xref: /openbsd/gnu/usr.bin/gcc/gcc/dwarfout.c (revision c87b03e5)
1 /* Output Dwarf format symbol table information from the GNU C compiler.
2    Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 2002,
3    1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4    Contributed by Ron Guilmette (rfg@monkeys.com) of Network Computing Devices.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING.  If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA.  */
22 
23 /*
24 
25  Notes on the GNU Implementation of DWARF Debugging Information
26  --------------------------------------------------------------
27  Last Major Update: Sun Jul 17 08:17:42 PDT 1994 by rfg@segfault.us.com
28  ------------------------------------------------------------
29 
30  This file describes special and unique aspects of the GNU implementation of
31  the DWARF Version 1 debugging information language, as provided in the GNU
32  version 2.x compiler(s).
33 
34  For general information about the DWARF debugging information language,
35  you should obtain the DWARF version 1.1 specification document (and perhaps
36  also the DWARF version 2 draft specification document) developed by the
37  (now defunct) UNIX International Programming Languages Special Interest Group.
38 
39  To obtain a copy of the DWARF Version 1 and/or DWARF Version 2
40  specification, visit the web page for the DWARF Version 2 committee, at
41 
42    http://www.eagercon.com/dwarf/dwarf2std.htm
43 
44  The generation of DWARF debugging information by the GNU version 2.x C
45  compiler has now been tested rather extensively for m88k, i386, i860, and
46  SPARC targets.  The DWARF output of the GNU C compiler appears to inter-
47  operate well with the standard SVR4 SDB debugger on these kinds of target
48  systems (but of course, there are no guarantees).
49 
50  DWARF 1 generation for the GNU g++ compiler is implemented, but limited.
51  C++ users should definitely use DWARF 2 instead.
52 
53  Future plans for the dwarfout.c module of the GNU compiler(s) includes the
54  addition of full support for GNU FORTRAN.  (This should, in theory, be a
55  lot simpler to add than adding support for g++... but we'll see.)
56 
57  Many features of the DWARF version 2 specification have been adapted to
58  (and used in) the GNU implementation of DWARF (version 1).  In most of
59  these cases, a DWARF version 2 approach is used in place of (or in addition
60  to) DWARF version 1 stuff simply because it is apparent that DWARF version
61  1 is not sufficiently expressive to provide the kinds of information which
62  may be necessary to support really robust debugging.  In all of these cases
63  however, the use of DWARF version 2 features should not interfere in any
64  way with the interoperability (of GNU compilers) with generally available
65  "classic" (pre version 1) DWARF consumer tools (e.g. SVR4 SDB).
66 
67  The DWARF generation enhancement for the GNU compiler(s) was initially
68  donated to the Free Software Foundation by Network Computing Devices.
69  (Thanks NCD!) Additional development and maintenance of dwarfout.c has
70  been largely supported (i.e. funded) by Intel Corporation.  (Thanks Intel!)
71 
72  If you have questions or comments about the DWARF generation feature, please
73  send mail to me <rfg@netcom.com>.  I will be happy to investigate any bugs
74  reported and I may even provide fixes (but of course, I can make no promises).
75 
76  The DWARF debugging information produced by GCC may deviate in a few minor
77  (but perhaps significant) respects from the DWARF debugging information
78  currently produced by other C compilers.  A serious attempt has been made
79  however to conform to the published specifications, to existing practice,
80  and to generally accepted norms in the GNU implementation of DWARF.
81 
82      ** IMPORTANT NOTE **    ** IMPORTANT NOTE **    ** IMPORTANT NOTE **
83 
84  Under normal circumstances, the DWARF information generated by the GNU
85  compilers (in an assembly language file) is essentially impossible for
86  a human being to read.  This fact can make it very difficult to debug
87  certain DWARF-related problems.  In order to overcome this difficulty,
88  a feature has been added to dwarfout.c (enabled by the -dA
89  option) which causes additional comments to be placed into the assembly
90  language output file, out to the right-hand side of most bits of DWARF
91  material.  The comments indicate (far more clearly that the obscure
92  DWARF hex codes do) what is actually being encoded in DWARF.  Thus, the
93  -dA option can be highly useful for those who must study the
94  DWARF output from the GNU compilers in detail.
95 
96  ---------
97 
98  (Footnote: Within this file, the term `Debugging Information Entry' will
99  be abbreviated as `DIE'.)
100 
101 
102  Release Notes  (aka known bugs)
103  -------------------------------
104 
105  In one very obscure case involving dynamically sized arrays, the DWARF
106  "location information" for such an array may make it appear that the
107  array has been totally optimized out of existence, when in fact it
108  *must* actually exist.  (This only happens when you are using *both* -g
109  *and* -O.)  This is due to aggressive dead store elimination in the
110  compiler, and to the fact that the DECL_RTL expressions associated with
111  variables are not always updated to correctly reflect the effects of
112  GCC's aggressive dead store elimination.
113 
114  -------------------------------
115 
116  When attempting to set a breakpoint at the "start" of a function compiled
117  with -g1, the debugger currently has no way of knowing exactly where the
118  end of the prologue code for the function is.  Thus, for most targets,
119  all the debugger can do is to set the breakpoint at the AT_low_pc address
120  for the function.  But if you stop there and then try to look at one or
121  more of the formal parameter values, they may not have been "homed" yet,
122  so you may get inaccurate answers (or perhaps even addressing errors).
123 
124  Some people may consider this simply a non-feature, but I consider it a
125  bug, and I hope to provide some GNU-specific attributes (on function
126  DIEs) which will specify the address of the end of the prologue and the
127  address of the beginning of the epilogue in a future release.
128 
129  -------------------------------
130 
131  It is believed at this time that old bugs relating to the AT_bit_offset
132  values for bit-fields have been fixed.
133 
134  There may still be some very obscure bugs relating to the DWARF description
135  of type `long long' bit-fields for target machines (e.g. 80x86 machines)
136  where the alignment of type `long long' data objects is different from
137  (and less than) the size of a type `long long' data object.
138 
139  Please report any problems with the DWARF description of bit-fields as you
140  would any other GCC bug.  (Procedures for bug reporting are given in the
141  GNU C compiler manual.)
142 
143  --------------------------------
144 
145  At this time, GCC does not know how to handle the GNU C "nested functions"
146  extension.  (See the GCC manual for more info on this extension to ANSI C.)
147 
148  --------------------------------
149 
150  The GNU compilers now represent inline functions (and inlined instances
151  thereof) in exactly the manner described by the current DWARF version 2
152  (draft) specification.  The version 1 specification for handling inline
153  functions (and inlined instances) was known to be brain-damaged (by the
154  PLSIG) when the version 1 spec was finalized, but it was simply too late
155  in the cycle to get it removed before the version 1 spec was formally
156  released to the public (by UI).
157 
158  --------------------------------
159 
160  At this time, GCC does not generate the kind of really precise information
161  about the exact declared types of entities with signed integral types which
162  is required by the current DWARF draft specification.
163 
164  Specifically, the current DWARF draft specification seems to require that
165  the type of a non-unsigned integral bit-field member of a struct or union
166  type be represented as either a "signed" type or as a "plain" type,
167  depending upon the exact set of keywords that were used in the
168  type specification for the given bit-field member.  It was felt (by the
169  UI/PLSIG) that this distinction between "plain" and "signed" integral types
170  could have some significance (in the case of bit-fields) because ANSI C
171  does not constrain the signedness of a plain bit-field, whereas it does
172  constrain the signedness of an explicitly "signed" bit-field.  For this
173  reason, the current DWARF specification calls for compilers to produce
174  type information (for *all* integral typed entities... not just bit-fields)
175  which explicitly indicates the signedness of the relevant type to be
176  "signed" or "plain" or "unsigned".
177 
178  Unfortunately, the GNU DWARF implementation is currently incapable of making
179  such distinctions.
180 
181  --------------------------------
182 
183 
184  Known Interoperability Problems
185  -------------------------------
186 
187  Although the GNU implementation of DWARF conforms (for the most part) with
188  the current UI/PLSIG DWARF version 1 specification (with many compatible
189  version 2 features added in as "vendor specific extensions" just for good
190  measure) there are a few known cases where GCC's DWARF output can cause
191  some confusion for "classic" (pre version 1) DWARF consumers such as the
192  System V Release 4 SDB debugger.  These cases are described in this section.
193 
194  --------------------------------
195 
196  The DWARF version 1 specification includes the fundamental type codes
197  FT_ext_prec_float, FT_complex, FT_dbl_prec_complex, and FT_ext_prec_complex.
198  Since GNU C is only a C compiler (and since C doesn't provide any "complex"
199  data types) the only one of these fundamental type codes which GCC ever
200  generates is FT_ext_prec_float.  This fundamental type code is generated
201  by GCC for the `long double' data type.  Unfortunately, due to an apparent
202  bug in the SVR4 SDB debugger, SDB can become very confused wherever any
203  attempt is made to print a variable, parameter, or field whose type was
204  given in terms of FT_ext_prec_float.
205 
206  (Actually, SVR4 SDB fails to understand *any* of the four fundamental type
207  codes mentioned here.  This will fact will cause additional problems when
208  there is a GNU FORTRAN front-end.)
209 
210  --------------------------------
211 
212  In general, it appears that SVR4 SDB is not able to effectively ignore
213  fundamental type codes in the "implementation defined" range.  This can
214  cause problems when a program being debugged uses the `long long' data
215  type (or the signed or unsigned varieties thereof) because these types
216  are not defined by ANSI C, and thus, GCC must use its own private fundamental
217  type codes (from the implementation-defined range) to represent these types.
218 
219  --------------------------------
220 
221 
222  General GNU DWARF extensions
223  ----------------------------
224 
225  In the current DWARF version 1 specification, no mechanism is specified by
226  which accurate information about executable code from include files can be
227  properly (and fully) described.  (The DWARF version 2 specification *does*
228  specify such a mechanism, but it is about 10 times more complicated than
229  it needs to be so I'm not terribly anxious to try to implement it right
230  away.)
231 
232  In the GNU implementation of DWARF version 1, a fully downward-compatible
233  extension has been implemented which permits the GNU compilers to specify
234  which executable lines come from which files.  This extension places
235  additional information (about source file names) in GNU-specific sections
236  (which should be totally ignored by all non-GNU DWARF consumers) so that
237  this extended information can be provided (to GNU DWARF consumers) in a way
238  which is totally transparent (and invisible) to non-GNU DWARF consumers
239  (e.g. the SVR4 SDB debugger).  The additional information is placed *only*
240  in specialized GNU-specific sections, where it should never even be seen
241  by non-GNU DWARF consumers.
242 
243  To understand this GNU DWARF extension, imagine that the sequence of entries
244  in the .lines section is broken up into several subsections.  Each contiguous
245  sequence of .line entries which relates to a sequence of lines (or statements)
246  from one particular file (either a `base' file or an `include' file) could
247  be called a `line entries chunk' (LEC).
248 
249  For each LEC there is one entry in the .debug_srcinfo section.
250 
251  Each normal entry in the .debug_srcinfo section consists of two 4-byte
252  words of data as follows:
253 
254 	 (1)	The starting address (relative to the entire .line section)
255 		 of the first .line entry in the relevant LEC.
256 
257 	 (2)	The starting address (relative to the entire .debug_sfnames
258 		 section) of a NUL terminated string representing the
259 		 relevant filename.  (This filename name be either a
260 		 relative or an absolute filename, depending upon how the
261 		 given source file was located during compilation.)
262 
263  Obviously, each .debug_srcinfo entry allows you to find the relevant filename,
264  and it also points you to the first .line entry that was generated as a result
265  of having compiled a given source line from the given source file.
266 
267  Each subsequent .line entry should also be assumed to have been produced
268  as a result of compiling yet more lines from the same file.  The end of
269  any given LEC is easily found by looking at the first 4-byte pointer in
270  the *next* .debug_srcinfo entry.  That next .debug_srcinfo entry points
271  to a new and different LEC, so the preceding LEC (implicitly) must have
272  ended with the last .line section entry which occurs at the 2 1/2 words
273  just before the address given in the first pointer of the new .debug_srcinfo
274  entry.
275 
276  The following picture may help to clarify this feature.  Let's assume that
277  `LE' stands for `.line entry'.  Also, assume that `* 'stands for a pointer.
278 
279 
280 	 .line section	   .debug_srcinfo section     .debug_sfnames section
281 	 ----------------------------------------------------------------
282 
283 	 LE  <---------------------- *
284 	 LE			    * -----------------> "foobar.c" <---
285 	 LE								|
286 	 LE								|
287 	 LE  <---------------------- *					|
288 	 LE			    * -----------------> "foobar.h" <|	|
289 	 LE							     |	|
290 	 LE							     |	|
291 	 LE  <---------------------- *				     |	|
292 	 LE			    * ----------------->  "inner.h"  |	|
293 	 LE							     |	|
294 	 LE  <---------------------- *				     |	|
295 	 LE			    * -------------------------------	|
296 	 LE								|
297 	 LE								|
298 	 LE								|
299 	 LE								|
300 	 LE  <---------------------- *					|
301 	 LE			    * -----------------------------------
302 	 LE
303 	 LE
304 	 LE
305 
306  In effect, each entry in the .debug_srcinfo section points to *both* a
307  filename (in the .debug_sfnames section) and to the start of a block of
308  consecutive LEs (in the .line section).
309 
310  Note that just like in the .line section, there are specialized first and
311  last entries in the .debug_srcinfo section for each object file.  These
312  special first and last entries for the .debug_srcinfo section are very
313  different from the normal .debug_srcinfo section entries.  They provide
314  additional information which may be helpful to a debugger when it is
315  interpreting the data in the .debug_srcinfo, .debug_sfnames, and .line
316  sections.
317 
318  The first entry in the .debug_srcinfo section for each compilation unit
319  consists of five 4-byte words of data.  The contents of these five words
320  should be interpreted (by debuggers) as follows:
321 
322 	 (1)	The starting address (relative to the entire .line section)
323 		 of the .line section for this compilation unit.
324 
325 	 (2)	The starting address (relative to the entire .debug_sfnames
326 		 section) of the .debug_sfnames section for this compilation
327 		 unit.
328 
329 	 (3)	The starting address (in the execution virtual address space)
330 		 of the .text section for this compilation unit.
331 
332 	 (4)	The ending address plus one (in the execution virtual address
333 		 space) of the .text section for this compilation unit.
334 
335 	 (5)	The date/time (in seconds since midnight 1/1/70) at which the
336 		 compilation of this compilation unit occurred.  This value
337 		 should be interpreted as an unsigned quantity because gcc
338 		 might be configured to generate a default value of 0xffffffff
339 		 in this field (in cases where it is desired to have object
340 		 files created at different times from identical source files
341 		 be byte-for-byte identical).  By default, these timestamps
342 		 are *not* generated by dwarfout.c (so that object files
343 		 compiled at different times will be byte-for-byte identical).
344 		 If you wish to enable this "timestamp" feature however, you
345 		 can simply place a #define for the symbol `DWARF_TIMESTAMPS'
346 		 in your target configuration file and then rebuild the GNU
347 		 compiler(s).
348 
349  Note that the first string placed into the .debug_sfnames section for each
350  compilation unit is the name of the directory in which compilation occurred.
351  This string ends with a `/' (to help indicate that it is the pathname of a
352  directory).  Thus, the second word of each specialized initial .debug_srcinfo
353  entry for each compilation unit may be used as a pointer to the (string)
354  name of the compilation directory, and that string may in turn be used to
355  "absolutize" any relative pathnames which may appear later on in the
356  .debug_sfnames section entries for the same compilation unit.
357 
358  The fifth and last word of each specialized starting entry for a compilation
359  unit in the .debug_srcinfo section may (depending upon your configuration)
360  indicate the date/time of compilation, and this may be used (by a debugger)
361  to determine if any of the source files which contributed code to this
362  compilation unit are newer than the object code for the compilation unit
363  itself.  If so, the debugger may wish to print an "out-of-date" warning
364  about the compilation unit.
365 
366  The .debug_srcinfo section associated with each compilation will also have
367  a specialized terminating entry.  This terminating .debug_srcinfo section
368  entry will consist of the following two 4-byte words of data:
369 
370 	 (1)	The offset, measured from the start of the .line section to
371 		 the beginning of the terminating entry for the .line section.
372 
373 	 (2)	A word containing the value 0xffffffff.
374 
375  --------------------------------
376 
377  In the current DWARF version 1 specification, no mechanism is specified by
378  which information about macro definitions and un-definitions may be provided
379  to the DWARF consumer.
380 
381  The DWARF version 2 (draft) specification does specify such a mechanism.
382  That specification was based on the GNU ("vendor specific extension")
383  which provided some support for macro definitions and un-definitions,
384  but the "official" DWARF version 2 (draft) specification mechanism for
385  handling macros and the GNU implementation have diverged somewhat.  I
386  plan to update the GNU implementation to conform to the "official"
387  DWARF version 2 (draft) specification as soon as I get time to do that.
388 
389  Note that in the GNU implementation, additional information about macro
390  definitions and un-definitions is *only* provided when the -g3 level of
391  debug-info production is selected.  (The default level is -g2 and the
392  plain old -g option is considered to be identical to -g2.)
393 
394  GCC records information about macro definitions and undefinitions primarily
395  in a section called the .debug_macinfo section.  Normal entries in the
396  .debug_macinfo section consist of the following three parts:
397 
398 	 (1)	A special "type" byte.
399 
400 	 (2)	A 3-byte line-number/filename-offset field.
401 
402 	 (3)	A NUL terminated string.
403 
404  The interpretation of the second and third parts is dependent upon the
405  value of the leading (type) byte.
406 
407  The type byte may have one of four values depending upon the type of the
408  .debug_macinfo entry which follows.  The 1-byte MACINFO type codes presently
409  used, and their meanings are as follows:
410 
411 	 MACINFO_start		A base file or an include file starts here.
412 	 MACINFO_resume		The current base or include file ends here.
413 	 MACINFO_define          A #define directive occurs here.
414 	 MACINFO_undef           A #undef directive occur here.
415 
416  (Note that the MACINFO_... codes mentioned here are simply symbolic names
417  for constants which are defined in the GNU dwarf.h file.)
418 
419  For MACINFO_define and MACINFO_undef entries, the second (3-byte) field
420  contains the number of the source line (relative to the start of the current
421  base source file or the current include files) when the #define or #undef
422  directive appears.  For a MACINFO_define entry, the following string field
423  contains the name of the macro which is defined, followed by its definition.
424  Note that the definition is always separated from the name of the macro
425  by at least one whitespace character.  For a MACINFO_undef entry, the
426  string which follows the 3-byte line number field contains just the name
427  of the macro which is being undef'ed.
428 
429  For a MACINFO_start entry, the 3-byte field following the type byte contains
430  the offset, relative to the start of the .debug_sfnames section for the
431  current compilation unit, of a string which names the new source file which
432  is beginning its inclusion at this point.  Following that 3-byte field,
433  each MACINFO_start entry always contains a zero length NUL terminated
434  string.
435 
436  For a MACINFO_resume entry, the 3-byte field following the type byte contains
437  the line number WITHIN THE INCLUDING FILE at which the inclusion of the
438  current file (whose inclusion ends here) was initiated.  Following that
439  3-byte field, each MACINFO_resume entry always contains a zero length NUL
440  terminated string.
441 
442  Each set of .debug_macinfo entries for each compilation unit is terminated
443  by a special .debug_macinfo entry consisting of a 4-byte zero value followed
444  by a single NUL byte.
445 
446  --------------------------------
447 
448  In the current DWARF draft specification, no provision is made for providing
449  a separate level of (limited) debugging information necessary to support
450  tracebacks (only) through fully-debugged code (e.g. code in system libraries).
451 
452  A proposal to define such a level was submitted (by me) to the UI/PLSIG.
453  This proposal was rejected by the UI/PLSIG for inclusion into the DWARF
454  version 1 specification for two reasons.  First, it was felt (by the PLSIG)
455  that the issues involved in supporting a "traceback only" subset of DWARF
456  were not well understood.  Second, and perhaps more importantly, the PLSIG
457  is already having enough trouble agreeing on what it means to be "conforming"
458  to the DWARF specification, and it was felt that trying to specify multiple
459  different *levels* of conformance would only complicate our discussions of
460  this already divisive issue.  Nonetheless, the GNU implementation of DWARF
461  provides an abbreviated "traceback only" level of debug-info production for
462  use with fully-debugged "system library" code.  This level should only be
463  used for fully debugged system library code, and even then, it should only
464  be used where there is a very strong need to conserve disk space.  This
465  abbreviated level of debug-info production can be used by specifying the
466  -g1 option on the compilation command line.
467 
468  --------------------------------
469 
470  As mentioned above, the GNU implementation of DWARF currently uses the DWARF
471  version 2 (draft) approach for inline functions (and inlined instances
472  thereof).  This is used in preference to the version 1 approach because
473  (quite simply) the version 1 approach is highly brain-damaged and probably
474  unworkable.
475 
476  --------------------------------
477 
478 
479  GNU DWARF Representation of GNU C Extensions to ANSI C
480  ------------------------------------------------------
481 
482  The file dwarfout.c has been designed and implemented so as to provide
483  some reasonable DWARF representation for each and every declarative
484  construct which is accepted by the GNU C compiler.  Since the GNU C
485  compiler accepts a superset of ANSI C, this means that there are some
486  cases in which the DWARF information produced by GCC must take some
487  liberties in improvising DWARF representations for declarations which
488  are only valid in (extended) GNU C.
489 
490  In particular, GNU C provides at least three significant extensions to
491  ANSI C when it comes to declarations.  These are (1) inline functions,
492  and (2) dynamic arrays, and (3) incomplete enum types.  (See the GCC
493  manual for more information on these GNU extensions to ANSI C.)  When
494  used, these GNU C extensions are represented (in the generated DWARF
495  output of GCC) in the most natural and intuitively obvious ways.
496 
497  In the case of inline functions, the DWARF representation is exactly as
498  called for in the DWARF version 2 (draft) specification for an identical
499  function written in C++; i.e. we "reuse" the representation of inline
500  functions which has been defined for C++ to support this GNU C extension.
501 
502  In the case of dynamic arrays, we use the most obvious representational
503  mechanism available; i.e. an array type in which the upper bound of
504  some dimension (usually the first and only dimension) is a variable
505  rather than a constant.  (See the DWARF version 1 specification for more
506  details.)
507 
508  In the case of incomplete enum types, such types are represented simply
509  as TAG_enumeration_type DIEs which DO NOT contain either AT_byte_size
510  attributes or AT_element_list attributes.
511 
512  --------------------------------
513 
514 
515  Future Directions
516  -----------------
517 
518  The codes, formats, and other paraphernalia necessary to provide proper
519  support for symbolic debugging for the C++ language are still being worked
520  on by the UI/PLSIG.  The vast majority of the additions to DWARF which will
521  be needed to completely support C++ have already been hashed out and agreed
522  upon, but a few small issues (e.g. anonymous unions, access declarations)
523  are still being discussed.  Also, we in the PLSIG are still discussing
524  whether or not we need to do anything special for C++ templates.  (At this
525  time it is not yet clear whether we even need to do anything special for
526  these.)
527 
528  With regard to FORTRAN, the UI/PLSIG has defined what is believed to be a
529  complete and sufficient set of codes and rules for adequately representing
530  all of FORTRAN 77, and most of Fortran 90 in DWARF.  While some support for
531  this has been implemented in dwarfout.c, further implementation and testing
532  is needed.
533 
534  GNU DWARF support for other languages (i.e. Pascal and Modula) is a moot
535  issue until there are GNU front-ends for these other languages.
536 
537  As currently defined, DWARF only describes a (binary) language which can
538  be used to communicate symbolic debugging information from a compiler
539  through an assembler and a linker, to a debugger.  There is no clear
540  specification of what processing should be (or must be) done by the
541  assembler and/or the linker.  Fortunately, the role of the assembler
542  is easily inferred (by anyone knowledgeable about assemblers) just by
543  looking  at examples of assembly-level DWARF code.  Sadly though, the
544  allowable (or required) processing steps performed by a linker are
545  harder to infer and (perhaps) even harder to agree upon.  There are
546  several forms of very useful `post-processing' steps which intelligent
547  linkers *could* (in theory) perform on object files containing DWARF,
548  but any and all such link-time transformations are currently both disallowed
549  and unspecified.
550 
551  In particular, possible link-time transformations of DWARF code which could
552  provide significant benefits include (but are not limited to):
553 
554 	 Commonization of duplicate DIEs obtained from multiple input
555 	 (object) files.
556 
557 	 Cross-compilation type checking based upon DWARF type information
558 	 for objects and functions.
559 
560 	 Other possible `compacting' transformations designed to save disk
561 	 space and to reduce linker & debugger I/O activity.
562 
563 */
564 
565 #include "config.h"
566 
567 #ifdef DWARF_DEBUGGING_INFO
568 #include "system.h"
569 #include "dwarf.h"
570 #include "tree.h"
571 #include "flags.h"
572 #include "function.h"
573 #include "rtl.h"
574 #include "hard-reg-set.h"
575 #include "insn-config.h"
576 #include "reload.h"
577 #include "output.h"
578 #include "dwarf2asm.h"
579 #include "toplev.h"
580 #include "tm_p.h"
581 #include "debug.h"
582 #include "langhooks.h"
583 
584 /* NOTE: In the comments in this file, many references are made to
585    so called "Debugging Information Entries".  For the sake of brevity,
586    this term is abbreviated to `DIE' throughout the remainder of this
587    file.  */
588 
589 /* Note that the implementation of C++ support herein is (as yet) unfinished.
590    If you want to try to complete it, more power to you.  */
591 
592 /* How to start an assembler comment.  */
593 #ifndef ASM_COMMENT_START
594 #define ASM_COMMENT_START ";#"
595 #endif
596 
597 /* How to print out a register name.  */
598 #ifndef PRINT_REG
599 #define PRINT_REG(RTX, CODE, FILE) \
600   fprintf ((FILE), "%s", reg_names[REGNO (RTX)])
601 #endif
602 
603 /* Define a macro which returns nonzero for any tagged type which is
604    used (directly or indirectly) in the specification of either some
605    function's return type or some formal parameter of some function.
606    We use this macro when we are operating in "terse" mode to help us
607    know what tagged types have to be represented in Dwarf (even in
608    terse mode) and which ones don't.
609 
610    A flag bit with this meaning really should be a part of the normal
611    GCC ..._TYPE nodes, but at the moment, there is no such bit defined
612    for these nodes.  For now, we have to just fake it.  It it safe for
613    us to simply return zero for all complete tagged types (which will
614    get forced out anyway if they were used in the specification of some
615    formal or return type) and nonzero for all incomplete tagged types.
616 */
617 
618 #define TYPE_USED_FOR_FUNCTION(tagged_type) (TYPE_SIZE (tagged_type) == 0)
619 
620 /* Define a macro which returns nonzero for a TYPE_DECL which was
621    implicitly generated for a tagged type.
622 
623    Note that unlike the gcc front end (which generates a NULL named
624    TYPE_DECL node for each complete tagged type, each array type, and
625    each function type node created) the g++ front end generates a
626    _named_ TYPE_DECL node for each tagged type node created.
627    These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
628    generate a DW_TAG_typedef DIE for them.  */
629 #define TYPE_DECL_IS_STUB(decl)				\
630   (DECL_NAME (decl) == NULL				\
631    || (DECL_ARTIFICIAL (decl)				\
632        && is_tagged_type (TREE_TYPE (decl))		\
633        && decl == TYPE_STUB_DECL (TREE_TYPE (decl))))
634 
635 /* Maximum size (in bytes) of an artificially generated label.	*/
636 
637 #define MAX_ARTIFICIAL_LABEL_BYTES	30
638 
639 /* Structure to keep track of source filenames.  */
640 
641 struct filename_entry {
642   unsigned	number;
643   const char *	name;
644 };
645 
646 typedef struct filename_entry filename_entry;
647 
648 /* Pointer to an array of elements, each one having the structure above.  */
649 
650 static filename_entry *filename_table;
651 
652 /* Total number of entries in the table (i.e. array) pointed to by
653    `filename_table'.  This is the *total* and includes both used and
654    unused slots.  */
655 
656 static unsigned ft_entries_allocated;
657 
658 /* Number of entries in the filename_table which are actually in use.  */
659 
660 static unsigned ft_entries;
661 
662 /* Size (in elements) of increments by which we may expand the filename
663    table.  Actually, a single hunk of space of this size should be enough
664    for most typical programs.	 */
665 
666 #define FT_ENTRIES_INCREMENT 64
667 
668 /* Local pointer to the name of the main input file.  Initialized in
669    dwarfout_init.  */
670 
671 static const char *primary_filename;
672 
673 /* Counter to generate unique names for DIEs.  */
674 
675 static unsigned next_unused_dienum = 1;
676 
677 /* Number of the DIE which is currently being generated.  */
678 
679 static unsigned current_dienum;
680 
681 /* Number to use for the special "pubname" label on the next DIE which
682    represents a function or data object defined in this compilation
683    unit which has "extern" linkage.  */
684 
685 static int next_pubname_number = 0;
686 
687 #define NEXT_DIE_NUM pending_sibling_stack[pending_siblings-1]
688 
689 /* Pointer to a dynamically allocated list of pre-reserved and still
690    pending sibling DIE numbers.	 Note that this list will grow as needed.  */
691 
692 static unsigned *pending_sibling_stack;
693 
694 /* Counter to keep track of the number of pre-reserved and still pending
695    sibling DIE numbers.	 */
696 
697 static unsigned pending_siblings;
698 
699 /* The currently allocated size of the above list (expressed in number of
700    list elements).  */
701 
702 static unsigned pending_siblings_allocated;
703 
704 /* Size (in elements) of increments by which we may expand the pending
705    sibling stack.  Actually, a single hunk of space of this size should
706    be enough for most typical programs.	 */
707 
708 #define PENDING_SIBLINGS_INCREMENT 64
709 
710 /* Nonzero if we are performing our file-scope finalization pass and if
711    we should force out Dwarf descriptions of any and all file-scope
712    tagged types which are still incomplete types.  */
713 
714 static int finalizing = 0;
715 
716 /* A pointer to the base of a list of pending types which we haven't
717    generated DIEs for yet, but which we will have to come back to
718    later on.  */
719 
720 static tree *pending_types_list;
721 
722 /* Number of elements currently allocated for the pending_types_list.  */
723 
724 static unsigned pending_types_allocated;
725 
726 /* Number of elements of pending_types_list currently in use.  */
727 
728 static unsigned pending_types;
729 
730 /* Size (in elements) of increments by which we may expand the pending
731    types list.  Actually, a single hunk of space of this size should
732    be enough for most typical programs.	 */
733 
734 #define PENDING_TYPES_INCREMENT 64
735 
736 /* A pointer to the base of a list of incomplete types which might be
737    completed at some later time.  */
738 
739 static tree *incomplete_types_list;
740 
741 /* Number of elements currently allocated for the incomplete_types_list.  */
742 static unsigned incomplete_types_allocated;
743 
744 /* Number of elements of incomplete_types_list currently in use.  */
745 static unsigned incomplete_types;
746 
747 /* Size (in elements) of increments by which we may expand the incomplete
748    types list.  Actually, a single hunk of space of this size should
749    be enough for most typical programs.	 */
750 #define INCOMPLETE_TYPES_INCREMENT 64
751 
752 /* Pointer to an artificial RECORD_TYPE which we create in dwarfout_init.
753    This is used in a hack to help us get the DIEs describing types of
754    formal parameters to come *after* all of the DIEs describing the formal
755    parameters themselves.  That's necessary in order to be compatible
756    with what the brain-damaged svr4 SDB debugger requires.  */
757 
758 static tree fake_containing_scope;
759 
760 /* A pointer to the ..._DECL node which we have most recently been working
761    on.  We keep this around just in case something about it looks screwy
762    and we want to tell the user what the source coordinates for the actual
763    declaration are.  */
764 
765 static tree dwarf_last_decl;
766 
767 /* A flag indicating that we are emitting the member declarations of a
768    class, so member functions and variables should not be entirely emitted.
