instance would be run in a separate process. In
553order to debug it, use the <tt><b>-###</b></tt> flag for obtaining
554the command line of the child process:
555</p>
556
557<pre class="code">
558    $ <b>clang --analyze test.c -\#\#\#</b>
559</pre>
560
561<p>
562Below we describe a few useful command line arguments, all of which assume that
563you are running <tt><b>clang -cc1</b></tt>.
564</p>
565
566<h3 id=narrowing>Narrowing Down the Problem</h3>
567
568<p>While investigating a checker-related issue, instruct the analyzer to only
569execute a single checker:
570</p>
571<pre class="code">
572    $ <b>clang -cc1 -analyze -analyzer-checker=osx.KeychainAPI test.c</b>
573</pre>
574
575<p>If you are experiencing a crash, to see which function is failing while
576processing a large file use the  <tt><b>-analyzer-display-progress</b></tt>
577option.</p>
578
579<p>To selectively analyze only the given function, use the
580<tt><b>-analyze-function</b></tt> option:</p>
581<pre class="code">
582    $ <b>clang -cc1 -analyze -analyzer-checker=core test.c -analyzer-display-progress</b>
583    ANALYZE (Syntax): test.c foo
584    ANALYZE (Syntax): test.c bar
585    ANALYZE (Path,  Inline_Regular): test.c bar
586    ANALYZE (Path,  Inline_Regular): test.c foo
587    $ <b>clang -cc1 -analyze -analyzer-checker=core test.c -analyzer-display-progress -analyze-function=foo</b>
588    ANALYZE (Syntax): test.c foo
589    ANALYZE (Path,  Inline_Regular): test.c foo
590</pre>
591
592<b>Note: </b> a fully qualified function name has to be used when selecting
593C++ functions and methods, Objective-C methods and blocks, e.g.:
594
595<pre class="code">
596    $ <b>clang -cc1 -analyze -analyzer-checker=core test.cc -analyze-function='foo(int)'</b>
597</pre>
598
599The fully qualified name can be found from the
600<tt><b>-analyzer-display-progress</b></tt> output.
601
602<p>The bug reporter mechanism removes path diagnostics inside intermediate
603function calls that have returned by the time the bug was found and contain
604no interesting pieces. Usually it is up to the checkers to produce more
605interesting pieces by adding custom <tt>BugReporterVisitor</tt> objects.
606However, you can disable path pruning while debugging with the
607<tt><b>-analyzer-config prune-paths=false</b></tt> option.
608
609<h3 id=visualizing>Visualizing the Analysis</h3>
610
611<p>To dump the AST, which often helps understanding how the program should
612behave:</p>
613<pre class="code">
614    $ <b>clang -cc1 -ast-dump test.c</b>
615</pre>
616
617<p>To view/dump CFG use <tt>debug.ViewCFG</tt> or <tt>debug.DumpCFG</tt>
618checkers:</p>
619<pre class="code">
620    $ <b>clang -cc1 -analyze -analyzer-checker=debug.ViewCFG test.c</b>
621</pre>
622
623<p><tt>ExplodedGraph</tt> (the state graph explored by the analyzer) can be
624visualized with another debug checker:</p>
625<pre class="code">
626    $ <b>clang -cc1 -analyze -analyzer-checker=debug.ViewExplodedGraph test.c</b>
627</pre>
628<p>Or, equivalently, with <tt><b>-analyzer-viz-egraph-graphviz</b></tt>
629option, which does the same thing - dumps the exploded graph in graphviz
630<tt><b>.dot</b></tt> format.</p>
631
632<p>You can convert <tt><b>.dot</b></tt> files into other formats - in
633particular, converting to <tt><b>.svg</b></tt> and viewing in your web
634browser might be more comfortable than using a <tt><b>.dot</b></tt> viewer:</p>
635<pre class="code">
636    $ <b>dot -Tsvg ExprEngine-501e2e.dot -o ExprEngine-501e2e.svg</b>
637</pre>
638
639<p>The <tt><b>-trim-egraph</b></tt> option removes all paths except those
640leading to bug reports from the exploded graph dump. This is useful
641because exploded graphs are often huge and hard to navigate.</p>
642
643<p>Viewing <tt>ExplodedGraph</tt> is your most powerful tool for understanding
644the analyzer's false positives, because it gives comprehensive information
645on every decision made by the analyzer across all analysis paths.</p>
646
647<p>There are more debug checkers available. To see all available debug checkers:
648</p>
649<pre class="code">
650    $ <b>clang -cc1 -analyzer-checker-help | grep "debug"</b>
651</pre>
652
653<h3 id=debugprints>Debug Prints and Tricks</h3>
654
655<p>To view "half-baked" <tt>ExplodedGraph</tt> while debugging, jump to a frame
656that has <tt>clang::ento::ExprEngine</tt> object and execute:</p>
657<pre class="code">
658    (gdb) <b>p ViewGraph(0)</b>
659</pre>
660
661<p>To see the <tt>ProgramState</tt> while debugging use the following command.
