1 /*
2  * jcdctmgr.c
3  *
4  * Copyright (C) 1994-1998, Thomas G. Lane.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains the forward-DCT management logic.
9  * This code selects a particular DCT implementation to be used,
10  * and it performs related housekeeping chores including coefficient
11  * quantization.
12  */
13 
14 #define JPEG_INTERNALS
15 #include "jinclude8.h"
16 #include "jpeglib8.h"
17 #include "jlossy8.h"		/* Private declarations for lossy codec */
18 #include "jdct8.h"		/* Private declarations for DCT subsystem */
19 
20 
21 /* Private subobject for this module */
22 
23 typedef struct {
24   /* Pointer to the DCT routine actually in use */
25   forward_DCT_method_ptr do_dct;
26 
27   /* The actual post-DCT divisors --- not identical to the quant table
28    * entries, because of scaling (especially for an unnormalized DCT).
29    * Each table is given in normal array order.
30    */
31   DCTELEM * divisors[NUM_QUANT_TBLS];
32 
33 #ifdef DCT_FLOAT_SUPPORTED
34   /* Same as above for the floating-point case. */
35   float_DCT_method_ptr do_float_dct;
36   FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
37 #endif
38 } fdct_controller;
39 
40 typedef fdct_controller * fdct_ptr;
41 
42 
43 /*
44  * Initialize for a processing pass.
45  * Verify that all referenced Q-tables are present, and set up
46  * the divisor table for each one.
47  * In the current implementation, DCT of all components is done during
48  * the first pass, even if only some components will be output in the
49  * first scan.  Hence all components should be examined here.
50  */
51 
52 METHODDEF(void)
start_pass_fdctmgr(j_compress_ptr cinfo)53 start_pass_fdctmgr (j_compress_ptr cinfo)
54 {
55   j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
56   fdct_ptr fdct = (fdct_ptr) lossyc->fdct_private;
57   int ci, qtblno, i;
58   jpeg_component_info *compptr;
59   JQUANT_TBL * qtbl;
60   DCTELEM * dtbl;
61 
62   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
63        ci++, compptr++) {
64     qtblno = compptr->quant_tbl_no;
65     /* Make sure specified quantization table is present */
66     if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
67 	cinfo->quant_tbl_ptrs[qtblno] == NULL)
68       ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
69     qtbl = cinfo->quant_tbl_ptrs[qtblno];
70     /* Compute divisors for this quant table */
71     /* We may do this more than once for same table, but it's not a big deal */
72     switch (cinfo->dct_method) {
73 #ifdef DCT_ISLOW_SUPPORTED
74     case JDCT_ISLOW:
75       /* For LL&M IDCT method, divisors are equal to raw quantization
76        * coefficients multiplied by 8 (to counteract scaling).
77        */
78       if (fdct->divisors[qtblno] == NULL) {
79 	fdct->divisors[qtblno] = (DCTELEM *)
80 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
81 				      DCTSIZE2 * SIZEOF(DCTELEM));
82       }
83       dtbl = fdct->divisors[qtblno];
84       for (i = 0; i < DCTSIZE2; i++) {
85 	dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
86       }
87       break;
88 #endif
89 #ifdef DCT_IFAST_SUPPORTED
90     case JDCT_IFAST:
91       {
92 	/* For AA&N IDCT method, divisors are equal to quantization
93 	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
94 	 *   scalefactor[0] = 1
95 	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
96 	 * We apply a further scale factor of 8.
97 	 */
98 #define CONST_BITS 14
99 	static const INT16 aanscales[DCTSIZE2] = {
100 	  /* precomputed values scaled up by 14 bits */
101 	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
102 	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
103 	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
104 	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
105 	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
106 	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
107 	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
108 	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
109 	};
110 	SHIFT_TEMPS
111 
112 	if (fdct->divisors[qtblno] == NULL) {
113 	  fdct->divisors[qtblno] = (DCTELEM *)
114 	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
115 					DCTSIZE2 * SIZEOF(DCTELEM));
116 	}
117 	dtbl = fdct->divisors[qtblno];
118 	for (i = 0; i < DCTSIZE2; i++) {
119 	  dtbl[i] = (DCTELEM)
120 	    DESCALE(MULTIPLY16V16((IJG_INT32) qtbl->quantval[i],
121 				  (IJG_INT32) aanscales[i]),
122 		    CONST_BITS-3);
123 	}
124       }
125       break;
126 #endif
127 #ifdef DCT_FLOAT_SUPPORTED
128     case JDCT_FLOAT:
129       {
130 	/* For float AA&N IDCT method, divisors are equal to quantization
131 	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
132 	 *   scalefactor[0] = 1
133 	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
134 	 * We apply a further scale factor of 8.
