xref: /linux/arch/x86/kernel/cpu/common.c (revision 0c2f6d04)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4 
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/mem_encrypt.h>
22 #include <linux/smp.h>
23 #include <linux/cpu.h>
24 #include <linux/io.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackprotector.h>
28 #include <linux/utsname.h>
29 
30 #include <asm/alternative.h>
31 #include <asm/cmdline.h>
32 #include <asm/perf_event.h>
33 #include <asm/mmu_context.h>
34 #include <asm/doublefault.h>
35 #include <asm/archrandom.h>
36 #include <asm/hypervisor.h>
37 #include <asm/processor.h>
38 #include <asm/tlbflush.h>
39 #include <asm/debugreg.h>
40 #include <asm/sections.h>
41 #include <asm/vsyscall.h>
42 #include <linux/topology.h>
43 #include <linux/cpumask.h>
44 #include <linux/atomic.h>
45 #include <asm/proto.h>
46 #include <asm/setup.h>
47 #include <asm/apic.h>
48 #include <asm/desc.h>
49 #include <asm/fpu/api.h>
50 #include <asm/mtrr.h>
51 #include <asm/hwcap2.h>
52 #include <linux/numa.h>
53 #include <asm/numa.h>
54 #include <asm/asm.h>
55 #include <asm/bugs.h>
56 #include <asm/cpu.h>
57 #include <asm/mce.h>
58 #include <asm/msr.h>
59 #include <asm/cacheinfo.h>
60 #include <asm/memtype.h>
61 #include <asm/microcode.h>
62 #include <asm/intel-family.h>
63 #include <asm/cpu_device_id.h>
64 #include <asm/fred.h>
65 #include <asm/uv/uv.h>
66 #include <asm/ia32.h>
67 #include <asm/set_memory.h>
68 #include <asm/traps.h>
69 #include <asm/sev.h>
70 #include <asm/tdx.h>
71 #include <asm/posted_intr.h>
72 
73 #include "cpu.h"
74 
75 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
76 EXPORT_PER_CPU_SYMBOL(cpu_info);
77 
78 u32 elf_hwcap2 __read_mostly;
79 
80 /* Number of siblings per CPU package */
81 unsigned int __max_threads_per_core __ro_after_init = 1;
82 EXPORT_SYMBOL(__max_threads_per_core);
83 
84 unsigned int __max_dies_per_package __ro_after_init = 1;
85 EXPORT_SYMBOL(__max_dies_per_package);
86 
87 unsigned int __max_logical_packages __ro_after_init = 1;
88 EXPORT_SYMBOL(__max_logical_packages);
89 
90 unsigned int __num_cores_per_package __ro_after_init = 1;
91 EXPORT_SYMBOL(__num_cores_per_package);
92 
93 unsigned int __num_threads_per_package __ro_after_init = 1;
94 EXPORT_SYMBOL(__num_threads_per_package);
95 
96 static struct ppin_info {
97 	int	feature;
98 	int	msr_ppin_ctl;
99 	int	msr_ppin;
100 } ppin_info[] = {
101 	[X86_VENDOR_INTEL] = {
102 		.feature = X86_FEATURE_INTEL_PPIN,
103 		.msr_ppin_ctl = MSR_PPIN_CTL,
104 		.msr_ppin = MSR_PPIN
105 	},
106 	[X86_VENDOR_AMD] = {
107 		.feature = X86_FEATURE_AMD_PPIN,
108 		.msr_ppin_ctl = MSR_AMD_PPIN_CTL,
109 		.msr_ppin = MSR_AMD_PPIN
110 	},
111 };
112 
113 static const struct x86_cpu_id ppin_cpuids[] = {
114 	X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
115 	X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
116 
117 	/* Legacy models without CPUID enumeration */
118 	X86_MATCH_VFM(INTEL_IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
119 	X86_MATCH_VFM(INTEL_HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
120 	X86_MATCH_VFM(INTEL_BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
121 	X86_MATCH_VFM(INTEL_BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
122 	X86_MATCH_VFM(INTEL_SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
123 	X86_MATCH_VFM(INTEL_ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
124 	X86_MATCH_VFM(INTEL_ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
125 	X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
126 	X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
127 	X86_MATCH_VFM(INTEL_XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
128 	X86_MATCH_VFM(INTEL_XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
129 
130 	{}
131 };
132 
ppin_init(struct cpuinfo_x86 * c)133 static void ppin_init(struct cpuinfo_x86 *c)
134 {
135 	const struct x86_cpu_id *id;
136 	unsigned long long val;
137 	struct ppin_info *info;
138 
139 	id = x86_match_cpu(ppin_cpuids);
140 	if (!id)
141 		return;
142 
143 	/*
144 	 * Testing the presence of the MSR is not enough. Need to check
145 	 * that the PPIN_CTL allows reading of the PPIN.
146 	 */
147 	info = (struct ppin_info *)id->driver_data;
148 
149 	if (rdmsrl_safe(info->msr_ppin_ctl, &val))
150 		goto clear_ppin;
151 
152 	if ((val & 3UL) == 1UL) {
153 		/* PPIN locked in disabled mode */
154 		goto clear_ppin;
155 	}
156 
157 	/* If PPIN is disabled, try to enable */
158 	if (!(val & 2UL)) {
159 		wrmsrl_safe(info->msr_ppin_ctl,  val | 2UL);
160 		rdmsrl_safe(info->msr_ppin_ctl, &val);
161 	}
162 
163 	/* Is the enable bit set? */
164 	if (val & 2UL) {
165 		c->ppin = __rdmsr(info->msr_ppin);
166 		set_cpu_cap(c, info->feature);
167 		return;
168 	}
169 
170 clear_ppin:
171 	clear_cpu_cap(c, info->feature);
172 }
173 
default_init(struct cpuinfo_x86 * c)174 static void default_init(struct cpuinfo_x86 *c)
175 {
176 #ifdef CONFIG_X86_64
177 	cpu_detect_cache_sizes(c);
178 #else
179 	/* Not much we can do here... */
180 	/* Check if at least it has cpuid */
181 	if (c->cpuid_level == -1) {
182 		/* No cpuid. It must be an ancient CPU */
183 		if (c->x86 == 4)
184 			strcpy(c->x86_model_id, "486");
185 		else if (c->x86 == 3)
186 			strcpy(c->x86_model_id, "386");
187 	}
188 #endif
189 }
190 
191 static const struct cpu_dev default_cpu = {
192 	.c_init		= default_init,
193 	.c_vendor	= "Unknown",
194 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
195 };
196 
197 static const struct cpu_dev *this_cpu = &default_cpu;
198 
199 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
200 #ifdef CONFIG_X86_64
201 	/*
202 	 * We need valid kernel segments for data and code in long mode too
203 	 * IRET will check the segment types  kkeil 2000/10/28
204 	 * Also sysret mandates a special GDT layout
205 	 *
206 	 * TLS descriptors are currently at a different place compared to i386.
207 	 * Hopefully nobody expects them at a fixed place (Wine?)
208 	 */
209 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
210 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(DESC_CODE64, 0, 0xfffff),
211 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(DESC_DATA64, 0, 0xfffff),
212 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
213 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(DESC_DATA64 | DESC_USER, 0, 0xfffff),
214 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(DESC_CODE64 | DESC_USER, 0, 0xfffff),
215 #else
216 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
217 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
218 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
219 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(DESC_DATA32 | DESC_USER, 0, 0xfffff),
220 	/*
221 	 * Segments used for calling PnP BIOS have byte granularity.
222 	 * They code segments and data segments have fixed 64k limits,
223 	 * the transfer segment sizes are set at run time.
224 	 */
225 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
226 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
227 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0xffff),
228 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
229 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
230 	/*
231 	 * The APM segments have byte granularity and their bases
232 	 * are set at run time.  All have 64k limits.
233 	 */
234 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
235 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
236 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(DESC_DATA32_BIOS, 0, 0xffff),
237 
238 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
239 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
240 #endif
241 } };
242 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
243 
244 #ifdef CONFIG_X86_64
x86_nopcid_setup(char * s)245 static int __init x86_nopcid_setup(char *s)
246 {
247 	/* nopcid doesn't accept parameters */
248 	if (s)
249 		return -EINVAL;
250 
251 	/* do not emit a message if the feature is not present */
252 	if (!boot_cpu_has(X86_FEATURE_PCID))
253 		return 0;
254 
255 	setup_clear_cpu_cap(X86_FEATURE_PCID);
256 	pr_info("nopcid: PCID feature disabled\n");
257 	return 0;
258 }
259 early_param("nopcid", x86_nopcid_setup);
260 #endif
261 
x86_noinvpcid_setup(char * s)262 static int __init x86_noinvpcid_setup(char *s)
263 {
264 	/* noinvpcid doesn't accept parameters */
265 	if (s)
266 		return -EINVAL;
267 
268 	/* do not emit a message if the feature is not present */
269 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
270 		return 0;
271 
272 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
273 	pr_info("noinvpcid: INVPCID feature disabled\n");
274 	return 0;
275 }
276 early_param("noinvpcid", x86_noinvpcid_setup);
277 
278 #ifdef CONFIG_X86_32
279 static int cachesize_override = -1;
280 static int disable_x86_serial_nr = 1;
281 
cachesize_setup(char * str)282 static int __init cachesize_setup(char *str)
283 {
284 	get_option(&str, &cachesize_override);
285 	return 1;
286 }
287 __setup("cachesize=", cachesize_setup);
288 
289 /* Standard macro to see if a specific flag is changeable */
flag_is_changeable_p(u32 flag)290 static inline int flag_is_changeable_p(u32 flag)
291 {
292 	u32 f1, f2;
293 
294 	/*
295 	 * Cyrix and IDT cpus allow disabling of CPUID
296 	 * so the code below may return different results
297 	 * when it is executed before and after enabling
298 	 * the CPUID. Add "volatile" to not allow gcc to
299 	 * optimize the subsequent calls to this function.
