1 /*
2  * jcshuff.c
3  *
4  * Copyright (C) 1991-1998, Thomas G. Lane.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains Huffman entropy encoding routines for sequential JPEG.
9  *
10  * Much of the complexity here has to do with supporting output suspension.
11  * If the data destination module demands suspension, we want to be able to
12  * back up to the start of the current MCU.  To do this, we copy state
13  * variables into local working storage, and update them back to the
14  * permanent JPEG objects only upon successful completion of an MCU.
15  */
16 
17 #define JPEG_INTERNALS
18 #include "jinclude8.h"
19 #include "jpeglib8.h"
20 #include "jlossy8.h"		/* Private declarations for lossy codec */
21 #include "jchuff8.h"		/* Declarations shared with jc*huff.c */
22 
23 
24 /* Expanded entropy encoder object for Huffman encoding.
25  *
26  * The savable_state subrecord contains fields that change within an MCU,
27  * but must not be updated permanently until we complete the MCU.
28  */
29 
30 typedef struct {
31   IJG_INT32 put_buffer;		/* current bit-accumulation buffer */
32   int put_bits;			/* # of bits now in it */
33   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
34 } savable_state;
35 
36 /* This macro is to work around compilers with missing or broken
37  * structure assignment.  You'll need to fix this code if you have
38  * such a compiler and you change MAX_COMPS_IN_SCAN.
39  */
40 
41 #ifndef NO_STRUCT_ASSIGN
42 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
43 #else
44 #if MAX_COMPS_IN_SCAN == 4
45 #define ASSIGN_STATE(dest,src)  \
46 	((dest).put_buffer = (src).put_buffer, \
47 	 (dest).put_bits = (src).put_bits, \
48 	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
49 	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
50 	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
51 	 (dest).last_dc_val[3] = (src).last_dc_val[3])
52 #endif
53 #endif
54 
55 
56 typedef struct {
57   savable_state saved;		/* Bit buffer & DC state at start of MCU */
58 
59   /* These fields are NOT loaded into local working state. */
60   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
61   int next_restart_num;		/* next restart number to write (0-7) */
62 
63   /* Pointers to derived tables (these workspaces have image lifespan) */
64   c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
65   c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
66 
67 #ifdef ENTROPY_OPT_SUPPORTED	/* Statistics tables for optimization */
68   long * dc_count_ptrs[NUM_HUFF_TBLS];
69   long * ac_count_ptrs[NUM_HUFF_TBLS];
70 #endif
71 } shuff_entropy_encoder;
72 
73 typedef shuff_entropy_encoder * shuff_entropy_ptr;
74 
75 /* Working state while writing an MCU.
76  * This struct contains all the fields that are needed by subroutines.
77  */
78 
79 typedef struct {
80   JOCTET * next_output_byte;	/* => next byte to write in buffer */
81   size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
82   savable_state cur;		/* Current bit buffer & DC state */
83   j_compress_ptr cinfo;		/* dump_buffer needs access to this */
84 } working_state;
85 
86 
87 /* Forward declarations */
88 METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo,
89 					JBLOCKROW *MCU_data));
90 METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo));
91 #ifdef ENTROPY_OPT_SUPPORTED
92 METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo,
93 					  JBLOCKROW *MCU_data));
94 METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo));
95 #endif
96 
97 
98 /*
99  * Initialize for a Huffman-compressed scan.
100  * If gather_statistics is TRUE, we do not output anything during the scan,
101  * just count the Huffman symbols used and generate Huffman code tables.