135 	 * What's actually stored is 1/divisor so that the inner loop can
136 	 * use a multiplication rather than a division.
137 	 */
138 	FAST_FLOAT * fdtbl;
139 	int row, col;
140 	static const double aanscalefactor[DCTSIZE] = {
141 	  1.0, 1.387039845, 1.306562965, 1.175875602,
142 	  1.0, 0.785694958, 0.541196100, 0.275899379
143 	};
144 
145 	if (fdct->float_divisors[qtblno] == NULL) {
146 	  fdct->float_divisors[qtblno] = (FAST_FLOAT *)
147 	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
148 					DCTSIZE2 * SIZEOF(FAST_FLOAT));
149 	}
150 	fdtbl = fdct->float_divisors[qtblno];
151 	i = 0;
152 	for (row = 0; row < DCTSIZE; row++) {
153 	  for (col = 0; col < DCTSIZE; col++) {
154 	    fdtbl[i] = (FAST_FLOAT)
155 	      (1.0 / (((double) qtbl->quantval[i] *
156 		       aanscalefactor[row] * aanscalefactor[col] * 8.0)));
157 	    i++;
158 	  }
159 	}
160       }
161       break;
162 #endif
163     default:
164       ERREXIT(cinfo, JERR_NOT_COMPILED);
165       break;
166     }
167   }
168 }
169 
170 
171 /*
172  * Perform forward DCT on one or more blocks of a component.
173  *
174  * The input samples are taken from the sample_data[] array starting at
175  * position start_row/start_col, and moving to the right for any additional
176  * blocks. The quantized coefficients are returned in coef_blocks[].
177  */
178 
179 METHODDEF(void)
forward_DCT(j_compress_ptr cinfo,jpeg_component_info * compptr,JSAMPARRAY sample_data,JBLOCKROW coef_blocks,JDIMENSION start_row,JDIMENSION start_col,JDIMENSION num_blocks)180 forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
181 	     JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
182 	     JDIMENSION start_row, JDIMENSION start_col,
183 	     JDIMENSION num_blocks)
184 /* This version is used for integer DCT implementations. */
185 {
186   /* This routine is heavily used, so it's worth coding it tightly. */
187   j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
188   fdct_ptr fdct = (fdct_ptr) lossyc->fdct_private;
189   forward_DCT_method_ptr do_dct = fdct->do_dct;
190   DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
191   DCTELEM workspace[DCTSIZE2];	/* work area for FDCT subroutine */
192   JDIMENSION bi;
193 
194   sample_data += start_row;	/* fold in the vertical offset once */
195 
196   for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
197     /* Load data into workspace, applying unsigned->signed conversion */
198     { register DCTELEM *workspaceptr;
199       register JSAMPROW elemptr;
200       register int elemr;
201 
202       workspaceptr = workspace;
203       for (elemr = 0; elemr < DCTSIZE; elemr++) {
204 	elemptr = sample_data[elemr] + start_col;
205 #if DCTSIZE == 8		/* unroll the inner loop */
206 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
207 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
208 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
209 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
210 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
211 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
212 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
213 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
214 #else
215 	{ register int elemc;
216 	  for (elemc = DCTSIZE; elemc > 0; elemc--) {
217 	    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
218 	  }
219 	}
220 #endif
221       }
222     }
223 
224     /* Perform the DCT */
225     (*do_dct) (workspace);
226 
227     /* Quantize/descale the coefficients, and store into coef_blocks[] */
228     { register DCTELEM temp, qval;
229       register int i;
230       register JCOEFPTR output_ptr = coef_blocks[bi];
231 
232       for (i = 0; i < DCTSIZE2; i++) {
233 	qval = divisors[i];
234 	temp = workspace[i];
235 	/* Divide the coefficient value by qval, ensuring proper rounding.
236 	 * Since C does not specify the direction of rounding for negative
237 	 * quotients, we have to force the dividend positive for portability.
238 	 *
239 	 * In most files, at least half of the output values will be zero
240 	 * (at default quantization settings, more like three-quarters...)
241 	 * so we should ensure that this case is fast.  On many machines,
242 	 * a comparison is enough cheaper than a divide to make a special test
243 	 * a win.  Since both inputs will be nonnegative, we need only test
244 	 * for a < b to discover whether a/b is 0.
245 	 * If your machine's division is fast enough, define FAST_DIVIDE.
