1 /*
2 * jcdctmgr.c
3 *
4 * Copyright (C) 1994-1998, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains the forward-DCT management logic.
9 * This code selects a particular DCT implementation to be used,
10 * and it performs related housekeeping chores including coefficient
11 * quantization.
12 */
13
14 #define JPEG_INTERNALS
15 #include "jinclude8.h"
16 #include "jpeglib8.h"
17 #include "jlossy8.h" /* Private declarations for lossy codec */
18 #include "jdct8.h" /* Private declarations for DCT subsystem */
19
20
21 /* Private subobject for this module */
22
23 typedef struct {
24 /* Pointer to the DCT routine actually in use */
25 forward_DCT_method_ptr do_dct;
26
27 /* The actual post-DCT divisors --- not identical to the quant table
28 * entries, because of scaling (especially for an unnormalized DCT).
29 * Each table is given in normal array order.
30 */
31 DCTELEM * divisors[NUM_QUANT_TBLS];
32
33 #ifdef DCT_FLOAT_SUPPORTED
34 /* Same as above for the floating-point case. */
35 float_DCT_method_ptr do_float_dct;
36 FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
37 #endif
38 } fdct_controller;
39
40 typedef fdct_controller * fdct_ptr;
41
42
43 /*
44 * Initialize for a processing pass.
45 * Verify that all referenced Q-tables are present, and set up
46 * the divisor table for each one.
47 * In the current implementation, DCT of all components is done during
48 * the first pass, even if only some components will be output in the
49 * first scan. Hence all components should be examined here.
50 */
51
52 METHODDEF(void)
start_pass_fdctmgr(j_compress_ptr cinfo)53 start_pass_fdctmgr (j_compress_ptr cinfo)
54 {
55 j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
56 fdct_ptr fdct = (fdct_ptr) lossyc->fdct_private;
57 int ci, qtblno, i;
58 jpeg_component_info *compptr;
59 JQUANT_TBL * qtbl;
60 DCTELEM * dtbl;
61
62 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
63 ci++, compptr++) {
64 qtblno = compptr->quant_tbl_no;
65 /* Make sure specified quantization table is present */
66 if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
67 cinfo->quant_tbl_ptrs[qtblno] == NULL)
68 ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
69 qtbl = cinfo->quant_tbl_ptrs[qtblno];
70 /* Compute divisors for this quant table */
71 /* We may do this more than once for same table, but it's not a big deal */
72 switch (cinfo->dct_method) {
73 #ifdef DCT_ISLOW_SUPPORTED
74 case JDCT_ISLOW:
75 /* For LL&M IDCT method, divisors are equal to raw quantization
76 * coefficients multiplied by 8 (to counteract scaling).
77 */
78 if (fdct->divisors[qtblno] == NULL) {
79 fdct->divisors[qtblno] = (DCTELEM *)
80 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
81 DCTSIZE2 * SIZEOF(DCTELEM));
82 }
83 dtbl = fdct->divisors[qtblno];
84 for (i = 0; i < DCTSIZE2; i++) {
85 dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
86 }
87 break;
88 #endif
89 #ifdef DCT_IFAST_SUPPORTED
90 case JDCT_IFAST:
91 {
92 /* For AA&N IDCT method, divisors are equal to quantization
93 * coefficients scaled by scalefactor[row]*scalefactor[col], where
94 * scalefactor[0] = 1
95 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
96 * We apply a further scale factor of 8.
97 */
98 #define CONST_BITS 14
99 static const INT16 aanscales[DCTSIZE2] = {
100 /* precomputed values scaled up by 14 bits */
101 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
102 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
103 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
104 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
105 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
106 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
107 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
108 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
109 };
110 SHIFT_TEMPS
111
112 if (fdct->divisors[qtblno] == NULL) {
113 fdct->divisors[qtblno] = (DCTELEM *)
114 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
115 DCTSIZE2 * SIZEOF(DCTELEM));
116 }
117 dtbl = fdct->divisors[qtblno];
118 for (i = 0; i < DCTSIZE2; i++) {
119 dtbl[i] = (DCTELEM)
120 DESCALE(MULTIPLY16V16((IJG_INT32) qtbl->quantval[i],
121 (IJG_INT32) aanscales[i]),
122 CONST_BITS-3);
123 }
124 }
125 break;
126 #endif
127 #ifdef DCT_FLOAT_SUPPORTED
128 case JDCT_FLOAT:
129 {
130 /* For float AA&N IDCT method, divisors are equal to quantization
131 * coefficients scaled by scalefactor[row]*scalefactor[col], where
132 * scalefactor[0] = 1
133 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
134 * We apply a further scale factor of 8.