300 	 */
301 	asm volatile ("pushfl		\n\t"
302 		      "pushfl		\n\t"
303 		      "popl %0		\n\t"
304 		      "movl %0, %1	\n\t"
305 		      "xorl %2, %0	\n\t"
306 		      "pushl %0		\n\t"
307 		      "popfl		\n\t"
308 		      "pushfl		\n\t"
309 		      "popl %0		\n\t"
310 		      "popfl		\n\t"
311 
312 		      : "=&r" (f1), "=&r" (f2)
313 		      : "ir" (flag));
314 
315 	return ((f1^f2) & flag) != 0;
316 }
317 
318 /* Probe for the CPUID instruction */
have_cpuid_p(void)319 int have_cpuid_p(void)
320 {
321 	return flag_is_changeable_p(X86_EFLAGS_ID);
322 }
323 
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)324 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
325 {
326 	unsigned long lo, hi;
327 
328 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
329 		return;
330 
331 	/* Disable processor serial number: */
332 
333 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
334 	lo |= 0x200000;
335 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
336 
337 	pr_notice("CPU serial number disabled.\n");
338 	clear_cpu_cap(c, X86_FEATURE_PN);
339 
340 	/* Disabling the serial number may affect the cpuid level */
341 	c->cpuid_level = cpuid_eax(0);
342 }
343 
x86_serial_nr_setup(char * s)344 static int __init x86_serial_nr_setup(char *s)
345 {
346 	disable_x86_serial_nr = 0;
347 	return 1;
348 }
349 __setup("serialnumber", x86_serial_nr_setup);
350 #else
flag_is_changeable_p(u32 flag)351 static inline int flag_is_changeable_p(u32 flag)
352 {
353 	return 1;
354 }
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)355 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
356 {
357 }
358 #endif
359 
setup_smep(struct cpuinfo_x86 * c)360 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
361 {
362 	if (cpu_has(c, X86_FEATURE_SMEP))
363 		cr4_set_bits(X86_CR4_SMEP);
364 }
365 
setup_smap(struct cpuinfo_x86 * c)366 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
367 {
368 	unsigned long eflags = native_save_fl();
369 
370 	/* This should have been cleared long ago */
371 	BUG_ON(eflags & X86_EFLAGS_AC);
372 
373 	if (cpu_has(c, X86_FEATURE_SMAP))
374 		cr4_set_bits(X86_CR4_SMAP);
375 }
376 
setup_umip(struct cpuinfo_x86 * c)377 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
378 {
379 	/* Check the boot processor, plus build option for UMIP. */
380 	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
381 		goto out;
382 
383 	/* Check the current processor's cpuid bits. */
384 	if (!cpu_has(c, X86_FEATURE_UMIP))
385 		goto out;
386 
387 	cr4_set_bits(X86_CR4_UMIP);
388 
389 	pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
390 
391 	return;
392 
393 out:
394 	/*
395 	 * Make sure UMIP is disabled in case it was enabled in a
396 	 * previous boot (e.g., via kexec).
397 	 */
398 	cr4_clear_bits(X86_CR4_UMIP);
399 }
400 
401 /* These bits should not change their value after CPU init is finished. */
402 static const unsigned long cr4_pinned_mask = X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
403 					     X86_CR4_FSGSBASE | X86_CR4_CET | X86_CR4_FRED;
404 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
405 static unsigned long cr4_pinned_bits __ro_after_init;
406 
native_write_cr0(unsigned long val)407 void native_write_cr0(unsigned long val)
408 {
409 	unsigned long bits_missing = 0;
410 
411 set_register:
412 	asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
413 
414 	if (static_branch_likely(&cr_pinning)) {
415 		if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
416 			bits_missing = X86_CR0_WP;
417 			val |= bits_missing;
418 			goto set_register;
419 		}
420 		/* Warn after we've set the missing bits. */
421 		WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
422 	}
423 }
424 EXPORT_SYMBOL(native_write_cr0);
425 
native_write_cr4(unsigned long val)426 void __no_profile native_write_cr4(unsigned long val)
427 {
428 	unsigned long bits_changed = 0;
429 
430 set_register:
431 	asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
432 
433 	if (static_branch_likely(&cr_pinning)) {
434 		if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
435 			bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
436 			val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
437 			goto set_register;
438 		}
439 		/* Warn after we've corrected the changed bits. */
440 		WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
441 			  bits_changed);
442 	}
443 }
444 #if IS_MODULE(CONFIG_LKDTM)
445 EXPORT_SYMBOL_GPL(native_write_cr4);
446 #endif
447 
cr4_update_irqsoff(unsigned long set,unsigned long clear)448 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
449 {
450 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
451 
452 	lockdep_assert_irqs_disabled();
453 
454 	newval = (cr4 & ~clear) | set;
455 	if (newval != cr4) {
456 		this_cpu_write(cpu_tlbstate.cr4, newval);
457 		__write_cr4(newval);
458 	}
459 }
460 EXPORT_SYMBOL(cr4_update_irqsoff);
461 
462 /* Read the CR4 shadow. */
cr4_read_shadow(void)463 unsigned long cr4_read_shadow(void)
464 {
465 	return this_cpu_read(cpu_tlbstate.cr4);
466 }
467 EXPORT_SYMBOL_GPL(cr4_read_shadow);
468 
cr4_init(void)469 void cr4_init(void)
470 {
471 	unsigned long cr4 = __read_cr4();
472 
473 	if (boot_cpu_has(X86_FEATURE_PCID))
474 		cr4 |= X86_CR4_PCIDE;
475 	if (static_branch_likely(&cr_pinning))
476 		cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
477 
478 	__write_cr4(cr4);
479 
480 	/* Initialize cr4 shadow for this CPU. */
481 	this_cpu_write(cpu_tlbstate.cr4, cr4);
482 }
483 
484 /*
485  * Once CPU feature detection is finished (and boot params have been
486  * parsed), record any of the sensitive CR bits that are set, and
487  * enable CR pinning.
488  */
setup_cr_pinning(void)489 static void __init setup_cr_pinning(void)
490 {
491 	cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
492 	static_key_enable(&cr_pinning.key);
493 }
494 
x86_nofsgsbase_setup(char * arg)495 static __init int x86_nofsgsbase_setup(char *arg)
496 {
497 	/* Require an exact match without trailing characters. */
498 	if (strlen(arg))
499 		return 0;
500 
501 	/* Do not emit a message if the feature is not present. */
502 	if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
503 		return 1;
504 
505 	setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
506 	pr_info("FSGSBASE disabled via kernel command line\n");
507 	return 1;
508 }
509 __setup("nofsgsbase", x86_nofsgsbase_setup);
510 
511 /*
512  * Protection Keys are not available in 32-bit mode.
513  */
514 static bool pku_disabled;
515 
setup_pku(struct cpuinfo_x86 * c)516 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
517 {
518 	if (c == &boot_cpu_data) {
519 		if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
520 			return;
521 		/*
522 		 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
523 		 * bit to be set.  Enforce it.
524 		 */
525 		setup_force_cpu_cap(X86_FEATURE_OSPKE);
526 
527 	} else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
528 		return;
529 	}
530 
531 	cr4_set_bits(X86_CR4_PKE);
532 	/* Load the default PKRU value */
533 	pkru_write_default();
534 }
535 
536 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
setup_disable_pku(char * arg)537 static __init int setup_disable_pku(char *arg)
538 {
539 	/*
540 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
541 	 * runtime checks are against OSPKE so clearing the
542 	 * bit does nothing.
543 	 *
544 	 * This way, we will see "pku" in cpuinfo, but not
545 	 * "ospke", which is exactly what we want.  It shows
546 	 * that the CPU has PKU, but the OS has not enabled it.
547 	 * This happens to be exactly how a system would look
548 	 * if we disabled the config option.
549 	 */
550 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
551 	pku_disabled = true;
552 	return 1;
553 }
554 __setup("nopku", setup_disable_pku);
555 #endif
556 
557 #ifdef CONFIG_X86_KERNEL_IBT
558 
ibt_save(bool disable)559 __noendbr u64 ibt_save(bool disable)
560 {
561 	u64 msr = 0;
562 
563 	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
564 		rdmsrl(MSR_IA32_S_CET, msr);
565 		if (disable)
566 			wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
567 	}
568 
569 	return msr;
570 }
571 
ibt_restore(u64 save)572 __noendbr void ibt_restore(u64 save)
573 {
574 	u64 msr;
575 
576 	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
577 		rdmsrl(MSR_IA32_S_CET, msr);
578 		msr &= ~CET_ENDBR_EN;
579 		msr |= (save & CET_ENDBR_EN);
580 		wrmsrl(MSR_IA32_S_CET, msr);
581 	}
582 }
583 
584 #endif
585 
setup_cet(struct cpuinfo_x86 * c)586 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
587 {
588 	bool user_shstk, kernel_ibt;
589 
590 	if (!IS_ENABLED(CONFIG_X86_CET))
591 		return;
592 
593 	kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
594 	user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
595 		     IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
596 
597 	if (!kernel_ibt && !user_shstk)
598 		return;
599 
600 	if (user_shstk)
601 		set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
602 
603 	if (kernel_ibt)
604 		wrmsrl(MSR_IA32_S_CET, CET_ENDBR_EN);
605 	else
606 		wrmsrl(MSR_IA32_S_CET, 0);
607 
608 	cr4_set_bits(X86_CR4_CET);
609 
610 	if (kernel_ibt && ibt_selftest()) {
611 		pr_err("IBT selftest: Failed!\n");
612 		wrmsrl(MSR_IA32_S_CET, 0);
613 		setup_clear_cpu_cap(X86_FEATURE_IBT);
614 	}
615 }
616 
cet_disable(void)617 __noendbr void cet_disable(void)
618 {
619 	if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
620 	      cpu_feature_enabled(X86_FEATURE_SHSTK)))
621 		return;
622 
623 	wrmsrl(MSR_IA32_S_CET, 0);
624 	wrmsrl(MSR_IA32_U_CET, 0);
625 }
626 
627 /*
628  * Some CPU features depend on higher CPUID levels, which may not always
629  * be available due to CPUID level capping or broken virtualization
630  * software.  Add those features to this table to auto-disable them.
631  */
632 struct cpuid_dependent_feature {
633 	u32 feature;
634 	u32 level;
635 };
636 
637 static const struct cpuid_dependent_feature
638 cpuid_dependent_features[] = {
639 	{ X86_FEATURE_MWAIT,		0x00000005 },
640 	{ X86_FEATURE_DCA,		0x00000009 },
641 	{ X86_FEATURE_XSAVE,		0x0000000d },
642 	{ 0, 0 }
643 };
644 
filter_cpuid_features(struct cpuinfo_x86 * c,bool warn)645 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
646 {
647 	const struct cpuid_dependent_feature *df;
648 
649 	for (df = cpuid_dependent_features; df->feature; df++) {
650 
651 		if (!cpu_has(c, df->feature))
652 			continue;
653 		/*
654 		 * Note: cpuid_level is set to -1 if unavailable, but
655 		 * extended_extended_level is set to 0 if unavailable
656 		 * and the legitimate extended levels are all negative
657 		 * when signed; hence the weird messing around with
658 		 * signs here...
