1 /*****************************************************************************/
2 /*!
3  * \file common_proof_rules.h
4  *
5  * Author: Sergey Berezin
6  *
7  * Created: Dec 11 18:15:37 GMT 2002
8  *
9  * <hr>
10  *
11  * License to use, copy, modify, sell and/or distribute this software
12  * and its documentation for any purpose is hereby granted without
13  * royalty, subject to the terms and conditions defined in the \ref
14  * LICENSE file provided with this distribution.
15  *
16  * <hr>
17  *
18  */
19 /*****************************************************************************/
20 // CLASS: CommonProofRules
21 //
22 // AUTHOR: Sergey Berezin, 12/09/2002
23 //
24 // Description: Commonly used proof rules (reflexivity, symmetry,
25 // transitivity, substitutivity, etc.).
26 //
27 // Normally, proof rule interfaces belong to their decision
28 // procedures.  However, in the case of equational logic, the rules
29 // are so useful, that even some basic classes like Transformer use
30 // these rules under the hood.  Therefore, it is made public, and its
31 // implementation is provided by the 'theorem' module.
32 ///////////////////////////////////////////////////////////////////////////////
33 
34 #ifndef _cvc3__common_proof_rules_h_
35 #define _cvc3__common_proof_rules_h_
36 
37 #include <vector>
38 
39 namespace CVC3 {
40 
41   class Theorem;
42   class Theorem3;
43   class Expr;
44   class Op;
45 
46   class CommonProofRules {
47   public:
48     //! Destructor
~CommonProofRules()49     virtual ~CommonProofRules() { }
50 
51     ////////////////////////////////////////////////////////////////////////
52     // TCC rules (3-valued logic)
53     ////////////////////////////////////////////////////////////////////////
54 
55     //  G1 |- phi   G2 |- D_phi
56     // -------------------------
57     //       G1,G2 |-_3 phi
58     /*!
59      * @brief Convert 2-valued formula to 3-valued by discharging its
60      *  TCC (\f$D_\phi\f$):
61      *  \f[\frac{\Gamma_1\vdash_2 \phi\quad \Gamma_2\vdash_2 D_{\phi}}
62      *          {\Gamma_1,\,\Gamma_2\vdash_3\phi}\f]
63      */
64     virtual Theorem3 queryTCC(const Theorem& phi, const Theorem& D_phi) = 0;
65 
66     //  G0,a1,...,an |-_3 phi  G1 |- D_a1 ... Gn |- D_an
67     // -------------------------------------------------
68     //    G0,G1,...,Gn |-_3 (a1 & ... & an) -> phi
69     /*!
70      * @brief 3-valued implication introduction rule:
71      * \f[\frac{\Gamma_0,\,\alpha_1\,\ldots,\,\alpha_n\vdash_3\phi\quad
72      *          (\Gamma_i\vdash D_{\alpha_i})_{i\in[1..n]}}
73      *         {\Gamma_0,\,\Gamma_1, \ldots, \Gamma_n\vdash_3
74      *              (\bigwedge_{i=1}^n\alpha_i)\to\phi}\f]
75      *
76      * \param phi is the formula \f$\phi\f$
77      * \param assump is the vector of assumptions \f$\alpha_1\ldots\alpha_n\f$
78      * \param tccs is the vector of TCCs for assumptions
79      *   \f$D_{\alpha_1}\ldots D_{\alpha_n}\f$
80      */
81     virtual Theorem3 implIntro3(const Theorem3& phi,
82 				const std::vector<Expr>& assump,
83 				const std::vector<Theorem>& tccs) = 0;
84 
85     ////////////////////////////////////////////////////////////////////////
86     // Common rules
87     ////////////////////////////////////////////////////////////////////////
88 
89     // ==> u:a |- a
90     //! \f[\frac{}{a\vdash a}\f]
91     virtual Theorem assumpRule(const Expr& a, int scope = -1) = 0;
92 
93     //  ==> a == a   or   ==> a IFF a
94     //! \f[\frac{}{a = a}\quad or \quad\frac{}{a \Leftrightarrow a}\f]
95     virtual Theorem reflexivityRule(const Expr& a) = 0;
96 
97     //! ==> (a == a) IFF TRUE