135 * What's actually stored is 1/divisor so that the inner loop can
136 * use a multiplication rather than a division.
137 */
138 FAST_FLOAT * fdtbl;
139 int row, col;
140 static const double aanscalefactor[DCTSIZE] = {
141 1.0, 1.387039845, 1.306562965, 1.175875602,
142 1.0, 0.785694958, 0.541196100, 0.275899379
143 };
144
145 if (fdct->float_divisors[qtblno] == NULL) {
146 fdct->float_divisors[qtblno] = (FAST_FLOAT *)
147 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
148 DCTSIZE2 * SIZEOF(FAST_FLOAT));
149 }
150 fdtbl = fdct->float_divisors[qtblno];
151 i = 0;
152 for (row = 0; row < DCTSIZE; row++) {
153 for (col = 0; col < DCTSIZE; col++) {
154 fdtbl[i] = (FAST_FLOAT)
155 (1.0 / (((double) qtbl->quantval[i] *
156 aanscalefactor[row] * aanscalefactor[col] * 8.0)));
157 i++;
158 }
159 }
160 }
161 break;
162 #endif
163 default:
164 ERREXIT(cinfo, JERR_NOT_COMPILED);
165 break;
166 }
167 }
168 }
169
170
171 /*
172 * Perform forward DCT on one or more blocks of a component.
173 *
174 * The input samples are taken from the sample_data[] array starting at
175 * position start_row/start_col, and moving to the right for any additional
176 * blocks. The quantized coefficients are returned in coef_blocks[].
177 */
178
179 METHODDEF(void)
forward_DCT(j_compress_ptr cinfo,jpeg_component_info * compptr,JSAMPARRAY sample_data,JBLOCKROW coef_blocks,JDIMENSION start_row,JDIMENSION start_col,JDIMENSION num_blocks)180 forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
181 JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
182 JDIMENSION start_row, JDIMENSION start_col,
183 JDIMENSION num_blocks)
184 /* This version is used for integer DCT implementations. */
185 {
186 /* This routine is heavily used, so it's worth coding it tightly. */
187 j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
188 fdct_ptr fdct = (fdct_ptr) lossyc->fdct_private;
189 forward_DCT_method_ptr do_dct = fdct->do_dct;
190 DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
191 DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */
192 JDIMENSION bi;
193
194 sample_data += start_row; /* fold in the vertical offset once */
195
196 for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
197 /* Load data into workspace, applying unsigned->signed conversion */
198 { register DCTELEM *workspaceptr;
199 register JSAMPROW elemptr;
200 register int elemr;
201
202 workspaceptr = workspace;
203 for (elemr = 0; elemr < DCTSIZE; elemr++) {
204 elemptr = sample_data[elemr] + start_col;
205 #if DCTSIZE == 8 /* unroll the inner loop */
206 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
207 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
208 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
209 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
210 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
211 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
212 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
213 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
214 #else
215 { register int elemc;
216 for (elemc = DCTSIZE; elemc > 0; elemc--) {
217 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
218 }
219 }
220 #endif
221 }
222 }
223
224 /* Perform the DCT */
225 (*do_dct) (workspace);
226
227 /* Quantize/descale the coefficients, and store into coef_blocks[] */
228 { register DCTELEM temp, qval;
229 register int i;
230 register JCOEFPTR output_ptr = coef_blocks[bi];
231
232 for (i = 0; i < DCTSIZE2; i++) {
233 qval = divisors[i];
234 temp = workspace[i];
235 /* Divide the coefficient value by qval, ensuring proper rounding.
236 * Since C does not specify the direction of rounding for negative
237 * quotients, we have to force the dividend positive for portability.
238 *
239 * In most files, at least half of the output values will be zero
240 * (at default quantization settings, more like three-quarters...)
241 * so we should ensure that this case is fast. On many machines,
242 * a comparison is enough cheaper than a divide to make a special test
243 * a win. Since both inputs will be nonnegative, we need only test
244 * for a < b to discover whether a/b is 0.
245 * If your machine's division is fast enough, define FAST_DIVIDE.