769    This is a kludge to avoid passing a second argument to output_*_die.  */
770 
771 static int in_class;
772 
773 /* Forward declarations for functions defined in this file.  */
774 
775 static void dwarfout_init 		PARAMS ((const char *));
776 static void dwarfout_finish		PARAMS ((const char *));
777 static void dwarfout_define	        PARAMS ((unsigned int, const char *));
778 static void dwarfout_undef	        PARAMS ((unsigned int, const char *));
779 static void dwarfout_start_source_file	PARAMS ((unsigned, const char *));
780 static void dwarfout_start_source_file_check PARAMS ((unsigned, const char *));
781 static void dwarfout_end_source_file	PARAMS ((unsigned));
782 static void dwarfout_end_source_file_check PARAMS ((unsigned));
783 static void dwarfout_begin_block	PARAMS ((unsigned, unsigned));
784 static void dwarfout_end_block		PARAMS ((unsigned, unsigned));
785 static void dwarfout_end_epilogue	PARAMS ((unsigned int, const char *));
786 static void dwarfout_source_line	PARAMS ((unsigned int, const char *));
787 static void dwarfout_end_prologue	PARAMS ((unsigned int, const char *));
788 static void dwarfout_end_function	PARAMS ((unsigned int));
789 static void dwarfout_function_decl	PARAMS ((tree));
790 static void dwarfout_global_decl	PARAMS ((tree));
791 static void dwarfout_deferred_inline_function	PARAMS ((tree));
792 static void dwarfout_file_scope_decl 	PARAMS ((tree , int));
793 static const char *dwarf_tag_name	PARAMS ((unsigned));
794 static const char *dwarf_attr_name	PARAMS ((unsigned));
795 static const char *dwarf_stack_op_name	PARAMS ((unsigned));
796 static const char *dwarf_typemod_name	PARAMS ((unsigned));
797 static const char *dwarf_fmt_byte_name	PARAMS ((unsigned));
798 static const char *dwarf_fund_type_name	PARAMS ((unsigned));
799 static tree decl_ultimate_origin	PARAMS ((tree));
800 static tree block_ultimate_origin	PARAMS ((tree));
801 static tree decl_class_context 		PARAMS ((tree));
802 #if 0
803 static void output_unsigned_leb128	PARAMS ((unsigned long));
804 static void output_signed_leb128	PARAMS ((long));
805 #endif
806 static int fundamental_type_code	PARAMS ((tree));
807 static tree root_type_1			PARAMS ((tree, int));
808 static tree root_type			PARAMS ((tree));
809 static void write_modifier_bytes_1	PARAMS ((tree, int, int, int));
810 static void write_modifier_bytes	PARAMS ((tree, int, int));
811 static inline int type_is_fundamental	PARAMS ((tree));
812 static void equate_decl_number_to_die_number PARAMS ((tree));
813 static inline void equate_type_number_to_die_number PARAMS ((tree));
814 static void output_reg_number		PARAMS ((rtx));
815 static void output_mem_loc_descriptor	PARAMS ((rtx));
816 static void output_loc_descriptor	PARAMS ((rtx));
817 static void output_bound_representation	PARAMS ((tree, unsigned, int));
818 static void output_enumeral_list	PARAMS ((tree));
819 static inline HOST_WIDE_INT ceiling	PARAMS ((HOST_WIDE_INT, unsigned int));
820 static inline tree field_type		PARAMS ((tree));
821 static inline unsigned int simple_type_align_in_bits PARAMS ((tree));
822 static inline unsigned HOST_WIDE_INT simple_type_size_in_bits  PARAMS ((tree));
823 static HOST_WIDE_INT field_byte_offset	PARAMS ((tree));
824 static inline void sibling_attribute	PARAMS ((void));
825 static void location_attribute		PARAMS ((rtx));
826 static void data_member_location_attribute PARAMS ((tree));
827 static void const_value_attribute	PARAMS ((rtx));
828 static void location_or_const_value_attribute PARAMS ((tree));
829 static inline void name_attribute	PARAMS ((const char *));
830 static inline void fund_type_attribute	PARAMS ((unsigned));
831 static void mod_fund_type_attribute	PARAMS ((tree, int, int));
832 static inline void user_def_type_attribute PARAMS ((tree));
833 static void mod_u_d_type_attribute	PARAMS ((tree, int, int));
834 #ifdef USE_ORDERING_ATTRIBUTE
835 static inline void ordering_attribute	PARAMS ((unsigned));
836 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
837 static void subscript_data_attribute	PARAMS ((tree));
838 static void byte_size_attribute		PARAMS ((tree));
839 static inline void bit_offset_attribute	PARAMS ((tree));
840 static inline void bit_size_attribute	PARAMS ((tree));
841 static inline void element_list_attribute PARAMS ((tree));
842 static inline void stmt_list_attribute	PARAMS ((const char *));
843 static inline void low_pc_attribute	PARAMS ((const char *));
844 static inline void high_pc_attribute	PARAMS ((const char *));
845 static inline void body_begin_attribute	PARAMS ((const char *));
846 static inline void body_end_attribute	PARAMS ((const char *));
847 static inline void language_attribute	PARAMS ((unsigned));
848 static inline void member_attribute	PARAMS ((tree));
849 #if 0
850 static inline void string_length_attribute PARAMS ((tree));
851 #endif
852 static inline void comp_dir_attribute	PARAMS ((const char *));
853 static inline void sf_names_attribute	PARAMS ((const char *));
854 static inline void src_info_attribute	PARAMS ((const char *));
855 static inline void mac_info_attribute	PARAMS ((const char *));
856 static inline void prototyped_attribute	PARAMS ((tree));
857 static inline void producer_attribute	PARAMS ((const char *));
858 static inline void inline_attribute	PARAMS ((tree));
859 static inline void containing_type_attribute PARAMS ((tree));
860 static inline void abstract_origin_attribute PARAMS ((tree));
861 #ifdef DWARF_DECL_COORDINATES
862 static inline void src_coords_attribute PARAMS ((unsigned, unsigned));
863 #endif /* defined(DWARF_DECL_COORDINATES) */
864 static inline void pure_or_virtual_attribute PARAMS ((tree));
865 static void name_and_src_coords_attributes PARAMS ((tree));
866 static void type_attribute		PARAMS ((tree, int, int));
867 static const char *type_tag		PARAMS ((tree));
868 static inline void dienum_push		PARAMS ((void));
869 static inline void dienum_pop		PARAMS ((void));
870 static inline tree member_declared_type PARAMS ((tree));
871 static const char *function_start_label	PARAMS ((tree));
872 static void output_array_type_die	PARAMS ((void *));
873 static void output_set_type_die		PARAMS ((void *));
874 #if 0
875 static void output_entry_point_die	PARAMS ((void *));
876 #endif
877 static void output_inlined_enumeration_type_die PARAMS ((void *));
878 static void output_inlined_structure_type_die PARAMS ((void *));
879 static void output_inlined_union_type_die PARAMS ((void *));
880 static void output_enumeration_type_die	PARAMS ((void *));
881 static void output_formal_parameter_die	PARAMS ((void *));
882 static void output_global_subroutine_die PARAMS ((void *));
883 static void output_global_variable_die	PARAMS ((void *));
884 static void output_label_die		PARAMS ((void *));
885 static void output_lexical_block_die	PARAMS ((void *));
886 static void output_inlined_subroutine_die PARAMS ((void *));
887 static void output_local_variable_die	PARAMS ((void *));
888 static void output_member_die		PARAMS ((void *));
889 #if 0
890 static void output_pointer_type_die	PARAMS ((void *));
891 static void output_reference_type_die	PARAMS ((void *));
892 #endif
893 static void output_ptr_to_mbr_type_die	PARAMS ((void *));
894 static void output_compile_unit_die	PARAMS ((void *));
895 static void output_string_type_die	PARAMS ((void *));
896 static void output_inheritance_die	PARAMS ((void *));
897 static void output_structure_type_die	PARAMS ((void *));
898 static void output_local_subroutine_die PARAMS ((void *));
899 static void output_subroutine_type_die	PARAMS ((void *));
900 static void output_typedef_die		PARAMS ((void *));
901 static void output_union_type_die	PARAMS ((void *));
902 static void output_unspecified_parameters_die PARAMS ((void *));
903 static void output_padded_null_die	PARAMS ((void *));
904 static void output_die			PARAMS ((void (*)(void *), void *));
905 static void end_sibling_chain		PARAMS ((void));
906 static void output_formal_types		PARAMS ((tree));
907 static void pend_type			PARAMS ((tree));
908 static int type_ok_for_scope		PARAMS ((tree, tree));
909 static void output_pending_types_for_scope PARAMS ((tree));
910 static void output_type			PARAMS ((tree, tree));
911 static void output_tagged_type_instantiation PARAMS ((tree));
912 static void output_block		PARAMS ((tree, int));
913 static void output_decls_for_scope	PARAMS ((tree, int));
914 static void output_decl			PARAMS ((tree, tree));
915 static void shuffle_filename_entry	PARAMS ((filename_entry *));
916 static void generate_new_sfname_entry	PARAMS ((void));
917 static unsigned lookup_filename		PARAMS ((const char *));
918 static void generate_srcinfo_entry	PARAMS ((unsigned, unsigned));
919 static void generate_macinfo_entry	PARAMS ((unsigned int, rtx,
920 						 const char *));
921 static int is_pseudo_reg		PARAMS ((rtx));
922 static tree type_main_variant		PARAMS ((tree));
923 static int is_tagged_type		PARAMS ((tree));
924 static int is_redundant_typedef		PARAMS ((tree));
925 static void add_incomplete_type		PARAMS ((tree));
926 static void retry_incomplete_types	PARAMS ((void));
927 
928 /* Definitions of defaults for assembler-dependent names of various
929    pseudo-ops and section names.
930 
931    Theses may be overridden in your tm.h file (if necessary) for your
932    particular assembler.  The default values provided here correspond to
933    what is expected by "standard" AT&T System V.4 assemblers.  */
934 
935 #ifndef FILE_ASM_OP
936 #define FILE_ASM_OP		"\t.file\t"
937 #endif
938 #ifndef SET_ASM_OP
939 #define SET_ASM_OP		"\t.set\t"
940 #endif
941 
942 /* Pseudo-ops for pushing the current section onto the section stack (and
943    simultaneously changing to a new section) and for poping back to the
944    section we were in immediately before this one.  Note that most svr4
945    assemblers only maintain a one level stack... you can push all the
946    sections you want, but you can only pop out one level.  (The sparc
947    svr4 assembler is an exception to this general rule.)  That's
948    OK because we only use at most one level of the section stack herein.  */
949 
950 #ifndef PUSHSECTION_ASM_OP
951 #define PUSHSECTION_ASM_OP	"\t.section\t"
952 #endif
953 #ifndef POPSECTION_ASM_OP
954 #define POPSECTION_ASM_OP	"\t.previous"
955 #endif
956 
957 /* The default format used by the ASM_OUTPUT_PUSH_SECTION macro (see below)
958    to print the PUSHSECTION_ASM_OP and the section name.  The default here
959    works for almost all svr4 assemblers, except for the sparc, where the
960    section name must be enclosed in double quotes.  (See sparcv4.h.)  */
961 
962 #ifndef PUSHSECTION_FORMAT
963 #define PUSHSECTION_FORMAT	"%s%s\n"
964 #endif
965 
966 #ifndef DEBUG_SECTION
967 #define DEBUG_SECTION		".debug"
968 #endif
969 #ifndef LINE_SECTION
970 #define LINE_SECTION		".line"
971 #endif
972 #ifndef DEBUG_SFNAMES_SECTION
973 #define DEBUG_SFNAMES_SECTION	".debug_sfnames"
974 #endif
975 #ifndef DEBUG_SRCINFO_SECTION
976 #define DEBUG_SRCINFO_SECTION	".debug_srcinfo"
977 #endif
978 #ifndef DEBUG_MACINFO_SECTION
979 #define DEBUG_MACINFO_SECTION	".debug_macinfo"
980 #endif
981 #ifndef DEBUG_PUBNAMES_SECTION
982 #define DEBUG_PUBNAMES_SECTION	".debug_pubnames"
983 #endif
984 #ifndef DEBUG_ARANGES_SECTION
985 #define DEBUG_ARANGES_SECTION	".debug_aranges"
986 #endif
987 #ifndef TEXT_SECTION_NAME
988 #define TEXT_SECTION_NAME	".text"
989 #endif
990 #ifndef DATA_SECTION_NAME
991 #define DATA_SECTION_NAME	".data"
992 #endif
993 #ifndef DATA1_SECTION_NAME
994 #define DATA1_SECTION_NAME	".data1"
995 #endif
996 #ifndef RODATA_SECTION_NAME
997 #define RODATA_SECTION_NAME	".rodata"
998 #endif
999 #ifndef RODATA1_SECTION_NAME
1000 #define RODATA1_SECTION_NAME	".rodata1"
1001 #endif
1002 #ifndef BSS_SECTION_NAME
1003 #define BSS_SECTION_NAME	".bss"
1004 #endif
1005 
1006 /* Definitions of defaults for formats and names of various special
1007    (artificial) labels which may be generated within this file (when
1008    the -g options is used and DWARF_DEBUGGING_INFO is in effect.
1009 
1010    If necessary, these may be overridden from within your tm.h file,
1011    but typically, you should never need to override these.
1012 
1013    These labels have been hacked (temporarily) so that they all begin with
1014    a `.L' sequence so as to appease the stock sparc/svr4 assembler and the
1015    stock m88k/svr4 assembler, both of which need to see .L at the start of
1016    a label in order to prevent that label from going into the linker symbol
1017    table).  When I get time, I'll have to fix this the right way so that we
1018    will use ASM_GENERATE_INTERNAL_LABEL and ASM_OUTPUT_INTERNAL_LABEL herein,
1019    but that will require a rather massive set of changes.  For the moment,
1020    the following definitions out to produce the right results for all svr4
1021    and svr3 assemblers. -- rfg
1022 */
1023 
1024 #ifndef TEXT_BEGIN_LABEL
1025 #define TEXT_BEGIN_LABEL	"*.L_text_b"
1026 #endif
1027 #ifndef TEXT_END_LABEL
1028 #define TEXT_END_LABEL		"*.L_text_e"
1029 #endif
1030 
1031 #ifndef DATA_BEGIN_LABEL
1032 #define DATA_BEGIN_LABEL	"*.L_data_b"
1033 #endif
1034 #ifndef DATA_END_LABEL
1035 #define DATA_END_LABEL		"*.L_data_e"
1036 #endif
1037 
1038 #ifndef DATA1_BEGIN_LABEL
1039 #define DATA1_BEGIN_LABEL	"*.L_data1_b"
1040 #endif
1041 #ifndef DATA1_END_LABEL
1042 #define DATA1_END_LABEL		"*.L_data1_e"
1043 #endif
1044 
1045 #ifndef RODATA_BEGIN_LABEL
1046 #define RODATA_BEGIN_LABEL	"*.L_rodata_b"
1047 #endif
1048 #ifndef RODATA_END_LABEL
1049 #define RODATA_END_LABEL	"*.L_rodata_e"
1050 #endif
1051 
1052 #ifndef RODATA1_BEGIN_LABEL
1053 #define RODATA1_BEGIN_LABEL	"*.L_rodata1_b"
1054 #endif
1055 #ifndef RODATA1_END_LABEL
1056 #define RODATA1_END_LABEL	"*.L_rodata1_e"
1057 #endif
1058 
1059 #ifndef BSS_BEGIN_LABEL
1060 #define BSS_BEGIN_LABEL		"*.L_bss_b"
1061 #endif
1062 #ifndef BSS_END_LABEL
1063 #define BSS_END_LABEL		"*.L_bss_e"
1064 #endif
1065 
1066 #ifndef LINE_BEGIN_LABEL
1067 #define LINE_BEGIN_LABEL	"*.L_line_b"
1068 #endif
1069 #ifndef LINE_LAST_ENTRY_LABEL
1070 #define LINE_LAST_ENTRY_LABEL	"*.L_line_last"
1071 #endif
1072 #ifndef LINE_END_LABEL
1073 #define LINE_END_LABEL		"*.L_line_e"
1074 #endif
1075 
1076 #ifndef DEBUG_BEGIN_LABEL
1077 #define DEBUG_BEGIN_LABEL	"*.L_debug_b"
1078 #endif
1079 #ifndef SFNAMES_BEGIN_LABEL
1080 #define SFNAMES_BEGIN_LABEL	"*.L_sfnames_b"
1081 #endif
1082 #ifndef SRCINFO_BEGIN_LABEL
1083 #define SRCINFO_BEGIN_LABEL	"*.L_srcinfo_b"
1084 #endif
1085 #ifndef MACINFO_BEGIN_LABEL
1086 #define MACINFO_BEGIN_LABEL	"*.L_macinfo_b"
1087 #endif
1088 
1089 #ifndef DEBUG_ARANGES_BEGIN_LABEL
1090 #define DEBUG_ARANGES_BEGIN_LABEL "*.L_debug_aranges_begin"
1091 #endif
1092 #ifndef DEBUG_ARANGES_END_LABEL
1093 #define DEBUG_ARANGES_END_LABEL "*.L_debug_aranges_end"
1094 #endif
1095 
1096 #ifndef DIE_BEGIN_LABEL_FMT
1097 #define DIE_BEGIN_LABEL_FMT	"*.L_D%u"
1098 #endif
1099 #ifndef DIE_END_LABEL_FMT
1100 #define DIE_END_LABEL_FMT	"*.L_D%u_e"
1101 #endif
1102 #ifndef PUB_DIE_LABEL_FMT
1103 #define PUB_DIE_LABEL_FMT	"*.L_P%u"
1104 #endif
1105 #ifndef BLOCK_BEGIN_LABEL_FMT
1106 #define BLOCK_BEGIN_LABEL_FMT	"*.L_B%u"
1107 #endif
1108 #ifndef BLOCK_END_LABEL_FMT
1109 #define BLOCK_END_LABEL_FMT	"*.L_B%u_e"
1110 #endif
1111 #ifndef SS_BEGIN_LABEL_FMT
1112 #define SS_BEGIN_LABEL_FMT	"*.L_s%u"
1113 #endif
1114 #ifndef SS_END_LABEL_FMT
1115 #define SS_END_LABEL_FMT	"*.L_s%u_e"
1116 #endif
1117 #ifndef EE_BEGIN_LABEL_FMT
1118 #define EE_BEGIN_LABEL_FMT	"*.L_e%u"
1119 #endif
1120 #ifndef EE_END_LABEL_FMT
1121 #define EE_END_LABEL_FMT	"*.L_e%u_e"
1122 #endif
1123 #ifndef MT_BEGIN_LABEL_FMT
1124 #define MT_BEGIN_LABEL_FMT	"*.L_t%u"
1125 #endif
1126 #ifndef MT_END_LABEL_FMT
1127 #define MT_END_LABEL_FMT	"*.L_t%u_e"
1128 #endif
1129 #ifndef LOC_BEGIN_LABEL_FMT
1130 #define LOC_BEGIN_LABEL_FMT	"*.L_l%u"
1131 #endif
1132 #ifndef LOC_END_LABEL_FMT
1133 #define LOC_END_LABEL_FMT	"*.L_l%u_e"
1134 #endif
1135 #ifndef BOUND_BEGIN_LABEL_FMT
1136 #define BOUND_BEGIN_LABEL_FMT	"*.L_b%u_%u_%c"
1137 #endif
1138 #ifndef BOUND_END_LABEL_FMT
1139 #define BOUND_END_LABEL_FMT	"*.L_b%u_%u_%c_e"
1140 #endif
1141 #ifndef BODY_BEGIN_LABEL_FMT
1142 #define BODY_BEGIN_LABEL_FMT	"*.L_b%u"
1143 #endif
1144 #ifndef BODY_END_LABEL_FMT
1145 #define BODY_END_LABEL_FMT	"*.L_b%u_e"
1146 #endif
1147 #ifndef FUNC_END_LABEL_FMT
1148 #define FUNC_END_LABEL_FMT	"*.L_f%u_e"
1149 #endif
1150 #ifndef TYPE_NAME_FMT
1151 #define TYPE_NAME_FMT		"*.L_T%u"
1152 #endif
1153 #ifndef DECL_NAME_FMT
1154 #define DECL_NAME_FMT		"*.L_E%u"
1155 #endif
1156 #ifndef LINE_CODE_LABEL_FMT
1157 #define LINE_CODE_LABEL_FMT	"*.L_LC%u"
1158 #endif
1159 #ifndef SFNAMES_ENTRY_LABEL_FMT
1160 #define SFNAMES_ENTRY_LABEL_FMT	"*.L_F%u"
1161 #endif
1162 #ifndef LINE_ENTRY_LABEL_FMT
1163 #define LINE_ENTRY_LABEL_FMT	"*.L_LE%u"
1164 #endif
1165 
1166 /* Definitions of defaults for various types of primitive assembly language
1167    output operations.
1168 
1169    If necessary, these may be overridden from within your tm.h file,
1170    but typically, you shouldn't need to override these.  */
1171 
1172 #ifndef ASM_OUTPUT_PUSH_SECTION
1173 #define ASM_OUTPUT_PUSH_SECTION(FILE, SECTION) \
1174   fprintf ((FILE), PUSHSECTION_FORMAT, PUSHSECTION_ASM_OP, SECTION)
1175 #endif
1176 
1177 #ifndef ASM_OUTPUT_POP_SECTION
1178 #define ASM_OUTPUT_POP_SECTION(FILE) \
1179   fprintf ((FILE), "%s\n", POPSECTION_ASM_OP)
1180 #endif
1181 
1182 #ifndef ASM_OUTPUT_DWARF_DELTA2
1183 #define ASM_OUTPUT_DWARF_DELTA2(FILE,LABEL1,LABEL2)			\
1184   dw2_asm_output_delta (2, LABEL1, LABEL2, NULL)
1185 #endif
1186 
1187 #ifndef ASM_OUTPUT_DWARF_DELTA4
1188 #define ASM_OUTPUT_DWARF_DELTA4(FILE,LABEL1,LABEL2)			\
1189   dw2_asm_output_delta (4, LABEL1, LABEL2, NULL)
1190 #endif
1191 
1192 #ifndef ASM_OUTPUT_DWARF_TAG
1193 #define ASM_OUTPUT_DWARF_TAG(FILE,TAG)					\
1194   dw2_asm_output_data (2, TAG, "%s", dwarf_tag_name (TAG));
1195 #endif
1196 
1197 #ifndef ASM_OUTPUT_DWARF_ATTRIBUTE
1198 #define ASM_OUTPUT_DWARF_ATTRIBUTE(FILE,ATTR)				\
1199   dw2_asm_output_data (2, ATTR, "%s", dwarf_attr_name (ATTR))
1200 #endif
1201 
1202 #ifndef ASM_OUTPUT_DWARF_STACK_OP
1203 #define ASM_OUTPUT_DWARF_STACK_OP(FILE,OP)				\
1204   dw2_asm_output_data (1, OP, "%s", dwarf_stack_op_name (OP))
1205 #endif
1206 
1207 #ifndef ASM_OUTPUT_DWARF_FUND_TYPE
1208 #define ASM_OUTPUT_DWARF_FUND_TYPE(FILE,FT)				\
1209   dw2_asm_output_data (2, FT, "%s", dwarf_fund_type_name (FT))
1210 #endif
1211 
1212 #ifndef ASM_OUTPUT_DWARF_FMT_BYTE
1213 #define ASM_OUTPUT_DWARF_FMT_BYTE(FILE,FMT)				\
1214   dw2_asm_output_data (1, FMT, "%s", dwarf_fmt_byte_name (FMT));
1215 #endif
1216 
1217 #ifndef ASM_OUTPUT_DWARF_TYPE_MODIFIER
1218 #define ASM_OUTPUT_DWARF_TYPE_MODIFIER(FILE,MOD)			\
1219   dw2_asm_output_data (1, MOD, "%s", dwarf_typemod_name (MOD));
1220 #endif
1221 
1222 #ifndef ASM_OUTPUT_DWARF_ADDR
1223 #define ASM_OUTPUT_DWARF_ADDR(FILE,LABEL)				\
1224   dw2_asm_output_addr (4, LABEL, NULL)
1225 #endif
1226 
1227 #ifndef ASM_OUTPUT_DWARF_ADDR_CONST
1228 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE,RTX)				\
1229   dw2_asm_output_addr_rtx (4, RTX, NULL)
1230 #endif
1231 
1232 #ifndef ASM_OUTPUT_DWARF_REF
1233 #define ASM_OUTPUT_DWARF_REF(FILE,LABEL)				\
1234   dw2_asm_output_addr (4, LABEL, NULL)
1235 #endif
1236 
1237 #ifndef ASM_OUTPUT_DWARF_DATA1
1238 #define ASM_OUTPUT_DWARF_DATA1(FILE,VALUE) \
1239   dw2_asm_output_data (1, VALUE, NULL)
1240 #endif
1241 
1242 #ifndef ASM_OUTPUT_DWARF_DATA2
1243 #define ASM_OUTPUT_DWARF_DATA2(FILE,VALUE) \
1244   dw2_asm_output_data (2, VALUE, NULL)
1245 #endif
1246 
1247 #ifndef ASM_OUTPUT_DWARF_DATA4
1248 #define ASM_OUTPUT_DWARF_DATA4(FILE,VALUE) \
1249   dw2_asm_output_data (4, VALUE, NULL)
1250 #endif
1251 
1252 #ifndef ASM_OUTPUT_DWARF_DATA8
1253 #define ASM_OUTPUT_DWARF_DATA8(FILE,HIGH_VALUE,LOW_VALUE)		\
1254   dw2_asm_output_data (8, VALUE, NULL)
1255 #endif
1256 
1257 /* ASM_OUTPUT_DWARF_STRING is defined to output an ascii string, but to
1258    NOT issue a trailing newline. We define ASM_OUTPUT_DWARF_STRING_NEWLINE
1259    based on whether ASM_OUTPUT_DWARF_STRING is defined or not. If it is
1260    defined, we call it, then issue the line feed. If not, we supply a
1261    default definition of calling ASM_OUTPUT_ASCII */
1262 
1263 #ifndef ASM_OUTPUT_DWARF_STRING
1264 #define ASM_OUTPUT_DWARF_STRING_NEWLINE(FILE,P) \
1265   ASM_OUTPUT_ASCII ((FILE), P, strlen (P)+1)
1266 #else
1267 #define ASM_OUTPUT_DWARF_STRING_NEWLINE(FILE,P) \
1268   ASM_OUTPUT_DWARF_STRING (FILE,P), ASM_OUTPUT_DWARF_STRING (FILE,"\n")
1269 #endif
1270 
1271 
1272 /* The debug hooks structure.  */
1273 const struct gcc_debug_hooks dwarf_debug_hooks =
1274 {
1275   dwarfout_init,
1276   dwarfout_finish,
1277   dwarfout_define,
1278   dwarfout_undef,
1279   dwarfout_start_source_file_check,
1280   dwarfout_end_source_file_check,
1281   dwarfout_begin_block,
1282   dwarfout_end_block,
1283   debug_true_tree,		/* ignore_block */
1284   dwarfout_source_line,		/* source_line */
1285   dwarfout_source_line,		/* begin_prologue */
1286   dwarfout_end_prologue,
1287   dwarfout_end_epilogue,
1288   debug_nothing_tree,		/* begin_function */
1289   dwarfout_end_function,
1290   dwarfout_function_decl,
1291   dwarfout_global_decl,
1292   dwarfout_deferred_inline_function,
1293   debug_nothing_tree,		/* outlining_inline_function */
1294   debug_nothing_rtx		/* label */
1295 };
1296 
1297 /************************ general utility functions **************************/
1298 
1299 static inline int
is_pseudo_reg(rtl)1300 is_pseudo_reg (rtl)
1301      rtx rtl;
1302 {
1303   return (((GET_CODE (rtl) == REG) && (REGNO (rtl) >= FIRST_PSEUDO_REGISTER))
1304 	  || ((GET_CODE (rtl) == SUBREG)
1305 	      && (REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER)));
1306 }
1307 
1308 static inline tree
type_main_variant(type)1309 type_main_variant (type)
1310      tree type;
1311 {
1312   type = TYPE_MAIN_VARIANT (type);
1313 
1314   /* There really should be only one main variant among any group of variants
1315      of a given type (and all of the MAIN_VARIANT values for all members of
1316      the group should point to that one type) but sometimes the C front-end
1317      messes this up for array types, so we work around that bug here.  */
1318 
1319   if (TREE_CODE (type) == ARRAY_TYPE)
1320     {
1321       while (type != TYPE_MAIN_VARIANT (type))
1322 	type = TYPE_MAIN_VARIANT (type);
1323     }
1324 
1325   return type;
1326 }
1327 
1328 /* Return nonzero if the given type node represents a tagged type.  */
1329 
1330 static inline int
is_tagged_type(type)1331 is_tagged_type (type)
1332      tree type;
1333 {
1334   enum tree_code code = TREE_CODE (type);
1335 
1336   return (code == RECORD_TYPE || code == UNION_TYPE
1337 	  || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
1338 }
1339 
1340 static const char *
dwarf_tag_name(tag)1341 dwarf_tag_name (tag)
1342      unsigned tag;
1343 {
1344   switch (tag)
1345     {
1346     case TAG_padding:			return "TAG_padding";
1347     case TAG_array_type:		return "TAG_array_type";
1348     case TAG_class_type:		return "TAG_class_type";
1349     case TAG_entry_point:		return "TAG_entry_point";
1350     case TAG_enumeration_type:		return "TAG_enumeration_type";
1351     case TAG_formal_parameter:		return "TAG_formal_parameter";
1352     case TAG_global_subroutine:		return "TAG_global_subroutine";
1353     case TAG_global_variable:		return "TAG_global_variable";
1354     case TAG_label:			return "TAG_label";
1355     case TAG_lexical_block:		return "TAG_lexical_block";
1356     case TAG_local_variable:		return "TAG_local_variable";
1357     case TAG_member:			return "TAG_member";
1358     case TAG_pointer_type:		return "TAG_pointer_type";
1359     case TAG_reference_type:		return "TAG_reference_type";
1360     case TAG_compile_unit:		return "TAG_compile_unit";
1361     case TAG_string_type:		return "TAG_string_type";
1362     case TAG_structure_type:		return "TAG_structure_type";
1363     case TAG_subroutine:		return "TAG_subroutine";
1364     case TAG_subroutine_type:		return "TAG_subroutine_type";
1365     case TAG_typedef:			return "TAG_typedef";
1366     case TAG_union_type:		return "TAG_union_type";
1367     case TAG_unspecified_parameters:	return "TAG_unspecified_parameters";
1368     case TAG_variant:			return "TAG_variant";
1369     case TAG_common_block:		return "TAG_common_block";
1370     case TAG_common_inclusion:		return "TAG_common_inclusion";
1371     case TAG_inheritance:		return "TAG_inheritance";
1372     case TAG_inlined_subroutine:	return "TAG_inlined_subroutine";
1373     case TAG_module:			return "TAG_module";
1374     case TAG_ptr_to_member_type:	return "TAG_ptr_to_member_type";
1375     case TAG_set_type:			return "TAG_set_type";
1376     case TAG_subrange_type:		return "TAG_subrange_type";
1377     case TAG_with_stmt:			return "TAG_with_stmt";
1378 
1379     /* GNU extensions.  */
1380 
1381     case TAG_format_label:		return "TAG_format_label";
1382     case TAG_namelist:			return "TAG_namelist";
1383     case TAG_function_template:		return "TAG_function_template";
1384     case TAG_class_template:		return "TAG_class_template";
1385 
1386     default:				return "TAG_<unknown>";
1387     }
1388 }
1389 
1390 static const char *
dwarf_attr_name(attr)1391 dwarf_attr_name (attr)
1392      unsigned attr;
1393 {
1394   switch (attr)
1395     {
1396     case AT_sibling:			return "AT_sibling";
1397     case AT_location:			return "AT_location";
1398     case AT_name:			return "AT_name";
1399     case AT_fund_type:			return "AT_fund_type";
1400     case AT_mod_fund_type:		return "AT_mod_fund_type";
1401     case AT_user_def_type:		return "AT_user_def_type";
1402     case AT_mod_u_d_type:		return "AT_mod_u_d_type";
1403     case AT_ordering:			return "AT_ordering";
1404     case AT_subscr_data:		return "AT_subscr_data";
1405     case AT_byte_size:			return "AT_byte_size";
1406     case AT_bit_offset:			return "AT_bit_offset";
1407     case AT_bit_size:			return "AT_bit_size";
1408     case AT_element_list:		return "AT_element_list";
1409     case AT_stmt_list:			return "AT_stmt_list";
1410     case AT_low_pc:			return "AT_low_pc";
1411     case AT_high_pc:			return "AT_high_pc";
1412     case AT_language:			return "AT_language";
1413     case AT_member:			return "AT_member";
1414     case AT_discr:			return "AT_discr";
1415     case AT_discr_value:		return "AT_discr_value";
1416     case AT_string_length:		return "AT_string_length";
1417     case AT_common_reference:		return "AT_common_reference";
1418     case AT_comp_dir:			return "AT_comp_dir";
1419     case AT_const_value_string:		return "AT_const_value_string";
1420     case AT_const_value_data2:		return "AT_const_value_data2";
1421     case AT_const_value_data4:		return "AT_const_value_data4";
1422     case AT_const_value_data8:		return "AT_const_value_data8";
1423     case AT_const_value_block2:		return "AT_const_value_block2";
1424     case AT_const_value_block4:		return "AT_const_value_block4";
1425     case AT_containing_type:		return "AT_containing_type";
1426     case AT_default_value_addr:		return "AT_default_value_addr";
1427     case AT_default_value_data2:	return "AT_default_value_data2";
1428     case AT_default_value_data4:	return "AT_default_value_data4";
1429     case AT_default_value_data8:	return "AT_default_value_data8";
1430     case AT_default_value_string:	return "AT_default_value_string";
1431     case AT_friends:			return "AT_friends";
1432     case AT_inline:			return "AT_inline";
1433     case AT_is_optional:		return "AT_is_optional";
1434     case AT_lower_bound_ref:		return "AT_lower_bound_ref";
1435     case AT_lower_bound_data2:		return "AT_lower_bound_data2";
1436     case AT_lower_bound_data4:		return "AT_lower_bound_data4";
1437     case AT_lower_bound_data8:		return "AT_lower_bound_data8";
1438     case AT_private:			return "AT_private";
1439     case AT_producer:			return "AT_producer";
1440     case AT_program:			return "AT_program";
1441     case AT_protected:			return "AT_protected";
1442     case AT_prototyped:			return "AT_prototyped";
1443     case AT_public:			return "AT_public";
1444     case AT_pure_virtual:		return "AT_pure_virtual";
1445     case AT_return_addr:		return "AT_return_addr";
1446     case AT_abstract_origin:		return "AT_abstract_origin";
1447     case AT_start_scope:		return "AT_start_scope";
1448     case AT_stride_size:		return "AT_stride_size";
1449     case AT_upper_bound_ref:		return "AT_upper_bound_ref";
1450     case AT_upper_bound_data2:		return "AT_upper_bound_data2";
1451     case AT_upper_bound_data4:		return "AT_upper_bound_data4";
1452     case AT_upper_bound_data8:		return "AT_upper_bound_data8";
1453     case AT_virtual:			return "AT_virtual";
1454 
1455     /* GNU extensions */
1456 
1457     case AT_sf_names:			return "AT_sf_names";
1458     case AT_src_info:			return "AT_src_info";
1459     case AT_mac_info:			return "AT_mac_info";
1460     case AT_src_coords:			return "AT_src_coords";
1461     case AT_body_begin:			return "AT_body_begin";