662<pre class="code">
663    (gdb) <b>p State->dump()</b>
664</pre>
665
666<p>To see <tt>clang::Expr</tt> while debugging use the following command. If you
667pass in a <tt>SourceManager</tt> object, it will also dump the corresponding line in the
668source code.</p>
669<pre class="code">
670    (gdb) <b>p E->dump()</b>
671</pre>
672
673<p>To dump AST of a method that the current <tt>ExplodedNode</tt> belongs
674to:</p>
675<pre class="code">
676    (gdb) <b>p C.getPredecessor()->getCodeDecl().getBody()->dump()</b>
677</pre>
678
679<h2 id=links>Making Your Checker Better</h2>
680<ul>
681<li>User facing documentation is important for adoption! Make sure the <a href="/available_checks.html">checker list </a>is updated
682    at the homepage of the analyzer. Also ensure the description is clear to
683    non-analyzer-developers in <tt>Checkers.td</tt>.</li>
684<li>Warning and note messages should be clear and easy to understand, even if a bit long.</li>
685<ul>
686  <li>Messages should start with a capital letter (unlike Clang warnings!) and should not
687      end with <tt>.</tt>.</li>
688  <li>Articles are usually omitted, eg. <tt>Dereference of a null pointer</tt> ->
689      <tt>Dereference of null pointer</tt>.</li>
690  <li>Introduce <tt>BugReporterVisitor</tt>s to emit additional notes that explain the warning
691      to the user better. There are some existing visitors that might be useful for your check,
692      e.g. <tt>trackNullOrUndefValue</tt>. For example, SimpleStreamChecker should highlight
693      the event of opening the file when reporting a file descriptor leak.</li>
694</ul>
695<li>If the check tracks anything in the program state, it needs to implement the
696    <tt>checkDeadSymbols</tt>callback to clean the state up.</li>
697<li>The check should conservatively assume that the program is correct when a tracked symbol
698    is passed to a function that is unknown to the analyzer.
699    <tt>checkPointerEscape</tt> callback could help you handle that case.</li>
700<li>Use safe and convenient APIs!</li>
701<ul>
702  <li>Always use <tt>CheckerContext::generateErrorNode</tt> and
703    <tt>CheckerContext::generateNonFatalErrorNode</tt> for emitting bug reports.
704    Most importantly, never emit report against <tt>CheckerContext::getPredecessor</tt>.</li>
705  <li>Prefer <tt>checkPreCall</tt> and <tt>checkPostCall</tt> to
706    <tt>checkPreStmt&lt;CallExpr&gt;</tt> and <tt>checkPostStmt&lt;CallExpr&gt;</tt>.</li>
707  <li>Use <tt>CallDescription</tt> to detect hardcoded API calls in the program.</li>
708  <li>Simplify <tt>C.getState()->getSVal(E, C.getLocationContext())</tt> to <tt>C.getSVal(E)</tt>.</li>
709</ul>
710<li>Common sources of crashes:</li>
711<ul>
712  <li><tt>CallEvent::getOriginExpr</tt> is nullable - for example, it returns null for an
713    automatic destructor of a variable. The same applies to some values generated while the
714    call was modeled, eg. <tt>SymbolConjured::getStmt</tt> is nullable.</li>
715  <li><tt>CallEvent::getDecl</tt> is nullable - for example, it returns null for a
716      call of symbolic function pointer.</li>
717  <li><tt>addTransition</tt>, <tt>generateSink</tt>, <tt>generateNonFatalErrorNode</tt>,
718    <tt>generateErrorNode</tt> are nullable because you can transition to a node that you have already visited.</li>
719  <li>Methods of <tt>CallExpr</tt>/<tt>FunctionDecl</tt>/<tt>CallEvent</tt> that
720    return arguments crash when the argument is out-of-bounds. If you checked the function name,
721    it doesn't mean that the function has the expected number of arguments!