246 */
247 #ifdef FAST_DIVIDE
248 #define DIVIDE_BY(a,b) a /= b
249 #else
250 #define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
251 #endif
252 if (temp < 0) {
253 temp = -temp;
254 temp += qval>>1; /* for rounding */
255 DIVIDE_BY(temp, qval);
256 temp = -temp;
257 } else {
258 temp += qval>>1; /* for rounding */
259 DIVIDE_BY(temp, qval);
260 }
261 output_ptr[i] = (JCOEF) temp;
262 }
263 }
264 }
265 }
266
267
268 #ifdef DCT_FLOAT_SUPPORTED
269
270 METHODDEF(void)
forward_DCT_float(j_compress_ptr cinfo,jpeg_component_info * compptr,JSAMPARRAY sample_data,JBLOCKROW coef_blocks,JDIMENSION start_row,JDIMENSION start_col,JDIMENSION num_blocks)271 forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
272 JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
273 JDIMENSION start_row, JDIMENSION start_col,
274 JDIMENSION num_blocks)
275 /* This version is used for floating-point DCT implementations. */
276 {
277 /* This routine is heavily used, so it's worth coding it tightly. */
278 j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
279 fdct_ptr fdct = (fdct_ptr) lossyc->fdct_private;
280 float_DCT_method_ptr do_dct = fdct->do_float_dct;
281 FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
282 FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
283 JDIMENSION bi;
284
285 sample_data += start_row; /* fold in the vertical offset once */
286
287 for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
288 /* Load data into workspace, applying unsigned->signed conversion */
289 { register FAST_FLOAT *workspaceptr;
290 register JSAMPROW elemptr;
291 register int elemr;
292
293 workspaceptr = workspace;
294 for (elemr = 0; elemr < DCTSIZE; elemr++) {
295 elemptr = sample_data[elemr] + start_col;
296 #if DCTSIZE == 8 /* unroll the inner loop */
297 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
298 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
299 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
300 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
301 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
302 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
303 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
304 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
305 #else
306 { register int elemc;
307 for (elemc = DCTSIZE; elemc > 0; elemc--) {
308 *workspaceptr++ = (FAST_FLOAT)
309 (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
310 }
311 }
312 #endif
313 }
314 }
315
316 /* Perform the DCT */
317 (*do_dct) (workspace);
318
319 /* Quantize/descale the coefficients, and store into coef_blocks[] */
320 { register FAST_FLOAT temp;
321 register int i;
322 register JCOEFPTR output_ptr = coef_blocks[bi];
323
324 for (i = 0; i < DCTSIZE2; i++) {
325 /* Apply the quantization and scaling factor */
326 temp = workspace[i] * divisors[i];
327 /* Round to nearest integer.
328 * Since C does not specify the direction of rounding for negative
329 * quotients, we have to force the dividend positive for portability.
330 * The maximum coefficient size is +-16K (for 12-bit data), so this
331 * code should work for either 16-bit or 32-bit ints.
332 */
333 output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
334 }
335 }
336 }
337 }
338
339 #endif /* DCT_FLOAT_SUPPORTED */
340
341
342 /*
343 * Initialize FDCT manager.
344 */
345
346 GLOBAL(void)
jinit_forward_dct(j_compress_ptr cinfo)347 jinit_forward_dct (j_compress_ptr cinfo)
348 {
349 j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
350 fdct_ptr fdct;
351 int i;
352
353 fdct = (fdct_ptr)
354 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
355 SIZEOF(fdct_controller));
356 lossyc->fdct_private = (struct jpeg_forward_dct *) fdct;
357 lossyc->fdct_start_pass = start_pass_fdctmgr;
358
359 switch (cinfo->dct_method) {
360 #ifdef DCT_ISLOW_SUPPORTED
361 case JDCT_ISLOW:
362 lossyc->fdct_forward_DCT = forward_DCT;
363 fdct->do_dct = jpeg_fdct_islow;
364 break;
365 #endif
366 #ifdef DCT_IFAST_SUPPORTED
367 case JDCT_IFAST:
368 lossyc->fdct_forward_DCT = forward_DCT;
369 fdct->do_dct = jpeg_fdct_ifast;
370 break;
371 #endif
372 #ifdef DCT_FLOAT_SUPPORTED
373 case JDCT_FLOAT:
374 lossyc->fdct_forward_DCT = forward_DCT_float;
375 fdct->do_float_dct = jpeg_fdct_float;
376 break;
377 #endif
378 default:
379 ERREXIT(cinfo, JERR_NOT_COMPILED);
380 break;
381 }
382
383 /* Mark divisor tables unallocated */
384 for (i = 0; i < NUM_QUANT_TBLS; i++) {
385 fdct->divisors[i] = NULL;
386 #ifdef DCT_FLOAT_SUPPORTED
387 fdct->float_divisors[i] = NULL;
388 #endif
389 }
390 }
391