1462     case AT_body_end:			return "AT_body_end";
1463 
1464     default:				return "AT_<unknown>";
1465     }
1466 }
1467 
1468 static const char *
dwarf_stack_op_name(op)1469 dwarf_stack_op_name (op)
1470      unsigned op;
1471 {
1472   switch (op)
1473     {
1474     case OP_REG:		return "OP_REG";
1475     case OP_BASEREG:		return "OP_BASEREG";
1476     case OP_ADDR:		return "OP_ADDR";
1477     case OP_CONST:		return "OP_CONST";
1478     case OP_DEREF2:		return "OP_DEREF2";
1479     case OP_DEREF4:		return "OP_DEREF4";
1480     case OP_ADD:		return "OP_ADD";
1481     default:			return "OP_<unknown>";
1482     }
1483 }
1484 
1485 static const char *
dwarf_typemod_name(mod)1486 dwarf_typemod_name (mod)
1487      unsigned mod;
1488 {
1489   switch (mod)
1490     {
1491     case MOD_pointer_to:	return "MOD_pointer_to";
1492     case MOD_reference_to:	return "MOD_reference_to";
1493     case MOD_const:		return "MOD_const";
1494     case MOD_volatile:		return "MOD_volatile";
1495     default:			return "MOD_<unknown>";
1496     }
1497 }
1498 
1499 static const char *
dwarf_fmt_byte_name(fmt)1500 dwarf_fmt_byte_name (fmt)
1501      unsigned fmt;
1502 {
1503   switch (fmt)
1504     {
1505     case FMT_FT_C_C:	return "FMT_FT_C_C";
1506     case FMT_FT_C_X:	return "FMT_FT_C_X";
1507     case FMT_FT_X_C:	return "FMT_FT_X_C";
1508     case FMT_FT_X_X:	return "FMT_FT_X_X";
1509     case FMT_UT_C_C:	return "FMT_UT_C_C";
1510     case FMT_UT_C_X:	return "FMT_UT_C_X";
1511     case FMT_UT_X_C:	return "FMT_UT_X_C";
1512     case FMT_UT_X_X:	return "FMT_UT_X_X";
1513     case FMT_ET:	return "FMT_ET";
1514     default:		return "FMT_<unknown>";
1515     }
1516 }
1517 
1518 static const char *
dwarf_fund_type_name(ft)1519 dwarf_fund_type_name (ft)
1520      unsigned ft;
1521 {
1522   switch (ft)
1523     {
1524     case FT_char:		return "FT_char";
1525     case FT_signed_char:	return "FT_signed_char";
1526     case FT_unsigned_char:	return "FT_unsigned_char";
1527     case FT_short:		return "FT_short";
1528     case FT_signed_short:	return "FT_signed_short";
1529     case FT_unsigned_short:	return "FT_unsigned_short";
1530     case FT_integer:		return "FT_integer";
1531     case FT_signed_integer:	return "FT_signed_integer";
1532     case FT_unsigned_integer:	return "FT_unsigned_integer";
1533     case FT_long:		return "FT_long";
1534     case FT_signed_long:	return "FT_signed_long";
1535     case FT_unsigned_long:	return "FT_unsigned_long";
1536     case FT_pointer:		return "FT_pointer";
1537     case FT_float:		return "FT_float";
1538     case FT_dbl_prec_float:	return "FT_dbl_prec_float";
1539     case FT_ext_prec_float:	return "FT_ext_prec_float";
1540     case FT_complex:		return "FT_complex";
1541     case FT_dbl_prec_complex:	return "FT_dbl_prec_complex";
1542     case FT_void:		return "FT_void";
1543     case FT_boolean:		return "FT_boolean";
1544     case FT_ext_prec_complex:	return "FT_ext_prec_complex";
1545     case FT_label:		return "FT_label";
1546 
1547     /* GNU extensions.  */
1548 
1549     case FT_long_long:		return "FT_long_long";
1550     case FT_signed_long_long:	return "FT_signed_long_long";
1551     case FT_unsigned_long_long: return "FT_unsigned_long_long";
1552 
1553     case FT_int8:		return "FT_int8";
1554     case FT_signed_int8:	return "FT_signed_int8";
1555     case FT_unsigned_int8:	return "FT_unsigned_int8";
1556     case FT_int16:		return "FT_int16";
1557     case FT_signed_int16:	return "FT_signed_int16";
1558     case FT_unsigned_int16:	return "FT_unsigned_int16";
1559     case FT_int32:		return "FT_int32";
1560     case FT_signed_int32:	return "FT_signed_int32";
1561     case FT_unsigned_int32:	return "FT_unsigned_int32";
1562     case FT_int64:		return "FT_int64";
1563     case FT_signed_int64:	return "FT_signed_int64";
1564     case FT_unsigned_int64:	return "FT_unsigned_int64";
1565     case FT_int128:		return "FT_int128";
1566     case FT_signed_int128:	return "FT_signed_int128";
1567     case FT_unsigned_int128:	return "FT_unsigned_int128";
1568 
1569     case FT_real32:		return "FT_real32";
1570     case FT_real64:		return "FT_real64";
1571     case FT_real96:		return "FT_real96";
1572     case FT_real128:		return "FT_real128";
1573 
1574     default:			return "FT_<unknown>";
1575     }
1576 }
1577 
1578 /* Determine the "ultimate origin" of a decl.  The decl may be an
1579    inlined instance of an inlined instance of a decl which is local
1580    to an inline function, so we have to trace all of the way back
1581    through the origin chain to find out what sort of node actually
1582    served as the original seed for the given block.  */
1583 
1584 static tree
decl_ultimate_origin(decl)1585 decl_ultimate_origin (decl)
1586      tree decl;
1587 {
1588 #ifdef ENABLE_CHECKING
1589   if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
1590     /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
1591        most distant ancestor, this should never happen.  */
1592     abort ();
1593 #endif
1594 
1595   return DECL_ABSTRACT_ORIGIN (decl);
1596 }
1597 
1598 /* Determine the "ultimate origin" of a block.  The block may be an
1599    inlined instance of an inlined instance of a block which is local
1600    to an inline function, so we have to trace all of the way back
1601    through the origin chain to find out what sort of node actually
1602    served as the original seed for the given block.  */
1603 
1604 static tree
block_ultimate_origin(block)1605 block_ultimate_origin (block)
1606      tree block;
1607 {
1608   tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
1609 
1610   if (immediate_origin == NULL)
1611     return NULL;
1612   else
1613     {
1614       tree ret_val;
1615       tree lookahead = immediate_origin;
1616 
1617       do
1618 	{
1619 	  ret_val = lookahead;
1620 	  lookahead = (TREE_CODE (ret_val) == BLOCK)
1621 		       ? BLOCK_ABSTRACT_ORIGIN (ret_val)
1622 		       : NULL;
1623 	}
1624       while (lookahead != NULL && lookahead != ret_val);
1625       return ret_val;
1626     }
1627 }
1628 
1629 /* Get the class to which DECL belongs, if any.  In g++, the DECL_CONTEXT
1630    of a virtual function may refer to a base class, so we check the 'this'
1631    parameter.  */
1632 
1633 static tree
decl_class_context(decl)1634 decl_class_context (decl)
1635      tree decl;
1636 {
1637   tree context = NULL_TREE;
1638   if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
1639     context = DECL_CONTEXT (decl);
1640   else
1641     context = TYPE_MAIN_VARIANT
1642       (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
1643 
1644   if (context && !TYPE_P (context))
1645     context = NULL_TREE;
1646 
1647   return context;
1648 }
1649 
1650 #if 0
1651 static void
1652 output_unsigned_leb128 (value)
1653      unsigned long value;
1654 {
1655   unsigned long orig_value = value;
1656 
1657   do
1658     {
1659       unsigned byte = (value & 0x7f);
1660 
1661       value >>= 7;
1662       if (value != 0)	/* more bytes to follow */
1663 	byte |= 0x80;
1664       dw2_asm_output_data (1, byte, "\t%s ULEB128 number - value = %lu",
1665 			   orig_value);
1666     }
1667   while (value != 0);
1668 }
1669 
1670 static void
1671 output_signed_leb128 (value)
1672      long value;
1673 {
1674   long orig_value = value;
1675   int negative = (value < 0);
1676   int more;
1677 
1678   do
1679     {
1680       unsigned byte = (value & 0x7f);
1681 
1682       value >>= 7;
1683       if (negative)
1684 	value |= 0xfe000000;  /* manually sign extend */
1685       if (((value == 0) && ((byte & 0x40) == 0))
1686 	  || ((value == -1) && ((byte & 0x40) == 1)))
1687 	more = 0;
1688       else
1689 	{
1690 	  byte |= 0x80;
1691 	  more = 1;
1692 	}
1693       dw2_asm_output_data (1, byte, "\t%s SLEB128 number - value = %ld",
1694 			   orig_value);
1695     }
1696   while (more);
1697 }
1698 #endif
1699 
1700 /**************** utility functions for attribute functions ******************/
1701 
1702 /* Given a pointer to a tree node for some type, return a Dwarf fundamental
1703    type code for the given type.
1704 
1705    This routine must only be called for GCC type nodes that correspond to
1706    Dwarf fundamental types.
1707 
1708    The current Dwarf draft specification calls for Dwarf fundamental types
1709    to accurately reflect the fact that a given type was either a "plain"
1710    integral type or an explicitly "signed" integral type.  Unfortunately,
1711    we can't always do this, because GCC may already have thrown away the
1712    information about the precise way in which the type was originally
1713    specified, as in:
1714 
1715 	typedef signed int my_type;
1716 
1717 	struct s { my_type f; };
1718 
1719    Since we may be stuck here without enough information to do exactly
1720    what is called for in the Dwarf draft specification, we do the best
1721    that we can under the circumstances and always use the "plain" integral
1722    fundamental type codes for int, short, and long types.  That's probably
1723    good enough.  The additional accuracy called for in the current DWARF
1724    draft specification is probably never even useful in practice.  */
1725 
1726 static int
fundamental_type_code(type)1727 fundamental_type_code (type)
1728      tree type;
1729 {
1730   if (TREE_CODE (type) == ERROR_MARK)
1731     return 0;
1732 
1733   switch (TREE_CODE (type))
1734     {
1735       case ERROR_MARK:
1736 	return FT_void;
1737 
1738       case VOID_TYPE:
1739 	return FT_void;
1740 
1741       case INTEGER_TYPE:
1742 	/* Carefully distinguish all the standard types of C,
1743 	   without messing up if the language is not C.
1744 	   Note that we check only for the names that contain spaces;
1745 	   other names might occur by coincidence in other languages.  */
1746 	if (TYPE_NAME (type) != 0
1747 	    && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1748 	    && DECL_NAME (TYPE_NAME (type)) != 0
1749 	    && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1750 	  {
1751 	    const char *const name =
1752 	      IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1753 
1754 	    if (!strcmp (name, "unsigned char"))
1755 	      return FT_unsigned_char;
1756 	    if (!strcmp (name, "signed char"))
1757 	      return FT_signed_char;
1758 	    if (!strcmp (name, "unsigned int"))
1759 	      return FT_unsigned_integer;
1760 	    if (!strcmp (name, "short int"))
1761 	      return FT_short;
1762 	    if (!strcmp (name, "short unsigned int"))
1763 	      return FT_unsigned_short;
1764 	    if (!strcmp (name, "long int"))
1765 	      return FT_long;
1766 	    if (!strcmp (name, "long unsigned int"))
1767 	      return FT_unsigned_long;
1768 	    if (!strcmp (name, "long long int"))
1769 	      return FT_long_long;		/* Not grok'ed by svr4 SDB */
1770 	    if (!strcmp (name, "long long unsigned int"))
1771 	      return FT_unsigned_long_long;	/* Not grok'ed by svr4 SDB */
1772 	  }
1773 
1774 	/* Most integer types will be sorted out above, however, for the
1775 	   sake of special `array index' integer types, the following code
1776 	   is also provided.  */
1777 
1778 	if (TYPE_PRECISION (type) == INT_TYPE_SIZE)
1779 	  return (TREE_UNSIGNED (type) ? FT_unsigned_integer : FT_integer);
1780 
1781 	if (TYPE_PRECISION (type) == LONG_TYPE_SIZE)
1782 	  return (TREE_UNSIGNED (type) ? FT_unsigned_long : FT_long);
1783 
1784 	if (TYPE_PRECISION (type) == LONG_LONG_TYPE_SIZE)
1785 	  return (TREE_UNSIGNED (type) ? FT_unsigned_long_long : FT_long_long);
1786 
1787 	if (TYPE_PRECISION (type) == SHORT_TYPE_SIZE)
1788 	  return (TREE_UNSIGNED (type) ? FT_unsigned_short : FT_short);
1789 
1790 	if (TYPE_PRECISION (type) == CHAR_TYPE_SIZE)
1791 	  return (TREE_UNSIGNED (type) ? FT_unsigned_char : FT_char);
1792 
1793 	if (TYPE_MODE (type) == TImode)
1794 	  return (TREE_UNSIGNED (type) ? FT_unsigned_int128 : FT_int128);
1795 
1796 	/* In C++, __java_boolean is an INTEGER_TYPE with precision == 1 */
1797 	if (TYPE_PRECISION (type) == 1)
1798 	  return FT_boolean;
1799 
1800 	abort ();
1801 
1802       case REAL_TYPE:
1803 	/* Carefully distinguish all the standard types of C,
1804 	   without messing up if the language is not C.  */
1805 	if (TYPE_NAME (type) != 0
1806 	    && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1807 	    && DECL_NAME (TYPE_NAME (type)) != 0
1808 	    && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1809 	  {
1810 	    const char *const name =
1811 	      IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1812 
1813 	    /* Note that here we can run afoul of a serious bug in "classic"
1814 	       svr4 SDB debuggers.  They don't seem to understand the
1815 	       FT_ext_prec_float type (even though they should).  */
1816 
1817 	    if (!strcmp (name, "long double"))
1818 	      return FT_ext_prec_float;
1819 	  }
1820 
1821 	if (TYPE_PRECISION (type) == DOUBLE_TYPE_SIZE)
1822 	  {
1823 	    /* On the SH, when compiling with -m3e or -m4-single-only, both
1824 	       float and double are 32 bits.  But since the debugger doesn't
1825 	       know about the subtarget, it always thinks double is 64 bits.
1826 	       So we have to tell the debugger that the type is float to
1827 	       make the output of the 'print' command etc. readable.  */
1828 	    if (DOUBLE_TYPE_SIZE == FLOAT_TYPE_SIZE && FLOAT_TYPE_SIZE == 32)
1829 	      return FT_float;
1830 	    return FT_dbl_prec_float;
1831 	  }
1832 	if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE)
1833 	  return FT_float;
1834 
1835 	/* Note that here we can run afoul of a serious bug in "classic"
1836 	   svr4 SDB debuggers.  They don't seem to understand the
1837 	   FT_ext_prec_float type (even though they should).  */
1838 
1839 	if (TYPE_PRECISION (type) == LONG_DOUBLE_TYPE_SIZE)
1840 	  return FT_ext_prec_float;
1841 	abort ();
1842 
1843       case COMPLEX_TYPE:
1844 	return FT_complex;	/* GNU FORTRAN COMPLEX type.  */
1845 
1846       case CHAR_TYPE:
1847 	return FT_char;		/* GNU Pascal CHAR type.  Not used in C.  */
1848 
1849       case BOOLEAN_TYPE:
1850 	return FT_boolean;	/* GNU FORTRAN BOOLEAN type.  */
1851 
1852       default:
1853 	abort ();	/* No other TREE_CODEs are Dwarf fundamental types.  */
1854     }
1855   return 0;
1856 }
1857 
1858 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
1859    the Dwarf "root" type for the given input type.  The Dwarf "root" type
1860    of a given type is generally the same as the given type, except that if
1861    the	given type is a pointer or reference type, then the root type of
1862    the given type is the root type of the "basis" type for the pointer or
1863    reference type.  (This definition of the "root" type is recursive.)
1864    Also, the root type of a `const' qualified type or a `volatile'
1865    qualified type is the root type of the given type without the
1866    qualifiers.  */
1867 
1868 static tree
root_type_1(type,count)1869 root_type_1 (type, count)
1870      tree type;
1871      int count;
1872 {
1873   /* Give up after searching 1000 levels, in case this is a recursive
1874      pointer type.  Such types are possible in Ada, but it is not possible
1875      to represent them in DWARF1 debug info.  */
1876   if (count > 1000)
1877     return error_mark_node;
1878 
1879   switch (TREE_CODE (type))
1880     {
1881       case ERROR_MARK:
1882 	return error_mark_node;
1883 
1884       case POINTER_TYPE:
1885       case REFERENCE_TYPE:
1886 	return root_type_1 (TREE_TYPE (type), count+1);
1887 
1888       default:
1889 	return type;
1890     }
1891 }
1892 
1893 static tree
root_type(type)1894 root_type (type)
1895      tree type;
1896 {
1897   type = root_type_1 (type, 0);
1898   if (type != error_mark_node)
1899     type = type_main_variant (type);
1900   return type;
1901 }
1902 
1903 /* Given a pointer to an arbitrary ..._TYPE tree node, write out a sequence
1904    of zero or more Dwarf "type-modifier" bytes applicable to the type.	*/
1905 
1906 static void
write_modifier_bytes_1(type,decl_const,decl_volatile,count)1907 write_modifier_bytes_1 (type, decl_const, decl_volatile, count)
1908      tree type;
1909      int decl_const;
1910      int decl_volatile;
1911      int count;
1912 {
1913   if (TREE_CODE (type) == ERROR_MARK)
1914     return;
1915 
1916   /* Give up after searching 1000 levels, in case this is a recursive
1917      pointer type.  Such types are possible in Ada, but it is not possible
1918      to represent them in DWARF1 debug info.  */
1919   if (count > 1000)
1920     return;
1921 
1922   if (TYPE_READONLY (type) || decl_const)
1923     ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_const);
1924   if (TYPE_VOLATILE (type) || decl_volatile)
1925     ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_volatile);
1926   switch (TREE_CODE (type))
1927     {
1928       case POINTER_TYPE:
1929 	ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_pointer_to);
1930 	write_modifier_bytes_1 (TREE_TYPE (type), 0, 0, count+1);
1931 	return;
1932 
1933       case REFERENCE_TYPE:
1934 	ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_reference_to);
1935 	write_modifier_bytes_1 (TREE_TYPE (type), 0, 0, count+1);
1936 	return;
1937 
1938       case ERROR_MARK:
1939       default:
1940 	return;
1941     }
1942 }
1943 
1944 static void
write_modifier_bytes(type,decl_const,decl_volatile)1945 write_modifier_bytes (type, decl_const, decl_volatile)
1946      tree type;
1947      int decl_const;
1948      int decl_volatile;
1949 {
1950   write_modifier_bytes_1 (type, decl_const, decl_volatile, 0);
1951 }
1952 
1953 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
1954    given input type is a Dwarf "fundamental" type.  Otherwise return zero.  */
1955 
1956 static inline int
type_is_fundamental(type)1957 type_is_fundamental (type)
1958      tree type;
1959 {
1960   switch (TREE_CODE (type))
1961     {
1962       case ERROR_MARK:
1963       case VOID_TYPE:
1964       case INTEGER_TYPE:
1965       case REAL_TYPE:
1966       case COMPLEX_TYPE:
1967       case BOOLEAN_TYPE:
1968       case CHAR_TYPE:
1969 	return 1;
1970 
1971       case SET_TYPE:
1972       case ARRAY_TYPE:
1973       case RECORD_TYPE:
1974       case UNION_TYPE:
1975       case QUAL_UNION_TYPE:
1976       case ENUMERAL_TYPE:
1977       case FUNCTION_TYPE:
1978       case METHOD_TYPE:
1979       case POINTER_TYPE:
1980       case REFERENCE_TYPE:
1981       case FILE_TYPE:
1982       case OFFSET_TYPE:
1983       case LANG_TYPE:
1984       case VECTOR_TYPE:
1985 	return 0;
1986 
1987       default:
1988 	abort ();
1989     }
1990   return 0;
1991 }
1992 
1993 /* Given a pointer to some ..._DECL tree node, generate an assembly language
1994    equate directive which will associate a symbolic name with the current DIE.
1995 
1996    The name used is an artificial label generated from the DECL_UID number
1997    associated with the given decl node.  The name it gets equated to is the
1998    symbolic label that we (previously) output at the start of the DIE that
1999    we are currently generating.
2000 
2001    Calling this function while generating some "decl related" form of DIE
2002    makes it possible to later refer to the DIE which represents the given
2003    decl simply by re-generating the symbolic name from the ..._DECL node's
2004    UID number.	*/
2005 
2006 static void
equate_decl_number_to_die_number(decl)2007 equate_decl_number_to_die_number (decl)
2008      tree decl;
2009 {
2010   /* In the case where we are generating a DIE for some ..._DECL node
2011      which represents either some inline function declaration or some
2012      entity declared within an inline function declaration/definition,
2013      setup a symbolic name for the current DIE so that we have a name
2014      for this DIE that we can easily refer to later on within
2015      AT_abstract_origin attributes.  */
2016 
2017   char decl_label[MAX_ARTIFICIAL_LABEL_BYTES];
2018   char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
2019 
2020   sprintf (decl_label, DECL_NAME_FMT, DECL_UID (decl));
2021   sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
2022   ASM_OUTPUT_DEF (asm_out_file, decl_label, die_label);
2023 }
2024 
2025 /* Given a pointer to some ..._TYPE tree node, generate an assembly language
2026    equate directive which will associate a symbolic name with the current DIE.
2027 
2028    The name used is an artificial label generated from the TYPE_UID number
2029    associated with the given type node.  The name it gets equated to is the
2030    symbolic label that we (previously) output at the start of the DIE that
2031    we are currently generating.
2032 
2033    Calling this function while generating some "type related" form of DIE
2034    makes it easy to later refer to the DIE which represents the given type
2035    simply by re-generating the alternative name from the ..._TYPE node's
2036    UID number.	*/
2037 
2038 static inline void
equate_type_number_to_die_number(type)2039 equate_type_number_to_die_number (type)
2040      tree type;
2041 {
2042   char type_label[MAX_ARTIFICIAL_LABEL_BYTES];
2043   char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
2044 
2045   /* We are generating a DIE to represent the main variant of this type
2046      (i.e the type without any const or volatile qualifiers) so in order
2047      to get the equate to come out right, we need to get the main variant
2048      itself here.  */
2049 
2050   type = type_main_variant (type);
2051 
2052   sprintf (type_label, TYPE_NAME_FMT, TYPE_UID (type));
2053   sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
2054   ASM_OUTPUT_DEF (asm_out_file, type_label, die_label);
2055 }
2056 
2057 static void
output_reg_number(rtl)2058 output_reg_number (rtl)
2059      rtx rtl;
2060 {
2061   unsigned regno = REGNO (rtl);
2062 
2063   if (regno >= DWARF_FRAME_REGISTERS)
2064     {
2065       warning_with_decl (dwarf_last_decl,
2066 			 "internal regno botch: `%s' has regno = %d\n",
2067 			 regno);
2068       regno = 0;
2069     }
2070   dw2_assemble_integer (4, GEN_INT (DBX_REGISTER_NUMBER (regno)));
2071   if (flag_debug_asm)
2072     {
2073       fprintf (asm_out_file, "\t%s ", ASM_COMMENT_START);
2074       PRINT_REG (rtl, 0, asm_out_file);
2075     }
2076   fputc ('\n', asm_out_file);
2077 }
2078 
2079 /* The following routine is a nice and simple transducer.  It converts the
2080    RTL for a variable or parameter (resident in memory) into an equivalent
2081    Dwarf representation of a mechanism for getting the address of that same
2082    variable onto the top of a hypothetical "address evaluation" stack.
2083 
2084    When creating memory location descriptors, we are effectively trans-
2085    forming the RTL for a memory-resident object into its Dwarf postfix
2086    expression equivalent.  This routine just recursively descends an
2087    RTL tree, turning it into Dwarf postfix code as it goes.  */
2088 
2089 static void
output_mem_loc_descriptor(rtl)2090 output_mem_loc_descriptor (rtl)
2091      rtx rtl;
2092 {
2093   /* Note that for a dynamically sized array, the location we will
2094      generate a description of here will be the lowest numbered location
2095      which is actually within the array.  That's *not* necessarily the
2096      same as the zeroth element of the array.  */
2097 
2098 #ifdef ASM_SIMPLIFY_DWARF_ADDR
2099   rtl = ASM_SIMPLIFY_DWARF_ADDR (rtl);
2100 #endif
2101 
2102   switch (GET_CODE (rtl))
2103     {
2104       case SUBREG:
2105 
2106 	/* The case of a subreg may arise when we have a local (register)
2107 	   variable or a formal (register) parameter which doesn't quite
2108 	   fill up an entire register.	For now, just assume that it is
2109 	   legitimate to make the Dwarf info refer to the whole register
2110 	   which contains the given subreg.  */
2111 
2112 	rtl = SUBREG_REG (rtl);
2113 	/* Drop thru.  */
2114 
2115       case REG:
2116 
2117 	/* Whenever a register number forms a part of the description of
2118 	   the method for calculating the (dynamic) address of a memory
2119 	   resident object, DWARF rules require the register number to
2120 	   be referred to as a "base register".  This distinction is not
2121 	   based in any way upon what category of register the hardware
2122 	   believes the given register belongs to.  This is strictly
2123 	   DWARF terminology we're dealing with here.
2124 
2125 	   Note that in cases where the location of a memory-resident data
2126 	   object could be expressed as:
2127 
2128 		    OP_ADD (OP_BASEREG (basereg), OP_CONST (0))
2129 
2130 	   the actual DWARF location descriptor that we generate may just
2131 	   be OP_BASEREG (basereg).  This may look deceptively like the
2132 	   object in question was allocated to a register (rather than
2133 	   in memory) so DWARF consumers need to be aware of the subtle
2134 	   distinction between OP_REG and OP_BASEREG.  */
2135 
2136 	ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_BASEREG);
2137 	output_reg_number (rtl);
2138 	break;
2139 
2140       case MEM:
2141 	output_mem_loc_descriptor (XEXP (rtl, 0));
2142 	ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_DEREF4);
2143 	break;
2144 
2145       case CONST:
2146       case SYMBOL_REF:
2147 	ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADDR);
2148 	ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
2149 	break;
2150 
2151       case PLUS:
2152 	output_mem_loc_descriptor (XEXP (rtl, 0));
2153 	output_mem_loc_descriptor (XEXP (rtl, 1));
2154 	ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
2155 	break;
2156 
2157       case CONST_INT:
2158 	ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
2159 	ASM_OUTPUT_DWARF_DATA4 (asm_out_file, INTVAL (rtl));
2160 	break;
2161 
2162       case MULT:
2163 	/* If a pseudo-reg is optimized away, it is possible for it to
2164 	   be replaced with a MEM containing a multiply.  Use a GNU extension
2165 	   to describe it.  */
2166 	output_mem_loc_descriptor (XEXP (rtl, 0));
2167 	output_mem_loc_descriptor (XEXP (rtl, 1));
2168 	ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_MULT);
2169 	break;
2170 
2171       default:
2172 	abort ();
2173     }
2174 }
2175 
2176 /* Output a proper Dwarf location descriptor for a variable or parameter
2177    which is either allocated in a register or in a memory location.  For
2178    a register, we just generate an OP_REG and the register number.  For a
2179    memory location we provide a Dwarf postfix expression describing how to
2180    generate the (dynamic) address of the object onto the address stack.  */
2181 
2182 static void
output_loc_descriptor(rtl)2183 output_loc_descriptor (rtl)
2184      rtx rtl;
2185 {
2186   switch (GET_CODE (rtl))
2187     {
2188     case SUBREG:
2189 
2190 	/* The case of a subreg may arise when we have a local (register)
2191 	   variable or a formal (register) parameter which doesn't quite
2192 	   fill up an entire register.	For now, just assume that it is
2193 	   legitimate to make the Dwarf info refer to the whole register
2194 	   which contains the given subreg.  */
2195 
2196 	rtl = SUBREG_REG (rtl);
2197 	/* Drop thru.  */
2198 
2199     case REG:
2200 	ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_REG);
2201 	output_reg_number (rtl);
2202 	break;
2203 
2204     case MEM:
2205       output_mem_loc_descriptor (XEXP (rtl, 0));
2206       break;
2207 
2208     default:
2209       abort ();		/* Should never happen */
2210     }
2211 }
2212 
2213 /* Given a tree node describing an array bound (either lower or upper)
2214    output a representation for that bound.  */
2215 
2216 static void
output_bound_representation(bound,dim_num,u_or_l)2217 output_bound_representation (bound, dim_num, u_or_l)
2218      tree bound;
2219      unsigned dim_num; /* For multi-dimensional arrays.  */
2220      char u_or_l;	/* Designates upper or lower bound.  */
2221 {
2222   switch (TREE_CODE (bound))
2223     {
2224 
2225     case ERROR_MARK:
2226       return;
2227 
2228       /* All fixed-bounds are represented by INTEGER_CST nodes.	 */
2229 
2230     case INTEGER_CST:
2231       if (host_integerp (bound, 0))
2232 	ASM_OUTPUT_DWARF_DATA4 (asm_out_file, tree_low_cst (bound, 0));
2233       break;
2234 
2235     default:
2236 
2237       /* Dynamic bounds may be represented by NOP_EXPR nodes containing
2238 	 SAVE_EXPR nodes, in which case we can do something, or as
2239 	 an expression, which we cannot represent.  */
2240       {
2241 	char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2242 	char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2243 
2244 	sprintf (begin_label, BOUND_BEGIN_LABEL_FMT,
2245 		 current_dienum, dim_num, u_or_l);
2246 
2247 	sprintf (end_label, BOUND_END_LABEL_FMT,
2248 		 current_dienum, dim_num, u_or_l);
2249 
2250 	ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2251 	ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2252 
2253 	/* If optimization is turned on, the SAVE_EXPRs that describe
2254 	   how to access the upper bound values are essentially bogus.