102  */
103 
104 METHODDEF(void)
start_pass_huff(j_compress_ptr cinfo,boolean gather_statistics)105 start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
106 {
107   j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
108   shuff_entropy_ptr entropy = (shuff_entropy_ptr) lossyc->entropy_private;
109   int ci, dctbl, actbl;
110   jpeg_component_info * compptr;
111 
112   if (gather_statistics) {
113 #ifdef ENTROPY_OPT_SUPPORTED
114     lossyc->entropy_encode_mcu = encode_mcu_gather;
115     lossyc->pub.entropy_finish_pass = finish_pass_gather;
116 #else
117     ERREXIT(cinfo, JERR_NOT_COMPILED);
118 #endif
119   } else {
120     lossyc->entropy_encode_mcu = encode_mcu_huff;
121     lossyc->pub.entropy_finish_pass = finish_pass_huff;
122   }
123 
124   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
125     compptr = cinfo->cur_comp_info[ci];
126     dctbl = compptr->dc_tbl_no;
127     actbl = compptr->ac_tbl_no;
128     if (gather_statistics) {
129 #ifdef ENTROPY_OPT_SUPPORTED
130       /* Check for invalid table indexes */
131       /* (make_c_derived_tbl does this in the other path) */
132       if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
133 	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
134       if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
135 	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
136       /* Allocate and zero the statistics tables */
137       /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
138       if (entropy->dc_count_ptrs[dctbl] == NULL)
139 	entropy->dc_count_ptrs[dctbl] = (long *)
140 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
141 				      257 * SIZEOF(long));
142       MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
143       if (entropy->ac_count_ptrs[actbl] == NULL)
144 	entropy->ac_count_ptrs[actbl] = (long *)
145 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
146 				      257 * SIZEOF(long));
147       MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
148 #endif
149     } else {
150       /* Compute derived values for Huffman tables */
151       /* We may do this more than once for a table, but it's not expensive */
152       jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
153 			      & entropy->dc_derived_tbls[dctbl]);
154       jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
155 			      & entropy->ac_derived_tbls[actbl]);
156     }
157     /* Initialize DC predictions to 0 */
158     entropy->saved.last_dc_val[ci] = 0;
159   }
160 
161   /* Initialize bit buffer to empty */
162   entropy->saved.put_buffer = 0;
163   entropy->saved.put_bits = 0;
164 
165   /* Initialize restart stuff */
166   entropy->restarts_to_go = cinfo->restart_interval;
167   entropy->next_restart_num = 0;
168 }
169 
170 
171 /* Outputting bytes to the file */
172 
173 /* Emit a byte, taking 'action' if must suspend. */
174 #define emit_byte(state,val,action)  \
175 	{ *(state)->next_output_byte++ = (JOCTET) (val);  \
176 	  if (--(state)->free_in_buffer == 0)  \
177 	    if (! dump_buffer(state))  \
178 	      { action; } }
179 
180 
181 LOCAL(boolean)
dump_buffer(working_state * state)182 dump_buffer (working_state * state)
183 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
184 {
185   struct jpeg_destination_mgr * dest = state->cinfo->dest;
186 
187   if (! (*dest->empty_output_buffer) (state->cinfo))
188     return FALSE;
189   /* After a successful buffer dump, must reset buffer pointers */
190   state->next_output_byte = dest->next_output_byte;
191   state->free_in_buffer = dest->free_in_buffer;
192   return TRUE;
193 }
194 
195 
196 /* Outputting bits to the file */
197 
198 /* Only the right 24 bits of put_buffer are used; the valid bits are
199  * left-justified in this part.  At most 16 bits can be passed to emit_bits
200  * in one call, and we never retain more than 7 bits in put_buffer
201  * between calls, so 24 bits are sufficient.