722    Which is why you should use <tt>CallDescription</tt>.</li>
723  <li>Nullability of different entities within different kinds of symbols and regions is usually
724      documented via assertions in their constructors.</li>
725  <li><tt>NamedDecl::getName</tt> will fail if the name of the declaration is not a single token,
726    e.g. for destructors. You could use <tt>NamedDecl::getNameAsString</tt> for those cases.
727    Note that this method is much slower and should be used sparringly, e.g. only when generating reports
728    but not during analysis.</li>
729  <li>Is <tt>-analyzer-checker=core</tt> included in all test <tt>RUN:</tt> lines? It was never supported
730    to run the analyzer with the core checks disabled. It might cause unexpected behavior and
731    crashes. You should do all your testing with the core checks enabled.</li>
732</ul>
733</ul>
734<li>Patterns that you should most likely avoid even if they're not technically wrong:</li>
735<ul>
736  <li><tt>BugReporterVisitor</tt> should most likely not match the AST of the current program point
737      to decide when to emit a note. It is much easier to determine that by observing changes in
738      the program state.</li>
739  <li>In <tt>State->getSVal(Region)</tt>, if <tt>Region</tt> is not known to be a <tt>TypedValueRegion</tt>
740      and the optional type argument is not specified, the checker may accidentally try to dereference a
741      void pointer.</li>
742  <li>Checker logic should not depend on whether a certain value is a <tt>Loc</tt> or <tt>NonLoc</tt>.
743    It should be immediately obvious whether the <tt>SVal</tt> is a <tt>Loc</tt> or a
744    <tt>NonLoc</tt> depending on the AST that is being checked. Checking whether a value
745    is <tt>Loc</tt> or <tt>Unknown</tt>/<tt>Undefined</tt> or whether the value is
746    <tt>NonLoc</tt> or <tt>Unknown</tt>/<tt>Undefined</tt> is totally fine.</li>
747  <li>New symbols should not be constructed in the checker via direct calls to <tt>SymbolManager</tt>,
748    unless they are of <tt>SymbolMetadata</tt> class tagged by the checker,
749    or they represent newly created values such as the return value in <tt>evalCall</tt>.
750    For modeling arithmetic/bitwise/comparison operations, <tt>SValBuilder</tt> should be used.</li>
751  <li>Custom <tt>ProgramPointTag</tt>s should not be created within the checker. There is usually
752    no good reason for a checker to chain multiple nodes together, because checkers aren't worklists.</li>
753</ul>
754<li>Checkers are encouraged to actively participate in the analysis by sharing
755  their knowledge about the program state with the rest of the analyzer,
756  but they should not be disrupting the analysis unnecessarily:</li>
757<ul>
758  <li>If a checker splits program state, this must be based on knowledge that
759    the newly appearing branches are definitely possible and worth exploring
760    from the user's perspective. Otherwise the state split should be delayed
761    until there's an indication that one of the paths is taken, or one of the
762    paths needs to be dropped entirely. For example, it is fine to eagerly split
763    paths while modeling <tt>isalpha(x)</tt> as long as <tt>x</tt> is constrained accordingly on
764    each path. At the same time, it is not a good idea to split paths over the
765    return value of <tt>printf()</tt> while modeling the call because nobody ever checks
766    for errors in <tt>printf</tt>; at best, it'd just double the remaining analysis time.