2255 	   They only describe (at best) how to get at these values at
2256 	   the points in the generated code right after they have just
2257 	   been computed.  Worse yet, in the typical case, the upper
2258 	   bound values will not even *be* computed in the optimized
2259 	   code, so these SAVE_EXPRs are entirely bogus.
2260 
2261 	   In order to compensate for this fact, we check here to see
2262 	   if optimization is enabled, and if so, we effectively create
2263 	   an empty location description for the (unknown and unknowable)
2264 	   upper bound.
2265 
2266 	   This should not cause too much trouble for existing (stupid?)
2267 	   debuggers because they have to deal with empty upper bounds
2268 	   location descriptions anyway in order to be able to deal with
2269 	   incomplete array types.
2270 
2271 	   Of course an intelligent debugger (GDB?) should be able to
2272 	   comprehend that a missing upper bound specification in a
2273 	   array type used for a storage class `auto' local array variable
2274 	   indicates that the upper bound is both unknown (at compile-
2275 	   time) and unknowable (at run-time) due to optimization.  */
2276 
2277 	if (! optimize)
2278 	  {
2279 	    while (TREE_CODE (bound) == NOP_EXPR
2280 		   || TREE_CODE (bound) == CONVERT_EXPR)
2281 	      bound = TREE_OPERAND (bound, 0);
2282 
2283 	    if (TREE_CODE (bound) == SAVE_EXPR
2284 		&& SAVE_EXPR_RTL (bound))
2285 	      output_loc_descriptor
2286 		(eliminate_regs (SAVE_EXPR_RTL (bound), 0, NULL_RTX));
2287 	  }
2288 
2289 	ASM_OUTPUT_LABEL (asm_out_file, end_label);
2290       }
2291       break;
2292 
2293     }
2294 }
2295 
2296 /* Recursive function to output a sequence of value/name pairs for
2297    enumeration constants in reversed order.  This is called from
2298    enumeration_type_die.  */
2299 
2300 static void
output_enumeral_list(link)2301 output_enumeral_list (link)
2302      tree link;
2303 {
2304   if (link)
2305     {
2306       output_enumeral_list (TREE_CHAIN (link));
2307 
2308       if (host_integerp (TREE_VALUE (link), 0))
2309 	ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
2310 				tree_low_cst (TREE_VALUE (link), 0));
2311 
2312       ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
2313 			       IDENTIFIER_POINTER (TREE_PURPOSE (link)));
2314     }
2315 }
2316 
2317 /* Given an unsigned value, round it up to the lowest multiple of `boundary'
2318    which is not less than the value itself.  */
2319 
2320 static inline HOST_WIDE_INT
ceiling(value,boundary)2321 ceiling (value, boundary)
2322      HOST_WIDE_INT value;
2323      unsigned int boundary;
2324 {
2325   return (((value + boundary - 1) / boundary) * boundary);
2326 }
2327 
2328 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
2329    pointer to the declared type for the relevant field variable, or return
2330    `integer_type_node' if the given node turns out to be an ERROR_MARK node.  */
2331 
2332 static inline tree
field_type(decl)2333 field_type (decl)
2334      tree decl;
2335 {
2336   tree type;
2337 
2338   if (TREE_CODE (decl) == ERROR_MARK)
2339     return integer_type_node;
2340 
2341   type = DECL_BIT_FIELD_TYPE (decl);
2342   if (type == NULL)
2343     type = TREE_TYPE (decl);
2344   return type;
2345 }
2346 
2347 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
2348    node, return the alignment in bits for the type, or else return
2349    BITS_PER_WORD if the node actually turns out to be an ERROR_MARK node.  */
2350 
2351 static inline unsigned int
simple_type_align_in_bits(type)2352 simple_type_align_in_bits (type)
2353      tree type;
2354 {
2355   return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
2356 }
2357 
2358 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
2359    node, return the size in bits for the type if it is a constant, or
2360    else return the alignment for the type if the type's size is not
2361    constant, or else return BITS_PER_WORD if the type actually turns out
2362    to be an ERROR_MARK node.  */
2363 
2364 static inline unsigned HOST_WIDE_INT
simple_type_size_in_bits(type)2365 simple_type_size_in_bits (type)
2366      tree type;
2367 {
2368   tree type_size_tree;
2369 
2370   if (TREE_CODE (type) == ERROR_MARK)
2371     return BITS_PER_WORD;
2372   type_size_tree = TYPE_SIZE (type);
2373 
2374   if (type_size_tree == NULL_TREE)
2375     return 0;
2376   if (! host_integerp (type_size_tree, 1))
2377     return TYPE_ALIGN (type);
2378   return tree_low_cst (type_size_tree, 1);
2379 }
2380 
2381 /* Given a pointer to what is assumed to be a FIELD_DECL node, compute and
2382    return the byte offset of the lowest addressed byte of the "containing
2383    object" for the given FIELD_DECL, or return 0 if we are unable to deter-
2384    mine what that offset is, either because the argument turns out to be a
2385    pointer to an ERROR_MARK node, or because the offset is actually variable.
2386    (We can't handle the latter case just yet.)  */
2387 
2388 static HOST_WIDE_INT
field_byte_offset(decl)2389 field_byte_offset (decl)
2390      tree decl;
2391 {
2392   unsigned int type_align_in_bytes;
2393   unsigned int type_align_in_bits;
2394   unsigned HOST_WIDE_INT type_size_in_bits;
2395   HOST_WIDE_INT object_offset_in_align_units;
2396   HOST_WIDE_INT object_offset_in_bits;
2397   HOST_WIDE_INT object_offset_in_bytes;
2398   tree type;
2399   tree field_size_tree;
2400   HOST_WIDE_INT bitpos_int;
2401   HOST_WIDE_INT deepest_bitpos;
2402   unsigned HOST_WIDE_INT field_size_in_bits;
2403 
2404   if (TREE_CODE (decl) == ERROR_MARK)
2405     return 0;
2406 
2407   if (TREE_CODE (decl) != FIELD_DECL)
2408     abort ();
2409 
2410   type = field_type (decl);
2411   field_size_tree = DECL_SIZE (decl);
2412 
2413   /* The size could be unspecified if there was an error, or for
2414      a flexible array member.  */
2415   if (! field_size_tree)
2416     field_size_tree = bitsize_zero_node;
2417 
2418   /* We cannot yet cope with fields whose positions or sizes are variable,
2419      so for now, when we see such things, we simply return 0.  Someday,
2420      we may be able to handle such cases, but it will be damn difficult.  */
2421 
2422   if (! host_integerp (bit_position (decl), 0)
2423       || ! host_integerp (field_size_tree, 1))
2424     return 0;
2425 
2426   bitpos_int = int_bit_position (decl);
2427   field_size_in_bits = tree_low_cst (field_size_tree, 1);
2428 
2429   type_size_in_bits = simple_type_size_in_bits (type);
2430   type_align_in_bits = simple_type_align_in_bits (type);
2431   type_align_in_bytes = type_align_in_bits / BITS_PER_UNIT;
2432 
2433   /* Note that the GCC front-end doesn't make any attempt to keep track
2434      of the starting bit offset (relative to the start of the containing
2435      structure type) of the hypothetical "containing object" for a bit-
2436      field.  Thus, when computing the byte offset value for the start of
2437      the "containing object" of a bit-field, we must deduce this infor-
2438      mation on our own.
2439 
2440      This can be rather tricky to do in some cases.  For example, handling
2441      the following structure type definition when compiling for an i386/i486
2442      target (which only aligns long long's to 32-bit boundaries) can be very
2443      tricky:
2444 
2445 		struct S {
2446 			int		field1;
2447 			long long	field2:31;
2448 		};
2449 
2450      Fortunately, there is a simple rule-of-thumb which can be used in such
2451      cases.  When compiling for an i386/i486, GCC will allocate 8 bytes for
2452      the structure shown above.  It decides to do this based upon one simple
2453      rule for bit-field allocation.  Quite simply, GCC allocates each "con-
2454      taining object" for each bit-field at the first (i.e. lowest addressed)
2455      legitimate alignment boundary (based upon the required minimum alignment
2456      for the declared type of the field) which it can possibly use, subject
2457      to the condition that there is still enough available space remaining
2458      in the containing object (when allocated at the selected point) to
2459      fully accommodate all of the bits of the bit-field itself.
2460 
2461      This simple rule makes it obvious why GCC allocates 8 bytes for each
2462      object of the structure type shown above.  When looking for a place to
2463      allocate the "containing object" for `field2', the compiler simply tries
2464      to allocate a 64-bit "containing object" at each successive 32-bit
2465      boundary (starting at zero) until it finds a place to allocate that 64-
2466      bit field such that at least 31 contiguous (and previously unallocated)
2467      bits remain within that selected 64 bit field.  (As it turns out, for
2468      the example above, the compiler finds that it is OK to allocate the
2469      "containing object" 64-bit field at bit-offset zero within the
2470      structure type.)
2471 
2472      Here we attempt to work backwards from the limited set of facts we're
2473      given, and we try to deduce from those facts, where GCC must have
2474      believed that the containing object started (within the structure type).
2475 
2476      The value we deduce is then used (by the callers of this routine) to
2477      generate AT_location and AT_bit_offset attributes for fields (both
2478      bit-fields and, in the case of AT_location, regular fields as well).  */
2479 
2480   /* Figure out the bit-distance from the start of the structure to the
2481      "deepest" bit of the bit-field.  */
2482   deepest_bitpos = bitpos_int + field_size_in_bits;
2483 
2484   /* This is the tricky part.  Use some fancy footwork to deduce where the
2485      lowest addressed bit of the containing object must be.  */
2486   object_offset_in_bits
2487     = ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;
2488 
2489   /* Compute the offset of the containing object in "alignment units".  */
2490   object_offset_in_align_units = object_offset_in_bits / type_align_in_bits;
2491 
2492   /* Compute the offset of the containing object in bytes.  */
2493   object_offset_in_bytes = object_offset_in_align_units * type_align_in_bytes;
2494 
2495   /* The above code assumes that the field does not cross an alignment
2496      boundary.  This can happen if PCC_BITFIELD_TYPE_MATTERS is not defined,
2497      or if the structure is packed.  If this happens, then we get an object
2498      which starts after the bitfield, which means that the bit offset is
2499      negative.  Gdb fails when given negative bit offsets.  We avoid this
2500      by recomputing using the first bit of the bitfield.  This will give
2501      us an object which does not completely contain the bitfield, but it
2502      will be aligned, and it will contain the first bit of the bitfield.
2503 
2504      However, only do this for a BYTES_BIG_ENDIAN target.  For a
2505      ! BYTES_BIG_ENDIAN target, bitpos_int + field_size_in_bits is the first
2506      first bit of the bitfield.  If we recompute using bitpos_int + 1 below,
2507      then we end up computing the object byte offset for the wrong word of the
2508      desired bitfield, which in turn causes the field offset to be negative
2509      in bit_offset_attribute.  */
2510   if (BYTES_BIG_ENDIAN
2511       && object_offset_in_bits > bitpos_int)
2512     {
2513       deepest_bitpos = bitpos_int + 1;
2514       object_offset_in_bits
2515 	= ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;
2516       object_offset_in_align_units = (object_offset_in_bits
2517 				      / type_align_in_bits);
2518       object_offset_in_bytes = (object_offset_in_align_units
2519 				* type_align_in_bytes);
2520     }
2521 
2522   return object_offset_in_bytes;
2523 }
2524 
2525 /****************************** attributes *********************************/
2526 
2527 /* The following routines are responsible for writing out the various types
2528    of Dwarf attributes (and any following data bytes associated with them).
2529    These routines are listed in order based on the numerical codes of their
2530    associated attributes.  */
2531 
2532 /* Generate an AT_sibling attribute.  */
2533 
2534 static inline void
sibling_attribute()2535 sibling_attribute ()
2536 {
2537   char label[MAX_ARTIFICIAL_LABEL_BYTES];
2538 
2539   ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sibling);
2540   sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
2541   ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2542 }
2543 
2544 /* Output the form of location attributes suitable for whole variables and
2545    whole parameters.  Note that the location attributes for struct fields
2546    are generated by the routine `data_member_location_attribute' below.  */
2547 
2548 static void
location_attribute(rtl)2549 location_attribute (rtl)
2550      rtx rtl;
2551 {
2552   char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2553   char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2554 
2555   ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
2556   sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2557   sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2558   ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2559   ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2560 
2561   /* Handle a special case.  If we are about to output a location descriptor
2562      for a variable or parameter which has been optimized out of existence,
2563      don't do that.  Instead we output a zero-length location descriptor
2564      value as part of the location attribute.
2565 
2566      A variable which has been optimized out of existence will have a
2567      DECL_RTL value which denotes a pseudo-reg.
2568 
2569      Currently, in some rare cases, variables can have DECL_RTL values
2570      which look like (MEM (REG pseudo-reg#)).  These cases are due to
2571      bugs elsewhere in the compiler.  We treat such cases
2572      as if the variable(s) in question had been optimized out of existence.
2573 
2574      Note that in all cases where we wish to express the fact that a
2575      variable has been optimized out of existence, we do not simply
2576      suppress the generation of the entire location attribute because
2577      the absence of a location attribute in certain kinds of DIEs is
2578      used to indicate something else entirely... i.e. that the DIE
2579      represents an object declaration, but not a definition.  So saith
2580      the PLSIG.
2581   */
2582 
2583   if (! is_pseudo_reg (rtl)
2584       && (GET_CODE (rtl) != MEM || ! is_pseudo_reg (XEXP (rtl, 0))))
2585     output_loc_descriptor (rtl);
2586 
2587   ASM_OUTPUT_LABEL (asm_out_file, end_label);
2588 }
2589 
2590 /* Output the specialized form of location attribute used for data members
2591    of struct and union types.
2592 
2593    In the special case of a FIELD_DECL node which represents a bit-field,
2594    the "offset" part of this special location descriptor must indicate the
2595    distance in bytes from the lowest-addressed byte of the containing
2596    struct or union type to the lowest-addressed byte of the "containing
2597    object" for the bit-field.  (See the `field_byte_offset' function above.)
2598 
2599    For any given bit-field, the "containing object" is a hypothetical
2600    object (of some integral or enum type) within which the given bit-field
2601    lives.  The type of this hypothetical "containing object" is always the
2602    same as the declared type of the individual bit-field itself (for GCC
2603    anyway... the DWARF spec doesn't actually mandate this).
2604 
2605    Note that it is the size (in bytes) of the hypothetical "containing
2606    object" which will be given in the AT_byte_size attribute for this
2607    bit-field.  (See the `byte_size_attribute' function below.)  It is
2608    also used when calculating the value of the AT_bit_offset attribute.
2609    (See the `bit_offset_attribute' function below.)  */
2610 
2611 static void
data_member_location_attribute(t)2612 data_member_location_attribute (t)
2613      tree t;
2614 {
2615   unsigned object_offset_in_bytes;
2616   char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2617   char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2618 
2619   if (TREE_CODE (t) == TREE_VEC)
2620     object_offset_in_bytes = tree_low_cst (BINFO_OFFSET (t), 0);
2621   else
2622     object_offset_in_bytes = field_byte_offset (t);
2623 
2624   ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
2625   sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2626   sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2627   ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2628   ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2629   ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
2630   ASM_OUTPUT_DWARF_DATA4 (asm_out_file, object_offset_in_bytes);
2631   ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
2632   ASM_OUTPUT_LABEL (asm_out_file, end_label);
2633 }
2634 
2635 /* Output an AT_const_value attribute for a variable or a parameter which
2636    does not have a "location" either in memory or in a register.  These
2637    things can arise in GNU C when a constant is passed as an actual
2638    parameter to an inlined function.  They can also arise in C++ where
2639    declared constants do not necessarily get memory "homes".  */
2640 
2641 static void
const_value_attribute(rtl)2642 const_value_attribute (rtl)
2643      rtx rtl;
2644 {
2645   char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2646   char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2647 
2648   ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_const_value_block4);
2649   sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2650   sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2651   ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
2652   ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2653 
2654   switch (GET_CODE (rtl))
2655     {
2656       case CONST_INT:
2657 	/* Note that a CONST_INT rtx could represent either an integer or
2658 	   a floating-point constant.  A CONST_INT is used whenever the
2659 	   constant will fit into a single word.  In all such cases, the
2660 	   original mode of the constant value is wiped out, and the
2661 	   CONST_INT rtx is assigned VOIDmode.  Since we no longer have
2662 	   precise mode information for these constants, we always just
2663 	   output them using 4 bytes.  */
2664 
2665 	ASM_OUTPUT_DWARF_DATA4 (asm_out_file, (unsigned) INTVAL (rtl));
2666 	break;
2667 
2668       case CONST_DOUBLE:
2669 	/* Note that a CONST_DOUBLE rtx could represent either an integer
2670 	   or a floating-point constant.  A CONST_DOUBLE is used whenever
2671 	   the constant requires more than one word in order to be adequately
2672 	   represented.  In all such cases, the original mode of the constant
2673 	   value is preserved as the mode of the CONST_DOUBLE rtx, but for
2674 	   simplicity we always just output CONST_DOUBLEs using 8 bytes.  */
2675 
2676 	ASM_OUTPUT_DWARF_DATA8 (asm_out_file,
2677 				(unsigned int) CONST_DOUBLE_HIGH (rtl),
2678 				(unsigned int) CONST_DOUBLE_LOW (rtl));
2679 	break;
2680 
2681       case CONST_STRING:
2682 	ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, XSTR (rtl, 0));
2683 	break;
2684 
2685       case SYMBOL_REF:
2686       case LABEL_REF:
2687       case CONST:
2688 	ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
2689 	break;
2690 
2691       case PLUS:
2692 	/* In cases where an inlined instance of an inline function is passed
2693 	   the address of an `auto' variable (which is local to the caller)
2694 	   we can get a situation where the DECL_RTL of the artificial
2695 	   local variable (for the inlining) which acts as a stand-in for
2696 	   the corresponding formal parameter (of the inline function)
2697 	   will look like (plus:SI (reg:SI FRAME_PTR) (const_int ...)).
2698 	   This is not exactly a compile-time constant expression, but it
2699 	   isn't the address of the (artificial) local variable either.
2700 	   Rather, it represents the *value* which the artificial local
2701 	   variable always has during its lifetime.  We currently have no
2702 	   way to represent such quasi-constant values in Dwarf, so for now
2703 	   we just punt and generate an AT_const_value attribute with form
2704 	   FORM_BLOCK4 and a length of zero.  */
2705 	break;
2706 
2707       default:
2708 	abort ();  /* No other kinds of rtx should be possible here.  */
2709     }
2710 
2711   ASM_OUTPUT_LABEL (asm_out_file, end_label);
2712 }
2713 
2714 /* Generate *either* an AT_location attribute or else an AT_const_value
2715    data attribute for a variable or a parameter.  We generate the
2716    AT_const_value attribute only in those cases where the given
2717    variable or parameter does not have a true "location" either in
2718    memory or in a register.  This can happen (for example) when a
2719    constant is passed as an actual argument in a call to an inline
2720    function.  (It's possible that these things can crop up in other
2721    ways also.)  Note that one type of constant value which can be
2722    passed into an inlined function is a constant pointer.  This can
2723    happen for example if an actual argument in an inlined function
2724    call evaluates to a compile-time constant address.  */
2725 
2726 static void
location_or_const_value_attribute(decl)2727 location_or_const_value_attribute (decl)
2728      tree decl;
2729 {
2730   rtx rtl;
2731 
2732   if (TREE_CODE (decl) == ERROR_MARK)
2733     return;
2734 
2735   if ((TREE_CODE (decl) != VAR_DECL) && (TREE_CODE (decl) != PARM_DECL))
2736     {
2737       /* Should never happen.  */
2738       abort ();
2739       return;
2740     }
2741 
2742   /* Here we have to decide where we are going to say the parameter "lives"
2743      (as far as the debugger is concerned).  We only have a couple of choices.
2744      GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.  DECL_RTL
2745      normally indicates where the parameter lives during most of the activa-
2746      tion of the function.  If optimization is enabled however, this could
2747      be either NULL or else a pseudo-reg.  Both of those cases indicate that
2748      the parameter doesn't really live anywhere (as far as the code generation
2749      parts of GCC are concerned) during most of the function's activation.
2750      That will happen (for example) if the parameter is never referenced
2751      within the function.
2752 
2753      We could just generate a location descriptor here for all non-NULL
2754      non-pseudo values of DECL_RTL and ignore all of the rest, but we can
2755      be a little nicer than that if we also consider DECL_INCOMING_RTL in
2756      cases where DECL_RTL is NULL or is a pseudo-reg.
2757 
2758      Note however that we can only get away with using DECL_INCOMING_RTL as
2759      a backup substitute for DECL_RTL in certain limited cases.  In cases
2760      where DECL_ARG_TYPE(decl) indicates the same type as TREE_TYPE(decl)
2761      we can be sure that the parameter was passed using the same type as it
2762      is declared to have within the function, and that its DECL_INCOMING_RTL
2763      points us to a place where a value of that type is passed.  In cases
2764      where DECL_ARG_TYPE(decl) and TREE_TYPE(decl) are different types
2765      however, we cannot (in general) use DECL_INCOMING_RTL as a backup
2766      substitute for DECL_RTL because in these cases, DECL_INCOMING_RTL
2767      points us to a value of some type which is *different* from the type
2768      of the parameter itself.  Thus, if we tried to use DECL_INCOMING_RTL
2769      to generate a location attribute in such cases, the debugger would
2770      end up (for example) trying to fetch a `float' from a place which
2771      actually contains the first part of a `double'.  That would lead to
2772      really incorrect and confusing output at debug-time, and we don't
2773      want that now do we?
2774 
2775      So in general, we DO NOT use DECL_INCOMING_RTL as a backup for DECL_RTL
2776      in cases where DECL_ARG_TYPE(decl) != TREE_TYPE(decl).  There are a
2777      couple of cute exceptions however.  On little-endian machines we can
2778      get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE(decl) is
2779      not the same as TREE_TYPE(decl) but only when DECL_ARG_TYPE(decl) is
2780      an integral type which is smaller than TREE_TYPE(decl).  These cases
2781      arise when (on a little-endian machine) a non-prototyped function has
2782      a parameter declared to be of type `short' or `char'.  In such cases,
2783      TREE_TYPE(decl) will be `short' or `char', DECL_ARG_TYPE(decl) will be
2784      `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
2785      passed `int' value.  If the debugger then uses that address to fetch a
2786      `short' or a `char' (on a little-endian machine) the result will be the
2787      correct data, so we allow for such exceptional cases below.
2788 
2789      Note that our goal here is to describe the place where the given formal
2790      parameter lives during most of the function's activation (i.e. between
2791      the end of the prologue and the start of the epilogue).  We'll do that
2792      as best as we can.  Note however that if the given formal parameter is
2793      modified sometime during the execution of the function, then a stack
2794      backtrace (at debug-time) will show the function as having been called
2795      with the *new* value rather than the value which was originally passed
2796      in.  This happens rarely enough that it is not a major problem, but it
2797      *is* a problem, and I'd like to fix it.  A future version of dwarfout.c
2798      may generate two additional attributes for any given TAG_formal_parameter
2799      DIE which will describe the "passed type" and the "passed location" for
2800      the given formal parameter in addition to the attributes we now generate
2801      to indicate the "declared type" and the "active location" for each
2802      parameter.  This additional set of attributes could be used by debuggers
2803      for stack backtraces.
2804 
2805      Separately, note that sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL
2806      can be NULL also.  This happens (for example) for inlined-instances of
2807      inline function formal parameters which are never referenced.  This really
2808      shouldn't be happening.  All PARM_DECL nodes should get valid non-NULL
2809      DECL_INCOMING_RTL values, but integrate.c doesn't currently generate
2810      these values for inlined instances of inline function parameters, so
2811      when we see such cases, we are just out-of-luck for the time
2812      being (until integrate.c gets fixed).
2813   */
2814 
2815   /* Use DECL_RTL as the "location" unless we find something better.  */
2816   rtl = DECL_RTL (decl);
2817 
2818   if (TREE_CODE (decl) == PARM_DECL)
2819     if (rtl == NULL_RTX || is_pseudo_reg (rtl))
2820       {
2821 	/* This decl represents a formal parameter which was optimized out.  */
2822 	tree declared_type = type_main_variant (TREE_TYPE (decl));
2823 	tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
2824 
2825 	/* Note that DECL_INCOMING_RTL may be NULL in here, but we handle
2826 	   *all* cases where (rtl == NULL_RTX) just below.  */
2827 
2828 	if (declared_type == passed_type)
2829 	  rtl = DECL_INCOMING_RTL (decl);
2830 	else if (! BYTES_BIG_ENDIAN)
2831 	  if (TREE_CODE (declared_type) == INTEGER_TYPE)
2832 	    /* NMS WTF? */
2833 	    if (TYPE_SIZE (declared_type) <= TYPE_SIZE (passed_type))
2834 	      rtl = DECL_INCOMING_RTL (decl);
2835       }
2836 
2837   if (rtl == NULL_RTX)
2838     return;
2839 
2840   rtl = eliminate_regs (rtl, 0, NULL_RTX);
2841 #ifdef LEAF_REG_REMAP
2842   if (current_function_uses_only_leaf_regs)
2843     leaf_renumber_regs_insn (rtl);
2844 #endif
2845 
2846   switch (GET_CODE (rtl))
2847     {
2848     case ADDRESSOF:
2849       /* The address of a variable that was optimized away; don't emit
2850 	 anything.  */
2851       break;
2852 
2853     case CONST_INT:
2854     case CONST_DOUBLE:
2855     case CONST_STRING:
2856     case SYMBOL_REF:
2857     case LABEL_REF:
2858     case CONST:
2859     case PLUS:	/* DECL_RTL could be (plus (reg ...) (const_int ...)) */
2860       const_value_attribute (rtl);
2861       break;
2862 
2863     case MEM:
2864     case REG:
2865     case SUBREG:
2866       location_attribute (rtl);
2867       break;
2868 
2869     case CONCAT:
2870       /* ??? CONCAT is used for complex variables, which may have the real
2871 	 part stored in one place and the imag part stored somewhere else.
2872 	 DWARF1 has no way to describe a variable that lives in two different
2873 	 places, so we just describe where the first part lives, and hope that
2874 	 the second part is stored after it.  */
2875       location_attribute (XEXP (rtl, 0));
2876       break;
2877 
2878     default:
2879       abort ();		/* Should never happen.  */
2880     }
2881 }
2882 
2883 /* Generate an AT_name attribute given some string value to be included as
2884    the value of the attribute.	*/
2885 
2886 static inline void
name_attribute(name_string)2887 name_attribute (name_string)
2888      const char *name_string;
2889 {
2890   if (name_string && *name_string)
2891     {
2892       ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_name);
2893       ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, name_string);
2894     }
2895 }
2896 
2897 static inline void
fund_type_attribute(ft_code)2898 fund_type_attribute (ft_code)
2899      unsigned ft_code;
2900 {
2901   ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_fund_type);
2902   ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, ft_code);
2903 }
2904 
2905 static void
mod_fund_type_attribute(type,decl_const,decl_volatile)2906 mod_fund_type_attribute (type, decl_const, decl_volatile)
2907      tree type;
2908      int decl_const;
2909      int decl_volatile;
2910 {
2911   char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2912   char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2913 
2914   ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_fund_type);
2915   sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2916   sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2917   ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2918   ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2919   write_modifier_bytes (type, decl_const, decl_volatile);
2920   ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
2921 			      fundamental_type_code (root_type (type)));
2922   ASM_OUTPUT_LABEL (asm_out_file, end_label);
2923 }
2924 
2925 static inline void
user_def_type_attribute(type)2926 user_def_type_attribute (type)
2927      tree type;
2928 {
2929   char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2930 
2931   ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_user_def_type);
2932   sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (type));
2933   ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2934 }
2935 
2936 static void
mod_u_d_type_attribute(type,decl_const,decl_volatile)2937 mod_u_d_type_attribute (type, decl_const, decl_volatile)
2938      tree type;
2939      int decl_const;
2940      int decl_volatile;
2941 {
2942   char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2943   char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2944   char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2945 
2946   ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_u_d_type);
2947   sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2948   sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2949   ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2950   ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2951   write_modifier_bytes (type, decl_const, decl_volatile);
2952   sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (root_type (type)));
2953   ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2954   ASM_OUTPUT_LABEL (asm_out_file, end_label);
2955 }
2956 
2957 #ifdef USE_ORDERING_ATTRIBUTE
2958 static inline void
ordering_attribute(ordering)2959 ordering_attribute (ordering)
2960      unsigned ordering;
2961 {
2962   ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_ordering);
2963   ASM_OUTPUT_DWARF_DATA2 (asm_out_file, ordering);
2964 }
2965 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
2966 
2967 /* Note that the block of subscript information for an array type also
2968    includes information about the element type of type given array type.  */
2969 
2970 static void
subscript_data_attribute(type)2971 subscript_data_attribute (type)
2972      tree type;
2973 {
2974   unsigned dimension_number;
2975   char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2976   char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2977 
2978   ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_subscr_data);
2979   sprintf (begin_label, SS_BEGIN_LABEL_FMT, current_dienum);
2980   sprintf (end_label, SS_END_LABEL_FMT, current_dienum);
2981   ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2982   ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2983 
2984   /* The GNU compilers represent multidimensional array types as sequences
2985      of one dimensional array types whose element types are themselves array
2986      types.  Here we squish that down, so that each multidimensional array
2987      type gets only one array_type DIE in the Dwarf debugging info.  The
2988      draft Dwarf specification say that we are allowed to do this kind
2989      of compression in C (because there is no difference between an
2990      array or arrays and a multidimensional array in C) but for other
2991      source languages (e.g. Ada) we probably shouldn't do this.  */
2992 
2993   for (dimension_number = 0;
2994 	TREE_CODE (type) == ARRAY_TYPE;
2995 	type = TREE_TYPE (type), dimension_number++)
2996     {
2997       tree domain = TYPE_DOMAIN (type);
2998 
2999       /* Arrays come in three flavors.	Unspecified bounds, fixed
3000 	 bounds, and (in GNU C only) variable bounds.  Handle all
3001 	 three forms here.  */
3002 
3003       if (domain)
3004 	{
3005 	  /* We have an array type with specified bounds.  */
3006 
3007 	  tree lower = TYPE_MIN_VALUE (domain);
3008 	  tree upper = TYPE_MAX_VALUE (domain);
3009 
3010 	  /* Handle only fundamental types as index types for now.  */
3011 	  if (! type_is_fundamental (domain))
3012 	    abort ();
3013 
3014 	  /* Output the representation format byte for this dimension.  */
3015 	  ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file,
3016 		  FMT_CODE (1, TREE_CODE (lower) == INTEGER_CST,
3017 			    upper && TREE_CODE (upper) == INTEGER_CST));
3018 
3019 	  /* Output the index type for this dimension.	*/
3020 	  ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
3021 				      fundamental_type_code (domain));
3022 
3023 	  /* Output the representation for the lower bound.  */
3024 	  output_bound_representation (lower, dimension_number, 'l');
3025 
3026 	  /* Output the representation for the upper bound.  */
3027 	  if (upper)
3028 	    output_bound_representation (upper, dimension_number, 'u');
3029 	  else
3030 	    ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0);
3031 	}
3032       else
3033 	{
3034 	  /* We have an array type with an unspecified length.	For C and
3035 	     C++ we can assume that this really means that (a) the index
3036 	     type is an integral type, and (b) the lower bound is zero.