202  */
203 
204 INLINE
LOCAL(boolean)205 LOCAL(boolean)
206 emit_bits (working_state * state, unsigned int code, int size)
207 /* Emit some bits; return TRUE if successful, FALSE if must suspend */
208 {
209   /* This routine is heavily used, so it's worth coding tightly. */
210   register IJG_INT32 put_buffer = (IJG_INT32) code;
211   register int put_bits = state->cur.put_bits;
212 
213   /* if size is 0, caller used an invalid Huffman table entry */
214   if (size == 0)
215     ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
216 
217   put_buffer &= (((IJG_INT32) 1)<<size) - 1; /* mask off any extra bits in code */
218 
219   put_bits += size;		/* new number of bits in buffer */
220 
221   put_buffer <<= 24 - put_bits; /* align incoming bits */
222 
223   put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
224 
225   while (put_bits >= 8) {
226     int c = (int) ((put_buffer >> 16) & 0xFF);
227 
228     emit_byte(state, c, return FALSE);
229     if (c == 0xFF) {		/* need to stuff a zero byte? */
230       emit_byte(state, 0, return FALSE);
231     }
232     put_buffer <<= 8;
233     put_bits -= 8;
234   }
235 
236   state->cur.put_buffer = put_buffer; /* update state variables */
237   state->cur.put_bits = put_bits;
238 
239   return TRUE;
240 }
241 
242 
243 LOCAL(boolean)
flush_bits(working_state * state)244 flush_bits (working_state * state)
245 {
246   if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */
247     return FALSE;
248   state->cur.put_buffer = 0;	/* and reset bit-buffer to empty */
249   state->cur.put_bits = 0;
250   return TRUE;
251 }
252 
253 
254 /* Encode a single block's worth of coefficients */
255 
256 LOCAL(boolean)
encode_one_block(working_state * state,const JCOEFPTR block,int last_dc_val,c_derived_tbl * dctbl,c_derived_tbl * actbl)257 encode_one_block (working_state * state, const JCOEFPTR block, int last_dc_val,
258 		  c_derived_tbl *dctbl, c_derived_tbl *actbl)
259 {
260   register int temp, temp2;
261   register int nbits;
262   register int k, r, i;
263 
264   /* Encode the DC coefficient difference per section F.1.2.1 */
265 
266   temp = temp2 = block[0] - last_dc_val;
267 
268   if (temp < 0) {
269     temp = -temp;		/* temp is abs value of input */
270     /* For a negative input, want temp2 = bitwise complement of abs(input) */
271     /* This code assumes we are on a two's complement machine */
272     temp2--;
273   }
274 
275   /* Find the number of bits needed for the magnitude of the coefficient */
276   nbits = 0;
277   while (temp) {
278     nbits++;
279     temp >>= 1;
280   }
281   /* Check for out-of-range coefficient values.
282    * Since we're encoding a difference, the range limit is twice as much.
283    */
284   if (nbits > MAX_COEF_BITS+1)
285     ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
286 
287   /* Emit the Huffman-coded symbol for the number of bits */
288   if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
289     return FALSE;
290 
291   /* Emit that number of bits of the value, if positive, */
292   /* or the complement of its magnitude, if negative. */
293   if (nbits)			/* emit_bits rejects calls with size 0 */
294     if (! emit_bits(state, (unsigned int) temp2, nbits))
295       return FALSE;
296 
297   /* Encode the AC coefficients per section F.1.2.2 */
298 
299   r = 0;			/* r = run length of zeros */
300 
301   for (k = 1; k < DCTSIZE2; k++) {
302     if ((temp = block[jpeg_natural_order[k]]) == 0) {
303       r++;
304     } else {
305       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
306       while (r > 15) {
307 	if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
308 	  return FALSE;
309 	r -= 16;
310       }
311 
312       temp2 = temp;
313       if (temp < 0) {
314 	temp = -temp;		/* temp is abs value of input */
315 	/* This code assumes we are on a two's complement machine */
316 	temp2--;
317       }
318 
319       /* Find the number of bits needed for the magnitude of the coefficient */
320       nbits = 1;		/* there must be at least one 1 bit */
321       while ((temp >>= 1))
322 	nbits++;
323       /* Check for out-of-range coefficient values */
324       if (nbits > MAX_COEF_BITS)
325 	ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
326 
327       /* Emit Huffman symbol for run length / number of bits */
328       i = (r << 4) + nbits;
329       if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i]))
330 	return FALSE;
331 
332       /* Emit that number of bits of the value, if positive, */
333       /* or the complement of its magnitude, if negative. */
334       if (! emit_bits(state, (unsigned int) temp2, nbits))
335 	return FALSE;
336 
337       r = 0;
338     }
339   }
340 
341   /* If the last coef(s) were zero, emit an end-of-block code */
342   if (r > 0)
343     if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0]))
344       return FALSE;
345 
346   return TRUE;
347 }
348 
349 
350 /*
351  * Emit a restart marker & resynchronize predictions.