659 		 */
660 		if (!((s32)df->level < 0 ?
661 		     (u32)df->level > (u32)c->extended_cpuid_level :
662 		     (s32)df->level > (s32)c->cpuid_level))
663 			continue;
664 
665 		clear_cpu_cap(c, df->feature);
666 		if (!warn)
667 			continue;
668 
669 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
670 			x86_cap_flag(df->feature), df->level);
671 	}
672 }
673 
674 /*
675  * Naming convention should be: <Name> [(<Codename>)]
676  * This table only is used unless init_<vendor>() below doesn't set it;
677  * in particular, if CPUID levels 0x80000002..4 are supported, this
678  * isn't used
679  */
680 
681 /* Look up CPU names by table lookup. */
table_lookup_model(struct cpuinfo_x86 * c)682 static const char *table_lookup_model(struct cpuinfo_x86 *c)
683 {
684 #ifdef CONFIG_X86_32
685 	const struct legacy_cpu_model_info *info;
686 
687 	if (c->x86_model >= 16)
688 		return NULL;	/* Range check */
689 
690 	if (!this_cpu)
691 		return NULL;
692 
693 	info = this_cpu->legacy_models;
694 
695 	while (info->family) {
696 		if (info->family == c->x86)
697 			return info->model_names[c->x86_model];
698 		info++;
699 	}
700 #endif
701 	return NULL;		/* Not found */
702 }
703 
704 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
705 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
706 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
707 
708 #ifdef CONFIG_X86_32
709 /* The 32-bit entry code needs to find cpu_entry_area. */
710 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
711 #endif
712 
713 /* Load the original GDT from the per-cpu structure */
load_direct_gdt(int cpu)714 void load_direct_gdt(int cpu)
715 {
716 	struct desc_ptr gdt_descr;
717 
718 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
719 	gdt_descr.size = GDT_SIZE - 1;
720 	load_gdt(&gdt_descr);
721 }
722 EXPORT_SYMBOL_GPL(load_direct_gdt);
723 
724 /* Load a fixmap remapping of the per-cpu GDT */
load_fixmap_gdt(int cpu)725 void load_fixmap_gdt(int cpu)
726 {
727 	struct desc_ptr gdt_descr;
728 
729 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
730 	gdt_descr.size = GDT_SIZE - 1;
731 	load_gdt(&gdt_descr);
732 }
733 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
734 
735 /**
736  * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
737  * @cpu:	The CPU number for which this is invoked
738  *
739  * Invoked during early boot to switch from early GDT and early per CPU to
740  * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
741  * switch is implicit by loading the direct GDT. On 64bit this requires
742  * to update GSBASE.
743  */
switch_gdt_and_percpu_base(int cpu)744 void __init switch_gdt_and_percpu_base(int cpu)
745 {
746 	load_direct_gdt(cpu);
747 
748 #ifdef CONFIG_X86_64
749 	/*
750 	 * No need to load %gs. It is already correct.
751 	 *
752 	 * Writing %gs on 64bit would zero GSBASE which would make any per
753 	 * CPU operation up to the point of the wrmsrl() fault.
754 	 *
755 	 * Set GSBASE to the new offset. Until the wrmsrl() happens the
756 	 * early mapping is still valid. That means the GSBASE update will
757 	 * lose any prior per CPU data which was not copied over in
758 	 * setup_per_cpu_areas().
759 	 *
760 	 * This works even with stackprotector enabled because the
761 	 * per CPU stack canary is 0 in both per CPU areas.
762 	 */
763 	wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
764 #else
765 	/*
766 	 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
767 	 * it is required to load FS again so that the 'hidden' part is
768 	 * updated from the new GDT. Up to this point the early per CPU
769 	 * translation is active. Any content of the early per CPU data
770 	 * which was not copied over in setup_per_cpu_areas() is lost.
771 	 */
772 	loadsegment(fs, __KERNEL_PERCPU);
773 #endif
774 }
775 
776 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
777 
get_model_name(struct cpuinfo_x86 * c)778 static void get_model_name(struct cpuinfo_x86 *c)
779 {
780 	unsigned int *v;
781 	char *p, *q, *s;
782 
783 	if (c->extended_cpuid_level < 0x80000004)
784 		return;
785 
786 	v = (unsigned int *)c->x86_model_id;
787 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
788 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
789 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
790 	c->x86_model_id[48] = 0;
791 
792 	/* Trim whitespace */
793 	p = q = s = &c->x86_model_id[0];
794 
795 	while (*p == ' ')
796 		p++;
797 
798 	while (*p) {
799 		/* Note the last non-whitespace index */
800 		if (!isspace(*p))
801 			s = q;
802 
803 		*q++ = *p++;
804 	}
805 
806 	*(s + 1) = '\0';
807 }
808 
cpu_detect_cache_sizes(struct cpuinfo_x86 * c)809 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
810 {
811 	unsigned int n, dummy, ebx, ecx, edx, l2size;
812 
813 	n = c->extended_cpuid_level;
814 
815 	if (n >= 0x80000005) {
816 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
817 		c->x86_cache_size = (ecx>>24) + (edx>>24);
818 #ifdef CONFIG_X86_64
819 		/* On K8 L1 TLB is inclusive, so don't count it */
820 		c->x86_tlbsize = 0;
821 #endif
822 	}
823 
824 	if (n < 0x80000006)	/* Some chips just has a large L1. */
825 		return;
826 
827 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
828 	l2size = ecx >> 16;
829 
830 #ifdef CONFIG_X86_64
831 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
832 #else
833 	/* do processor-specific cache resizing */
834 	if (this_cpu->legacy_cache_size)
835 		l2size = this_cpu->legacy_cache_size(c, l2size);
836 
837 	/* Allow user to override all this if necessary. */
838 	if (cachesize_override != -1)
839 		l2size = cachesize_override;
840 
841 	if (l2size == 0)
842 		return;		/* Again, no L2 cache is possible */
843 #endif
844 
845 	c->x86_cache_size = l2size;
846 }
847 
848 u16 __read_mostly tlb_lli_4k[NR_INFO];
849 u16 __read_mostly tlb_lli_2m[NR_INFO];
850 u16 __read_mostly tlb_lli_4m[NR_INFO];
851 u16 __read_mostly tlb_lld_4k[NR_INFO];
852 u16 __read_mostly tlb_lld_2m[NR_INFO];
853 u16 __read_mostly tlb_lld_4m[NR_INFO];
854 u16 __read_mostly tlb_lld_1g[NR_INFO];
855 
cpu_detect_tlb(struct cpuinfo_x86 * c)856 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
857 {
858 	if (this_cpu->c_detect_tlb)
859 		this_cpu->c_detect_tlb(c);
860 
861 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
862 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
863 		tlb_lli_4m[ENTRIES]);
864 
865 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
866 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
867 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
868 }
869 
get_cpu_vendor(struct cpuinfo_x86 * c)870 static void get_cpu_vendor(struct cpuinfo_x86 *c)
871 {
872 	char *v = c->x86_vendor_id;
873 	int i;
874 
875 	for (i = 0; i < X86_VENDOR_NUM; i++) {
876 		if (!cpu_devs[i])
877 			break;
878 
879 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
880 		    (cpu_devs[i]->c_ident[1] &&
881 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
882 
883 			this_cpu = cpu_devs[i];
884 			c->x86_vendor = this_cpu->c_x86_vendor;
885 			return;
886 		}
887 	}
888 
889 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
890 		    "CPU: Your system may be unstable.\n", v);
891 
892 	c->x86_vendor = X86_VENDOR_UNKNOWN;
893 	this_cpu = &default_cpu;
894 }
895 
cpu_detect(struct cpuinfo_x86 * c)896 void cpu_detect(struct cpuinfo_x86 *c)
897 {
898 	/* Get vendor name */
899 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
900 	      (unsigned int *)&c->x86_vendor_id[0],
901 	      (unsigned int *)&c->x86_vendor_id[8],
902 	      (unsigned int *)&c->x86_vendor_id[4]);
903 
904 	c->x86 = 4;
905 	/* Intel-defined flags: level 0x00000001 */
906 	if (c->cpuid_level >= 0x00000001) {
907 		u32 junk, tfms, cap0, misc;
908 
909 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
910 		c->x86		= x86_family(tfms);
911 		c->x86_model	= x86_model(tfms);
912 		c->x86_stepping	= x86_stepping(tfms);
913 
914 		if (cap0 & (1<<19)) {
915 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
916 			c->x86_cache_alignment = c->x86_clflush_size;
917 		}
918 	}
919 }
920 
apply_forced_caps(struct cpuinfo_x86 * c)921 static void apply_forced_caps(struct cpuinfo_x86 *c)
922 {
923 	int i;
924 
925 	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
926 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
927 		c->x86_capability[i] |= cpu_caps_set[i];
928 	}
929 }
930 
init_speculation_control(struct cpuinfo_x86 * c)931 static void init_speculation_control(struct cpuinfo_x86 *c)
932 {
933 	/*
934 	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
935 	 * and they also have a different bit for STIBP support. Also,
936 	 * a hypervisor might have set the individual AMD bits even on
937 	 * Intel CPUs, for finer-grained selection of what's available.