3037 	     Note that Dwarf defines the representation of an unspecified
3038 	     (upper) bound as being a zero-length location description.	 */
3039 
3040 	  /* Output the array-bounds format byte.  */
3041 
3042 	  ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_FT_C_X);
3043 
3044 	  /* Output the (assumed) index type.  */
3045 
3046 	  ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, FT_integer);
3047 
3048 	  /* Output the (assumed) lower bound (constant) value.	 */
3049 
3050 	  ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
3051 
3052 	  /* Output the (empty) location description for the upper bound.  */
3053 
3054 	  ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0);
3055 	}
3056     }
3057 
3058   /* Output the prefix byte that says that the element type is coming up.  */
3059 
3060   ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_ET);
3061 
3062   /* Output a representation of the type of the elements of this array type.  */
3063 
3064   type_attribute (type, 0, 0);
3065 
3066   ASM_OUTPUT_LABEL (asm_out_file, end_label);
3067 }
3068 
3069 static void
byte_size_attribute(tree_node)3070 byte_size_attribute (tree_node)
3071      tree tree_node;
3072 {
3073   unsigned size;
3074 
3075   ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_byte_size);
3076   switch (TREE_CODE (tree_node))
3077     {
3078       case ERROR_MARK:
3079 	size = 0;
3080 	break;
3081 
3082       case ENUMERAL_TYPE:
3083       case RECORD_TYPE:
3084       case UNION_TYPE:
3085       case QUAL_UNION_TYPE:
3086       case ARRAY_TYPE:
3087 	size = int_size_in_bytes (tree_node);
3088 	break;
3089 
3090       case FIELD_DECL:
3091 	/* For a data member of a struct or union, the AT_byte_size is
3092 	   generally given as the number of bytes normally allocated for
3093 	   an object of the *declared* type of the member itself.  This
3094 	   is true even for bit-fields.  */
3095 	size = simple_type_size_in_bits (field_type (tree_node))
3096 	       / BITS_PER_UNIT;
3097 	break;
3098 
3099       default:
3100 	abort ();
3101     }
3102 
3103   /* Note that `size' might be -1 when we get to this point.  If it
3104      is, that indicates that the byte size of the entity in question
3105      is variable.  We have no good way of expressing this fact in Dwarf
3106      at the present time, so just let the -1 pass on through.  */
3107 
3108   ASM_OUTPUT_DWARF_DATA4 (asm_out_file, size);
3109 }
3110 
3111 /* For a FIELD_DECL node which represents a bit-field, output an attribute
3112    which specifies the distance in bits from the highest order bit of the
3113    "containing object" for the bit-field to the highest order bit of the
3114    bit-field itself.
3115 
3116    For any given bit-field, the "containing object" is a hypothetical
3117    object (of some integral or enum type) within which the given bit-field
3118    lives.  The type of this hypothetical "containing object" is always the
3119    same as the declared type of the individual bit-field itself.
3120 
3121    The determination of the exact location of the "containing object" for
3122    a bit-field is rather complicated.  It's handled by the `field_byte_offset'
3123    function (above).
3124 
3125    Note that it is the size (in bytes) of the hypothetical "containing
3126    object" which will be given in the AT_byte_size attribute for this
3127    bit-field.  (See `byte_size_attribute' above.) */
3128 
3129 static inline void
bit_offset_attribute(decl)3130 bit_offset_attribute (decl)
3131      tree decl;
3132 {
3133   HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
3134   tree type = DECL_BIT_FIELD_TYPE (decl);
3135   HOST_WIDE_INT bitpos_int;
3136   HOST_WIDE_INT highest_order_object_bit_offset;
3137   HOST_WIDE_INT highest_order_field_bit_offset;
3138   HOST_WIDE_INT bit_offset;
3139 
3140   /* Must be a bit field.  */
3141   if (!type
3142       || TREE_CODE (decl) != FIELD_DECL)
3143     abort ();
3144 
3145   /* We can't yet handle bit-fields whose offsets or sizes are variable, so
3146      if we encounter such things, just return without generating any
3147      attribute whatsoever.  */
3148 
3149   if (! host_integerp (bit_position (decl), 0)
3150       || ! host_integerp (DECL_SIZE (decl), 1))
3151     return;
3152 
3153   bitpos_int = int_bit_position (decl);
3154 
3155   /* Note that the bit offset is always the distance (in bits) from the
3156      highest-order bit of the "containing object" to the highest-order
3157      bit of the bit-field itself.  Since the "high-order end" of any
3158      object or field is different on big-endian and little-endian machines,
3159      the computation below must take account of these differences.  */
3160 
3161   highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
3162   highest_order_field_bit_offset = bitpos_int;
3163 
3164   if (! BYTES_BIG_ENDIAN)
3165     {
3166       highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 1);
3167       highest_order_object_bit_offset += simple_type_size_in_bits (type);
3168     }
3169 
3170   bit_offset =
3171     (! BYTES_BIG_ENDIAN
3172      ? highest_order_object_bit_offset - highest_order_field_bit_offset
3173      : highest_order_field_bit_offset - highest_order_object_bit_offset);
3174 
3175   ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_offset);
3176   ASM_OUTPUT_DWARF_DATA2 (asm_out_file, bit_offset);
3177 }
3178 
3179 /* For a FIELD_DECL node which represents a bit field, output an attribute
3180    which specifies the length in bits of the given field.  */
3181 
3182 static inline void
bit_size_attribute(decl)3183 bit_size_attribute (decl)
3184     tree decl;
3185 {
3186   /* Must be a field and a bit field.  */
3187   if (TREE_CODE (decl) != FIELD_DECL
3188       || ! DECL_BIT_FIELD_TYPE (decl))
3189     abort ();
3190 
3191   if (host_integerp (DECL_SIZE (decl), 1))
3192     {
3193       ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_size);
3194       ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
3195 			      tree_low_cst (DECL_SIZE (decl), 1));
3196     }
3197 }
3198 
3199 /* The following routine outputs the `element_list' attribute for enumeration
3200    type DIEs.  The element_lits attribute includes the names and values of
3201    all of the enumeration constants associated with the given enumeration
3202    type.  */
3203 
3204 static inline void
element_list_attribute(element)3205 element_list_attribute (element)
3206      tree element;
3207 {
3208   char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3209   char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3210 
3211   ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_element_list);
3212   sprintf (begin_label, EE_BEGIN_LABEL_FMT, current_dienum);
3213   sprintf (end_label, EE_END_LABEL_FMT, current_dienum);
3214   ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
3215   ASM_OUTPUT_LABEL (asm_out_file, begin_label);
3216 
3217   /* Here we output a list of value/name pairs for each enumeration constant
3218      defined for this enumeration type (as required), but we do it in REVERSE
3219      order.  The order is the one required by the draft #5 Dwarf specification
3220      published by the UI/PLSIG.  */
3221 
3222   output_enumeral_list (element);   /* Recursively output the whole list.  */
3223 
3224   ASM_OUTPUT_LABEL (asm_out_file, end_label);
3225 }
3226 
3227 /* Generate an AT_stmt_list attribute.	These are normally present only in
3228    DIEs with a TAG_compile_unit tag.  */
3229 
3230 static inline void
stmt_list_attribute(label)3231 stmt_list_attribute (label)
3232     const char *label;
3233 {
3234   ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_stmt_list);
3235   /* Don't use ASM_OUTPUT_DWARF_DATA4 here.  */
3236   ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
3237 }
3238 
3239 /* Generate an AT_low_pc attribute for a label DIE, a lexical_block DIE or
3240    for a subroutine DIE.  */
3241 
3242 static inline void
low_pc_attribute(asm_low_label)3243 low_pc_attribute (asm_low_label)
3244      const char *asm_low_label;
3245 {
3246   ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_low_pc);
3247   ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_low_label);
3248 }
3249 
3250 /* Generate an AT_high_pc attribute for a lexical_block DIE or for a
3251    subroutine DIE.  */
3252 
3253 static inline void
high_pc_attribute(asm_high_label)3254 high_pc_attribute (asm_high_label)
3255      const char *asm_high_label;
3256 {
3257   ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_high_pc);
3258   ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_high_label);
3259 }
3260 
3261 /* Generate an AT_body_begin attribute for a subroutine DIE.  */
3262 
3263 static inline void
body_begin_attribute(asm_begin_label)3264 body_begin_attribute (asm_begin_label)
3265      const char *asm_begin_label;
3266 {
3267   ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_begin);
3268   ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_begin_label);
3269 }
3270 
3271 /* Generate an AT_body_end attribute for a subroutine DIE.  */
3272 
3273 static inline void
body_end_attribute(asm_end_label)3274 body_end_attribute (asm_end_label)
3275      const char *asm_end_label;
3276 {
3277   ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_end);
3278   ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_end_label);
3279 }
3280 
3281 /* Generate an AT_language attribute given a LANG value.  These attributes
3282    are used only within TAG_compile_unit DIEs.  */
3283 
3284 static inline void
language_attribute(language_code)3285 language_attribute (language_code)
3286      unsigned language_code;
3287 {
3288   ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_language);
3289   ASM_OUTPUT_DWARF_DATA4 (asm_out_file, language_code);
3290 }
3291 
3292 static inline void
member_attribute(context)3293 member_attribute (context)
3294      tree context;
3295 {
3296   char label[MAX_ARTIFICIAL_LABEL_BYTES];
3297 
3298   /* Generate this attribute only for members in C++.  */
3299 
3300   if (context != NULL && is_tagged_type (context))
3301     {
3302       ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_member);
3303       sprintf (label, TYPE_NAME_FMT, TYPE_UID (context));
3304       ASM_OUTPUT_DWARF_REF (asm_out_file, label);
3305     }
3306 }
3307 
3308 #if 0
3309 #ifndef SL_BEGIN_LABEL_FMT
3310 #define SL_BEGIN_LABEL_FMT	"*.L_sl%u"
3311 #endif
3312 #ifndef SL_END_LABEL_FMT
3313 #define SL_END_LABEL_FMT	"*.L_sl%u_e"
3314 #endif
3315 
3316 static inline void
3317 string_length_attribute (upper_bound)
3318      tree upper_bound;
3319 {
3320   char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3321   char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3322 
3323   ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_string_length);
3324   sprintf (begin_label, SL_BEGIN_LABEL_FMT, current_dienum);
3325   sprintf (end_label, SL_END_LABEL_FMT, current_dienum);
3326   ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
3327   ASM_OUTPUT_LABEL (asm_out_file, begin_label);
3328   output_bound_representation (upper_bound, 0, 'u');
3329   ASM_OUTPUT_LABEL (asm_out_file, end_label);
3330 }
3331 #endif
3332 
3333 static inline void
comp_dir_attribute(dirname)3334 comp_dir_attribute (dirname)
3335      const char *dirname;
3336 {
3337   ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_comp_dir);
3338   ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, dirname);
3339 }
3340 
3341 static inline void
sf_names_attribute(sf_names_start_label)3342 sf_names_attribute (sf_names_start_label)
3343      const char *sf_names_start_label;
3344 {
3345   ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sf_names);
3346   /* Don't use ASM_OUTPUT_DWARF_DATA4 here.  */
3347   ASM_OUTPUT_DWARF_ADDR (asm_out_file, sf_names_start_label);
3348 }
3349 
3350 static inline void
src_info_attribute(src_info_start_label)3351 src_info_attribute (src_info_start_label)
3352      const char *src_info_start_label;
3353 {
3354   ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_info);
3355   /* Don't use ASM_OUTPUT_DWARF_DATA4 here.  */
3356   ASM_OUTPUT_DWARF_ADDR (asm_out_file, src_info_start_label);
3357 }
3358 
3359 static inline void
mac_info_attribute(mac_info_start_label)3360 mac_info_attribute (mac_info_start_label)
3361      const char *mac_info_start_label;
3362 {
3363   ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mac_info);
3364   /* Don't use ASM_OUTPUT_DWARF_DATA4 here.  */
3365   ASM_OUTPUT_DWARF_ADDR (asm_out_file, mac_info_start_label);
3366 }
3367 
3368 static inline void
prototyped_attribute(func_type)3369 prototyped_attribute (func_type)
3370      tree func_type;
3371 {
3372   if ((strcmp (lang_hooks.name, "GNU C") == 0)
3373       && (TYPE_ARG_TYPES (func_type) != NULL))
3374     {
3375       ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_prototyped);
3376       ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
3377     }
3378 }
3379 
3380 static inline void
producer_attribute(producer)3381 producer_attribute (producer)
3382      const char *producer;
3383 {
3384   ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_producer);
3385   ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, producer);
3386 }
3387 
3388 static inline void
inline_attribute(decl)3389 inline_attribute (decl)
3390      tree decl;
3391 {
3392   if (DECL_INLINE (decl))
3393     {
3394       ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_inline);
3395       ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
3396     }
3397 }
3398 
3399 static inline void
containing_type_attribute(containing_type)3400 containing_type_attribute (containing_type)
3401      tree containing_type;
3402 {
3403   char label[MAX_ARTIFICIAL_LABEL_BYTES];
3404 
3405   ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_containing_type);
3406   sprintf (label, TYPE_NAME_FMT, TYPE_UID (containing_type));
3407   ASM_OUTPUT_DWARF_REF (asm_out_file, label);
3408 }
3409 
3410 static inline void
abstract_origin_attribute(origin)3411 abstract_origin_attribute (origin)
3412      tree origin;
3413 {
3414   char label[MAX_ARTIFICIAL_LABEL_BYTES];
3415 
3416   ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_abstract_origin);
3417   switch (TREE_CODE_CLASS (TREE_CODE (origin)))
3418     {
3419     case 'd':
3420       sprintf (label, DECL_NAME_FMT, DECL_UID (origin));
3421       break;
3422 
3423     case 't':
3424       sprintf (label, TYPE_NAME_FMT, TYPE_UID (origin));
3425       break;
3426 
3427     default:
3428       abort ();		/* Should never happen.  */
3429 
3430     }
3431   ASM_OUTPUT_DWARF_REF (asm_out_file, label);
3432 }
3433 
3434 #ifdef DWARF_DECL_COORDINATES
3435 static inline void
src_coords_attribute(src_fileno,src_lineno)3436 src_coords_attribute (src_fileno, src_lineno)
3437      unsigned src_fileno;
3438      unsigned src_lineno;
3439 {
3440   ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_coords);
3441   ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_fileno);
3442   ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_lineno);
3443 }
3444 #endif /* defined(DWARF_DECL_COORDINATES) */
3445 
3446 static inline void
pure_or_virtual_attribute(func_decl)3447 pure_or_virtual_attribute (func_decl)
3448      tree func_decl;
3449 {
3450   if (DECL_VIRTUAL_P (func_decl))
3451     {
3452 #if 0 /* DECL_ABSTRACT_VIRTUAL_P is C++-specific.  */
3453       if (DECL_ABSTRACT_VIRTUAL_P (func_decl))
3454 	ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_pure_virtual);
3455       else
3456 #endif
3457 	ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_virtual);
3458       ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
3459     }
3460 }
3461 
3462 /************************* end of attributes *****************************/
3463 
3464 /********************* utility routines for DIEs *************************/
3465 
3466 /* Output an AT_name attribute and an AT_src_coords attribute for the
3467    given decl, but only if it actually has a name.  */
3468 
3469 static void
name_and_src_coords_attributes(decl)3470 name_and_src_coords_attributes (decl)
3471     tree decl;
3472 {
3473   tree decl_name = DECL_NAME (decl);
3474 
3475   if (decl_name && IDENTIFIER_POINTER (decl_name))
3476     {
3477       name_attribute (IDENTIFIER_POINTER (decl_name));
3478 #ifdef DWARF_DECL_COORDINATES
3479       {
3480 	register unsigned file_index;
3481 
3482 	/* This is annoying, but we have to pop out of the .debug section
3483 	   for a moment while we call `lookup_filename' because calling it
3484 	   may cause a temporary switch into the .debug_sfnames section and
3485 	   most svr4 assemblers are not smart enough to be able to nest
3486 	   section switches to any depth greater than one.  Note that we
3487 	   also can't skirt this issue by delaying all output to the
3488 	   .debug_sfnames section unit the end of compilation because that
3489 	   would cause us to have inter-section forward references and
3490 	   Fred Fish sez that m68k/svr4 assemblers botch those.  */
3491 
3492 	ASM_OUTPUT_POP_SECTION (asm_out_file);
3493 	file_index = lookup_filename (DECL_SOURCE_FILE (decl));
3494 	ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
3495 
3496 	src_coords_attribute (file_index, DECL_SOURCE_LINE (decl));
3497       }
3498 #endif /* defined(DWARF_DECL_COORDINATES) */
3499     }
3500 }
3501 
3502 /* Many forms of DIEs contain a "type description" part.  The following
3503    routine writes out these "type descriptor" parts.  */
3504 
3505 static void
type_attribute(type,decl_const,decl_volatile)3506 type_attribute (type, decl_const, decl_volatile)
3507      tree type;
3508      int decl_const;
3509      int decl_volatile;
3510 {
3511   enum tree_code code = TREE_CODE (type);
3512   int root_type_modified;
3513 
3514   if (code == ERROR_MARK)
3515     return;
3516 
3517   /* Handle a special case.  For functions whose return type is void,
3518      we generate *no* type attribute.  (Note that no object may have
3519      type `void', so this only applies to function return types.  */
3520 
3521   if (code == VOID_TYPE)
3522     return;
3523 
3524   /* If this is a subtype, find the underlying type.  Eventually,
3525      this should write out the appropriate subtype info.  */
3526   while ((code == INTEGER_TYPE || code == REAL_TYPE)
3527 	 && TREE_TYPE (type) != 0)
3528     type = TREE_TYPE (type), code = TREE_CODE (type);
3529 
3530   root_type_modified = (code == POINTER_TYPE || code == REFERENCE_TYPE
3531 			|| decl_const || decl_volatile
3532 			|| TYPE_READONLY (type) || TYPE_VOLATILE (type));
3533 
3534   if (type_is_fundamental (root_type (type)))
3535     {
3536       if (root_type_modified)
3537 	mod_fund_type_attribute (type, decl_const, decl_volatile);
3538       else
3539 	fund_type_attribute (fundamental_type_code (type));
3540     }
3541   else
3542     {
3543       if (root_type_modified)
3544 	mod_u_d_type_attribute (type, decl_const, decl_volatile);
3545       else
3546 	/* We have to get the type_main_variant here (and pass that to the
3547 	   `user_def_type_attribute' routine) because the ..._TYPE node we
3548 	   have might simply be a *copy* of some original type node (where
3549 	   the copy was created to help us keep track of typedef names)
3550 	   and that copy might have a different TYPE_UID from the original
3551 	   ..._TYPE node.  (Note that when `equate_type_number_to_die_number'
3552 	   is labeling a given type DIE for future reference, it always and
3553 	   only creates labels for DIEs representing *main variants*, and it
3554 	   never even knows about non-main-variants.)  */
3555 	user_def_type_attribute (type_main_variant (type));
3556     }
3557 }
3558 
3559 /* Given a tree pointer to a struct, class, union, or enum type node, return
3560    a pointer to the (string) tag name for the given type, or zero if the
3561    type was declared without a tag.  */
3562 
3563 static const char *
type_tag(type)3564 type_tag (type)
3565      tree type;
3566 {
3567   const char *name = 0;
3568 
3569   if (TYPE_NAME (type) != 0)
3570     {
3571       tree t = 0;
3572 
3573       /* Find the IDENTIFIER_NODE for the type name.  */
3574       if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
3575 	t = TYPE_NAME (type);
3576 
3577       /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
3578          a TYPE_DECL node, regardless of whether or not a `typedef' was
3579          involved.  */
3580       else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
3581 	       && ! DECL_IGNORED_P (TYPE_NAME (type)))
3582 	  t = DECL_NAME (TYPE_NAME (type));
3583 
3584       /* Now get the name as a string, or invent one.  */
3585       if (t != 0)
3586 	name = IDENTIFIER_POINTER (t);
3587     }
3588 
3589   return (name == 0 || *name == '\0') ? 0 : name;
3590 }
3591 
3592 static inline void
dienum_push()3593 dienum_push ()
3594 {
3595   /* Start by checking if the pending_sibling_stack needs to be expanded.
3596      If necessary, expand it.  */
3597 
3598   if (pending_siblings == pending_siblings_allocated)
3599     {
3600       pending_siblings_allocated += PENDING_SIBLINGS_INCREMENT;
3601       pending_sibling_stack
3602 	= (unsigned *) xrealloc (pending_sibling_stack,
3603 				 pending_siblings_allocated * sizeof(unsigned));
3604     }
3605 
3606   pending_siblings++;
3607   NEXT_DIE_NUM = next_unused_dienum++;
3608 }
3609 
3610 /* Pop the sibling stack so that the most recently pushed DIEnum becomes the
3611    NEXT_DIE_NUM.  */
3612 
3613 static inline void
dienum_pop()3614 dienum_pop ()
3615 {
3616   pending_siblings--;
3617 }
3618 
3619 static inline tree
member_declared_type(member)3620 member_declared_type (member)
3621      tree member;
3622 {
3623   return (DECL_BIT_FIELD_TYPE (member))
3624 	   ? DECL_BIT_FIELD_TYPE (member)
3625 	   : TREE_TYPE (member);
3626 }
3627 
3628 /* Get the function's label, as described by its RTL.
3629    This may be different from the DECL_NAME name used
3630    in the source file.  */
3631 
3632 static const char *
function_start_label(decl)3633 function_start_label (decl)
3634     tree decl;
3635 {
3636   rtx x;
3637   const char *fnname;
3638 
3639   x = DECL_RTL (decl);
3640   if (GET_CODE (x) != MEM)
3641     abort ();
3642   x = XEXP (x, 0);
3643   if (GET_CODE (x) != SYMBOL_REF)
3644 	       abort ();
3645   fnname = XSTR (x, 0);
3646   return fnname;
3647 }
3648 
3649 
3650 /******************************* DIEs ************************************/
3651 
3652 /* Output routines for individual types of DIEs.  */
3653 
3654 /* Note that every type of DIE (except a null DIE) gets a sibling.  */
3655 
3656 static void
output_array_type_die(arg)3657 output_array_type_die (arg)
3658      void *arg;
3659 {
3660   tree type = arg;
3661 
3662   ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_array_type);
3663   sibling_attribute ();
3664   equate_type_number_to_die_number (type);
3665   member_attribute (TYPE_CONTEXT (type));
3666 
3667   /* I believe that we can default the array ordering.  SDB will probably
3668      do the right things even if AT_ordering is not present.  It's not
3669      even an issue until we start to get into multidimensional arrays
3670      anyway.  If SDB is ever caught doing the Wrong Thing for multi-
3671      dimensional arrays, then we'll have to put the AT_ordering attribute
3672      back in.  (But if and when we find out that we need to put these in,
3673      we will only do so for multidimensional arrays.  After all, we don't
3674      want to waste space in the .debug section now do we?)  */
3675 
3676 #ifdef USE_ORDERING_ATTRIBUTE
3677   ordering_attribute (ORD_row_major);
3678 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
3679 
3680   subscript_data_attribute (type);
3681 }
3682 
3683 static void
output_set_type_die(arg)3684 output_set_type_die (arg)
3685      void *arg;
3686 {
3687   tree type = arg;
3688 
3689   ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_set_type);
3690   sibling_attribute ();
3691   equate_type_number_to_die_number (type);
3692   member_attribute (TYPE_CONTEXT (type));
3693   type_attribute (TREE_TYPE (type), 0, 0);
3694 }
3695 
3696 #if 0
3697 /* Implement this when there is a GNU FORTRAN or GNU Ada front end.  */
3698 
3699 static void
3700 output_entry_point_die (arg)
3701      void *arg;
3702 {
3703   tree decl = arg;
3704   tree origin = decl_ultimate_origin (decl);
3705 
3706   ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_entry_point);
3707   sibling_attribute ();
3708   dienum_push ();
3709   if (origin != NULL)
3710     abstract_origin_attribute (origin);
3711   else
3712     {
3713       name_and_src_coords_attributes (decl);
3714       member_attribute (DECL_CONTEXT (decl));
3715       type_attribute (TREE_TYPE (TREE_TYPE (decl)), 0, 0);
3716     }
3717   if (DECL_ABSTRACT (decl))
3718     equate_decl_number_to_die_number (decl);
3719   else
3720     low_pc_attribute (function_start_label (decl));
3721 }
3722 #endif
3723 
3724 /* Output a DIE to represent an inlined instance of an enumeration type.  */
3725 
3726 static void
output_inlined_enumeration_type_die(arg)3727 output_inlined_enumeration_type_die (arg)
3728      void *arg;
3729 {
3730   tree type = arg;
3731 
3732   ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3733   sibling_attribute ();
3734   if (!TREE_ASM_WRITTEN (type))
3735     abort ();
3736   abstract_origin_attribute (type);
3737 }
3738 
3739 /* Output a DIE to represent an inlined instance of a structure type.  */
3740 
3741 static void
output_inlined_structure_type_die(arg)3742 output_inlined_structure_type_die (arg)
3743      void *arg;
3744 {
3745   tree type = arg;
3746 
3747   ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
3748   sibling_attribute ();
3749   if (!TREE_ASM_WRITTEN (type))
3750     abort ();
3751   abstract_origin_attribute (type);
3752 }
3753 
3754 /* Output a DIE to represent an inlined instance of a union type.  */
3755 
3756 static void
output_inlined_union_type_die(arg)3757 output_inlined_union_type_die (arg)
3758      void *arg;
3759 {
3760   tree type = arg;
3761 
3762   ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
3763   sibling_attribute ();
3764   if (!TREE_ASM_WRITTEN (type))
3765     abort ();
3766   abstract_origin_attribute (type);
3767 }
3768 
3769 /* Output a DIE to represent an enumeration type.  Note that these DIEs
3770    include all of the information about the enumeration values also.
3771    This information is encoded into the element_list attribute.	 */
3772 
3773 static void
output_enumeration_type_die(arg)3774 output_enumeration_type_die (arg)
3775      void *arg;
3776 {
3777   tree type = arg;
3778 
3779   ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3780   sibling_attribute ();
3781   equate_type_number_to_die_number (type);
3782   name_attribute (type_tag (type));
3783   member_attribute (TYPE_CONTEXT (type));
3784 
3785   /* Handle a GNU C/C++ extension, i.e. incomplete enum types.  If the
3786      given enum type is incomplete, do not generate the AT_byte_size
3787      attribute or the AT_element_list attribute.  */
3788 
3789   if (COMPLETE_TYPE_P (type))
3790     {
3791       byte_size_attribute (type);
3792       element_list_attribute (TYPE_FIELDS (type));
3793     }
3794 }
3795 
3796 /* Output a DIE to represent either a real live formal parameter decl or
3797    to represent just the type of some formal parameter position in some
3798    function type.