352  */
353 
354 LOCAL(boolean)
emit_restart(working_state * state,int restart_num)355 emit_restart (working_state * state, int restart_num)
356 {
357   int ci;
358 
359   if (! flush_bits(state))
360     return FALSE;
361 
362   emit_byte(state, 0xFF, return FALSE);
363   emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
364 
365   /* Re-initialize DC predictions to 0 */
366   for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
367     state->cur.last_dc_val[ci] = 0;
368 
369   /* The restart counter is not updated until we successfully write the MCU. */
370 
371   return TRUE;
372 }
373 
374 
375 /*
376  * Encode and output one MCU's worth of Huffman-compressed coefficients.
377  */
378 
379 METHODDEF(boolean)
encode_mcu_huff(j_compress_ptr cinfo,JBLOCKROW * MCU_data)380 encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
381 {
382   j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
383   shuff_entropy_ptr entropy = (shuff_entropy_ptr) lossyc->entropy_private;
384   working_state state;
385   int blkn, ci;
386   jpeg_component_info * compptr;
387 
388   /* Load up working state */
389   state.next_output_byte = cinfo->dest->next_output_byte;
390   state.free_in_buffer = cinfo->dest->free_in_buffer;
391   ASSIGN_STATE(state.cur, entropy->saved);
392   state.cinfo = cinfo;
393 
394   /* Emit restart marker if needed */
395   if (cinfo->restart_interval) {
396     if (entropy->restarts_to_go == 0)
397       if (! emit_restart(&state, entropy->next_restart_num))
398 	return FALSE;
399   }
400 
401   /* Encode the MCU data blocks */
402   for (blkn = 0; blkn < cinfo->data_units_in_MCU; blkn++) {
403     ci = cinfo->MCU_membership[blkn];
404     compptr = cinfo->cur_comp_info[ci];
405     if (! encode_one_block(&state,
406 			   MCU_data[blkn][0], state.cur.last_dc_val[ci],
407 			   entropy->dc_derived_tbls[compptr->dc_tbl_no],
408 			   entropy->ac_derived_tbls[compptr->ac_tbl_no]))
409       return FALSE;
410     /* Update last_dc_val */
411     state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
412   }
413 
414   /* Completed MCU, so update state */
415   cinfo->dest->next_output_byte = state.next_output_byte;
416   cinfo->dest->free_in_buffer = state.free_in_buffer;
417   ASSIGN_STATE(entropy->saved, state.cur);
418 
419   /* Update restart-interval state too */
420   if (cinfo->restart_interval) {
421     if (entropy->restarts_to_go == 0) {
422       entropy->restarts_to_go = cinfo->restart_interval;
423       entropy->next_restart_num++;
424       entropy->next_restart_num &= 7;
425     }
426     entropy->restarts_to_go--;
427   }
428 
429   return TRUE;
430 }
431 
432 
433 /*
434  * Finish up at the end of a Huffman-compressed scan.