938 	 */
939 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
940 		set_cpu_cap(c, X86_FEATURE_IBRS);
941 		set_cpu_cap(c, X86_FEATURE_IBPB);
942 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
943 	}
944 
945 	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
946 		set_cpu_cap(c, X86_FEATURE_STIBP);
947 
948 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
949 	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
950 		set_cpu_cap(c, X86_FEATURE_SSBD);
951 
952 	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
953 		set_cpu_cap(c, X86_FEATURE_IBRS);
954 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
955 	}
956 
957 	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
958 		set_cpu_cap(c, X86_FEATURE_IBPB);
959 
960 	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
961 		set_cpu_cap(c, X86_FEATURE_STIBP);
962 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
963 	}
964 
965 	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
966 		set_cpu_cap(c, X86_FEATURE_SSBD);
967 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
968 		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
969 	}
970 }
971 
get_cpu_cap(struct cpuinfo_x86 * c)972 void get_cpu_cap(struct cpuinfo_x86 *c)
973 {
974 	u32 eax, ebx, ecx, edx;
975 
976 	/* Intel-defined flags: level 0x00000001 */
977 	if (c->cpuid_level >= 0x00000001) {
978 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
979 
980 		c->x86_capability[CPUID_1_ECX] = ecx;
981 		c->x86_capability[CPUID_1_EDX] = edx;
982 	}
983 
984 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
985 	if (c->cpuid_level >= 0x00000006)
986 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
987 
988 	/* Additional Intel-defined flags: level 0x00000007 */
989 	if (c->cpuid_level >= 0x00000007) {
990 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
991 		c->x86_capability[CPUID_7_0_EBX] = ebx;
992 		c->x86_capability[CPUID_7_ECX] = ecx;
993 		c->x86_capability[CPUID_7_EDX] = edx;
994 
995 		/* Check valid sub-leaf index before accessing it */
996 		if (eax >= 1) {
997 			cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
998 			c->x86_capability[CPUID_7_1_EAX] = eax;
999 		}
1000 	}
1001 
1002 	/* Extended state features: level 0x0000000d */
1003 	if (c->cpuid_level >= 0x0000000d) {
1004 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1005 
1006 		c->x86_capability[CPUID_D_1_EAX] = eax;
1007 	}
1008 
1009 	/* AMD-defined flags: level 0x80000001 */
1010 	eax = cpuid_eax(0x80000000);
1011 	c->extended_cpuid_level = eax;
1012 
1013 	if ((eax & 0xffff0000) == 0x80000000) {
1014 		if (eax >= 0x80000001) {
1015 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1016 
1017 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1018 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
1019 		}
1020 	}
1021 
1022 	if (c->extended_cpuid_level >= 0x80000007) {
1023 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1024 
1025 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1026 		c->x86_power = edx;
1027 	}
1028 
1029 	if (c->extended_cpuid_level >= 0x80000008) {
1030 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1031 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1032 	}
1033 
1034 	if (c->extended_cpuid_level >= 0x8000000a)
1035 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1036 
1037 	if (c->extended_cpuid_level >= 0x8000001f)
1038 		c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1039 
1040 	if (c->extended_cpuid_level >= 0x80000021)
1041 		c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1042 
1043 	init_scattered_cpuid_features(c);
1044 	init_speculation_control(c);
1045 
1046 	/*
1047 	 * Clear/Set all flags overridden by options, after probe.
1048 	 * This needs to happen each time we re-probe, which may happen
1049 	 * several times during CPU initialization.
1050 	 */
1051 	apply_forced_caps(c);
1052 }
1053 
get_cpu_address_sizes(struct cpuinfo_x86 * c)1054 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1055 {
1056 	u32 eax, ebx, ecx, edx;
1057 
1058 	if (!cpu_has(c, X86_FEATURE_CPUID) ||
1059 	    (c->extended_cpuid_level < 0x80000008)) {
1060 		if (IS_ENABLED(CONFIG_X86_64)) {
1061 			c->x86_clflush_size = 64;
1062 			c->x86_phys_bits = 36;
1063 			c->x86_virt_bits = 48;
1064 		} else {
1065 			c->x86_clflush_size = 32;
1066 			c->x86_virt_bits = 32;
1067 			c->x86_phys_bits = 32;
1068 
1069 			if (cpu_has(c, X86_FEATURE_PAE) ||
1070 			    cpu_has(c, X86_FEATURE_PSE36))
1071 				c->x86_phys_bits = 36;
1072 		}
1073 	} else {
1074 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1075 
1076 		c->x86_virt_bits = (eax >> 8) & 0xff;
1077 		c->x86_phys_bits = eax & 0xff;
1078 
1079 		/* Provide a sane default if not enumerated: */
1080 		if (!c->x86_clflush_size)
1081 			c->x86_clflush_size = 32;
1082 	}
1083 
1084 	c->x86_cache_bits = c->x86_phys_bits;
1085 	c->x86_cache_alignment = c->x86_clflush_size;
1086 }
1087 
identify_cpu_without_cpuid(struct cpuinfo_x86 * c)1088 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1089 {
1090 #ifdef CONFIG_X86_32
1091 	int i;
1092 
1093 	/*
1094 	 * First of all, decide if this is a 486 or higher
1095 	 * It's a 486 if we can modify the AC flag
1096 	 */
1097 	if (flag_is_changeable_p(X86_EFLAGS_AC))
1098 		c->x86 = 4;
1099 	else
1100 		c->x86 = 3;
1101 
1102 	for (i = 0; i < X86_VENDOR_NUM; i++)
1103 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1104 			c->x86_vendor_id[0] = 0;
1105 			cpu_devs[i]->c_identify(c);
1106 			if (c->x86_vendor_id[0]) {
1107 				get_cpu_vendor(c);
1108 				break;
1109 			}
1110 		}
1111 #endif
1112 }
1113 
1114 #define NO_SPECULATION		BIT(0)
1115 #define NO_MELTDOWN		BIT(1)
1116 #define NO_SSB			BIT(2)
1117 #define NO_L1TF			BIT(3)
1118 #define NO_MDS			BIT(4)
1119 #define MSBDS_ONLY		BIT(5)
1120 #define NO_SWAPGS		BIT(6)
1121 #define NO_ITLB_MULTIHIT	BIT(7)
1122 #define NO_SPECTRE_V2		BIT(8)
1123 #define NO_MMIO			BIT(9)
1124 #define NO_EIBRS_PBRSB		BIT(10)
1125 #define NO_BHI			BIT(11)
1126 
1127 #define VULNWL(vendor, family, model, whitelist)	\
1128 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1129 
1130 #define VULNWL_INTEL(vfm, whitelist)		\
1131 	X86_MATCH_VFM(vfm, whitelist)
1132 
1133 #define VULNWL_AMD(family, whitelist)		\
1134 	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1135 
1136 #define VULNWL_HYGON(family, whitelist)		\
1137 	VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1138 
1139 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1140 	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
1141 	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
1142 	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
1143 	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
1144 	VULNWL(VORTEX,	5, X86_MODEL_ANY,	NO_SPECULATION),
1145 	VULNWL(VORTEX,	6, X86_MODEL_ANY,	NO_SPECULATION),
1146 
1147 	/* Intel Family 6 */
1148 	VULNWL_INTEL(INTEL_TIGERLAKE,		NO_MMIO),
1149 	VULNWL_INTEL(INTEL_TIGERLAKE_L,		NO_MMIO),
1150 	VULNWL_INTEL(INTEL_ALDERLAKE,		NO_MMIO),
1151 	VULNWL_INTEL(INTEL_ALDERLAKE_L,		NO_MMIO),
1152 
1153 	VULNWL_INTEL(INTEL_ATOM_SALTWELL,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1154 	VULNWL_INTEL(INTEL_ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1155 	VULNWL_INTEL(INTEL_ATOM_SALTWELL_MID,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1156 	VULNWL_INTEL(INTEL_ATOM_BONNELL,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1157 	VULNWL_INTEL(INTEL_ATOM_BONNELL_MID,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1158 
1159 	VULNWL_INTEL(INTEL_ATOM_SILVERMONT,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1160 	VULNWL_INTEL(INTEL_ATOM_SILVERMONT_D,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1161 	VULNWL_INTEL(INTEL_ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1162 	VULNWL_INTEL(INTEL_ATOM_AIRMONT,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1163 	VULNWL_INTEL(INTEL_XEON_PHI_KNL,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1164 	VULNWL_INTEL(INTEL_XEON_PHI_KNM,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1165 
1166 	VULNWL_INTEL(INTEL_CORE_YONAH,		NO_SSB),
1167 
1168 	VULNWL_INTEL(INTEL_ATOM_AIRMONT_MID,	NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1169 	VULNWL_INTEL(INTEL_ATOM_AIRMONT_NP,	NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1170 
1171 	VULNWL_INTEL(INTEL_ATOM_GOLDMONT,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1172 	VULNWL_INTEL(INTEL_ATOM_GOLDMONT_D,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1173 	VULNWL_INTEL(INTEL_ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1174 
1175 	/*
1176 	 * Technically, swapgs isn't serializing on AMD (despite it previously
1177 	 * being documented as such in the APM).  But according to AMD, %gs is
1178 	 * updated non-speculatively, and the issuing of %gs-relative memory
1179 	 * operands will be blocked until the %gs update completes, which is
1180 	 * good enough for our purposes.