98     virtual Theorem rewriteReflexivity(const Expr& a_eq_a) = 0;
99 
100     //  a1 == a2 ==> a2 == a1 (same for IFF)
101     //! \f[\frac{a_1=a_2}{a_2=a_1}\f] (same for IFF)
102     virtual Theorem symmetryRule(const Theorem& a1_eq_a2) = 0;
103 
104     // ==> (a1 == a2) IFF (a2 == a1)
105     //! \f[\frac{}{(a_1=a_2)\Leftrightarrow (a_2=a_1)}\f]
106     virtual Theorem rewriteUsingSymmetry(const Expr& a1_eq_a2) = 0;
107 
108     // (a1 == a2) & (a2 == a3) ==> (a1 == a3) [same for IFF]
109     //! \f[\frac{a_1=a_2\quad a_2=a_3}{a_1=a_3}\f] (same for IFF)
110     virtual Theorem transitivityRule(const Theorem& a1_eq_a2,
111                                      const Theorem& a2_eq_a3) = 0;
112 
113     //! Optimized case for expr with one child
114     virtual Theorem substitutivityRule(const Expr& e, const Theorem& thm) = 0;
115 
116     //! Optimized case for expr with two children
117     virtual Theorem substitutivityRule(const Expr& e, const Theorem& thm1,
118                                        const Theorem& thm2) = 0;
119 
120     // (c_1 == d_1) & ... & (c_n == d_n)
121     //   ==> op(c_1,...,c_n) == op(d_1,...,d_n)
122     /*! @brief
123       \f[\frac{(c_1=d_1)\wedge\ldots\wedge(c_n=d_n)}
124               {op(c_1,\ldots,c_n)=op(d_1,\ldots,d_n)}\f]
125     */
126     virtual Theorem substitutivityRule(const Op& op,
127                                        const std::vector<Theorem>& thms) = 0;
128 
129     // (c_1 == d_1) & ... & (c_n == d_n)
130     //   ==> op(c_1,...,c_n) == op(d_1,...,d_n)
131     /*! @brief
132       \f[\frac{(c_1=d_1)\wedge\ldots\wedge(c_n=d_n)}
133               {op(c_1,\ldots,c_n)=op(d_1,\ldots,d_n)}\f]
134       except that only those arguments are given that \f$c_i\not=d_i\f$.
135       \param e is the original expression \f$op(c_1,\ldots,c_n)\f$.
136       \param changed is the vector of indices of changed kids
137       \param thms are the theorems \f$c_i=d_i\f$ for the changed kids.
138     */
139     virtual Theorem substitutivityRule(const Expr& e,
140                                        const std::vector<unsigned>& changed,
141                                        const std::vector<Theorem>& thms) = 0;
142     virtual Theorem substitutivityRule(const Expr& e, const int changed, const Theorem& thm) = 0;
143 
144     // |- e,  |- !e ==> |- FALSE
145     /*! @brief
146       \f[\frac{\Gamma_1\vdash e\quad\Gamma_2\vdash \neg e}
147               {\Gamma_1\cup\Gamma_2\vdash \mathrm{FALSE}}
148       \f]
149      */
150     virtual Theorem contradictionRule(const Theorem& e,
151 				      const Theorem& not_e) = 0;
152 
153     // |- e OR !e
154     virtual Theorem excludedMiddle(const Expr& e) = 0;
155 
156     // e ==> e IFF TRUE
157     //! \f[\frac{\Gamma\vdash e}{\Gamma\vdash e\Leftrightarrow\mathrm{TRUE}}\f]
158     virtual Theorem iffTrue(const Theorem& e) = 0;
159 
160     // e ==> !e IFF FALSE
161     //! \f[\frac{\Gamma\vdash e}{\Gamma\vdash\neg e\Leftrightarrow\mathrm{FALSE}}\f]
162     virtual Theorem iffNotFalse(const Theorem& e) = 0;
163 
164     // e IFF TRUE ==> e
165     //! \f[\frac{\Gamma\vdash e\Leftrightarrow\mathrm{TRUE}}{\Gamma\vdash e}\f]
166     virtual Theorem iffTrueElim(const Theorem& e) = 0;
167 
168     // e IFF FALSE ==> !e
169     //! \f[\frac{\Gamma\vdash e\Leftrightarrow\mathrm{FALSE}}{\Gamma\vdash\neg e}\f]
170     virtual Theorem iffFalseElim(const Theorem& e) = 0;
171 
172     //! e1 <=> e2  ==>  ~e1 <=> ~e2
173     /*!  \f[\frac{\Gamma\vdash e_1\Leftrightarrow e_2}
174      *           {\Gamma\vdash\sim e_1\Leftrightarrow\sim e_2}\f]
175      * Where ~e is the <em>inverse</em> of e (that is, ~(!e') = e').