3799 
3800    Note that this routine is a bit unusual because its argument may be
3801    a ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
3802    represents an inlining of some PARM_DECL) or else some sort of a
3803    ..._TYPE node.  If it's the former then this function is being called
3804    to output a DIE to represent a formal parameter object (or some inlining
3805    thereof).  If it's the latter, then this function is only being called
3806    to output a TAG_formal_parameter DIE to stand as a placeholder for some
3807    formal argument type of some subprogram type.  */
3808 
3809 static void
output_formal_parameter_die(arg)3810 output_formal_parameter_die (arg)
3811      void *arg;
3812 {
3813   tree node = arg;
3814 
3815   ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_formal_parameter);
3816   sibling_attribute ();
3817 
3818   switch (TREE_CODE_CLASS (TREE_CODE (node)))
3819     {
3820     case 'd':	/* We were called with some kind of a ..._DECL node.  */
3821       {
3822 	register tree origin = decl_ultimate_origin (node);
3823 
3824 	if (origin != NULL)
3825 	  abstract_origin_attribute (origin);
3826 	else
3827 	  {
3828 	    name_and_src_coords_attributes (node);
3829 	    type_attribute (TREE_TYPE (node),
3830 			    TREE_READONLY (node), TREE_THIS_VOLATILE (node));
3831 	  }
3832 	if (DECL_ABSTRACT (node))
3833 	  equate_decl_number_to_die_number (node);
3834 	else
3835 	  location_or_const_value_attribute (node);
3836       }
3837       break;
3838 
3839     case 't':	/* We were called with some kind of a ..._TYPE node.  */
3840       type_attribute (node, 0, 0);
3841       break;
3842 
3843     default:
3844       abort ();	/* Should never happen.  */
3845     }
3846 }
3847 
3848 /* Output a DIE to represent a declared function (either file-scope
3849    or block-local) which has "external linkage" (according to ANSI-C).  */
3850 
3851 static void
output_global_subroutine_die(arg)3852 output_global_subroutine_die (arg)
3853      void *arg;
3854 {
3855   tree decl = arg;
3856   tree origin = decl_ultimate_origin (decl);
3857 
3858   ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_subroutine);
3859   sibling_attribute ();
3860   dienum_push ();
3861   if (origin != NULL)
3862     abstract_origin_attribute (origin);
3863   else
3864     {
3865       tree type = TREE_TYPE (decl);
3866 
3867       name_and_src_coords_attributes (decl);
3868       inline_attribute (decl);
3869       prototyped_attribute (type);
3870       member_attribute (DECL_CONTEXT (decl));
3871       type_attribute (TREE_TYPE (type), 0, 0);
3872       pure_or_virtual_attribute (decl);
3873     }
3874   if (DECL_ABSTRACT (decl))
3875     equate_decl_number_to_die_number (decl);
3876   else
3877     {
3878       if (! DECL_EXTERNAL (decl) && ! in_class
3879 	  && decl == current_function_decl)
3880 	{
3881 	  char label[MAX_ARTIFICIAL_LABEL_BYTES];
3882 
3883 	  low_pc_attribute (function_start_label (decl));
3884 	  sprintf (label, FUNC_END_LABEL_FMT, current_function_funcdef_no);
3885 	  high_pc_attribute (label);
3886 	  if (use_gnu_debug_info_extensions)
3887 	    {
3888 	      sprintf (label, BODY_BEGIN_LABEL_FMT,
3889 		       current_function_funcdef_no);
3890 	      body_begin_attribute (label);
3891 	      sprintf (label, BODY_END_LABEL_FMT, current_function_funcdef_no);
3892 	      body_end_attribute (label);
3893 	    }
3894 	}
3895     }
3896 }
3897 
3898 /* Output a DIE to represent a declared data object (either file-scope
3899    or block-local) which has "external linkage" (according to ANSI-C).  */
3900 
3901 static void
output_global_variable_die(arg)3902 output_global_variable_die (arg)
3903      void *arg;
3904 {
3905   tree decl = arg;
3906   tree origin = decl_ultimate_origin (decl);
3907 
3908   ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_variable);
3909   sibling_attribute ();
3910   if (origin != NULL)
3911     abstract_origin_attribute (origin);
3912   else
3913     {
3914       name_and_src_coords_attributes (decl);
3915       member_attribute (DECL_CONTEXT (decl));
3916       type_attribute (TREE_TYPE (decl),
3917 		      TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3918     }
3919   if (DECL_ABSTRACT (decl))
3920     equate_decl_number_to_die_number (decl);
3921   else
3922     {
3923       if (! DECL_EXTERNAL (decl) && ! in_class
3924 	  && current_function_decl == decl_function_context (decl))
3925 	location_or_const_value_attribute (decl);
3926     }
3927 }
3928 
3929 static void
output_label_die(arg)3930 output_label_die (arg)
3931      void *arg;
3932 {
3933   tree decl = arg;
3934   tree origin = decl_ultimate_origin (decl);
3935 
3936   ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_label);
3937   sibling_attribute ();
3938   if (origin != NULL)
3939     abstract_origin_attribute (origin);
3940   else
3941     name_and_src_coords_attributes (decl);
3942   if (DECL_ABSTRACT (decl))
3943     equate_decl_number_to_die_number (decl);
3944   else
3945     {
3946       rtx insn = DECL_RTL (decl);
3947 
3948       /* Deleted labels are programmer specified labels which have been
3949 	 eliminated because of various optimisations.  We still emit them
3950 	 here so that it is possible to put breakpoints on them.  */
3951       if (GET_CODE (insn) == CODE_LABEL
3952 	  || ((GET_CODE (insn) == NOTE
3953 	       && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
3954 	{
3955 	  char label[MAX_ARTIFICIAL_LABEL_BYTES];
3956 
3957 	  /* When optimization is enabled (via -O) some parts of the compiler
3958 	     (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
3959 	     represent source-level labels which were explicitly declared by
3960 	     the user.  This really shouldn't be happening though, so catch
3961 	     it if it ever does happen.  */
3962 
3963 	  if (INSN_DELETED_P (insn))
3964 	    abort ();	/* Should never happen.  */
3965 
3966 	  ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
3967 	  low_pc_attribute (label);
3968 	}
3969     }
3970 }
3971 
3972 static void
output_lexical_block_die(arg)3973 output_lexical_block_die (arg)
3974      void *arg;
3975 {
3976   tree stmt = arg;
3977 
3978   ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_lexical_block);
3979   sibling_attribute ();
3980   dienum_push ();
3981   if (! BLOCK_ABSTRACT (stmt))
3982     {
3983       char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3984       char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3985 
3986       sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, BLOCK_NUMBER (stmt));
3987       low_pc_attribute (begin_label);
3988       sprintf (end_label, BLOCK_END_LABEL_FMT, BLOCK_NUMBER (stmt));
3989       high_pc_attribute (end_label);
3990     }
3991 }
3992 
3993 static void
output_inlined_subroutine_die(arg)3994 output_inlined_subroutine_die (arg)
3995      void *arg;
3996 {
3997   tree stmt = arg;
3998 
3999   ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_inlined_subroutine);
4000   sibling_attribute ();
4001   dienum_push ();
4002   abstract_origin_attribute (block_ultimate_origin (stmt));
4003   if (! BLOCK_ABSTRACT (stmt))
4004     {
4005       char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
4006       char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4007 
4008       sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, BLOCK_NUMBER (stmt));
4009       low_pc_attribute (begin_label);
4010       sprintf (end_label, BLOCK_END_LABEL_FMT, BLOCK_NUMBER (stmt));
4011       high_pc_attribute (end_label);
4012     }
4013 }
4014 
4015 /* Output a DIE to represent a declared data object (either file-scope
4016    or block-local) which has "internal linkage" (according to ANSI-C).  */
4017 
4018 static void
output_local_variable_die(arg)4019 output_local_variable_die (arg)
4020      void *arg;
4021 {
4022   tree decl = arg;
4023   tree origin = decl_ultimate_origin (decl);
4024 
4025   ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_local_variable);
4026   sibling_attribute ();
4027   if (origin != NULL)
4028     abstract_origin_attribute (origin);
4029   else
4030     {
4031       name_and_src_coords_attributes (decl);
4032       member_attribute (DECL_CONTEXT (decl));
4033       type_attribute (TREE_TYPE (decl),
4034 		      TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
4035     }
4036   if (DECL_ABSTRACT (decl))
4037     equate_decl_number_to_die_number (decl);
4038   else
4039     location_or_const_value_attribute (decl);
4040 }
4041 
4042 static void
output_member_die(arg)4043 output_member_die (arg)
4044      void *arg;
4045 {
4046   tree decl = arg;
4047 
4048   ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_member);
4049   sibling_attribute ();
4050   name_and_src_coords_attributes (decl);
4051   member_attribute (DECL_CONTEXT (decl));
4052   type_attribute (member_declared_type (decl),
4053 		  TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
4054   if (DECL_BIT_FIELD_TYPE (decl))	/* If this is a bit field...  */
4055     {
4056       byte_size_attribute (decl);
4057       bit_size_attribute (decl);
4058       bit_offset_attribute (decl);
4059     }
4060   data_member_location_attribute (decl);
4061 }
4062 
4063 #if 0
4064 /* Don't generate either pointer_type DIEs or reference_type DIEs.  Use
4065    modified types instead.
4066 
4067    We keep this code here just in case these types of DIEs may be
4068    needed to represent certain things in other languages (e.g. Pascal)
4069    someday.  */
4070 
4071 static void
4072 output_pointer_type_die (arg)
4073      void *arg;
4074 {
4075   tree type = arg;
4076 
4077   ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_pointer_type);
4078   sibling_attribute ();
4079   equate_type_number_to_die_number (type);
4080   member_attribute (TYPE_CONTEXT (type));
4081   type_attribute (TREE_TYPE (type), 0, 0);
4082 }
4083 
4084 static void
4085 output_reference_type_die (arg)
4086      void *arg;
4087 {
4088   tree type = arg;
4089 
4090   ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_reference_type);
4091   sibling_attribute ();
4092   equate_type_number_to_die_number (type);
4093   member_attribute (TYPE_CONTEXT (type));
4094   type_attribute (TREE_TYPE (type), 0, 0);
4095 }
4096 #endif
4097 
4098 static void
output_ptr_to_mbr_type_die(arg)4099 output_ptr_to_mbr_type_die (arg)
4100      void *arg;
4101 {
4102   tree type = arg;
4103 
4104   ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_ptr_to_member_type);
4105   sibling_attribute ();
4106   equate_type_number_to_die_number (type);
4107   member_attribute (TYPE_CONTEXT (type));
4108   containing_type_attribute (TYPE_OFFSET_BASETYPE (type));
4109   type_attribute (TREE_TYPE (type), 0, 0);
4110 }
4111 
4112 static void
output_compile_unit_die(arg)4113 output_compile_unit_die (arg)
4114      void *arg;
4115 {
4116   const char *main_input_filename = arg;
4117   const char *language_string = lang_hooks.name;
4118 
4119   ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_compile_unit);
4120   sibling_attribute ();
4121   dienum_push ();
4122   name_attribute (main_input_filename);
4123 
4124   {
4125     char producer[250];
4126 
4127     sprintf (producer, "%s %s", language_string, version_string);
4128     producer_attribute (producer);
4129   }
4130 
4131   if (strcmp (language_string, "GNU C++") == 0)
4132     language_attribute (LANG_C_PLUS_PLUS);
4133   else if (strcmp (language_string, "GNU Ada") == 0)
4134     language_attribute (LANG_ADA83);
4135   else if (strcmp (language_string, "GNU F77") == 0)
4136     language_attribute (LANG_FORTRAN77);
4137   else if (strcmp (language_string, "GNU Pascal") == 0)
4138     language_attribute (LANG_PASCAL83);
4139   else if (strcmp (language_string, "GNU Java") == 0)
4140     language_attribute (LANG_JAVA);
4141   else
4142     language_attribute (LANG_C89);
4143   low_pc_attribute (TEXT_BEGIN_LABEL);
4144   high_pc_attribute (TEXT_END_LABEL);
4145   if (debug_info_level >= DINFO_LEVEL_NORMAL)
4146     stmt_list_attribute (LINE_BEGIN_LABEL);
4147 
4148   {
4149     const char *wd = getpwd ();
4150     if (wd)
4151       comp_dir_attribute (wd);
4152   }
4153 
4154   if (debug_info_level >= DINFO_LEVEL_NORMAL && use_gnu_debug_info_extensions)
4155     {
4156       sf_names_attribute (SFNAMES_BEGIN_LABEL);
4157       src_info_attribute (SRCINFO_BEGIN_LABEL);
4158       if (debug_info_level >= DINFO_LEVEL_VERBOSE)
4159 	mac_info_attribute (MACINFO_BEGIN_LABEL);
4160     }
4161 }
4162 
4163 static void
output_string_type_die(arg)4164 output_string_type_die (arg)
4165      void *arg;
4166 {
4167   tree type = arg;
4168 
4169   ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_string_type);
4170   sibling_attribute ();
4171   equate_type_number_to_die_number (type);
4172   member_attribute (TYPE_CONTEXT (type));
4173   /* this is a fixed length string */
4174   byte_size_attribute (type);
4175 }
4176 
4177 static void
output_inheritance_die(arg)4178 output_inheritance_die (arg)
4179      void *arg;
4180 {
4181   tree binfo = arg;
4182 
4183   ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_inheritance);
4184   sibling_attribute ();
4185   type_attribute (BINFO_TYPE (binfo), 0, 0);
4186   data_member_location_attribute (binfo);
4187   if (TREE_VIA_VIRTUAL (binfo))
4188     {
4189       ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_virtual);
4190       ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
4191     }
4192   if (TREE_VIA_PUBLIC (binfo))
4193     {
4194       ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_public);
4195       ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
4196     }
4197   else if (TREE_VIA_PROTECTED (binfo))
4198     {
4199       ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_protected);
4200       ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
4201     }
4202 }
4203 
4204 static void
output_structure_type_die(arg)4205 output_structure_type_die (arg)
4206      void *arg;
4207 {
4208   tree type = arg;
4209 
4210   ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
4211   sibling_attribute ();
4212   equate_type_number_to_die_number (type);
4213   name_attribute (type_tag (type));
4214   member_attribute (TYPE_CONTEXT (type));
4215 
4216   /* If this type has been completed, then give it a byte_size attribute
4217      and prepare to give a list of members.  Otherwise, don't do either of
4218      these things.  In the latter case, we will not be generating a list
4219      of members (since we don't have any idea what they might be for an
4220      incomplete type).	*/
4221 
4222   if (COMPLETE_TYPE_P (type))
4223     {
4224       dienum_push ();
4225       byte_size_attribute (type);
4226     }
4227 }
4228 
4229 /* Output a DIE to represent a declared function (either file-scope
4230    or block-local) which has "internal linkage" (according to ANSI-C).  */
4231 
4232 static void
output_local_subroutine_die(arg)4233 output_local_subroutine_die (arg)
4234      void *arg;
4235 {
4236   tree decl = arg;
4237   tree origin = decl_ultimate_origin (decl);
4238 
4239   ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine);
4240   sibling_attribute ();
4241   dienum_push ();
4242   if (origin != NULL)
4243     abstract_origin_attribute (origin);
4244   else
4245     {
4246       tree type = TREE_TYPE (decl);
4247 
4248       name_and_src_coords_attributes (decl);
4249       inline_attribute (decl);
4250       prototyped_attribute (type);
4251       member_attribute (DECL_CONTEXT (decl));
4252       type_attribute (TREE_TYPE (type), 0, 0);
4253       pure_or_virtual_attribute (decl);
4254     }
4255   if (DECL_ABSTRACT (decl))
4256     equate_decl_number_to_die_number (decl);
4257   else
4258     {
4259       /* Avoid getting screwed up in cases where a function was declared
4260 	 static but where no definition was ever given for it.  */
4261 
4262       if (TREE_ASM_WRITTEN (decl))
4263 	{
4264 	  char label[MAX_ARTIFICIAL_LABEL_BYTES];
4265 	  low_pc_attribute (function_start_label (decl));
4266 	  sprintf (label, FUNC_END_LABEL_FMT, current_function_funcdef_no);
4267 	  high_pc_attribute (label);
4268 	  if (use_gnu_debug_info_extensions)
4269 	    {
4270 	      sprintf (label, BODY_BEGIN_LABEL_FMT,
4271 		       current_function_funcdef_no);
4272 	      body_begin_attribute (label);
4273 	      sprintf (label, BODY_END_LABEL_FMT, current_function_funcdef_no);
4274 	      body_end_attribute (label);
4275 	    }
4276 	}
4277     }
4278 }
4279 
4280 static void
output_subroutine_type_die(arg)4281 output_subroutine_type_die (arg)
4282      void *arg;
4283 {
4284   tree type = arg;
4285   tree return_type = TREE_TYPE (type);
4286 
4287   ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine_type);
4288   sibling_attribute ();
4289   dienum_push ();
4290   equate_type_number_to_die_number (type);
4291   prototyped_attribute (type);
4292   member_attribute (TYPE_CONTEXT (type));
4293   type_attribute (return_type, 0, 0);
4294 }
4295 
4296 static void
output_typedef_die(arg)4297 output_typedef_die (arg)
4298      void *arg;
4299 {
4300   tree decl = arg;
4301   tree origin = decl_ultimate_origin (decl);
4302 
4303   ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_typedef);
4304   sibling_attribute ();
4305   if (origin != NULL)
4306     abstract_origin_attribute (origin);
4307   else
4308     {
4309       name_and_src_coords_attributes (decl);
4310       member_attribute (DECL_CONTEXT (decl));
4311       type_attribute (TREE_TYPE (decl),
4312 		      TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
4313     }
4314   if (DECL_ABSTRACT (decl))
4315     equate_decl_number_to_die_number (decl);
4316 }
4317 
4318 static void
output_union_type_die(arg)4319 output_union_type_die (arg)
4320      void *arg;
4321 {
4322   tree type = arg;
4323 
4324   ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
4325   sibling_attribute ();
4326   equate_type_number_to_die_number (type);
4327   name_attribute (type_tag (type));
4328   member_attribute (TYPE_CONTEXT (type));
4329 
4330   /* If this type has been completed, then give it a byte_size attribute
4331      and prepare to give a list of members.  Otherwise, don't do either of
4332      these things.  In the latter case, we will not be generating a list
4333      of members (since we don't have any idea what they might be for an
4334      incomplete type).	*/
4335 
4336   if (COMPLETE_TYPE_P (type))
4337     {
4338       dienum_push ();
4339       byte_size_attribute (type);
4340     }
4341 }
4342 
4343 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
4344    at the end of an (ANSI prototyped) formal parameters list.  */
4345 
4346 static void
output_unspecified_parameters_die(arg)4347 output_unspecified_parameters_die (arg)
4348      void *arg;
4349 {
4350   tree decl_or_type = arg;
4351 
4352   ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_unspecified_parameters);
4353   sibling_attribute ();
4354 
4355   /* This kludge is here only for the sake of being compatible with what
4356      the USL CI5 C compiler does.  The specification of Dwarf Version 1
4357      doesn't say that TAG_unspecified_parameters DIEs should contain any
4358      attributes other than the AT_sibling attribute, but they are certainly
4359      allowed to contain additional attributes, and the CI5 compiler
4360      generates AT_name, AT_fund_type, and AT_location attributes within
4361      TAG_unspecified_parameters DIEs which appear in the child lists for
4362      DIEs representing function definitions, so we do likewise here.  */
4363 
4364   if (TREE_CODE (decl_or_type) == FUNCTION_DECL && DECL_INITIAL (decl_or_type))
4365     {
4366       name_attribute ("...");
4367       fund_type_attribute (FT_pointer);
4368       /* location_attribute (?); */
4369     }
4370 }
4371 
4372 static void
output_padded_null_die(arg)4373 output_padded_null_die (arg)
4374      void *arg ATTRIBUTE_UNUSED;
4375 {
4376   ASM_OUTPUT_ALIGN (asm_out_file, 2);	/* 2**2 == 4 */
4377 }
4378 
4379 /*************************** end of DIEs *********************************/
4380 
4381 /* Generate some type of DIE.  This routine generates the generic outer
4382    wrapper stuff which goes around all types of DIE's (regardless of their
4383    TAGs.  All forms of DIEs start with a DIE-specific label, followed by a
4384    DIE-length word, followed by the guts of the DIE itself.  After the guts
4385    of the DIE, there must always be a terminator label for the DIE.  */
4386 
4387 static void
4388 output_die (die_specific_output_function, param)
4389      void (*die_specific_output_function) PARAMS ((void *));
4390      void *param;
4391 {
4392   char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
4393   char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4394 
4395   current_dienum = NEXT_DIE_NUM;
4396   NEXT_DIE_NUM = next_unused_dienum;
4397 
4398   sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
4399   sprintf (end_label, DIE_END_LABEL_FMT, current_dienum);
4400 
4401   /* Write a label which will act as the name for the start of this DIE.  */
4402 
4403   ASM_OUTPUT_LABEL (asm_out_file, begin_label);
4404 
4405   /* Write the DIE-length word.	 */
4406 
4407   ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
4408 
4409   /* Fill in the guts of the DIE.  */
4410 
4411   next_unused_dienum++;
4412   die_specific_output_function (param);
4413 
4414   /* Write a label which will act as the name for the end of this DIE.	*/
4415 
4416   ASM_OUTPUT_LABEL (asm_out_file, end_label);
4417 }
4418 
4419 static void
end_sibling_chain()4420 end_sibling_chain ()
4421 {
4422   char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
4423 
4424   current_dienum = NEXT_DIE_NUM;
4425   NEXT_DIE_NUM = next_unused_dienum;
4426 
4427   sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
4428 
4429   /* Write a label which will act as the name for the start of this DIE.  */
4430 
4431   ASM_OUTPUT_LABEL (asm_out_file, begin_label);
4432 
4433   /* Write the DIE-length word.	 */
4434 
4435   ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 4);
4436 
4437   dienum_pop ();
4438 }
4439 
4440 /* Generate a list of nameless TAG_formal_parameter DIEs (and perhaps a
4441    TAG_unspecified_parameters DIE) to represent the types of the formal
4442    parameters as specified in some function type specification (except
4443    for those which appear as part of a function *definition*).
4444 
4445    Note that we must be careful here to output all of the parameter
4446    DIEs *before* we output any DIEs needed to represent the types of
4447    the formal parameters.  This keeps svr4 SDB happy because it
4448    (incorrectly) thinks that the first non-parameter DIE it sees ends
4449    the formal parameter list.  */
4450 
4451 static void
output_formal_types(function_or_method_type)4452 output_formal_types (function_or_method_type)
4453      tree function_or_method_type;
4454 {
4455   tree link;
4456   tree formal_type = NULL;
4457   tree first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
4458 
4459   /* Set TREE_ASM_WRITTEN while processing the parameters, lest we
4460      get bogus recursion when outputting tagged types local to a
4461      function declaration.  */
4462   int save_asm_written = TREE_ASM_WRITTEN (function_or_method_type);
4463   TREE_ASM_WRITTEN (function_or_method_type) = 1;
4464 
4465   /* In the case where we are generating a formal types list for a C++
4466      non-static member function type, skip over the first thing on the
4467      TYPE_ARG_TYPES list because it only represents the type of the
4468      hidden `this pointer'.  The debugger should be able to figure
4469      out (without being explicitly told) that this non-static member
4470      function type takes a `this pointer' and should be able to figure
4471      what the type of that hidden parameter is from the AT_member
4472      attribute of the parent TAG_subroutine_type DIE.  */
4473 
4474   if (TREE_CODE (function_or_method_type) == METHOD_TYPE)
4475     first_parm_type = TREE_CHAIN (first_parm_type);
4476 
4477   /* Make our first pass over the list of formal parameter types and output
4478      a TAG_formal_parameter DIE for each one.  */
4479 
4480   for (link = first_parm_type; link; link = TREE_CHAIN (link))
4481     {
4482       formal_type = TREE_VALUE (link);
4483       if (formal_type == void_type_node)
4484 	break;
4485 
4486       /* Output a (nameless) DIE to represent the formal parameter itself.  */
4487 
4488       output_die (output_formal_parameter_die, formal_type);
4489     }
4490 
4491   /* If this function type has an ellipsis, add a TAG_unspecified_parameters
4492      DIE to the end of the parameter list.  */
4493 
4494   if (formal_type != void_type_node)
4495     output_die (output_unspecified_parameters_die, function_or_method_type);
4496 
4497   /* Make our second (and final) pass over the list of formal parameter types
4498      and output DIEs to represent those types (as necessary).  */
4499 
4500   for (link = TYPE_ARG_TYPES (function_or_method_type);
4501        link;
4502        link = TREE_CHAIN (link))
4503     {
4504       formal_type = TREE_VALUE (link);
4505       if (formal_type == void_type_node)
4506 	break;
4507 
4508       output_type (formal_type, function_or_method_type);
4509     }
4510 
4511   TREE_ASM_WRITTEN (function_or_method_type) = save_asm_written;
4512 }
4513 
4514 /* Remember a type in the pending_types_list.  */
4515 
4516 static void
pend_type(type)4517 pend_type (type)
4518      tree type;
4519 {
4520   if (pending_types == pending_types_allocated)
4521     {
4522       pending_types_allocated += PENDING_TYPES_INCREMENT;
4523       pending_types_list
4524 	= (tree *) xrealloc (pending_types_list,
4525 			     sizeof (tree) * pending_types_allocated);
4526     }
4527   pending_types_list[pending_types++] = type;
4528 
4529   /* Mark the pending type as having been output already (even though
4530      it hasn't been).  This prevents the type from being added to the
4531      pending_types_list more than once.  */
4532 
4533   TREE_ASM_WRITTEN (type) = 1;
4534 }
4535 
4536 /* Return nonzero if it is legitimate to output DIEs to represent a
4537    given type while we are generating the list of child DIEs for some
4538    DIE (e.g. a function or lexical block DIE) associated with a given scope.
4539 
4540    See the comments within the function for a description of when it is
4541    considered legitimate to output DIEs for various kinds of types.
4542 
4543    Note that TYPE_CONTEXT(type) may be NULL (to indicate global scope)
4544    or it may point to a BLOCK node (for types local to a block), or to a
4545    FUNCTION_DECL node (for types local to the heading of some function
4546    definition), or to a FUNCTION_TYPE node (for types local to the
4547    prototyped parameter list of a function type specification), or to a
4548    RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE node
4549    (in the case of C++ nested types).
4550 
4551    The `scope' parameter should likewise be NULL or should point to a
4552    BLOCK node, a FUNCTION_DECL node, a FUNCTION_TYPE node, a RECORD_TYPE
4553    node, a UNION_TYPE node, or a QUAL_UNION_TYPE node.
4554 
4555    This function is used only for deciding when to "pend" and when to
4556    "un-pend" types to/from the pending_types_list.
4557 
4558    Note that we sometimes make use of this "type pending" feature in a
4559    rather twisted way to temporarily delay the production of DIEs for the
4560    types of formal parameters.  (We do this just to make svr4 SDB happy.)
4561    It order to delay the production of DIEs representing types of formal
4562    parameters, callers of this function supply `fake_containing_scope' as
4563    the `scope' parameter to this function.  Given that fake_containing_scope
4564    is a tagged type which is *not* the containing scope for *any* other type,
4565    the desired effect is achieved, i.e. output of DIEs representing types
4566    is temporarily suspended, and any type DIEs which would have otherwise
4567    been output are instead placed onto the pending_types_list.  Later on,
4568    we force these (temporarily pended) types to be output simply by calling
4569    `output_pending_types_for_scope' with an actual argument equal to the
4570    true scope of the types we temporarily pended.  */
4571 
4572 static inline int
type_ok_for_scope(type,scope)4573 type_ok_for_scope (type, scope)
4574     tree type;
4575     tree scope;
4576 {
4577   /* Tagged types (i.e. struct, union, and enum types) must always be
4578      output only in the scopes where they actually belong (or else the
4579      scoping of their own tag names and the scoping of their member
4580      names will be incorrect).  Non-tagged-types on the other hand can
4581      generally be output anywhere, except that svr4 SDB really doesn't
4582      want to see them nested within struct or union types, so here we
4583      say it is always OK to immediately output any such a (non-tagged)
4584      type, so long as we are not within such a context.  Note that the
4585      only kinds of non-tagged types which we will be dealing with here
4586      (for C and C++ anyway) will be array types and function types.  */
4587 
4588   return is_tagged_type (type)
4589 	 ? (TYPE_CONTEXT (type) == scope
4590 	    /* Ignore namespaces for the moment.  */
4591 	    || (scope == NULL_TREE
4592 		&& TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL)
4593 	    || (scope == NULL_TREE && is_tagged_type (TYPE_CONTEXT (type))
4594 		&& TREE_ASM_WRITTEN (TYPE_CONTEXT (type))))
4595 	 : (scope == NULL_TREE || ! is_tagged_type (scope));
4596 }
4597 
4598 /* Output any pending types (from the pending_types list) which we can output
4599    now (taking into account the scope that we are working on now).
4600 
4601    For each type output, remove the given type from the pending_types_list
4602    *before* we try to output it.
4603 
4604    Note that we have to process the list in beginning-to-end order,
4605    because the call made here to output_type may cause yet more types
4606    to be added to the end of the list, and we may have to output some
4607    of them too.  */
4608 
4609 static void
output_pending_types_for_scope(containing_scope)4610 output_pending_types_for_scope (containing_scope)
4611      tree containing_scope;
4612 {
4613   unsigned i;
4614 
4615   for (i = 0; i < pending_types; )
4616     {
4617       tree type = pending_types_list[i];
4618 
4619       if (type_ok_for_scope (type, containing_scope))
4620 	{
4621 	  tree *mover;
4622 	  tree *limit;
4623 
4624 	  pending_types--;
4625 	  limit = &pending_types_list[pending_types];
4626 	  for (mover = &pending_types_list[i]; mover < limit; mover++)
4627 	    *mover = *(mover+1);
4628 
4629 	  /* Un-mark the type as having been output already (because it
4630 	     hasn't been, really).  Then call output_type to generate a
4631 	     Dwarf representation of it.  */
4632 
4633 	  TREE_ASM_WRITTEN (type) = 0;
4634 	  output_type (type, containing_scope);
4635 
4636 	  /* Don't increment the loop counter in this case because we
4637 	     have shifted all of the subsequent pending types down one
4638 	     element in the pending_types_list array.  */
4639 	}
4640       else
4641 	i++;
4642     }
4643 }
4644 
4645 /* Remember a type in the incomplete_types_list.  */
4646 
4647 static void
add_incomplete_type(type)4648 add_incomplete_type (type)
4649      tree type;
4650 {
4651   if (incomplete_types == incomplete_types_allocated)
4652     {
4653       incomplete_types_allocated += INCOMPLETE_TYPES_INCREMENT;
4654       incomplete_types_list
4655 	= (tree *) xrealloc (incomplete_types_list,
4656 			     sizeof (tree) * incomplete_types_allocated);
4657     }
4658 
4659   incomplete_types_list[incomplete_types++] = type;
4660 }
4661 
4662 /* Walk through the list of incomplete types again, trying once more to
4663    emit full debugging info for them.  */
4664 
4665 static void
retry_incomplete_types()4666 retry_incomplete_types ()
4667 {
4668   tree type;
4669 
4670   finalizing = 1;
4671   while (incomplete_types)
4672     {
4673       --incomplete_types;
4674       type = incomplete_types_list[incomplete_types];
4675       output_type (type, NULL_TREE);
4676     }
4677 }
4678 
4679 static void
output_type(type,containing_scope)4680 output_type (type, containing_scope)
4681      tree type;
4682      tree containing_scope;
4683 {
4684   if (type == 0 || type == error_mark_node)
4685     return;
4686 
4687   /* We are going to output a DIE to represent the unqualified version of
4688      this type (i.e. without any const or volatile qualifiers) so get
4689      the main variant (i.e. the unqualified version) of this type now.  */
4690 
4691   type = type_main_variant (type);
4692 
4693   if (TREE_ASM_WRITTEN (type))
4694     {
4695       if (finalizing && AGGREGATE_TYPE_P (type))
4696 	{
4697 	  tree member;
4698 
4699 	  /* Some of our nested types might not have been defined when we
4700 	     were written out before; force them out now.  */
4701 
4702 	  for (member = TYPE_FIELDS (type); member;
4703 	       member = TREE_CHAIN (member))
4704 	    if (TREE_CODE (member) == TYPE_DECL
4705 		&& ! TREE_ASM_WRITTEN (TREE_TYPE (member)))
4706 	      output_type (TREE_TYPE (member), containing_scope);
4707 	}
4708       return;
4709     }
4710 
4711   /* If this is a nested type whose containing class hasn't been
4712      written out yet, writing it out will cover this one, too.  */
4713 
4714   if (TYPE_CONTEXT (type)
4715       && TYPE_P (TYPE_CONTEXT (type))
4716       && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
4717     {
4718       output_type (TYPE_CONTEXT (type), containing_scope);
4719       return;
4720     }
4721 
4722   /* Don't generate any DIEs for this type now unless it is OK to do so
4723      (based upon what `type_ok_for_scope' tells us).  */
4724 
4725   if (! type_ok_for_scope (type, containing_scope))
4726     {
4727       pend_type (type);
4728       return;
4729     }
4730 
4731   switch (TREE_CODE (type))
4732     {
4733       case ERROR_MARK:
4734 	break;
4735 
4736       case VECTOR_TYPE:
4737 	output_type (TYPE_DEBUG_REPRESENTATION_TYPE (type), containing_scope);
4738 	break;
4739 
4740       case POINTER_TYPE:
4741       case REFERENCE_TYPE:
4742 	/* Prevent infinite recursion in cases where this is a recursive
4743 	   type.  Recursive types are possible in Ada.  */
4744 	TREE_ASM_WRITTEN (type) = 1;
4745 	/* For these types, all that is required is that we output a DIE
4746 	   (or a set of DIEs) to represent the "basis" type.  */
4747 	output_type (TREE_TYPE (type), containing_scope);
4748 	break;
4749 
4750       case OFFSET_TYPE:
4751 	/* This code is used for C++ pointer-to-data-member types.  */
4752 	/* Output a description of the relevant class type.  */
4753 	output_type (TYPE_OFFSET_BASETYPE (type), containing_scope);
4754 	/* Output a description of the type of the object pointed to.  */
4755 	output_type (TREE_TYPE (type), containing_scope);
4756 	/* Now output a DIE to represent this pointer-to-data-member type
4757 	   itself.  */
4758 	output_die (output_ptr_to_mbr_type_die, type);
4759 	break;
4760 
4761       case SET_TYPE:
4762 	output_type (TYPE_DOMAIN (type), containing_scope);
4763 	output_die (output_set_type_die, type);
4764 	break;
4765 
4766       case FILE_TYPE:
4767 	output_type (TREE_TYPE (type), containing_scope);
4768 	abort ();	/* No way to represent these in Dwarf yet!  */
4769 	break;
4770 
4771       case FUNCTION_TYPE:
4772 	/* Force out return type (in case it wasn't forced out already).  */
4773 	output_type (TREE_TYPE (type), containing_scope);
4774 	output_die (output_subroutine_type_die, type);
4775 	output_formal_types (type);
4776 	end_sibling_chain ();
4777 	break;
4778 
4779       case METHOD_TYPE:
4780 	/* Force out return type (in case it wasn't forced out already).  */
4781 	output_type (TREE_TYPE (type), containing_scope);
4782 	output_die (output_subroutine_type_die, type);
4783 	output_formal_types (type);
4784 	end_sibling_chain ();
4785 	break;
4786 
4787       case ARRAY_TYPE:
4788 	if (TYPE_STRING_FLAG (type) && TREE_CODE(TREE_TYPE(type)) == CHAR_TYPE)
4789 	  {
4790 	    output_type (TREE_TYPE (type), containing_scope);
4791 	    output_die (output_string_type_die, type);
4792 	  }
4793 	else
4794 	  {
4795 	    tree element_type;
4796 
4797 	    element_type = TREE_TYPE (type);
4798 	    while (TREE_CODE (element_type) == ARRAY_TYPE)
4799 	      element_type = TREE_TYPE (element_type);
4800 
4801 	    output_type (element_type, containing_scope);
4802 	    output_die (output_array_type_die, type);
4803 	  }
4804 	break;
4805 
4806       case ENUMERAL_TYPE:
4807       case RECORD_TYPE:
4808       case UNION_TYPE:
4809       case QUAL_UNION_TYPE:
4810 
4811 	/* For a non-file-scope tagged type, we can always go ahead and
4812 	   output a Dwarf description of this type right now, even if
4813 	   the type in question is still incomplete, because if this
4814 	   local type *was* ever completed anywhere within its scope,
4815 	   that complete definition would already have been attached to
4816 	   this RECORD_TYPE, UNION_TYPE, QUAL_UNION_TYPE or ENUMERAL_TYPE
4817 	   node by the time we reach this point.  That's true because of the
4818 	   way the front-end does its processing of file-scope declarations (of
4819 	   functions and class types) within which other types might be
4820 	   nested.  The C and C++ front-ends always gobble up such "local
4821 	   scope" things en-mass before they try to output *any* debugging
4822 	   information for any of the stuff contained inside them and thus,
4823 	   we get the benefit here of what is (in effect) a pre-resolution
4824 	   of forward references to tagged types in local scopes.