435  */
436 
437 METHODDEF(void)
finish_pass_huff(j_compress_ptr cinfo)438 finish_pass_huff (j_compress_ptr cinfo)
439 {
440   j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
441   shuff_entropy_ptr entropy = (shuff_entropy_ptr) lossyc->entropy_private;
442   working_state state;
443 
444   /* Load up working state ... flush_bits needs it */
445   state.next_output_byte = cinfo->dest->next_output_byte;
446   state.free_in_buffer = cinfo->dest->free_in_buffer;
447   ASSIGN_STATE(state.cur, entropy->saved);
448   state.cinfo = cinfo;
449 
450   /* Flush out the last data */
451   if (! flush_bits(&state))
452     ERREXIT(cinfo, JERR_CANT_SUSPEND);
453 
454   /* Update state */
455   cinfo->dest->next_output_byte = state.next_output_byte;
456   cinfo->dest->free_in_buffer = state.free_in_buffer;
457   ASSIGN_STATE(entropy->saved, state.cur);
458 }
459 
460 
461 /*
462  * Huffman coding optimization.
463  *
464  * We first scan the supplied data and count the number of uses of each symbol
465  * that is to be Huffman-coded. (This process MUST agree with the code above.)
466  * Then we build a Huffman coding tree for the observed counts.
467  * Symbols which are not needed at all for the particular image are not
468  * assigned any code, which saves space in the DHT marker as well as in
469  * the compressed data.
470  */
471 
472 #ifdef ENTROPY_OPT_SUPPORTED
473 
474 
475 /* Process a single block's worth of coefficients */
476 
477 LOCAL(void)
htest_one_block(j_compress_ptr cinfo,const JCOEFPTR block,int last_dc_val,long dc_counts[],long ac_counts[])478 htest_one_block (j_compress_ptr cinfo, const JCOEFPTR block, int last_dc_val,
479 		 long dc_counts[], long ac_counts[])
480 {
481   register int temp;
482   register int nbits;
483   register int k, r;
484 
485   /* Encode the DC coefficient difference per section F.1.2.1 */
486 
487   temp = block[0] - last_dc_val;
488   if (temp < 0)
489     temp = -temp;
490 
491   /* Find the number of bits needed for the magnitude of the coefficient */
492   nbits = 0;
493   while (temp) {
494     nbits++;
495     temp >>= 1;
496   }
497   /* Check for out-of-range coefficient values.
498    * Since we're encoding a difference, the range limit is twice as much.
499    */
500   if (nbits > MAX_COEF_BITS+1)
501     ERREXIT(cinfo, JERR_BAD_DCT_COEF);
502 
503   /* Count the Huffman symbol for the number of bits */
504   dc_counts[nbits]++;
505 
506   /* Encode the AC coefficients per section F.1.2.2 */
507 
508   r = 0;			/* r = run length of zeros */
509 
510   for (k = 1; k < DCTSIZE2; k++) {
511     if ((temp = block[jpeg_natural_order[k]]) == 0) {
512       r++;
513     } else {
514       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
515       while (r > 15) {
516 	ac_counts[0xF0]++;
517 	r -= 16;
518       }
519 
520       /* Find the number of bits needed for the magnitude of the coefficient */
521       if (temp < 0)
522 	temp = -temp;
523 
524       /* Find the number of bits needed for the magnitude of the coefficient */
525       nbits = 1;		/* there must be at least one 1 bit */
526       while ((temp >>= 1))
527 	nbits++;
528       /* Check for out-of-range coefficient values */
529       if (nbits > MAX_COEF_BITS)
530 	ERREXIT(cinfo, JERR_BAD_DCT_COEF);
531 
532       /* Count Huffman symbol for run length / number of bits */
533       ac_counts[(r << 4) + nbits]++;
534 
535       r = 0;
536     }
537   }
538 
539   /* If the last coef(s) were zero, emit an end-of-block code */
540   if (r > 0)
541     ac_counts[0]++;
542 }
543 
544 
545 /*
546  * Trial-encode one MCU's worth of Huffman-compressed coefficients.
547  * No data is actually output, so no suspension return is possible.