176      */
177     virtual Theorem iffContrapositive(const Theorem& thm) = 0;
178 
179     // !!e ==> e
180     //! \f[\frac{\Gamma\vdash\neg\neg e}{\Gamma\vdash e}\f]
181     virtual Theorem notNotElim(const Theorem& not_not_e) = 0;
182 
183     // e1 AND (e1 IFF e2) ==> e2
184     /*! @brief
185       \f[\frac{\Gamma_1\vdash e_1\quad \Gamma_2\vdash(e_1\Leftrightarrow e_2)}
186               {\Gamma_1\cup\Gamma_2\vdash e_2}
187       \f]
188     */
189     virtual Theorem iffMP(const Theorem& e1, const Theorem& e1_iff_e2) = 0;
190 
191     // e1 AND (e1 IMPLIES e2) ==> e2
192     /*! @brief
193       \f[\frac{\Gamma_1\vdash e_1\quad \Gamma_2\vdash(e_1\Rightarrow e_2)}
194               {\Gamma_1\cup\Gamma_2\vdash e_2}
195       \f]
196     */
197     virtual Theorem implMP(const Theorem& e1, const Theorem& e1_impl_e2) = 0;
198 
199     // AND(e_1,...e_n) ==> e_i
200     //! \f[\frac{\vdash e_1\wedge\cdots\wedge e_n}{\vdash e_i}\f]
201     virtual Theorem andElim(const Theorem& e, int i) = 0;
202 
203     // e1, e2 ==> AND(e1, e2)
204     /*! @brief
205       \f[\frac{\Gamma_1\vdash e_1\quad \Gamma_2\vdash e_2}
206               {\Gamma_1\cup\Gamma_2\vdash e_1\wedge e_2}
207       \f]
208     */
209     virtual Theorem andIntro(const Theorem& e1, const Theorem& e2) = 0;
210 
211     // e1, ..., en ==> AND(e1, ..., en)
212     /*! @brief
213       \f[\frac{\Gamma_1\vdash e_1\quad \cdots \quad\Gamma_n\vdash e_n}
214               {\bigcup_{i=1}^n\Gamma_i\vdash \bigwedge_{i=1}^n e_i}
215       \f]
216     */
217     virtual Theorem andIntro(const std::vector<Theorem>& es) = 0;
218 
219     //  G,a1,...,an |- phi
220     // -------------------------------------------------
221     //    G |- (a1 & ... & an) -> phi
222     /*!
223      * @brief Implication introduction rule:
224      * \f[\frac{\Gamma,\,\alpha_1\,\ldots,\,\alpha_n\vdash\phi}
225      *         {\Gamma\vdash(\bigwedge_{i=1}^n\alpha_i)\to\phi}\f]
226      *
227      * \param phi is the formula \f$\phi\f$
228      * \param assump is the vector of assumptions \f$\alpha_1\ldots\alpha_n\f$
229      */
230     virtual Theorem implIntro(const Theorem& phi,
231 			      const std::vector<Expr>& assump) = 0;
232 
233     //! e1 => e2  ==>  ~e2 => ~e1
234     /*!  \f[\frac{\Gamma\vdash e_1\Rightarrow e_2}
235      *           {\Gamma\vdash\sim e_2\Rightarrow\sim e_1}\f]
236      * Where ~e is the <em>inverse</em> of e (that is, ~(!e') = e').