4825 
4826 	   Note however that for file-scope tagged types we cannot assume
4827 	   that such pre-resolution of forward references has taken place.
4828 	   A given file-scope tagged type may appear to be incomplete when
4829 	   we reach this point, but it may yet be given a full definition
4830 	   (at file-scope) later on during compilation.  In order to avoid
4831 	   generating a premature (and possibly incorrect) set of Dwarf
4832 	   DIEs for such (as yet incomplete) file-scope tagged types, we
4833 	   generate nothing at all for as-yet incomplete file-scope tagged
4834 	   types here unless we are making our special "finalization" pass
4835 	   for file-scope things at the very end of compilation.  At that
4836 	   time, we will certainly know as much about each file-scope tagged
4837 	   type as we are ever going to know, so at that point in time, we
4838 	   can safely generate correct Dwarf descriptions for these file-
4839 	   scope tagged types.  */
4840 
4841 	if (!COMPLETE_TYPE_P (type)
4842 	    && (TYPE_CONTEXT (type) == NULL
4843 		|| AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
4844 		|| TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL)
4845 	    && !finalizing)
4846 	  {
4847 	    /* We don't need to do this for function-local types.  */
4848 	    if (! decl_function_context (TYPE_STUB_DECL (type)))
4849 	      add_incomplete_type (type);
4850 	    return;	/* EARLY EXIT!  Avoid setting TREE_ASM_WRITTEN.  */
4851 	  }
4852 
4853 	/* Prevent infinite recursion in cases where the type of some
4854 	   member of this type is expressed in terms of this type itself.  */
4855 
4856 	TREE_ASM_WRITTEN (type) = 1;
4857 
4858 	/* Output a DIE to represent the tagged type itself.  */
4859 
4860 	switch (TREE_CODE (type))
4861 	  {
4862 	  case ENUMERAL_TYPE:
4863 	    output_die (output_enumeration_type_die, type);
4864 	    return;  /* a special case -- nothing left to do so just return */
4865 
4866 	  case RECORD_TYPE:
4867 	    output_die (output_structure_type_die, type);
4868 	    break;
4869 
4870 	  case UNION_TYPE:
4871 	  case QUAL_UNION_TYPE:
4872 	    output_die (output_union_type_die, type);
4873 	    break;
4874 
4875 	  default:
4876 	    abort ();	/* Should never happen.  */
4877 	  }
4878 
4879 	/* If this is not an incomplete type, output descriptions of
4880 	   each of its members.
4881 
4882 	   Note that as we output the DIEs necessary to represent the
4883 	   members of this record or union type, we will also be trying
4884 	   to output DIEs to represent the *types* of those members.
4885 	   However the `output_type' function (above) will specifically
4886 	   avoid generating type DIEs for member types *within* the list
4887 	   of member DIEs for this (containing) type except for those
4888 	   types (of members) which are explicitly marked as also being
4889 	   members of this (containing) type themselves.  The g++ front-
4890 	   end can force any given type to be treated as a member of some
4891 	   other (containing) type by setting the TYPE_CONTEXT of the
4892 	   given (member) type to point to the TREE node representing the
4893 	   appropriate (containing) type.
4894 	*/
4895 
4896 	if (COMPLETE_TYPE_P (type))
4897 	  {
4898 	    /* First output info about the base classes.  */
4899 	    if (TYPE_BINFO (type) && TYPE_BINFO_BASETYPES (type))
4900 	      {
4901 		register tree bases = TYPE_BINFO_BASETYPES (type);
4902 		register int n_bases = TREE_VEC_LENGTH (bases);
4903 		register int i;
4904 
4905 		for (i = 0; i < n_bases; i++)
4906 		  {
4907 		    tree binfo = TREE_VEC_ELT (bases, i);
4908 		    output_type (BINFO_TYPE (binfo), containing_scope);
4909 		    output_die (output_inheritance_die, binfo);
4910 		  }
4911 	      }
4912 
4913 	    ++in_class;
4914 
4915 	    {
4916 	      tree normal_member;
4917 
4918 	      /* Now output info about the data members and type members.  */
4919 
4920 	      for (normal_member = TYPE_FIELDS (type);
4921 		   normal_member;
4922 		   normal_member = TREE_CHAIN (normal_member))
4923 	        output_decl (normal_member, type);
4924 	    }
4925 
4926 	    {
4927 	      tree func_member;
4928 
4929 	      /* Now output info about the function members (if any).  */
4930 
4931 	      for (func_member = TYPE_METHODS (type);
4932 		   func_member;
4933 		   func_member = TREE_CHAIN (func_member))
4934 		{
4935 		  /* Don't include clones in the member list.  */
4936 		  if (DECL_ABSTRACT_ORIGIN (func_member))
4937 		    continue;
4938 
4939 		  output_decl (func_member, type);
4940 		}
4941 	    }
4942 
4943 	    --in_class;
4944 
4945 	    /* RECORD_TYPEs, UNION_TYPEs, and QUAL_UNION_TYPEs are themselves
4946 	       scopes (at least in C++) so we must now output any nested
4947 	       pending types which are local just to this type.  */
4948 
4949 	    output_pending_types_for_scope (type);
4950 
4951 	    end_sibling_chain ();	/* Terminate member chain.  */
4952 	  }
4953 
4954 	break;
4955 
4956       case VOID_TYPE:
4957       case INTEGER_TYPE:
4958       case REAL_TYPE:
4959       case COMPLEX_TYPE:
4960       case BOOLEAN_TYPE:
4961       case CHAR_TYPE:
4962 	break;		/* No DIEs needed for fundamental types.  */
4963 
4964       case LANG_TYPE:	/* No Dwarf representation currently defined.  */
4965 	break;
4966 
4967       default:
4968 	abort ();
4969     }
4970 
4971   TREE_ASM_WRITTEN (type) = 1;
4972 }
4973 
4974 static void
output_tagged_type_instantiation(type)4975 output_tagged_type_instantiation (type)
4976      tree type;
4977 {
4978   if (type == 0 || type == error_mark_node)
4979     return;
4980 
4981   /* We are going to output a DIE to represent the unqualified version of
4982      this type (i.e. without any const or volatile qualifiers) so make
4983      sure that we have the main variant (i.e. the unqualified version) of
4984      this type now.  */
4985 
4986   if (type != type_main_variant (type))
4987     abort ();
4988 
4989   if (!TREE_ASM_WRITTEN (type))
4990     abort ();
4991 
4992   switch (TREE_CODE (type))
4993     {
4994       case ERROR_MARK:
4995 	break;
4996 
4997       case ENUMERAL_TYPE:
4998 	output_die (output_inlined_enumeration_type_die, type);
4999 	break;
5000 
5001       case RECORD_TYPE:
5002 	output_die (output_inlined_structure_type_die, type);
5003 	break;
5004 
5005       case UNION_TYPE:
5006       case QUAL_UNION_TYPE:
5007 	output_die (output_inlined_union_type_die, type);
5008 	break;
5009 
5010       default:
5011 	abort ();	/* Should never happen.  */
5012     }
5013 }
5014 
5015 /* Output a TAG_lexical_block DIE followed by DIEs to represent all of
5016    the things which are local to the given block.  */
5017 
5018 static void
output_block(stmt,depth)5019 output_block (stmt, depth)
5020     tree stmt;
5021     int depth;
5022 {
5023   int must_output_die = 0;
5024   tree origin;
5025   enum tree_code origin_code;
5026 
5027   /* Ignore blocks never really used to make RTL.  */
5028 
5029   if (! stmt || ! TREE_USED (stmt)
5030       || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
5031     return;
5032 
5033   /* Determine the "ultimate origin" of this block.  This block may be an
5034      inlined instance of an inlined instance of inline function, so we
5035      have to trace all of the way back through the origin chain to find
5036      out what sort of node actually served as the original seed for the
5037      creation of the current block.  */
5038 
5039   origin = block_ultimate_origin (stmt);
5040   origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
5041 
5042   /* Determine if we need to output any Dwarf DIEs at all to represent this
5043      block.  */
5044 
5045   if (origin_code == FUNCTION_DECL)
5046     /* The outer scopes for inlinings *must* always be represented.  We
5047        generate TAG_inlined_subroutine DIEs for them.  (See below.)  */
5048     must_output_die = 1;
5049   else
5050     {
5051       /* In the case where the current block represents an inlining of the
5052 	 "body block" of an inline function, we must *NOT* output any DIE
5053 	 for this block because we have already output a DIE to represent
5054 	 the whole inlined function scope and the "body block" of any
5055 	 function doesn't really represent a different scope according to
5056 	 ANSI C rules.  So we check here to make sure that this block does
5057 	 not represent a "body block inlining" before trying to set the
5058 	 `must_output_die' flag.  */
5059 
5060       if (! is_body_block (origin ? origin : stmt))
5061 	{
5062 	  /* Determine if this block directly contains any "significant"
5063 	     local declarations which we will need to output DIEs for.  */
5064 
5065 	  if (debug_info_level > DINFO_LEVEL_TERSE)
5066 	    /* We are not in terse mode so *any* local declaration counts
5067 	       as being a "significant" one.  */
5068 	    must_output_die = (BLOCK_VARS (stmt) != NULL);
5069 	  else
5070 	    {
5071 	      tree decl;
5072 
5073 	      /* We are in terse mode, so only local (nested) function
5074 	         definitions count as "significant" local declarations.  */
5075 
5076 	      for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
5077 		if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl))
5078 		  {
5079 		    must_output_die = 1;
5080 		    break;
5081 		  }
5082 	    }
5083 	}
5084     }
5085 
5086   /* It would be a waste of space to generate a Dwarf TAG_lexical_block
5087      DIE for any block which contains no significant local declarations
5088      at all.  Rather, in such cases we just call `output_decls_for_scope'
5089      so that any needed Dwarf info for any sub-blocks will get properly
5090      generated.  Note that in terse mode, our definition of what constitutes
5091      a "significant" local declaration gets restricted to include only
5092      inlined function instances and local (nested) function definitions.  */
5093 
5094   if (origin_code == FUNCTION_DECL && BLOCK_ABSTRACT (stmt))
5095     /* We don't care about an abstract inlined subroutine.  */;
5096   else if (must_output_die)
5097     {
5098       output_die ((origin_code == FUNCTION_DECL)
5099 		    ? output_inlined_subroutine_die
5100 		    : output_lexical_block_die,
5101 		  stmt);
5102       output_decls_for_scope (stmt, depth);
5103       end_sibling_chain ();
5104     }
5105   else
5106     output_decls_for_scope (stmt, depth);
5107 }
5108 
5109 /* Output all of the decls declared within a given scope (also called
5110    a `binding contour') and (recursively) all of it's sub-blocks.  */
5111 
5112 static void
output_decls_for_scope(stmt,depth)5113 output_decls_for_scope (stmt, depth)
5114      tree stmt;
5115      int depth;
5116 {
5117   /* Ignore blocks never really used to make RTL.  */
5118 
5119   if (! stmt || ! TREE_USED (stmt))
5120     return;
5121 
5122   /* Output the DIEs to represent all of the data objects, functions,
5123      typedefs, and tagged types declared directly within this block
5124      but not within any nested sub-blocks.  */
5125 
5126   {
5127     tree decl;
5128 
5129     for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
5130       output_decl (decl, stmt);
5131   }
5132 
5133   output_pending_types_for_scope (stmt);
5134 
5135   /* Output the DIEs to represent all sub-blocks (and the items declared
5136      therein) of this block.	 */
5137 
5138   {
5139     tree subblocks;
5140 
5141     for (subblocks = BLOCK_SUBBLOCKS (stmt);
5142 	 subblocks;
5143 	 subblocks = BLOCK_CHAIN (subblocks))
5144       output_block (subblocks, depth + 1);
5145   }
5146 }
5147 
5148 /* Is this a typedef we can avoid emitting?  */
5149 
5150 static inline int
is_redundant_typedef(decl)5151 is_redundant_typedef (decl)
5152      tree decl;
5153 {
5154   if (TYPE_DECL_IS_STUB (decl))
5155     return 1;
5156   if (DECL_ARTIFICIAL (decl)
5157       && DECL_CONTEXT (decl)
5158       && is_tagged_type (DECL_CONTEXT (decl))
5159       && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
5160       && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
5161     /* Also ignore the artificial member typedef for the class name.  */
5162     return 1;
5163   return 0;
5164 }
5165 
5166 /* Output Dwarf .debug information for a decl described by DECL.  */
5167 
5168 static void
output_decl(decl,containing_scope)5169 output_decl (decl, containing_scope)
5170      tree decl;
5171      tree containing_scope;
5172 {
5173   /* Make a note of the decl node we are going to be working on.  We may
5174      need to give the user the source coordinates of where it appeared in
5175      case we notice (later on) that something about it looks screwy.  */
5176 
5177   dwarf_last_decl = decl;
5178 
5179   if (TREE_CODE (decl) == ERROR_MARK)
5180     return;
5181 
5182   /* If a structure is declared within an initialization, e.g. as the
5183      operand of a sizeof, then it will not have a name.  We don't want
5184      to output a DIE for it, as the tree nodes are in the temporary obstack */
5185 
5186   if ((TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
5187        || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
5188       && ((DECL_NAME (decl) == 0 && TYPE_NAME (TREE_TYPE (decl)) == 0)
5189 	  || (TYPE_FIELDS (TREE_TYPE (decl))
5190 	      && (TREE_CODE (TYPE_FIELDS (TREE_TYPE (decl))) == ERROR_MARK))))
5191     return;
5192 
5193   /* If this ..._DECL node is marked to be ignored, then ignore it.  */
5194 
5195   if (DECL_IGNORED_P (decl))
5196     return;
5197 
5198   switch (TREE_CODE (decl))
5199     {
5200     case CONST_DECL:
5201       /* The individual enumerators of an enum type get output when we
5202 	 output the Dwarf representation of the relevant enum type itself.  */
5203       break;
5204 
5205     case FUNCTION_DECL:
5206       /* If we are in terse mode, don't output any DIEs to represent
5207 	 mere function declarations.  Also, if we are conforming
5208 	 to the DWARF version 1 specification, don't output DIEs for
5209 	 mere function declarations.  */
5210 
5211       if (DECL_INITIAL (decl) == NULL_TREE)
5212 #if (DWARF_VERSION > 1)
5213 	if (debug_info_level <= DINFO_LEVEL_TERSE)
5214 #endif
5215 	  break;
5216 
5217       /* Before we describe the FUNCTION_DECL itself, make sure that we
5218 	 have described its return type.  */
5219 
5220       output_type (TREE_TYPE (TREE_TYPE (decl)), containing_scope);
5221 
5222       {
5223 	/* And its containing type.  */
5224 	register tree origin = decl_class_context (decl);
5225 	if (origin)
5226 	  output_type (origin, containing_scope);
5227       }
5228 
5229       /* If we're emitting an out-of-line copy of an inline function,
5230 	 set up to refer to the abstract instance emitted from
5231 	 dwarfout_deferred_inline_function.  */
5232       if (DECL_INLINE (decl) && ! DECL_ABSTRACT (decl)
5233 	  && ! (containing_scope && TYPE_P (containing_scope)))
5234 	set_decl_origin_self (decl);
5235 
5236       /* If the following DIE will represent a function definition for a
5237 	 function with "extern" linkage, output a special "pubnames" DIE
5238 	 label just ahead of the actual DIE.  A reference to this label
5239 	 was already generated in the .debug_pubnames section sub-entry
5240 	 for this function definition.  */
5241 
5242       if (TREE_PUBLIC (decl))
5243 	{
5244 	  char label[MAX_ARTIFICIAL_LABEL_BYTES];
5245 
5246 	  sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
5247 	  ASM_OUTPUT_LABEL (asm_out_file, label);
5248 	}
5249 
5250       /* Now output a DIE to represent the function itself.  */
5251 
5252       output_die (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl)
5253 				? output_global_subroutine_die
5254 				: output_local_subroutine_die,
5255 		  decl);
5256 
5257       /* Now output descriptions of the arguments for this function.
5258 	 This gets (unnecessarily?) complex because of the fact that
5259 	 the DECL_ARGUMENT list for a FUNCTION_DECL doesn't indicate
5260 	 cases where there was a trailing `...' at the end of the formal
5261 	 parameter list.  In order to find out if there was a trailing
5262 	 ellipsis or not, we must instead look at the type associated
5263 	 with the FUNCTION_DECL.  This will be a node of type FUNCTION_TYPE.
5264 	 If the chain of type nodes hanging off of this FUNCTION_TYPE node
5265 	 ends with a void_type_node then there should *not* be an ellipsis
5266 	 at the end.  */
5267 
5268       /* In the case where we are describing a mere function declaration, all
5269 	 we need to do here (and all we *can* do here) is to describe
5270 	 the *types* of its formal parameters.  */
5271 
5272       if (decl != current_function_decl || in_class)
5273 	output_formal_types (TREE_TYPE (decl));
5274       else
5275 	{
5276 	  /* Generate DIEs to represent all known formal parameters */
5277 
5278 	  tree arg_decls = DECL_ARGUMENTS (decl);
5279 	  tree parm;
5280 
5281 	  /* WARNING!  Kludge zone ahead!  Here we have a special
5282 	     hack for svr4 SDB compatibility.  Instead of passing the
5283 	     current FUNCTION_DECL node as the second parameter (i.e.
5284 	     the `containing_scope' parameter) to `output_decl' (as
5285 	     we ought to) we instead pass a pointer to our own private
5286 	     fake_containing_scope node.  That node is a RECORD_TYPE
5287 	     node which NO OTHER TYPE may ever actually be a member of.
5288 
5289 	     This pointer will ultimately get passed into `output_type'
5290 	     as its `containing_scope' parameter.  `Output_type' will
5291 	     then perform its part in the hack... i.e. it will pend
5292 	     the type of the formal parameter onto the pending_types
5293 	     list.  Later on, when we are done generating the whole
5294 	     sequence of formal parameter DIEs for this function
5295 	     definition, we will un-pend all previously pended types
5296 	     of formal parameters for this function definition.
5297 
5298 	     This whole kludge prevents any type DIEs from being
5299 	     mixed in with the formal parameter DIEs.  That's good
5300 	     because svr4 SDB believes that the list of formal
5301 	     parameter DIEs for a function ends wherever the first
5302 	     non-formal-parameter DIE appears.  Thus, we have to
5303 	     keep the formal parameter DIEs segregated.  They must
5304 	     all appear (consecutively) at the start of the list of
5305 	     children for the DIE representing the function definition.
5306 	     Then (and only then) may we output any additional DIEs
5307 	     needed to represent the types of these formal parameters.
5308 	  */
5309 
5310 	  /*
5311 	     When generating DIEs, generate the unspecified_parameters
5312 	     DIE instead if we come across the arg "__builtin_va_alist"
5313 	  */
5314 
5315 	  for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
5316 	    if (TREE_CODE (parm) == PARM_DECL)
5317 	      {
5318 		if (DECL_NAME(parm) &&
5319 		    !strcmp(IDENTIFIER_POINTER(DECL_NAME(parm)),
5320 			    "__builtin_va_alist") )
5321 		  output_die (output_unspecified_parameters_die, decl);
5322 	        else
5323 		  output_decl (parm, fake_containing_scope);
5324 	      }
5325 
5326 	  /*
5327 	     Now that we have finished generating all of the DIEs to
5328 	     represent the formal parameters themselves, force out
5329 	     any DIEs needed to represent their types.  We do this
5330 	     simply by un-pending all previously pended types which
5331 	     can legitimately go into the chain of children DIEs for
5332 	     the current FUNCTION_DECL.
5333 	  */
5334 
5335 	  output_pending_types_for_scope (decl);
5336 
5337 	  /*
5338 	    Decide whether we need an unspecified_parameters DIE at the end.
5339 	    There are 2 more cases to do this for:
5340 	    1) the ansi ... declaration - this is detectable when the end
5341 		of the arg list is not a void_type_node
5342 	    2) an unprototyped function declaration (not a definition).  This
5343 		just means that we have no info about the parameters at all.
5344 	  */
5345 
5346 	  {
5347 	    tree fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
5348 
5349 	    if (fn_arg_types)
5350 	      {
5351 	      /* this is the prototyped case, check for ...  */
5352 	      if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
5353 	        output_die (output_unspecified_parameters_die, decl);
5354 	      }
5355 	    else
5356 	      {
5357 		/* this is unprototyped, check for undefined (just declaration) */
5358 		if (!DECL_INITIAL (decl))
5359 		  output_die (output_unspecified_parameters_die, decl);
5360 	      }
5361 	  }
5362 
5363 	  /* Output Dwarf info for all of the stuff within the body of the
5364 	     function (if it has one - it may be just a declaration).  */
5365 
5366 	  {
5367 	    tree outer_scope = DECL_INITIAL (decl);
5368 
5369 	    if (outer_scope && TREE_CODE (outer_scope) != ERROR_MARK)
5370 	      {
5371 		/* Note that here, `outer_scope' is a pointer to the outermost
5372 		   BLOCK node created to represent a function.
5373 		   This outermost BLOCK actually represents the outermost
5374 		   binding contour for the function, i.e. the contour in which
5375 		   the function's formal parameters and labels get declared.
5376 
5377 		   Curiously, it appears that the front end doesn't actually
5378 		   put the PARM_DECL nodes for the current function onto the
5379 		   BLOCK_VARS list for this outer scope.  (They are strung
5380 		   off of the DECL_ARGUMENTS list for the function instead.)
5381 		   The BLOCK_VARS list for the `outer_scope' does provide us
5382 		   with a list of the LABEL_DECL nodes for the function however,
5383 		   and we output DWARF info for those here.
5384 
5385 		   Just within the `outer_scope' there will be a BLOCK node
5386 		   representing the function's outermost pair of curly braces,
5387 		   and any blocks used for the base and member initializers of
5388 		   a C++ constructor function.  */
5389 
5390 		output_decls_for_scope (outer_scope, 0);
5391 
5392 		/* Finally, force out any pending types which are local to the
5393 		   outermost block of this function definition.  These will
5394 		   all have a TYPE_CONTEXT which points to the FUNCTION_DECL
5395 		   node itself.  */
5396 
5397 		output_pending_types_for_scope (decl);
5398 	      }
5399 	  }
5400 	}
5401 
5402       /* Generate a terminator for the list of stuff `owned' by this
5403 	 function.  */
5404 
5405       end_sibling_chain ();
5406 
5407       break;
5408 
5409     case TYPE_DECL:
5410       /* If we are in terse mode, don't generate any DIEs to represent
5411 	 any actual typedefs.  Note that even when we are in terse mode,
5412 	 we must still output DIEs to represent those tagged types which
5413 	 are used (directly or indirectly) in the specification of either
5414 	 a return type or a formal parameter type of some function.  */
5415 
5416       if (debug_info_level <= DINFO_LEVEL_TERSE)
5417 	if (! TYPE_DECL_IS_STUB (decl)
5418 	    || (! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)) && ! in_class))
5419 	  return;
5420 
5421       /* In the special case of a TYPE_DECL node representing
5422 	 the declaration of some type tag, if the given TYPE_DECL is
5423 	 marked as having been instantiated from some other (original)
5424 	 TYPE_DECL node (e.g. one which was generated within the original
5425 	 definition of an inline function) we have to generate a special
5426 	 (abbreviated) TAG_structure_type, TAG_union_type, or
5427 	 TAG_enumeration-type DIE here.  */
5428 
5429       if (TYPE_DECL_IS_STUB (decl) && DECL_ABSTRACT_ORIGIN (decl))
5430 	{
5431 	  output_tagged_type_instantiation (TREE_TYPE (decl));
5432 	  return;
5433 	}
5434 
5435       output_type (TREE_TYPE (decl), containing_scope);
5436 
5437       if (! is_redundant_typedef (decl))
5438 	/* Output a DIE to represent the typedef itself.  */
5439 	output_die (output_typedef_die, decl);
5440       break;
5441 
5442     case LABEL_DECL:
5443       if (debug_info_level >= DINFO_LEVEL_NORMAL)
5444 	output_die (output_label_die, decl);
5445       break;
5446 
5447     case VAR_DECL:
5448       /* If we are conforming to the DWARF version 1 specification, don't
5449 	 generated any DIEs to represent mere external object declarations.  */
5450 
5451 #if (DWARF_VERSION <= 1)
5452       if (DECL_EXTERNAL (decl) && ! TREE_PUBLIC (decl))
5453 	break;
5454 #endif
5455 
5456       /* If we are in terse mode, don't generate any DIEs to represent
5457 	 any variable declarations or definitions.  */
5458 
5459       if (debug_info_level <= DINFO_LEVEL_TERSE)
5460 	break;
5461 
5462       /* Output any DIEs that are needed to specify the type of this data
5463 	 object.  */
5464 
5465       output_type (TREE_TYPE (decl), containing_scope);
5466 
5467       {
5468 	/* And its containing type.  */
5469 	register tree origin = decl_class_context (decl);
5470 	if (origin)
5471 	  output_type (origin, containing_scope);
5472       }
5473 
5474       /* If the following DIE will represent a data object definition for a
5475 	 data object with "extern" linkage, output a special "pubnames" DIE
5476 	 label just ahead of the actual DIE.  A reference to this label
5477 	 was already generated in the .debug_pubnames section sub-entry
5478 	 for this data object definition.  */
5479 
5480       if (TREE_PUBLIC (decl) && ! DECL_ABSTRACT (decl))
5481 	{
5482 	  char label[MAX_ARTIFICIAL_LABEL_BYTES];
5483 
5484 	  sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
5485 	  ASM_OUTPUT_LABEL (asm_out_file, label);
5486 	}
5487 
5488       /* Now output the DIE to represent the data object itself.  This gets
5489 	 complicated because of the possibility that the VAR_DECL really
5490 	 represents an inlined instance of a formal parameter for an inline
5491 	 function.  */
5492 
5493       {
5494 	void (*func) PARAMS ((void *));
5495 	register tree origin = decl_ultimate_origin (decl);
5496 
5497 	if (origin != NULL && TREE_CODE (origin) == PARM_DECL)
5498 	  func = output_formal_parameter_die;
5499 	else
5500 	  {
5501 	    if (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl))
5502 	      func = output_global_variable_die;
5503 	    else
5504 	      func = output_local_variable_die;
5505 	  }
5506 	output_die (func, decl);
5507       }
5508       break;
5509 
5510     case FIELD_DECL:
5511       /* Ignore the nameless fields that are used to skip bits.  */
5512       if (DECL_NAME (decl) != 0)
5513 	{
5514 	  output_type (member_declared_type (decl), containing_scope);
5515 	  output_die (output_member_die, decl);
5516 	}
5517       break;
5518 
5519     case PARM_DECL:
5520      /* Force out the type of this formal, if it was not forced out yet.
5521 	Note that here we can run afoul of a bug in "classic" svr4 SDB.
5522 	It should be able to grok the presence of type DIEs within a list
5523 	of TAG_formal_parameter DIEs, but it doesn't.  */
5524 
5525       output_type (TREE_TYPE (decl), containing_scope);
5526       output_die (output_formal_parameter_die, decl);
5527       break;
5528 
5529     case NAMESPACE_DECL:
5530       /* Ignore for now.  */
5531       break;
5532 
5533     default:
5534       abort ();
5535     }
5536 }
5537 
5538 /* Output debug information for a function.  */
5539 static void
dwarfout_function_decl(decl)5540 dwarfout_function_decl (decl)
5541      tree decl;
5542 {
5543   dwarfout_file_scope_decl (decl, 0);
5544 }
5545 
5546 /* Debug information for a global DECL.  Called from toplev.c after
5547    compilation proper has finished.  */
5548 static void
dwarfout_global_decl(decl)5549 dwarfout_global_decl (decl)
5550      tree decl;
5551 {
5552   /* Output DWARF information for file-scope tentative data object
5553      declarations, file-scope (extern) function declarations (which
5554      had no corresponding body) and file-scope tagged type
5555      declarations and definitions which have not yet been forced out.  */
5556 
5557   if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
5558     dwarfout_file_scope_decl (decl, 1);
5559 }
5560 
5561 /* DECL is an inline function, whose body is present, but which is not
5562    being output at this point.  (We're putting that off until we need
5563    to do it.)  */
5564 static void
dwarfout_deferred_inline_function(decl)5565 dwarfout_deferred_inline_function (decl)
5566      tree decl;
5567 {
5568   /* Generate the DWARF info for the "abstract" instance of a function
5569      which we may later generate inlined and/or out-of-line instances
5570      of.  */
5571   if ((DECL_INLINE (decl) || DECL_ABSTRACT (decl))
5572       && ! DECL_ABSTRACT_ORIGIN (decl))
5573     {
5574       /* The front-end may not have set CURRENT_FUNCTION_DECL, but the
5575 	 DWARF code expects it to be set in this case.  Intuitively,
5576 	 DECL is the function we just finished defining, so setting
5577 	 CURRENT_FUNCTION_DECL is sensible.  */
5578       tree saved_cfd = current_function_decl;
5579       int was_abstract = DECL_ABSTRACT (decl);
5580       current_function_decl = decl;
5581 
5582       /* Let the DWARF code do its work.  */
5583       set_decl_abstract_flags (decl, 1);
5584       dwarfout_file_scope_decl (decl, 0);
5585       if (! was_abstract)
5586 	set_decl_abstract_flags (decl, 0);
5587 
5588       /* Reset CURRENT_FUNCTION_DECL.  */
5589       current_function_decl = saved_cfd;
5590     }
5591 }
5592 
5593 static void
dwarfout_file_scope_decl(decl,set_finalizing)5594 dwarfout_file_scope_decl (decl, set_finalizing)
5595      tree decl;
5596      int set_finalizing;
5597 {
5598   if (TREE_CODE (decl) == ERROR_MARK)
5599     return;
5600 
5601   /* If this ..._DECL node is marked to be ignored, then ignore it.  */
5602 
5603   if (DECL_IGNORED_P (decl))
5604     return;
5605 
5606   switch (TREE_CODE (decl))
5607     {
5608     case FUNCTION_DECL:
5609 
5610       /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of
5611 	 a builtin function.  Explicit programmer-supplied declarations of
5612 	 these same functions should NOT be ignored however.  */
5613 
5614       if (DECL_EXTERNAL (decl) && DECL_FUNCTION_CODE (decl))
5615 	return;
5616 
5617       /* What we would really like to do here is to filter out all mere
5618 	 file-scope declarations of file-scope functions which are never
5619 	 referenced later within this translation unit (and keep all of
5620 	 ones that *are* referenced later on) but we aren't clairvoyant,
5621 	 so we have no idea which functions will be referenced in the
5622 	 future (i.e. later on within the current translation unit).
5623 	 So here we just ignore all file-scope function declarations
5624 	 which are not also definitions.  If and when the debugger needs
5625 	 to know something about these functions, it will have to hunt
5626 	 around and find the DWARF information associated with the
5627 	 *definition* of the function.