1181 	 */
1182 
1183 	VULNWL_INTEL(INTEL_ATOM_TREMONT,	NO_EIBRS_PBRSB),
1184 	VULNWL_INTEL(INTEL_ATOM_TREMONT_L,	NO_EIBRS_PBRSB),
1185 	VULNWL_INTEL(INTEL_ATOM_TREMONT_D,	NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1186 
1187 	/* AMD Family 0xf - 0x12 */
1188 	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1189 	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1190 	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1191 	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1192 
1193 	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1194 	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1195 	VULNWL_HYGON(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1196 
1197 	/* Zhaoxin Family 7 */
1198 	VULNWL(CENTAUR,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1199 	VULNWL(ZHAOXIN,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1200 	{}
1201 };
1202 
1203 #define VULNBL(vendor, family, model, blacklist)	\
1204 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1205 
1206 #define VULNBL_INTEL_STEPPINGS(vfm, steppings, issues)		   \
1207 	X86_MATCH_VFM_STEPPINGS(vfm, steppings, issues)
1208 
1209 #define VULNBL_AMD(family, blacklist)		\
1210 	VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1211 
1212 #define VULNBL_HYGON(family, blacklist)		\
1213 	VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1214 
1215 #define SRBDS		BIT(0)
1216 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1217 #define MMIO		BIT(1)
1218 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1219 #define MMIO_SBDS	BIT(2)
1220 /* CPU is affected by RETbleed, speculating where you would not expect it */
1221 #define RETBLEED	BIT(3)
1222 /* CPU is affected by SMT (cross-thread) return predictions */
1223 #define SMT_RSB		BIT(4)
1224 /* CPU is affected by SRSO */
1225 #define SRSO		BIT(5)
1226 /* CPU is affected by GDS */
1227 #define GDS		BIT(6)
1228 /* CPU is affected by Register File Data Sampling */
1229 #define RFDS		BIT(7)
1230 
1231 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1232 	VULNBL_INTEL_STEPPINGS(INTEL_IVYBRIDGE,		X86_STEPPING_ANY,		SRBDS),
1233 	VULNBL_INTEL_STEPPINGS(INTEL_HASWELL,		X86_STEPPING_ANY,		SRBDS),
1234 	VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_L,		X86_STEPPING_ANY,		SRBDS),
1235 	VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_G,		X86_STEPPING_ANY,		SRBDS),
1236 	VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_X,		X86_STEPPING_ANY,		MMIO),
1237 	VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_D,	X86_STEPPING_ANY,		MMIO),
1238 	VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_G,	X86_STEPPING_ANY,		SRBDS),
1239 	VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_X,	X86_STEPPING_ANY,		MMIO),
1240 	VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL,		X86_STEPPING_ANY,		SRBDS),
1241 	VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE_X,		X86_STEPPING_ANY,		MMIO | RETBLEED | GDS),
1242 	VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE_L,		X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1243 	VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE,		X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1244 	VULNBL_INTEL_STEPPINGS(INTEL_KABYLAKE_L,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1245 	VULNBL_INTEL_STEPPINGS(INTEL_KABYLAKE,		X86_STEPPING_ANY,		MMIO | RETBLEED | GDS | SRBDS),
1246 	VULNBL_INTEL_STEPPINGS(INTEL_CANNONLAKE_L,	X86_STEPPING_ANY,		RETBLEED),
1247 	VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_L,		X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1248 	VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_D,		X86_STEPPING_ANY,		MMIO | GDS),
1249 	VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_X,		X86_STEPPING_ANY,		MMIO | GDS),
1250 	VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE,		X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1251 	VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE_L,	X86_STEPPINGS(0x0, 0x0),	MMIO | RETBLEED),
1252 	VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED | GDS),
1253 	VULNBL_INTEL_STEPPINGS(INTEL_TIGERLAKE_L,	X86_STEPPING_ANY,		GDS),
1254 	VULNBL_INTEL_STEPPINGS(INTEL_TIGERLAKE,		X86_STEPPING_ANY,		GDS),
1255 	VULNBL_INTEL_STEPPINGS(INTEL_LAKEFIELD,		X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RETBLEED),
1256 	VULNBL_INTEL_STEPPINGS(INTEL_ROCKETLAKE,	X86_STEPPING_ANY,		MMIO | RETBLEED | GDS),
1257 	VULNBL_INTEL_STEPPINGS(INTEL_ALDERLAKE,		X86_STEPPING_ANY,		RFDS),
1258 	VULNBL_INTEL_STEPPINGS(INTEL_ALDERLAKE_L,	X86_STEPPING_ANY,		RFDS),
1259 	VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE,	X86_STEPPING_ANY,		RFDS),
1260 	VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE_P,	X86_STEPPING_ANY,		RFDS),
1261 	VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE_S,	X86_STEPPING_ANY,		RFDS),
1262 	VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GRACEMONT,	X86_STEPPING_ANY,		RFDS),
1263 	VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RFDS),
1264 	VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT_D,	X86_STEPPING_ANY,		MMIO | RFDS),
1265 	VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT_L,	X86_STEPPING_ANY,		MMIO | MMIO_SBDS | RFDS),
1266 	VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT,	X86_STEPPING_ANY,		RFDS),
1267 	VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT_D,	X86_STEPPING_ANY,		RFDS),
1268 	VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT_PLUS, X86_STEPPING_ANY,		RFDS),
1269 
1270 	VULNBL_AMD(0x15, RETBLEED),
1271 	VULNBL_AMD(0x16, RETBLEED),
1272 	VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1273 	VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO),
1274 	VULNBL_AMD(0x19, SRSO),
1275 	{}
1276 };
1277 
cpu_matches(const struct x86_cpu_id * table,unsigned long which)1278 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1279 {
1280 	const struct x86_cpu_id *m = x86_match_cpu(table);
1281 
1282 	return m && !!(m->driver_data & which);
1283 }
1284 
x86_read_arch_cap_msr(void)1285 u64 x86_read_arch_cap_msr(void)
1286 {
1287 	u64 x86_arch_cap_msr = 0;
1288 
1289 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1290 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, x86_arch_cap_msr);
1291 
1292 	return x86_arch_cap_msr;
1293 }
1294 
arch_cap_mmio_immune(u64 x86_arch_cap_msr)1295 static bool arch_cap_mmio_immune(u64 x86_arch_cap_msr)
1296 {
1297 	return (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO &&
1298 		x86_arch_cap_msr & ARCH_CAP_PSDP_NO &&
1299 		x86_arch_cap_msr & ARCH_CAP_SBDR_SSDP_NO);
1300 }
1301 
vulnerable_to_rfds(u64 x86_arch_cap_msr)1302 static bool __init vulnerable_to_rfds(u64 x86_arch_cap_msr)
1303 {
1304 	/* The "immunity" bit trumps everything else: */
1305 	if (x86_arch_cap_msr & ARCH_CAP_RFDS_NO)
1306 		return false;
1307 
1308 	/*
1309 	 * VMMs set ARCH_CAP_RFDS_CLEAR for processors not in the blacklist to
1310 	 * indicate that mitigation is needed because guest is running on a
1311 	 * vulnerable hardware or may migrate to such hardware:
1312 	 */
1313 	if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
1314 		return true;
1315 
1316 	/* Only consult the blacklist when there is no enumeration: */
1317 	return cpu_matches(cpu_vuln_blacklist, RFDS);
1318 }
1319 
cpu_set_bug_bits(struct cpuinfo_x86 * c)1320 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1321 {
1322 	u64 x86_arch_cap_msr = x86_read_arch_cap_msr();
1323 
1324 	/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1325 	if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1326 	    !(x86_arch_cap_msr & ARCH_CAP_PSCHANGE_MC_NO))
1327 		setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1328 
1329 	if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1330 		return;
1331 
1332 	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1333 
1334 	if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1335 		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1336 
1337 	if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1338 	    !(x86_arch_cap_msr & ARCH_CAP_SSB_NO) &&
1339 	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1340 		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1341 
1342 	/*
1343 	 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1344 	 * flag and protect from vendor-specific bugs via the whitelist.
1345 	 *
1346 	 * Don't use AutoIBRS when SNP is enabled because it degrades host
1347 	 * userspace indirect branch performance.
1348 	 */
1349 	if ((x86_arch_cap_msr & ARCH_CAP_IBRS_ALL) ||
1350 	    (cpu_has(c, X86_FEATURE_AUTOIBRS) &&
1351 	     !cpu_feature_enabled(X86_FEATURE_SEV_SNP))) {
1352 		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1353 		if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1354 		    !(x86_arch_cap_msr & ARCH_CAP_PBRSB_NO))
1355 			setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1356 	}
1357 
1358 	if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1359 	    !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)) {
1360 		setup_force_cpu_bug(X86_BUG_MDS);
1361 		if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1362 			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1363 	}
1364 
1365 	if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1366 		setup_force_cpu_bug(X86_BUG_SWAPGS);
1367 
1368 	/*
1369 	 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1370 	 *	- TSX is supported or
1371 	 *	- TSX_CTRL is present
1372 	 *
1373 	 * TSX_CTRL check is needed for cases when TSX could be disabled before
1374 	 * the kernel boot e.g. kexec.
1375 	 * TSX_CTRL check alone is not sufficient for cases when the microcode
1376 	 * update is not present or running as guest that don't get TSX_CTRL.
1377 	 */
1378 	if (!(x86_arch_cap_msr & ARCH_CAP_TAA_NO) &&
1379 	    (cpu_has(c, X86_FEATURE_RTM) ||
1380 	     (x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR)))
1381 		setup_force_cpu_bug(X86_BUG_TAA);
1382 
1383 	/*
1384 	 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1385 	 * in the vulnerability blacklist.
1386 	 *
1387 	 * Some of the implications and mitigation of Shared Buffers Data
1388 	 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1389 	 * SRBDS.
1390 	 */
1391 	if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1392 	     cpu_has(c, X86_FEATURE_RDSEED)) &&
1393 	    cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1394 		    setup_force_cpu_bug(X86_BUG_SRBDS);
1395 
1396 	/*
1397 	 * Processor MMIO Stale Data bug enumeration
1398 	 *
1399 	 * Affected CPU list is generally enough to enumerate the vulnerability,
1400 	 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1401 	 * not want the guest to enumerate the bug.
1402 	 *
1403 	 * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1404 	 * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1405 	 */
1406 	if (!arch_cap_mmio_immune(x86_arch_cap_msr)) {
1407 		if (cpu_matches(cpu_vuln_blacklist, MMIO))
1408 			setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1409 		else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1410 			setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1411 	}
1412 
1413 	if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1414 		if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (x86_arch_cap_msr & ARCH_CAP_RSBA))
1415 			setup_force_cpu_bug(X86_BUG_RETBLEED);
1416 	}
1417 
1418 	if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1419 		setup_force_cpu_bug(X86_BUG_SMT_RSB);
1420 
1421 	if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1422 		if (cpu_matches(cpu_vuln_blacklist, SRSO))
1423 			setup_force_cpu_bug(X86_BUG_SRSO);
1424 	}
1425 
1426 	/*
1427 	 * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1428 	 * an affected processor, the VMM may have disabled the use of GATHER by
1429 	 * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1430 	 * which means that AVX will be disabled.
1431 	 */
1432 	if (cpu_matches(cpu_vuln_blacklist, GDS) && !(x86_arch_cap_msr & ARCH_CAP_GDS_NO) &&
1433 	    boot_cpu_has(X86_FEATURE_AVX))
1434 		setup_force_cpu_bug(X86_BUG_GDS);
1435 
1436 	if (vulnerable_to_rfds(x86_arch_cap_msr))
1437 		setup_force_cpu_bug(X86_BUG_RFDS);
1438 
1439 	/* When virtualized, eIBRS could be hidden, assume vulnerable */
1440 	if (!(x86_arch_cap_msr & ARCH_CAP_BHI_NO) &&
1441 	    !cpu_matches(cpu_vuln_whitelist, NO_BHI) &&
1442 	    (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED) ||
1443 	     boot_cpu_has(X86_FEATURE_HYPERVISOR)))
1444 		setup_force_cpu_bug(X86_BUG_BHI);
1445 
1446 	if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1447 		return;
1448 
1449 	/* Rogue Data Cache Load? No! */
1450 	if (x86_arch_cap_msr & ARCH_CAP_RDCL_NO)
1451 		return;
1452 
1453 	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1454 
1455 	if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1456 		return;
1457 
1458 	setup_force_cpu_bug(X86_BUG_L1TF);
1459 }
1460 
1461 /*
1462  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1463  * unfortunately, that's not true in practice because of early VIA
1464  * chips and (more importantly) broken virtualizers that are not easy
1465  * to detect. In the latter case it doesn't even *fail* reliably, so
1466  * probing for it doesn't even work. Disable it completely on 32-bit
1467  * unless we can find a reliable way to detect all the broken cases.