237      */
238     virtual Theorem implContrapositive(const Theorem& thm) = 0;
239 
240     //! ==> ITE(TRUE, e1, e2) == e1
241     virtual Theorem rewriteIteTrue(const Expr& e) = 0;
242     //! ==> ITE(FALSE, e1, e2) == e2
243     virtual Theorem rewriteIteFalse(const Expr& e) = 0;
244     //! ==> ITE(c, e, e) == e
245     virtual Theorem rewriteIteSame(const Expr& e) = 0;
246 
247     // NOT e ==> e IFF FALSE
248     //! \f[\frac{\vdash\neg e}{\vdash e\Leftrightarrow\mathrm{FALSE}}\f]
249     virtual Theorem notToIff(const Theorem& not_e) = 0;
250 
251     // e1 XOR e2 ==> e1 IFF (NOT e2)
252     //! \f[\frac{\vdash e_1 XOR e_2}{\vdash e_1\Leftrightarrow(\neg e_2)}\f]
253     virtual Theorem xorToIff(const Expr& e) = 0;
254 
255     //! ==> (e1 <=> e2) <=> [simplified expr]
256     /*! Rewrite formulas like FALSE/TRUE <=> e,  e <=> NOT e, etc. */
257     virtual Theorem rewriteIff(const Expr& e) = 0;
258 
259     // AND and OR rewrites check for TRUE and FALSE arguments and
260     // remove them or collapse the entire expression to TRUE and FALSE
261     // appropriately
262 
263     //! ==> AND(e1,e2) IFF [simplified expr]
264     virtual Theorem rewriteAnd(const Expr& e) = 0;
265 
266     //! ==> OR(e1,...,en) IFF [simplified expr]
267     virtual Theorem rewriteOr(const Expr& e) = 0;
268 
269     //! ==> NOT TRUE IFF FALSE
270     virtual Theorem rewriteNotTrue(const Expr& e) = 0;
271 
272     //! ==> NOT FALSE IFF TRUE
273     virtual Theorem rewriteNotFalse(const Expr& e) = 0;
274 
275     //! ==> NOT NOT e IFF e, takes !!e
276     virtual Theorem rewriteNotNot(const Expr& e) = 0;
277 
278     //! ==> NOT FORALL (vars): e  IFF EXISTS (vars) NOT e
279     virtual Theorem rewriteNotForall(const Expr& forallExpr) = 0;
280 
281     //! ==> NOT EXISTS (vars): e  IFF FORALL (vars) NOT e
282     virtual Theorem rewriteNotExists(const Expr& existsExpr) = 0;
283 
284     //From expr EXISTS(x1: t1, ..., xn: tn) phi(x1,...,cn)
285     //we create phi(c1,...,cn) where ci is a skolem constant
286     //defined by the original expression and the index i.
287     virtual Expr skolemize(const Expr& e) = 0;
288 
289     /*! skolem rewrite rule: Introduces axiom |- Exists(x) phi(x) <=> phi(c)
290      * where c is a constant defined by the expression Exists(x) phi(x)
291      */
292     virtual Theorem skolemizeRewrite(const Expr& e) = 0;
293 
294     //! Special version of skolemizeRewrite for "EXISTS x. t = x"
295     virtual Theorem skolemizeRewriteVar(const Expr& e) = 0;
296 
297     //! |- EXISTS x. e = x
298     virtual Theorem varIntroRule(const Expr& e) = 0;
299 
300     /*! @brief If thm is (EXISTS x: phi(x)), create the Skolemized version
301       and add it to the database.  Otherwise returns just thm. */
302     /*!
303      * \param thm is the Theorem(EXISTS x: phi(x))
304      */
305     virtual Theorem skolemize(const Theorem& thm) = 0;
306 
307     //! Retrun a theorem "|- e = v" for a new Skolem constant v
308     /*!
309      * This is equivalent to skolemize(d_core->varIntroRule(e)), only more
310      * efficient.
311      */
312     virtual Theorem varIntroSkolem(const Expr& e) = 0;
313 
314     // Derived rules
315 
316     //! ==> TRUE
317     virtual Theorem trueTheorem() = 0;
318 
319     //! AND(e1,e2) ==> [simplified expr]
320     virtual Theorem rewriteAnd(const Theorem& e) = 0;
321 
322     //! OR(e1,...,en) ==> [simplified expr]
323     virtual Theorem rewriteOr(const Theorem& e) = 0;
324 
325     // TODO: do we really need this?
326     virtual std::vector<Theorem>& getSkolemAxioms() = 0;
327 
328     //TODO: do we need this?
329     virtual void clearSkolemAxioms() = 0;
330 
331     virtual Theorem ackermann(const Expr& e1, const Expr& e2) = 0;
332 
333     // Given a propositional atom containing embedded ite's, lifts first ite condition
334     // to form a Boolean ITE
335     // |- P(...ite(a,b,c)...) <=> ite(a,P(...b...),P(...c...))
336     virtual Theorem liftOneITE(const Expr& e) = 0;
337 
338   }; // end of class CommonProofRules
339 
340 } // end of namespace CVC3
341 
342 #endif
343