246 	 */
247 #ifdef FAST_DIVIDE
248 #define DIVIDE_BY(a,b)	a /= b
249 #else
250 #define DIVIDE_BY(a,b)	if (a >= b) a /= b; else a = 0
251 #endif
252 	if (temp < 0) {
253 	  temp = -temp;
254 	  temp += qval>>1;	/* for rounding */
255 	  DIVIDE_BY(temp, qval);
256 	  temp = -temp;
257 	} else {
258 	  temp += qval>>1;	/* for rounding */
259 	  DIVIDE_BY(temp, qval);
260 	}
261 	output_ptr[i] = (JCOEF) temp;
262       }
263     }
264   }
265 }
266 
267 
268 #ifdef DCT_FLOAT_SUPPORTED
269 
270 METHODDEF(void)
forward_DCT_float(j_compress_ptr cinfo,jpeg_component_info * compptr,JSAMPARRAY sample_data,JBLOCKROW coef_blocks,JDIMENSION start_row,JDIMENSION start_col,JDIMENSION num_blocks)271 forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
272 		   JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
273 		   JDIMENSION start_row, JDIMENSION start_col,
274 		   JDIMENSION num_blocks)
275 /* This version is used for floating-point DCT implementations. */
276 {
277   /* This routine is heavily used, so it's worth coding it tightly. */
278   j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
279   fdct_ptr fdct = (fdct_ptr) lossyc->fdct_private;
280   float_DCT_method_ptr do_dct = fdct->do_float_dct;
281   FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
282   FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
283   JDIMENSION bi;
284 
285   sample_data += start_row;	/* fold in the vertical offset once */
286 
287   for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
288     /* Load data into workspace, applying unsigned->signed conversion */
289     { register FAST_FLOAT *workspaceptr;
290       register JSAMPROW elemptr;
291       register int elemr;
292 
293       workspaceptr = workspace;
294       for (elemr = 0; elemr < DCTSIZE; elemr++) {
295 	elemptr = sample_data[elemr] + start_col;
296 #if DCTSIZE == 8		/* unroll the inner loop */
297 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
298 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
299 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
300 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
301 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
302 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
303 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
304 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
305 #else
306 	{ register int elemc;
307 	  for (elemc = DCTSIZE; elemc > 0; elemc--) {
308 	    *workspaceptr++ = (FAST_FLOAT)
309 	      (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
310 	  }
311 	}
312 #endif
313       }
314     }
315 
316     /* Perform the DCT */
317     (*do_dct) (workspace);
318 
319     /* Quantize/descale the coefficients, and store into coef_blocks[] */
320     { register FAST_FLOAT temp;
321       register int i;
322       register JCOEFPTR output_ptr = coef_blocks[bi];
323 
324       for (i = 0; i < DCTSIZE2; i++) {
325 	/* Apply the quantization and scaling factor */
326 	temp = workspace[i] * divisors[i];
327 	/* Round to nearest integer.
328 	 * Since C does not specify the direction of rounding for negative
329 	 * quotients, we have to force the dividend positive for portability.
330 	 * The maximum coefficient size is +-16K (for 12-bit data), so this
331 	 * code should work for either 16-bit or 32-bit ints.
332 	 */
333 	output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
334       }
335     }
336   }
337 }
338 
339 #endif /* DCT_FLOAT_SUPPORTED */
340 
341 
342 /*
343  * Initialize FDCT manager.
344  */
345 
346 GLOBAL(void)
jinit_forward_dct(j_compress_ptr cinfo)347 jinit_forward_dct (j_compress_ptr cinfo)
348 {
349   j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
350   fdct_ptr fdct;
351   int i;
352 
353   fdct = (fdct_ptr)
354     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
355 				SIZEOF(fdct_controller));
356   lossyc->fdct_private = (struct jpeg_forward_dct *) fdct;
357   lossyc->fdct_start_pass = start_pass_fdctmgr;
358 
359   switch (cinfo->dct_method) {
360 #ifdef DCT_ISLOW_SUPPORTED
361   case JDCT_ISLOW:
362     lossyc->fdct_forward_DCT = forward_DCT;
363     fdct->do_dct = jpeg_fdct_islow;
364     break;
365 #endif
366 #ifdef DCT_IFAST_SUPPORTED
367   case JDCT_IFAST:
368     lossyc->fdct_forward_DCT = forward_DCT;
369     fdct->do_dct = jpeg_fdct_ifast;
370     break;
371 #endif
372 #ifdef DCT_FLOAT_SUPPORTED
373   case JDCT_FLOAT:
374     lossyc->fdct_forward_DCT = forward_DCT_float;
375     fdct->do_float_dct = jpeg_fdct_float;
376     break;
377 #endif
378   default:
379     ERREXIT(cinfo, JERR_NOT_COMPILED);
380     break;
381   }
382 
383   /* Mark divisor tables unallocated */
384   for (i = 0; i < NUM_QUANT_TBLS; i++) {
385     fdct->divisors[i] = NULL;
386 #ifdef DCT_FLOAT_SUPPORTED
387     fdct->float_divisors[i] = NULL;
388 #endif
389   }
390 }
391