1468  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1469  */
detect_nopl(void)1470 static void detect_nopl(void)
1471 {
1472 #ifdef CONFIG_X86_32
1473 	setup_clear_cpu_cap(X86_FEATURE_NOPL);
1474 #else
1475 	setup_force_cpu_cap(X86_FEATURE_NOPL);
1476 #endif
1477 }
1478 
1479 /*
1480  * We parse cpu parameters early because fpu__init_system() is executed
1481  * before parse_early_param().
1482  */
cpu_parse_early_param(void)1483 static void __init cpu_parse_early_param(void)
1484 {
1485 	char arg[128];
1486 	char *argptr = arg, *opt;
1487 	int arglen, taint = 0;
1488 
1489 #ifdef CONFIG_X86_32
1490 	if (cmdline_find_option_bool(boot_command_line, "no387"))
1491 #ifdef CONFIG_MATH_EMULATION
1492 		setup_clear_cpu_cap(X86_FEATURE_FPU);
1493 #else
1494 		pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1495 #endif
1496 
1497 	if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1498 		setup_clear_cpu_cap(X86_FEATURE_FXSR);
1499 #endif
1500 
1501 	if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1502 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1503 
1504 	if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1505 		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1506 
1507 	if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1508 		setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1509 
1510 	if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
1511 		setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
1512 
1513 	arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1514 	if (arglen <= 0)
1515 		return;
1516 
1517 	pr_info("Clearing CPUID bits:");
1518 
1519 	while (argptr) {
1520 		bool found __maybe_unused = false;
1521 		unsigned int bit;
1522 
1523 		opt = strsep(&argptr, ",");
1524 
1525 		/*
1526 		 * Handle naked numbers first for feature flags which don't
1527 		 * have names.
1528 		 */
1529 		if (!kstrtouint(opt, 10, &bit)) {
1530 			if (bit < NCAPINTS * 32) {
1531 
1532 				/* empty-string, i.e., ""-defined feature flags */
1533 				if (!x86_cap_flags[bit])
1534 					pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1535 				else
1536 					pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1537 
1538 				setup_clear_cpu_cap(bit);
1539 				taint++;
1540 			}
1541 			/*
1542 			 * The assumption is that there are no feature names with only
1543 			 * numbers in the name thus go to the next argument.
1544 			 */
1545 			continue;
1546 		}
1547 
1548 		for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1549 			if (!x86_cap_flag(bit))
1550 				continue;
1551 
1552 			if (strcmp(x86_cap_flag(bit), opt))
1553 				continue;
1554 
1555 			pr_cont(" %s", opt);
1556 			setup_clear_cpu_cap(bit);
1557 			taint++;
1558 			found = true;
1559 			break;
1560 		}
1561 
1562 		if (!found)
1563 			pr_cont(" (unknown: %s)", opt);
1564 	}
1565 	pr_cont("\n");
1566 
1567 	if (taint)
1568 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1569 }
1570 
1571 /*
1572  * Do minimum CPU detection early.
1573  * Fields really needed: vendor, cpuid_level, family, model, mask,
1574  * cache alignment.
1575  * The others are not touched to avoid unwanted side effects.
1576  *
1577  * WARNING: this function is only called on the boot CPU.  Don't add code
1578  * here that is supposed to run on all CPUs.
1579  */
early_identify_cpu(struct cpuinfo_x86 * c)1580 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1581 {
1582 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1583 	c->extended_cpuid_level = 0;
1584 
1585 	if (!have_cpuid_p())
1586 		identify_cpu_without_cpuid(c);
1587 
1588 	/* cyrix could have cpuid enabled via c_identify()*/
1589 	if (have_cpuid_p()) {
1590 		cpu_detect(c);
1591 		get_cpu_vendor(c);
1592 		intel_unlock_cpuid_leafs(c);
1593 		get_cpu_cap(c);
1594 		setup_force_cpu_cap(X86_FEATURE_CPUID);
1595 		get_cpu_address_sizes(c);
1596 		cpu_parse_early_param();
1597 
1598 		cpu_init_topology(c);
1599 
1600 		if (this_cpu->c_early_init)
1601 			this_cpu->c_early_init(c);
1602 
1603 		c->cpu_index = 0;
1604 		filter_cpuid_features(c, false);
1605 
1606 		if (this_cpu->c_bsp_init)
1607 			this_cpu->c_bsp_init(c);
1608 	} else {
1609 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1610 		get_cpu_address_sizes(c);
1611 		cpu_init_topology(c);
1612 	}
1613 
1614 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1615 
1616 	cpu_set_bug_bits(c);
1617 
1618 	sld_setup(c);
1619 
1620 #ifdef CONFIG_X86_32
1621 	/*
1622 	 * Regardless of whether PCID is enumerated, the SDM says
1623 	 * that it can't be enabled in 32-bit mode.
1624 	 */
1625 	setup_clear_cpu_cap(X86_FEATURE_PCID);
1626 #endif
1627 
1628 	/*
1629 	 * Later in the boot process pgtable_l5_enabled() relies on
1630 	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1631 	 * enabled by this point we need to clear the feature bit to avoid
1632 	 * false-positives at the later stage.
1633 	 *
1634 	 * pgtable_l5_enabled() can be false here for several reasons:
1635 	 *  - 5-level paging is disabled compile-time;
1636 	 *  - it's 32-bit kernel;
1637 	 *  - machine doesn't support 5-level paging;
1638 	 *  - user specified 'no5lvl' in kernel command line.
1639 	 */
1640 	if (!pgtable_l5_enabled())
1641 		setup_clear_cpu_cap(X86_FEATURE_LA57);
1642 
1643 	detect_nopl();
1644 }
1645 
early_cpu_init(void)1646 void __init early_cpu_init(void)
1647 {
1648 	const struct cpu_dev *const *cdev;
1649 	int count = 0;
1650 
1651 #ifdef CONFIG_PROCESSOR_SELECT
1652 	pr_info("KERNEL supported cpus:\n");
1653 #endif
1654 
1655 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1656 		const struct cpu_dev *cpudev = *cdev;
1657 
1658 		if (count >= X86_VENDOR_NUM)
1659 			break;
1660 		cpu_devs[count] = cpudev;
1661 		count++;
1662 
1663 #ifdef CONFIG_PROCESSOR_SELECT
1664 		{
1665 			unsigned int j;
1666 
1667 			for (j = 0; j < 2; j++) {
1668 				if (!cpudev->c_ident[j])
1669 					continue;
1670 				pr_info("  %s %s\n", cpudev->c_vendor,
1671 					cpudev->c_ident[j]);
1672 			}
1673 		}
1674 #endif
1675 	}
1676 	early_identify_cpu(&boot_cpu_data);
1677 }
1678 
detect_null_seg_behavior(void)1679 static bool detect_null_seg_behavior(void)
1680 {
1681 	/*
1682 	 * Empirically, writing zero to a segment selector on AMD does
1683 	 * not clear the base, whereas writing zero to a segment
1684 	 * selector on Intel does clear the base.  Intel's behavior
1685 	 * allows slightly faster context switches in the common case
1686 	 * where GS is unused by the prev and next threads.
1687 	 *
1688 	 * Since neither vendor documents this anywhere that I can see,
1689 	 * detect it directly instead of hard-coding the choice by
1690 	 * vendor.
1691 	 *
1692 	 * I've designated AMD's behavior as the "bug" because it's
1693 	 * counterintuitive and less friendly.
1694 	 */
1695 
1696 	unsigned long old_base, tmp;
1697 	rdmsrl(MSR_FS_BASE, old_base);
1698 	wrmsrl(MSR_FS_BASE, 1);
1699 	loadsegment(fs, 0);
1700 	rdmsrl(MSR_FS_BASE, tmp);
1701 	wrmsrl(MSR_FS_BASE, old_base);
1702 	return tmp == 0;
1703 }
1704 
check_null_seg_clears_base(struct cpuinfo_x86 * c)1705 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1706 {
1707 	/* BUG_NULL_SEG is only relevant with 64bit userspace */
1708 	if (!IS_ENABLED(CONFIG_X86_64))
1709 		return;
1710 
1711 	if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1712 		return;
1713 
1714 	/*
1715 	 * CPUID bit above wasn't set. If this kernel is still running
1716 	 * as a HV guest, then the HV has decided not to advertize
1717 	 * that CPUID bit for whatever reason.	For example, one
1718 	 * member of the migration pool might be vulnerable.  Which
1719 	 * means, the bug is present: set the BUG flag and return.
1720 	 */
1721 	if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1722 		set_cpu_bug(c, X86_BUG_NULL_SEG);
1723 		return;
1724 	}
1725 
1726 	/*
1727 	 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1728 	 * 0x18 is the respective family for Hygon.
1729 	 */
1730 	if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1731 	    detect_null_seg_behavior())
1732 		return;
1733 
1734 	/* All the remaining ones are affected */
1735 	set_cpu_bug(c, X86_BUG_NULL_SEG);
1736 }
1737 
generic_identify(struct cpuinfo_x86 * c)1738 static void generic_identify(struct cpuinfo_x86 *c)
1739 {
1740 	c->extended_cpuid_level = 0;
1741 
1742 	if (!have_cpuid_p())
1743 		identify_cpu_without_cpuid(c);
1744 
1745 	/* cyrix could have cpuid enabled via c_identify()*/
1746 	if (!have_cpuid_p())
1747 		return;
1748 
1749 	cpu_detect(c);
1750 
1751 	get_cpu_vendor(c);
1752 	intel_unlock_cpuid_leafs(c);
1753 	get_cpu_cap(c);
1754 
1755 	get_cpu_address_sizes(c);
1756 
1757 	get_model_name(c); /* Default name */
1758 
1759 	/*
1760 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1761 	 * systems that run Linux at CPL > 0 may or may not have the
1762 	 * issue, but, even if they have the issue, there's absolutely
1763 	 * nothing we can do about it because we can't use the real IRET
1764 	 * instruction.
1765 	 *
1766 	 * NB: For the time being, only 32-bit kernels support
1767 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1768 	 * whether to apply espfix using paravirt hooks.  If any
1769 	 * non-paravirt system ever shows up that does *not* have the
1770 	 * ESPFIX issue, we can change this.