767  </li>
768  <li>Caution is advised when using <tt>CheckerContext::generateNonFatalErrorNode</tt>
769    because it generates an independent transition, much like <tt>addTransition</tt>.
770    It is easy to accidentally split paths while using it. Ideally, try to
771    structure the code so that it was obvious that every <tt>addTransition</tt> or
772    <tt>generateNonFatalErrorNode</tt> (or sequence of such if the split is intended) is
773    immediately followed by return from the checker callback.</li>
774  <li>Multiple implementations of <tt>evalCall</tt> in different checkers should not conflict.</li>
775  <li>When implementing <tt>evalAssume</tt>, the checker should always return a non-null state
776      for either the true assumption or the false assumption (or both).</li>
777  <li>Checkers shall not mutate values of expressions, i.e. use the <tt>ProgramState::BindExpr</tt> API,
778    unless they are fully responsible for computing the value.
779    Under no circumstances should they change non-<tt>Unknown</tt> values of expressions.
780    Currently the only valid use case for this API in checkers is to model the return value in the <tt>evalCall</tt> callback.
781    If expression values are incorrect, <tt>ExprEngine</tt> needs to be fixed instead.</li>
782</ul>
783
784<h2 id=additioninformation>Additional Sources of Information</h2>
785
786Here are some additional resources that are useful when working on the Clang
787Static Analyzer:
788
789<ul>
790<li><a href="https://lcs.ios.ac.cn/~xzx/memmodel.pdf">Xu, Zhongxing &
791Kremenek, Ted & Zhang, Jian. (2010). A Memory Model for Static Analysis of C
792Programs.</a></li>
793<li><a href="https://github.com/llvm/llvm-project/blob/main/clang/lib/StaticAnalyzer/README.txt">
794The Clang Static Analyzer README</a></li>
795<li><a href="https://github.com/llvm/llvm-project/blob/main/clang/docs/analyzer/developer-docs/RegionStore.rst">
796Documentation for how the Store works</a></li>
797<li><a href="https://github.com/llvm/llvm-project/blob/main/clang/docs/analyzer/developer-docs/IPA.rst">
798Documentation about inlining</a></li>
799<li> The "Building a Checker in 24 hours" presentation given at the <a
800href="https://llvm.org/devmtg/2012-11">November 2012 LLVM Developer's
801meeting</a>. Describes the construction of SimpleStreamChecker. <a
802href="https://llvm.org/devmtg/2012-11/Zaks-Rose-Checker24Hours.pdf">Slides</a>
803and <a
804href="https://youtu.be/kdxlsP5QVPw">video</a>
805are available.</li>
806<li>
807<a href="https://github.com/haoNoQ/clang-analyzer-guide/releases/download/v0.1/clang-analyzer-guide-v0.1.pdf">
808Artem Degrachev: Clang Static Analyzer: A Checker Developer's Guide
809</a> (reading the previous items first might be a good idea)</li>
810<li>The list of <a href="implicit_checks.html">Implicit Checkers</a></li>
811<li> <a href="https://clang.llvm.org/doxygen">Clang doxygen</a>. Contains
812up-to-date documentation about the APIs available in Clang. Relevant entries
813have been linked throughout this page. Also of use is the
814<a href="https://llvm.org/doxygen">LLVM doxygen</a>, when dealing with classes
815from LLVM.</li>
816<li>
817  The <a href="https://discourse.llvm.org/c/clang/"> Clang Frontend Discourse site</a>.
818  This is the primary forum discussing ideas and posting questions about Clang development.
819  For posting Clang Static Analyzer specific questions, please visit the
820  <a href="https://discourse.llvm.org/c/clang/static-analyzer/"> Static Analyzer subcategory</a>
821  of the same site. In the past, Static Analyzer discussions took place at the
822  <a href="https://lists.llvm.org/pipermail/cfe-dev/"> cfe-dev</a> mailing list, which is now
823  archived and superseeded by the mentioned Discourse site.
824</li>
825</ul>
826
827</div>
828</div>
829</body>
830</html>
831