548  */
549 
550 METHODDEF(boolean)
encode_mcu_gather(j_compress_ptr cinfo,JBLOCKROW * MCU_data)551 encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
552 {
553   j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
554   shuff_entropy_ptr entropy = (shuff_entropy_ptr) lossyc->entropy_private;
555   int blkn, ci;
556   jpeg_component_info * compptr;
557 
558   /* Take care of restart intervals if needed */
559   if (cinfo->restart_interval) {
560     if (entropy->restarts_to_go == 0) {
561       /* Re-initialize DC predictions to 0 */
562       for (ci = 0; ci < cinfo->comps_in_scan; ci++)
563 	entropy->saved.last_dc_val[ci] = 0;
564       /* Update restart state */
565       entropy->restarts_to_go = cinfo->restart_interval;
566     }
567     entropy->restarts_to_go--;
568   }
569 
570   for (blkn = 0; blkn < cinfo->data_units_in_MCU; blkn++) {
571     ci = cinfo->MCU_membership[blkn];
572     compptr = cinfo->cur_comp_info[ci];
573     htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
574 		    entropy->dc_count_ptrs[compptr->dc_tbl_no],
575 		    entropy->ac_count_ptrs[compptr->ac_tbl_no]);
576     entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
577   }
578 
579   return TRUE;
580 }
581 
582 
583 /*
584  * Finish up a statistics-gathering pass and create the new Huffman tables.
585  */
586 
587 METHODDEF(void)
finish_pass_gather(j_compress_ptr cinfo)588 finish_pass_gather (j_compress_ptr cinfo)
589 {
590   j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
591   shuff_entropy_ptr entropy = (shuff_entropy_ptr) lossyc->entropy_private;
592   int ci, dctbl, actbl;
593   jpeg_component_info * compptr;
594   JHUFF_TBL **htblptr;
595   boolean did_dc[NUM_HUFF_TBLS];
596   boolean did_ac[NUM_HUFF_TBLS];
597 
598   /* It's important not to apply jpeg_gen_optimal_table more than once
599    * per table, because it clobbers the input frequency counts!
600    */
601   MEMZERO(did_dc, SIZEOF(did_dc));
602   MEMZERO(did_ac, SIZEOF(did_ac));
603 
604   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
605     compptr = cinfo->cur_comp_info[ci];
606     dctbl = compptr->dc_tbl_no;
607     actbl = compptr->ac_tbl_no;
608     if (! did_dc[dctbl]) {
609       htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
610       if (*htblptr == NULL)
611 	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
612       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
613       did_dc[dctbl] = TRUE;
614     }
615     if (! did_ac[actbl]) {
616       htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
617       if (*htblptr == NULL)
618 	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
619       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
620       did_ac[actbl] = TRUE;
621     }
622   }
623 }
624 
625 
626 #endif /* ENTROPY_OPT_SUPPORTED */
627 
628 
629 METHODDEF(boolean)
need_optimization_pass(j_compress_ptr cinfo)630 need_optimization_pass (j_compress_ptr cinfo)
631 {
632   return TRUE;
633 }
634 
635 
636 /*
637  * Module initialization routine for Huffman entropy encoding.
638  */
639 
640 GLOBAL(void)
jinit_shuff_encoder(j_compress_ptr cinfo)641 jinit_shuff_encoder (j_compress_ptr cinfo)
642 {
643   j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
644   shuff_entropy_ptr entropy;
645   int i;
646 
647   entropy = (shuff_entropy_ptr)
648     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
649 				SIZEOF(shuff_entropy_encoder));
650   lossyc->entropy_private = (struct jpeg_entropy_encoder *) entropy;
651   lossyc->pub.entropy_start_pass = start_pass_huff;
652   lossyc->pub.need_optimization_pass = need_optimization_pass;
653 
654   /* Mark tables unallocated */
655   for (i = 0; i < NUM_HUFF_TBLS; i++) {
656     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
657 #ifdef ENTROPY_OPT_SUPPORTED
658     entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
659 #endif
660   }
661 }
662