1771 	 */
1772 #ifdef CONFIG_X86_32
1773 	set_cpu_bug(c, X86_BUG_ESPFIX);
1774 #endif
1775 }
1776 
1777 /*
1778  * This does the hard work of actually picking apart the CPU stuff...
1779  */
identify_cpu(struct cpuinfo_x86 * c)1780 static void identify_cpu(struct cpuinfo_x86 *c)
1781 {
1782 	int i;
1783 
1784 	c->loops_per_jiffy = loops_per_jiffy;
1785 	c->x86_cache_size = 0;
1786 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1787 	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1788 	c->x86_vendor_id[0] = '\0'; /* Unset */
1789 	c->x86_model_id[0] = '\0';  /* Unset */
1790 #ifdef CONFIG_X86_64
1791 	c->x86_clflush_size = 64;
1792 	c->x86_phys_bits = 36;
1793 	c->x86_virt_bits = 48;
1794 #else
1795 	c->cpuid_level = -1;	/* CPUID not detected */
1796 	c->x86_clflush_size = 32;
1797 	c->x86_phys_bits = 32;
1798 	c->x86_virt_bits = 32;
1799 #endif
1800 	c->x86_cache_alignment = c->x86_clflush_size;
1801 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1802 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1803 	memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1804 #endif
1805 
1806 	generic_identify(c);
1807 
1808 	cpu_parse_topology(c);
1809 
1810 	if (this_cpu->c_identify)
1811 		this_cpu->c_identify(c);
1812 
1813 	/* Clear/Set all flags overridden by options, after probe */
1814 	apply_forced_caps(c);
1815 
1816 	/*
1817 	 * Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and
1818 	 * Hygon will clear it in ->c_init() below.
1819 	 */
1820 	set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
1821 
1822 	/*
1823 	 * Vendor-specific initialization.  In this section we
1824 	 * canonicalize the feature flags, meaning if there are
1825 	 * features a certain CPU supports which CPUID doesn't
1826 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1827 	 * we handle them here.
1828 	 *
1829 	 * At the end of this section, c->x86_capability better
1830 	 * indicate the features this CPU genuinely supports!
1831 	 */
1832 	if (this_cpu->c_init)
1833 		this_cpu->c_init(c);
1834 
1835 	/* Disable the PN if appropriate */
1836 	squash_the_stupid_serial_number(c);
1837 
1838 	/* Set up SMEP/SMAP/UMIP */
1839 	setup_smep(c);
1840 	setup_smap(c);
1841 	setup_umip(c);
1842 
1843 	/* Enable FSGSBASE instructions if available. */
1844 	if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1845 		cr4_set_bits(X86_CR4_FSGSBASE);
1846 		elf_hwcap2 |= HWCAP2_FSGSBASE;
1847 	}
1848 
1849 	/*
1850 	 * The vendor-specific functions might have changed features.
1851 	 * Now we do "generic changes."
1852 	 */
1853 
1854 	/* Filter out anything that depends on CPUID levels we don't have */
1855 	filter_cpuid_features(c, true);
1856 
1857 	/* If the model name is still unset, do table lookup. */
1858 	if (!c->x86_model_id[0]) {
1859 		const char *p;
1860 		p = table_lookup_model(c);
1861 		if (p)
1862 			strcpy(c->x86_model_id, p);
1863 		else
1864 			/* Last resort... */
1865 			sprintf(c->x86_model_id, "%02x/%02x",
1866 				c->x86, c->x86_model);
1867 	}
1868 
1869 	x86_init_rdrand(c);
1870 	setup_pku(c);
1871 	setup_cet(c);
1872 
1873 	/*
1874 	 * Clear/Set all flags overridden by options, need do it
1875 	 * before following smp all cpus cap AND.
1876 	 */
1877 	apply_forced_caps(c);
1878 
1879 	/*
1880 	 * On SMP, boot_cpu_data holds the common feature set between
1881 	 * all CPUs; so make sure that we indicate which features are
1882 	 * common between the CPUs.  The first time this routine gets
1883 	 * executed, c == &boot_cpu_data.
1884 	 */
1885 	if (c != &boot_cpu_data) {
1886 		/* AND the already accumulated flags with these */
1887 		for (i = 0; i < NCAPINTS; i++)
1888 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1889 
1890 		/* OR, i.e. replicate the bug flags */
1891 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1892 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1893 	}
1894 
1895 	ppin_init(c);
1896 
1897 	/* Init Machine Check Exception if available. */
1898 	mcheck_cpu_init(c);
1899 
1900 #ifdef CONFIG_NUMA
1901 	numa_add_cpu(smp_processor_id());
1902 #endif
1903 }
1904 
1905 /*
1906  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1907  * on 32-bit kernels:
1908  */
1909 #ifdef CONFIG_X86_32
enable_sep_cpu(void)1910 void enable_sep_cpu(void)
1911 {
1912 	struct tss_struct *tss;
1913 	int cpu;
1914 
1915 	if (!boot_cpu_has(X86_FEATURE_SEP))
1916 		return;
1917 
1918 	cpu = get_cpu();
1919 	tss = &per_cpu(cpu_tss_rw, cpu);
1920 
1921 	/*
1922 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1923 	 * see the big comment in struct x86_hw_tss's definition.
1924 	 */
1925 
1926 	tss->x86_tss.ss1 = __KERNEL_CS;
1927 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1928 	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1929 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1930 
1931 	put_cpu();
1932 }
1933 #endif
1934 
identify_boot_cpu(void)1935 static __init void identify_boot_cpu(void)
1936 {
1937 	identify_cpu(&boot_cpu_data);
1938 	if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1939 		pr_info("CET detected: Indirect Branch Tracking enabled\n");
1940 #ifdef CONFIG_X86_32
1941 	enable_sep_cpu();
1942 #endif
1943 	cpu_detect_tlb(&boot_cpu_data);
1944 	setup_cr_pinning();
1945 
1946 	tsx_init();
1947 	tdx_init();
1948 	lkgs_init();
1949 }
1950 
identify_secondary_cpu(struct cpuinfo_x86 * c)1951 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1952 {
1953 	BUG_ON(c == &boot_cpu_data);
1954 	identify_cpu(c);
1955 #ifdef CONFIG_X86_32
1956 	enable_sep_cpu();
1957 #endif
1958 	x86_spec_ctrl_setup_ap();
1959 	update_srbds_msr();
1960 	if (boot_cpu_has_bug(X86_BUG_GDS))
1961 		update_gds_msr();
1962 
1963 	tsx_ap_init();
1964 }
1965 
print_cpu_info(struct cpuinfo_x86 * c)1966 void print_cpu_info(struct cpuinfo_x86 *c)
1967 {
1968 	const char *vendor = NULL;
1969 
1970 	if (c->x86_vendor < X86_VENDOR_NUM) {
1971 		vendor = this_cpu->c_vendor;
1972 	} else {
1973 		if (c->cpuid_level >= 0)
1974 			vendor = c->x86_vendor_id;
1975 	}
1976 
1977 	if (vendor && !strstr(c->x86_model_id, vendor))
1978 		pr_cont("%s ", vendor);
1979 
1980 	if (c->x86_model_id[0])
1981 		pr_cont("%s", c->x86_model_id);
1982 	else
1983 		pr_cont("%d86", c->x86);
1984 
1985 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1986 
1987 	if (c->x86_stepping || c->cpuid_level >= 0)
1988 		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1989 	else
1990 		pr_cont(")\n");
1991 }
1992 
1993 /*
1994  * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
1995  * function prevents it from becoming an environment variable for init.
1996  */
setup_clearcpuid(char * arg)1997 static __init int setup_clearcpuid(char *arg)
1998 {
1999 	return 1;
2000 }
2001 __setup("clearcpuid=", setup_clearcpuid);
2002 
2003 DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2004 	.current_task	= &init_task,
2005 	.preempt_count	= INIT_PREEMPT_COUNT,
2006 	.top_of_stack	= TOP_OF_INIT_STACK,
2007 };
2008 EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2009 EXPORT_PER_CPU_SYMBOL(const_pcpu_hot);
2010 
2011 #ifdef CONFIG_X86_64
2012 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2013 		     fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2014 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2015 
wrmsrl_cstar(unsigned long val)2016 static void wrmsrl_cstar(unsigned long val)
2017 {
2018 	/*
2019 	 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2020 	 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2021 	 * guest. Avoid the pointless write on all Intel CPUs.
2022 	 */
2023 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2024 		wrmsrl(MSR_CSTAR, val);
2025 }
2026 
idt_syscall_init(void)2027 static inline void idt_syscall_init(void)
2028 {
2029 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2030 
2031 	if (ia32_enabled()) {
2032 		wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2033 		/*
2034 		 * This only works on Intel CPUs.
2035 		 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2036 		 * This does not cause SYSENTER to jump to the wrong location, because
2037 		 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2038 		 */
2039 		wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2040 		wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2041 			    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2042 		wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2043 	} else {
2044 		wrmsrl_cstar((unsigned long)entry_SYSCALL32_ignore);
2045 		wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2046 		wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2047 		wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2048 	}
2049 
2050 	/*
2051 	 * Flags to clear on syscall; clear as much as possible
2052 	 * to minimize user space-kernel interference.
2053 	 */
2054 	wrmsrl(MSR_SYSCALL_MASK,
2055 	       X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2056 	       X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2057 	       X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2058 	       X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2059 	       X86_EFLAGS_AC|X86_EFLAGS_ID);
2060 }
2061 
2062 /* May not be marked __init: used by software suspend */
syscall_init(void)2063 void syscall_init(void)
2064 {
2065 	/* The default user and kernel segments */
2066 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2067 
2068 	/*
2069 	 * Except the IA32_STAR MSR, there is NO need to setup SYSCALL and
2070 	 * SYSENTER MSRs for FRED, because FRED uses the ring 3 FRED
2071 	 * entrypoint for SYSCALL and SYSENTER, and ERETU is the only legit
2072 	 * instruction to return to ring 3 (both sysexit and sysret cause
2073 	 * #UD when FRED is enabled).
2074 	 */
2075 	if (!cpu_feature_enabled(X86_FEATURE_FRED))
2076 		idt_syscall_init();
2077 }
2078 
2079 #else	/* CONFIG_X86_64 */
2080 
2081 #ifdef CONFIG_STACKPROTECTOR
2082 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2083 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2084 #endif
2085 
2086 #endif	/* CONFIG_X86_64 */
2087 
2088 /*
2089  * Clear all 6 debug registers:
2090  */
clear_all_debug_regs(void)2091 static void clear_all_debug_regs(void)
2092 {
2093 	int i;
2094 
2095 	for (i = 0; i < 8; i++) {
2096 		/* Ignore db4, db5 */
2097 		if ((i == 4) || (i == 5))
2098 			continue;
2099 
2100 		set_debugreg(0, i);
2101 	}
2102 }
2103 
2104 #ifdef CONFIG_KGDB
2105 /*
2106  * Restore debug regs if using kgdbwait and you have a kernel debugger
2107  * connection established.
2108  */
dbg_restore_debug_regs(void)2109 static void dbg_restore_debug_regs(void)
2110 {
2111 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2112 		arch_kgdb_ops.correct_hw_break();
2113 }
2114 #else /* ! CONFIG_KGDB */
2115 #define dbg_restore_debug_regs()
2116 #endif /* ! CONFIG_KGDB */
2117 
setup_getcpu(int cpu)2118 static inline void setup_getcpu(int cpu)
2119 {
2120 	unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2121 	struct desc_struct d = { };
2122 
2123 	if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2124 		wrmsr(MSR_TSC_AUX, cpudata, 0);
2125 
2126 	/* Store CPU and node number in limit. */
2127 	d.limit0 = cpudata;
2128 	d.limit1 = cpudata >> 16;
2129 
2130 	d.type = 5;		/* RO data, expand down, accessed */
2131 	d.dpl = 3;		/* Visible to user code */
2132 	d.s = 1;		/* Not a system segment */
2133 	d.p = 1;		/* Present */
2134 	d.d = 1;		/* 32-bit */
2135 
2136 	write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2137 }
2138 
2139 #ifdef CONFIG_X86_64
tss_setup_ist(struct tss_struct * tss)2140 static inline void tss_setup_ist(struct tss_struct *tss)
2141 {
2142 	/* Set up the per-CPU TSS IST stacks */
2143 	tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2144 	tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2145 	tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2146 	tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2147 	/* Only mapped when SEV-ES is active */
2148 	tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2149 }
2150 #else /* CONFIG_X86_64 */
tss_setup_ist(struct tss_struct * tss)2151 static inline void tss_setup_ist(struct tss_struct *tss) { }
2152 #endif /* !CONFIG_X86_64 */
2153 
tss_setup_io_bitmap(struct tss_struct * tss)2154 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2155 {
2156 	tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2157 
2158 #ifdef CONFIG_X86_IOPL_IOPERM
2159 	tss->io_bitmap.prev_max = 0;
2160 	tss->io_bitmap.prev_sequence = 0;
2161 	memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2162 	/*
2163 	 * Invalidate the extra array entry past the end of the all
2164 	 * permission bitmap as required by the hardware.
2165 	 */
2166 	tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2167 #endif
2168 }
2169 
2170 /*
2171  * Setup everything needed to handle exceptions from the IDT, including the IST
2172  * exceptions which use paranoid_entry().
2173  */
cpu_init_exception_handling(void)2174 void cpu_init_exception_handling(void)
2175 {
2176 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2177 	int cpu = raw_smp_processor_id();
2178 
2179 	/* paranoid_entry() gets the CPU number from the GDT */
2180 	setup_getcpu(cpu);
2181 
2182 	/* For IDT mode, IST vectors need to be set in TSS. */
2183 	if (!cpu_feature_enabled(X86_FEATURE_FRED))
2184 		tss_setup_ist(tss);
2185 	tss_setup_io_bitmap(tss);
2186 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2187 
2188 	load_TR_desc();
2189 
2190 	/* GHCB needs to be setup to handle #VC. */
2191 	setup_ghcb();
2192 
2193 	if (cpu_feature_enabled(X86_FEATURE_FRED))
2194 		cpu_init_fred_exceptions();
2195 	else
2196 		load_current_idt();
2197 }
2198 
2199 /*
2200  * cpu_init() initializes state that is per-CPU. Some data is already
2201  * initialized (naturally) in the bootstrap process, such as the GDT.  We
2202  * reload it nevertheless, this function acts as a 'CPU state barrier',
2203  * nothing should get across.
2204  */
cpu_init(void)2205 void cpu_init(void)
2206 {
2207 	struct task_struct *cur = current;
2208 	int cpu = raw_smp_processor_id();
2209 
2210 #ifdef CONFIG_NUMA
2211 	if (this_cpu_read(numa_node) == 0 &&
2212 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
2213 		set_numa_node(early_cpu_to_node(cpu));
2214 #endif
2215 	pr_debug("Initializing CPU#%d\n", cpu);
2216 
2217 	if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2218 	    boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2219 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2220 
2221 	if (IS_ENABLED(CONFIG_X86_64)) {
2222 		loadsegment(fs, 0);
2223 		memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2224 		syscall_init();
2225 
2226 		wrmsrl(MSR_FS_BASE, 0);
2227 		wrmsrl(MSR_KERNEL_GS_BASE, 0);
2228 		barrier();
2229 
2230 		x2apic_setup();
2231 
2232 		intel_posted_msi_init();
2233 	}
2234 
2235 	mmgrab(&init_mm);
2236 	cur->active_mm = &init_mm;
2237 	BUG_ON(cur->mm);
2238 	initialize_tlbstate_and_flush();
2239 	enter_lazy_tlb(&init_mm, cur);
2240 
2241 	/*
2242 	 * sp0 points to the entry trampoline stack regardless of what task
2243 	 * is running.
2244 	 */
2245 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2246 
2247 	load_mm_ldt(&init_mm);
2248 
2249 	clear_all_debug_regs();
2250 	dbg_restore_debug_regs();
2251 
2252 	doublefault_init_cpu_tss();
2253 
2254 	if (is_uv_system())
2255 		uv_cpu_init();
2256 
2257 	load_fixmap_gdt(cpu);
2258 }
2259 
2260 #ifdef CONFIG_MICROCODE_LATE_LOADING
2261 /**
2262  * store_cpu_caps() - Store a snapshot of CPU capabilities
2263  * @curr_info: Pointer where to store it
2264  *
2265  * Returns: None
2266  */
store_cpu_caps(struct cpuinfo_x86 * curr_info)2267 void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2268 {
2269 	/* Reload CPUID max function as it might've changed. */
2270 	curr_info->cpuid_level = cpuid_eax(0);
2271 
2272 	/* Copy all capability leafs and pick up the synthetic ones. */
2273 	memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2274 	       sizeof(curr_info->x86_capability));
2275 
2276 	/* Get the hardware CPUID leafs */
2277 	get_cpu_cap(curr_info);
2278 }
2279 
2280 /**
2281  * microcode_check() - Check if any CPU capabilities changed after an update.
2282  * @prev_info:	CPU capabilities stored before an update.
2283  *
2284  * The microcode loader calls this upon late microcode load to recheck features,
2285  * only when microcode has been updated. Caller holds and CPU hotplug lock.
2286  *
2287  * Return: None
2288  */
microcode_check(struct cpuinfo_x86 * prev_info)2289 void microcode_check(struct cpuinfo_x86 *prev_info)
2290 {
2291 	struct cpuinfo_x86 curr_info;
2292 
2293 	perf_check_microcode();
2294 
2295 	amd_check_microcode();
2296 
2297 	store_cpu_caps(&curr_info);
2298 
2299 	if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2300 		    sizeof(prev_info->x86_capability)))
2301 		return;
2302 
2303 	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2304 	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2305 }
2306 #endif
2307 
2308 /*
2309  * Invoked from core CPU hotplug code after hotplug operations
2310  */
arch_smt_update(void)2311 void arch_smt_update(void)
2312 {
2313 	/* Handle the speculative execution misfeatures */
2314 	cpu_bugs_smt_update();
2315 	/* Check whether IPI broadcasting can be enabled */
2316 	apic_smt_update();
2317 }
2318 
arch_cpu_finalize_init(void)2319 void __init arch_cpu_finalize_init(void)
2320 {
2321 	struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
2322 
2323 	identify_boot_cpu();
2324 
2325 	select_idle_routine();
2326 
2327 	/*
2328 	 * identify_boot_cpu() initialized SMT support information, let the
2329 	 * core code know.
2330 	 */
2331 	cpu_smt_set_num_threads(__max_threads_per_core, __max_threads_per_core);
2332 
2333 	if (!IS_ENABLED(CONFIG_SMP)) {
2334 		pr_info("CPU: ");
2335 		print_cpu_info(&boot_cpu_data);
2336 	}
2337 
2338 	cpu_select_mitigations();
2339 
2340 	arch_smt_update();
2341 
2342 	if (IS_ENABLED(CONFIG_X86_32)) {
2343 		/*
2344 		 * Check whether this is a real i386 which is not longer
2345 		 * supported and fixup the utsname.
2346 		 */
2347 		if (boot_cpu_data.x86 < 4)
2348 			panic("Kernel requires i486+ for 'invlpg' and other features");
2349 
2350 		init_utsname()->machine[1] =
2351 			'0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2352 	}
2353 
2354 	/*
2355 	 * Must be before alternatives because it might set or clear
2356 	 * feature bits.
2357 	 */
2358 	fpu__init_system();
2359 	fpu__init_cpu();
2360 
2361 	/*
2362 	 * Ensure that access to the per CPU representation has the initial
2363 	 * boot CPU configuration.
2364 	 */
2365 	*c = boot_cpu_data;
2366 	c->initialized = true;
2367 
2368 	alternative_instructions();
2369 
2370 	if (IS_ENABLED(CONFIG_X86_64)) {
2371 		/*
2372 		 * Make sure the first 2MB area is not mapped by huge pages
2373 		 * There are typically fixed size MTRRs in there and overlapping
2374 		 * MTRRs into large pages causes slow downs.
2375 		 *
2376 		 * Right now we don't do that with gbpages because there seems
2377 		 * very little benefit for that case.
2378 		 */
2379 		if (!direct_gbpages)
2380 			set_memory_4k((unsigned long)__va(0), 1);
2381 	} else {
2382 		fpu__init_check_bugs();
2383 	}
2384 
2385 	/*
2386 	 * This needs to be called before any devices perform DMA
2387 	 * operations that might use the SWIOTLB bounce buffers. It will
2388 	 * mark the bounce buffers as decrypted so that their usage will
2389 	 * not cause "plain-text" data to be decrypted when accessed. It
2390 	 * must be called after late_time_init() so that Hyper-V x86/x64
2391 	 * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2392 	 */
2393 	mem_encrypt_init();
2394 }
2395