5628 
5629 	 Note that we can't just check `DECL_EXTERNAL' to find out which
5630 	 FUNCTION_DECL nodes represent definitions and which ones represent
5631 	 mere declarations.  We have to check `DECL_INITIAL' instead.  That's
5632 	 because the C front-end supports some weird semantics for "extern
5633 	 inline" function definitions.  These can get inlined within the
5634 	 current translation unit (an thus, we need to generate DWARF info
5635 	 for their abstract instances so that the DWARF info for the
5636 	 concrete inlined instances can have something to refer to) but
5637 	 the compiler never generates any out-of-lines instances of such
5638 	 things (despite the fact that they *are* definitions).  The
5639 	 important point is that the C front-end marks these "extern inline"
5640 	 functions as DECL_EXTERNAL, but we need to generate DWARF for them
5641 	 anyway.
5642 
5643 	 Note that the C++ front-end also plays some similar games for inline
5644 	 function definitions appearing within include files which also
5645 	 contain `#pragma interface' pragmas.  */
5646 
5647       if (DECL_INITIAL (decl) == NULL_TREE)
5648 	return;
5649 
5650       if (TREE_PUBLIC (decl)
5651 	  && ! DECL_EXTERNAL (decl)
5652 	  && ! DECL_ABSTRACT (decl))
5653 	{
5654 	  char label[MAX_ARTIFICIAL_LABEL_BYTES];
5655 
5656 	  /* Output a .debug_pubnames entry for a public function
5657 	     defined in this compilation unit.  */
5658 
5659 	  fputc ('\n', asm_out_file);
5660 	  ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_PUBNAMES_SECTION);
5661 	  sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
5662 	  ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
5663 	  ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
5664 				   IDENTIFIER_POINTER (DECL_NAME (decl)));
5665 	  ASM_OUTPUT_POP_SECTION (asm_out_file);
5666 	}
5667 
5668       break;
5669 
5670     case VAR_DECL:
5671 
5672       /* Ignore this VAR_DECL if it refers to a file-scope extern data
5673 	 object declaration and if the declaration was never even
5674 	 referenced from within this entire compilation unit.  We
5675 	 suppress these DIEs in order to save space in the .debug section
5676 	 (by eliminating entries which are probably useless).  Note that
5677 	 we must not suppress block-local extern declarations (whether
5678 	 used or not) because that would screw-up the debugger's name
5679 	 lookup mechanism and cause it to miss things which really ought
5680 	 to be in scope at a given point.  */
5681 
5682       if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
5683 	return;
5684 
5685       if (TREE_PUBLIC (decl)
5686 	  && ! DECL_EXTERNAL (decl)
5687 	  && GET_CODE (DECL_RTL (decl)) == MEM
5688 	  && ! DECL_ABSTRACT (decl))
5689 	{
5690 	  char label[MAX_ARTIFICIAL_LABEL_BYTES];
5691 
5692 	  if (debug_info_level >= DINFO_LEVEL_NORMAL)
5693 	    {
5694 	      /* Output a .debug_pubnames entry for a public variable
5695 	         defined in this compilation unit.  */
5696 
5697 	      fputc ('\n', asm_out_file);
5698 	      ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_PUBNAMES_SECTION);
5699 	      sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
5700 	      ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
5701 	      ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
5702 				       IDENTIFIER_POINTER (DECL_NAME (decl)));
5703 	      ASM_OUTPUT_POP_SECTION (asm_out_file);
5704 	    }
5705 
5706 	  if (DECL_INITIAL (decl) == NULL)
5707 	    {
5708 	      /* Output a .debug_aranges entry for a public variable
5709 		 which is tentatively defined in this compilation unit.  */
5710 
5711 	      fputc ('\n', asm_out_file);
5712 	      ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_ARANGES_SECTION);
5713 	      ASM_OUTPUT_DWARF_ADDR (asm_out_file,
5714 			      IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
5715 	      ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
5716 			(unsigned) int_size_in_bytes (TREE_TYPE (decl)));
5717 	      ASM_OUTPUT_POP_SECTION (asm_out_file);
5718 	    }
5719 	}
5720 
5721       /* If we are in terse mode, don't generate any DIEs to represent
5722 	 any variable declarations or definitions.  */
5723 
5724       if (debug_info_level <= DINFO_LEVEL_TERSE)
5725 	return;
5726 
5727       break;
5728 
5729     case TYPE_DECL:
5730       /* Don't bother trying to generate any DIEs to represent any of the
5731 	 normal built-in types for the language we are compiling, except
5732 	 in cases where the types in question are *not* DWARF fundamental
5733 	 types.  We make an exception in the case of non-fundamental types
5734 	 for the sake of objective C (and perhaps C++) because the GNU
5735 	 front-ends for these languages may in fact create certain "built-in"
5736 	 types which are (for example) RECORD_TYPEs.  In such cases, we
5737 	 really need to output these (non-fundamental) types because other
5738 	 DIEs may contain references to them.  */
5739 
5740       /* Also ignore language dependent types here, because they are probably
5741 	 also built-in types.  If we didn't ignore them, then we would get
5742 	 references to undefined labels because output_type doesn't support
5743 	 them.   So, for now, we need to ignore them to avoid assembler
5744 	 errors.  */
5745 
5746       /* ??? This code is different than the equivalent code in dwarf2out.c.
5747 	 The dwarf2out.c code is probably more correct.  */
5748 
5749       if (DECL_SOURCE_LINE (decl) == 0
5750 	  && (type_is_fundamental (TREE_TYPE (decl))
5751 	      || TREE_CODE (TREE_TYPE (decl)) == LANG_TYPE))
5752 	return;
5753 
5754       /* If we are in terse mode, don't generate any DIEs to represent
5755 	 any actual typedefs.  Note that even when we are in terse mode,
5756 	 we must still output DIEs to represent those tagged types which
5757 	 are used (directly or indirectly) in the specification of either
5758 	 a return type or a formal parameter type of some function.  */
5759 
5760       if (debug_info_level <= DINFO_LEVEL_TERSE)
5761 	if (! TYPE_DECL_IS_STUB (decl)
5762 	    || ! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)))
5763 	  return;
5764 
5765       break;
5766 
5767     default:
5768       return;
5769     }
5770 
5771   fputc ('\n', asm_out_file);
5772   ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
5773   finalizing = set_finalizing;
5774   output_decl (decl, NULL_TREE);
5775 
5776   /* NOTE:  The call above to `output_decl' may have caused one or more
5777      file-scope named types (i.e. tagged types) to be placed onto the
5778      pending_types_list.  We have to get those types off of that list
5779      at some point, and this is the perfect time to do it.  If we didn't
5780      take them off now, they might still be on the list when cc1 finally
5781      exits.  That might be OK if it weren't for the fact that when we put
5782      types onto the pending_types_list, we set the TREE_ASM_WRITTEN flag
5783      for these types, and that causes them never to be output unless
5784      `output_pending_types_for_scope' takes them off of the list and un-sets
5785      their TREE_ASM_WRITTEN flags.  */
5786 
5787   output_pending_types_for_scope (NULL_TREE);
5788 
5789   /* The above call should have totally emptied the pending_types_list
5790      if this is not a nested function or class.  If this is a nested type,
5791      then the remaining pending_types will be emitted when the containing type
5792      is handled.  */
5793 
5794   if (! DECL_CONTEXT (decl))
5795     {
5796       if (pending_types != 0)
5797 	abort ();
5798     }
5799 
5800   ASM_OUTPUT_POP_SECTION (asm_out_file);
5801 }
5802 
5803 /* Output a marker (i.e. a label) for the beginning of the generated code
5804    for a lexical block.	 */
5805 
5806 static void
dwarfout_begin_block(line,blocknum)5807 dwarfout_begin_block (line, blocknum)
5808      unsigned int line ATTRIBUTE_UNUSED;
5809      unsigned int blocknum;
5810 {
5811   char label[MAX_ARTIFICIAL_LABEL_BYTES];
5812 
5813   function_section (current_function_decl);
5814   sprintf (label, BLOCK_BEGIN_LABEL_FMT, blocknum);
5815   ASM_OUTPUT_LABEL (asm_out_file, label);
5816 }
5817 
5818 /* Output a marker (i.e. a label) for the end of the generated code
5819    for a lexical block.	 */
5820 
5821 static void
dwarfout_end_block(line,blocknum)5822 dwarfout_end_block (line, blocknum)
5823      unsigned int line ATTRIBUTE_UNUSED;
5824      unsigned int blocknum;
5825 {
5826   char label[MAX_ARTIFICIAL_LABEL_BYTES];
5827 
5828   function_section (current_function_decl);
5829   sprintf (label, BLOCK_END_LABEL_FMT, blocknum);
5830   ASM_OUTPUT_LABEL (asm_out_file, label);
5831 }
5832 
5833 /* Output a marker (i.e. a label) for the point in the generated code where
5834    the real body of the function begins (after parameters have been moved
5835    to their home locations).  */
5836 
5837 static void
dwarfout_end_prologue(line,file)5838 dwarfout_end_prologue (line, file)
5839      unsigned int line ATTRIBUTE_UNUSED;
5840      const char *file ATTRIBUTE_UNUSED;
5841 {
5842   char label[MAX_ARTIFICIAL_LABEL_BYTES];
5843 
5844   if (! use_gnu_debug_info_extensions)
5845     return;
5846 
5847   function_section (current_function_decl);
5848   sprintf (label, BODY_BEGIN_LABEL_FMT, current_function_funcdef_no);
5849   ASM_OUTPUT_LABEL (asm_out_file, label);
5850 }
5851 
5852 /* Output a marker (i.e. a label) for the point in the generated code where
5853    the real body of the function ends (just before the epilogue code).  */
5854 
5855 static void
dwarfout_end_function(line)5856 dwarfout_end_function (line)
5857      unsigned int line ATTRIBUTE_UNUSED;
5858 {
5859   char label[MAX_ARTIFICIAL_LABEL_BYTES];
5860 
5861   if (! use_gnu_debug_info_extensions)
5862     return;
5863   function_section (current_function_decl);
5864   sprintf (label, BODY_END_LABEL_FMT, current_function_funcdef_no);
5865   ASM_OUTPUT_LABEL (asm_out_file, label);
5866 }
5867 
5868 /* Output a marker (i.e. a label) for the absolute end of the generated code
5869    for a function definition.  This gets called *after* the epilogue code
5870    has been generated.	*/
5871 
5872 static void
dwarfout_end_epilogue(line,file)5873 dwarfout_end_epilogue (line, file)
5874      unsigned int line ATTRIBUTE_UNUSED;
5875      const char *file ATTRIBUTE_UNUSED;
5876 {
5877   char label[MAX_ARTIFICIAL_LABEL_BYTES];
5878 
5879   /* Output a label to mark the endpoint of the code generated for this
5880      function.	*/
5881 
5882   sprintf (label, FUNC_END_LABEL_FMT, current_function_funcdef_no);
5883   ASM_OUTPUT_LABEL (asm_out_file, label);
5884 }
5885 
5886 static void
shuffle_filename_entry(new_zeroth)5887 shuffle_filename_entry (new_zeroth)
5888      filename_entry *new_zeroth;
5889 {
5890   filename_entry temp_entry;
5891   filename_entry *limit_p;
5892   filename_entry *move_p;
5893 
5894   if (new_zeroth == &filename_table[0])
5895     return;
5896 
5897   temp_entry = *new_zeroth;
5898 
5899   /* Shift entries up in the table to make room at [0].  */
5900 
5901   limit_p = &filename_table[0];
5902   for (move_p = new_zeroth; move_p > limit_p; move_p--)
5903     *move_p = *(move_p-1);
5904 
5905   /* Install the found entry at [0].  */
5906 
5907   filename_table[0] = temp_entry;
5908 }
5909 
5910 /* Create a new (string) entry for the .debug_sfnames section.  */
5911 
5912 static void
generate_new_sfname_entry()5913 generate_new_sfname_entry ()
5914 {
5915   char label[MAX_ARTIFICIAL_LABEL_BYTES];
5916 
5917   fputc ('\n', asm_out_file);
5918   ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SFNAMES_SECTION);
5919   sprintf (label, SFNAMES_ENTRY_LABEL_FMT, filename_table[0].number);
5920   ASM_OUTPUT_LABEL (asm_out_file, label);
5921   ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file,
5922 				   filename_table[0].name
5923 				   ? filename_table[0].name
5924 				   : "");
5925   ASM_OUTPUT_POP_SECTION (asm_out_file);
5926 }
5927 
5928 /* Lookup a filename (in the list of filenames that we know about here in
5929    dwarfout.c) and return its "index".  The index of each (known) filename
5930    is just a unique number which is associated with only that one filename.
5931    We need such numbers for the sake of generating labels (in the
5932    .debug_sfnames section) and references to those unique labels (in the
5933    .debug_srcinfo and .debug_macinfo sections).
5934 
5935    If the filename given as an argument is not found in our current list,
5936    add it to the list and assign it the next available unique index number.
5937 
5938    Whatever we do (i.e. whether we find a pre-existing filename or add a new
5939    one), we shuffle the filename found (or added) up to the zeroth entry of
5940    our list of filenames (which is always searched linearly).  We do this so
5941    as to optimize the most common case for these filename lookups within
5942    dwarfout.c.  The most common case by far is the case where we call
5943    lookup_filename to lookup the very same filename that we did a lookup
5944    on the last time we called lookup_filename.  We make sure that this
5945    common case is fast because such cases will constitute 99.9% of the
5946    lookups we ever do (in practice).
5947 
5948    If we add a new filename entry to our table, we go ahead and generate
5949    the corresponding entry in the .debug_sfnames section right away.
5950    Doing so allows us to avoid tickling an assembler bug (present in some
5951    m68k assemblers) which yields assembly-time errors in cases where the
5952    difference of two label addresses is taken and where the two labels
5953    are in a section *other* than the one where the difference is being
5954    calculated, and where at least one of the two symbol references is a
5955    forward reference.  (This bug could be tickled by our .debug_srcinfo
5956    entries if we don't output their corresponding .debug_sfnames entries
5957    before them.) */
5958 
5959 static unsigned
lookup_filename(file_name)5960 lookup_filename (file_name)
5961      const char *file_name;
5962 {
5963   filename_entry *search_p;
5964   filename_entry *limit_p = &filename_table[ft_entries];
5965 
5966   for (search_p = filename_table; search_p < limit_p; search_p++)
5967     if (!strcmp (file_name, search_p->name))
5968       {
5969 	/* When we get here, we have found the filename that we were
5970 	   looking for in the filename_table.  Now we want to make sure
5971 	   that it gets moved to the zero'th entry in the table (if it
5972 	   is not already there) so that subsequent attempts to find the
5973 	   same filename will find it as quickly as possible.  */
5974 
5975 	shuffle_filename_entry (search_p);
5976 	return filename_table[0].number;
5977       }
5978 
5979   /* We come here whenever we have a new filename which is not registered
5980      in the current table.  Here we add it to the table.  */
5981 
5982   /* Prepare to add a new table entry by making sure there is enough space
5983      in the table to do so.  If not, expand the current table.  */
5984 
5985   if (ft_entries == ft_entries_allocated)
5986     {
5987       ft_entries_allocated += FT_ENTRIES_INCREMENT;
5988       filename_table
5989 	= (filename_entry *)
5990 	  xrealloc (filename_table,
5991 		    ft_entries_allocated * sizeof (filename_entry));
5992     }
5993 
5994   /* Initially, add the new entry at the end of the filename table.  */
5995 
5996   filename_table[ft_entries].number = ft_entries;
5997   filename_table[ft_entries].name = xstrdup (file_name);
5998 
5999   /* Shuffle the new entry into filename_table[0].  */
6000 
6001   shuffle_filename_entry (&filename_table[ft_entries]);
6002 
6003   if (debug_info_level >= DINFO_LEVEL_NORMAL)
6004     generate_new_sfname_entry ();
6005 
6006   ft_entries++;
6007   return filename_table[0].number;
6008 }
6009 
6010 static void
generate_srcinfo_entry(line_entry_num,files_entry_num)6011 generate_srcinfo_entry (line_entry_num, files_entry_num)
6012      unsigned line_entry_num;
6013      unsigned files_entry_num;
6014 {
6015   char label[MAX_ARTIFICIAL_LABEL_BYTES];
6016 
6017   fputc ('\n', asm_out_file);
6018   ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SRCINFO_SECTION);
6019   sprintf (label, LINE_ENTRY_LABEL_FMT, line_entry_num);
6020   ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, LINE_BEGIN_LABEL);
6021   sprintf (label, SFNAMES_ENTRY_LABEL_FMT, files_entry_num);
6022   ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, SFNAMES_BEGIN_LABEL);
6023   ASM_OUTPUT_POP_SECTION (asm_out_file);
6024 }
6025 
6026 static void
dwarfout_source_line(line,filename)6027 dwarfout_source_line (line, filename)
6028      unsigned int line;
6029      const char *filename;
6030 {
6031   if (debug_info_level >= DINFO_LEVEL_NORMAL
6032       /* We can't emit line number info for functions in separate sections,
6033 	 because the assembler can't subtract labels in different sections.  */
6034       && DECL_SECTION_NAME (current_function_decl) == NULL_TREE)
6035     {
6036       char label[MAX_ARTIFICIAL_LABEL_BYTES];
6037       static unsigned last_line_entry_num = 0;
6038       static unsigned prev_file_entry_num = (unsigned) -1;
6039       unsigned this_file_entry_num;
6040 
6041       function_section (current_function_decl);
6042       sprintf (label, LINE_CODE_LABEL_FMT, ++last_line_entry_num);
6043       ASM_OUTPUT_LABEL (asm_out_file, label);
6044 
6045       fputc ('\n', asm_out_file);
6046 
6047       if (use_gnu_debug_info_extensions)
6048 	this_file_entry_num = lookup_filename (filename);
6049       else
6050 	this_file_entry_num = (unsigned) -1;
6051 
6052       ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
6053       if (this_file_entry_num != prev_file_entry_num)
6054 	{
6055 	  char line_entry_label[MAX_ARTIFICIAL_LABEL_BYTES];
6056 
6057 	  sprintf (line_entry_label, LINE_ENTRY_LABEL_FMT, last_line_entry_num);
6058 	  ASM_OUTPUT_LABEL (asm_out_file, line_entry_label);
6059 	}
6060 
6061       {
6062 	const char *tail = strrchr (filename, '/');
6063 
6064 	if (tail != NULL)
6065 	  filename = tail;
6066       }
6067 
6068       dw2_asm_output_data (4, line, "%s:%u", filename, line);
6069       ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
6070       ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, TEXT_BEGIN_LABEL);
6071       ASM_OUTPUT_POP_SECTION (asm_out_file);
6072 
6073       if (this_file_entry_num != prev_file_entry_num)
6074 	generate_srcinfo_entry (last_line_entry_num, this_file_entry_num);
6075       prev_file_entry_num = this_file_entry_num;
6076     }
6077 }
6078 
6079 /* Generate an entry in the .debug_macinfo section.  */
6080 
6081 static void
generate_macinfo_entry(type,offset,string)6082 generate_macinfo_entry (type, offset, string)
6083      unsigned int type;
6084      rtx offset;
6085      const char *string;
6086 {
6087   if (! use_gnu_debug_info_extensions)
6088     return;
6089 
6090   fputc ('\n', asm_out_file);
6091   ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_MACINFO_SECTION);
6092   assemble_integer (gen_rtx_PLUS (SImode, GEN_INT (type << 24), offset),
6093 		    4, BITS_PER_UNIT, 1);
6094   ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, string);
6095   ASM_OUTPUT_POP_SECTION (asm_out_file);
6096 }
6097 
6098 /* Wrapper for toplev.c callback to check debug info level.  */
6099 static void
dwarfout_start_source_file_check(line,filename)6100 dwarfout_start_source_file_check (line, filename)
6101      unsigned int line;
6102      const char *filename;
6103 {
6104   if (debug_info_level == DINFO_LEVEL_VERBOSE)
6105     dwarfout_start_source_file (line, filename);
6106 }
6107 
6108 static void
dwarfout_start_source_file(line,filename)6109 dwarfout_start_source_file (line, filename)
6110      unsigned int line ATTRIBUTE_UNUSED;
6111      const char *filename;
6112 {
6113   char label[MAX_ARTIFICIAL_LABEL_BYTES];
6114   const char *label1, *label2;
6115 
6116   sprintf (label, SFNAMES_ENTRY_LABEL_FMT, lookup_filename (filename));
6117   label1 = (*label == '*') + label;
6118   label2 = (*SFNAMES_BEGIN_LABEL == '*') + SFNAMES_BEGIN_LABEL;
6119   generate_macinfo_entry (MACINFO_start,
6120 			  gen_rtx_MINUS (Pmode,
6121 					 gen_rtx_SYMBOL_REF (Pmode, label1),
6122 					 gen_rtx_SYMBOL_REF (Pmode, label2)),
6123 			  "");
6124 }
6125 
6126 /* Wrapper for toplev.c callback to check debug info level.  */
6127 static void
dwarfout_end_source_file_check(lineno)6128 dwarfout_end_source_file_check (lineno)
6129      unsigned lineno;
6130 {
6131   if (debug_info_level == DINFO_LEVEL_VERBOSE)
6132     dwarfout_end_source_file (lineno);
6133 }
6134 
6135 static void
dwarfout_end_source_file(lineno)6136 dwarfout_end_source_file (lineno)
6137      unsigned lineno;
6138 {
6139   generate_macinfo_entry (MACINFO_resume, GEN_INT (lineno), "");
6140 }
6141 
6142 /* Called from check_newline in c-parse.y.  The `buffer' parameter
6143    contains the tail part of the directive line, i.e. the part which
6144    is past the initial whitespace, #, whitespace, directive-name,
6145    whitespace part.  */
6146 
6147 static void
dwarfout_define(lineno,buffer)6148 dwarfout_define (lineno, buffer)
6149      unsigned lineno;
6150      const char *buffer;
6151 {
6152   static int initialized = 0;
6153 
6154   if (!initialized)
6155     {
6156       dwarfout_start_source_file (0, primary_filename);
6157       initialized = 1;
6158     }
6159   generate_macinfo_entry (MACINFO_define, GEN_INT (lineno), buffer);
6160 }
6161 
6162 /* Called from check_newline in c-parse.y.  The `buffer' parameter
6163    contains the tail part of the directive line, i.e. the part which
6164    is past the initial whitespace, #, whitespace, directive-name,
6165    whitespace part.  */
6166 
6167 static void
dwarfout_undef(lineno,buffer)6168 dwarfout_undef (lineno, buffer)
6169      unsigned lineno;
6170      const char *buffer;
6171 {
6172   generate_macinfo_entry (MACINFO_undef, GEN_INT (lineno), buffer);
6173 }
6174 
6175 /* Set up for Dwarf output at the start of compilation.	 */
6176 
6177 static void
dwarfout_init(main_input_filename)6178 dwarfout_init (main_input_filename)
6179      const char *main_input_filename;
6180 {
6181   warning ("support for the DWARF1 debugging format is deprecated");
6182 
6183   /* Remember the name of the primary input file.  */
6184 
6185   primary_filename = main_input_filename;
6186 
6187   /* Allocate the initial hunk of the pending_sibling_stack.  */
6188 
6189   pending_sibling_stack
6190     = (unsigned *)
6191 	xmalloc (PENDING_SIBLINGS_INCREMENT * sizeof (unsigned));
6192   pending_siblings_allocated = PENDING_SIBLINGS_INCREMENT;
6193   pending_siblings = 1;
6194 
6195   /* Allocate the initial hunk of the filename_table.  */
6196 
6197   filename_table
6198     = (filename_entry *)
6199 	xmalloc (FT_ENTRIES_INCREMENT * sizeof (filename_entry));
6200   ft_entries_allocated = FT_ENTRIES_INCREMENT;
6201   ft_entries = 0;
6202 
6203   /* Allocate the initial hunk of the pending_types_list.  */
6204 
6205   pending_types_list
6206     = (tree *) xmalloc (PENDING_TYPES_INCREMENT * sizeof (tree));
6207   pending_types_allocated = PENDING_TYPES_INCREMENT;
6208   pending_types = 0;
6209 
6210   /* Create an artificial RECORD_TYPE node which we can use in our hack
6211      to get the DIEs representing types of formal parameters to come out
6212      only *after* the DIEs for the formal parameters themselves.  */
6213 
6214   fake_containing_scope = make_node (RECORD_TYPE);
6215 
6216   /* Output a starting label for the .text section.  */
6217 
6218   fputc ('\n', asm_out_file);
6219   ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION_NAME);
6220   ASM_OUTPUT_LABEL (asm_out_file, TEXT_BEGIN_LABEL);
6221   ASM_OUTPUT_POP_SECTION (asm_out_file);
6222 
6223   /* Output a starting label for the .data section.  */
6224 
6225   fputc ('\n', asm_out_file);
6226   ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION_NAME);
6227   ASM_OUTPUT_LABEL (asm_out_file, DATA_BEGIN_LABEL);
6228   ASM_OUTPUT_POP_SECTION (asm_out_file);
6229 
6230 #if 0 /* GNU C doesn't currently use .data1.  */
6231   /* Output a starting label for the .data1 section.  */
6232 
6233   fputc ('\n', asm_out_file);
6234   ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION_NAME);
6235   ASM_OUTPUT_LABEL (asm_out_file, DATA1_BEGIN_LABEL);
6236   ASM_OUTPUT_POP_SECTION (asm_out_file);
6237 #endif
6238 
6239   /* Output a starting label for the .rodata section.  */
6240 
6241   fputc ('\n', asm_out_file);
6242   ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION_NAME);
6243   ASM_OUTPUT_LABEL (asm_out_file, RODATA_BEGIN_LABEL);
6244   ASM_OUTPUT_POP_SECTION (asm_out_file);
6245 
6246 #if 0 /* GNU C doesn't currently use .rodata1.  */
6247   /* Output a starting label for the .rodata1 section.  */
6248 
6249   fputc ('\n', asm_out_file);
6250   ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION_NAME);
6251   ASM_OUTPUT_LABEL (asm_out_file, RODATA1_BEGIN_LABEL);
6252   ASM_OUTPUT_POP_SECTION (asm_out_file);
6253 #endif
6254 
6255   /* Output a starting label for the .bss section.  */
6256 
6257   fputc ('\n', asm_out_file);
6258   ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION_NAME);
6259   ASM_OUTPUT_LABEL (asm_out_file, BSS_BEGIN_LABEL);
6260   ASM_OUTPUT_POP_SECTION (asm_out_file);
6261 
6262   if (debug_info_level >= DINFO_LEVEL_NORMAL)
6263     {
6264       if (use_gnu_debug_info_extensions)
6265 	{
6266 	  /* Output a starting label and an initial (compilation directory)
6267 	     entry for the .debug_sfnames section.  The starting label will be
6268 	     referenced by the initial entry in the .debug_srcinfo section.  */
6269 
6270 	  fputc ('\n', asm_out_file);
6271 	  ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SFNAMES_SECTION);
6272 	  ASM_OUTPUT_LABEL (asm_out_file, SFNAMES_BEGIN_LABEL);
6273 	  {
6274 	    const char *pwd = getpwd ();
6275 	    char *dirname;
6276 
6277 	    if (!pwd)
6278 	      fatal_io_error ("can't get current directory");
6279 
6280 	    dirname = concat (pwd, "/", NULL);
6281 	    ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, dirname);
6282 	    free (dirname);
6283 	  }
6284 	  ASM_OUTPUT_POP_SECTION (asm_out_file);
6285 	}
6286 
6287       if (debug_info_level >= DINFO_LEVEL_VERBOSE
6288 	  && use_gnu_debug_info_extensions)
6289 	{
6290 	  /* Output a starting label for the .debug_macinfo section.  This
6291 	     label will be referenced by the AT_mac_info attribute in the
6292 	     TAG_compile_unit DIE.  */
6293 
6294 	  fputc ('\n', asm_out_file);
6295 	  ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_MACINFO_SECTION);
6296 	  ASM_OUTPUT_LABEL (asm_out_file, MACINFO_BEGIN_LABEL);
6297 	  ASM_OUTPUT_POP_SECTION (asm_out_file);
6298 	}
6299 
6300       /* Generate the initial entry for the .line section.  */
6301 
6302       fputc ('\n', asm_out_file);
6303       ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
6304       ASM_OUTPUT_LABEL (asm_out_file, LINE_BEGIN_LABEL);
6305       ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, LINE_END_LABEL, LINE_BEGIN_LABEL);
6306       ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
6307       ASM_OUTPUT_POP_SECTION (asm_out_file);
6308 
6309       if (use_gnu_debug_info_extensions)
6310 	{
6311 	  /* Generate the initial entry for the .debug_srcinfo section.  */
6312 
6313 	  fputc ('\n', asm_out_file);
6314 	  ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SRCINFO_SECTION);
6315 	  ASM_OUTPUT_LABEL (asm_out_file, SRCINFO_BEGIN_LABEL);
6316 	  ASM_OUTPUT_DWARF_ADDR (asm_out_file, LINE_BEGIN_LABEL);
6317 	  ASM_OUTPUT_DWARF_ADDR (asm_out_file, SFNAMES_BEGIN_LABEL);
6318 	  ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
6319 	  ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_END_LABEL);
6320 #ifdef DWARF_TIMESTAMPS
6321 	  ASM_OUTPUT_DWARF_DATA4 (asm_out_file, time (NULL));
6322 #else
6323 	  ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
6324 #endif
6325 	  ASM_OUTPUT_POP_SECTION (asm_out_file);
6326 	}
6327 
6328       /* Generate the initial entry for the .debug_pubnames section.  */
6329 
6330       fputc ('\n', asm_out_file);
6331       ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_PUBNAMES_SECTION);
6332       ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
6333       ASM_OUTPUT_POP_SECTION (asm_out_file);
6334 
6335       /* Generate the initial entry for the .debug_aranges section.  */
6336 
6337       fputc ('\n', asm_out_file);
6338       ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_ARANGES_SECTION);
6339       ASM_OUTPUT_DWARF_DELTA4 (asm_out_file,
6340 			       DEBUG_ARANGES_END_LABEL,
6341 			       DEBUG_ARANGES_BEGIN_LABEL);
6342       ASM_OUTPUT_LABEL (asm_out_file, DEBUG_ARANGES_BEGIN_LABEL);
6343       ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 1);
6344       ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
6345       ASM_OUTPUT_POP_SECTION (asm_out_file);
6346     }
6347 
6348   /* Setup first DIE number == 1.  */
6349   NEXT_DIE_NUM = next_unused_dienum++;
6350 
6351   /* Generate the initial DIE for the .debug section.  Note that the
6352      (string) value given in the AT_name attribute of the TAG_compile_unit
6353      DIE will (typically) be a relative pathname and that this pathname
6354      should be taken as being relative to the directory from which the
6355      compiler was invoked when the given (base) source file was compiled.  */
6356 
6357   fputc ('\n', asm_out_file);
6358   ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
6359   ASM_OUTPUT_LABEL (asm_out_file, DEBUG_BEGIN_LABEL);
6360   output_die (output_compile_unit_die, (PTR) main_input_filename);
6361   ASM_OUTPUT_POP_SECTION (asm_out_file);
6362 
6363   fputc ('\n', asm_out_file);
6364 }
6365 
6366 /* Output stuff that dwarf requires at the end of every file.  */
6367 
6368 static void
dwarfout_finish(main_input_filename)6369 dwarfout_finish (main_input_filename)
6370      const char *main_input_filename ATTRIBUTE_UNUSED;
6371 {
6372   char label[MAX_ARTIFICIAL_LABEL_BYTES];
6373 
6374   fputc ('\n', asm_out_file);
6375   ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
6376   retry_incomplete_types ();
6377   fputc ('\n', asm_out_file);
6378 
6379   /* Mark the end of the chain of siblings which represent all file-scope
6380      declarations in this compilation unit.  */
6381 
6382   /* The (null) DIE which represents the terminator for the (sibling linked)
6383      list of file-scope items is *special*.  Normally, we would just call
6384      end_sibling_chain at this point in order to output a word with the
6385      value `4' and that word would act as the terminator for the list of
6386      DIEs describing file-scope items.  Unfortunately, if we were to simply
6387      do that, the label that would follow this DIE in the .debug section
6388      (i.e. `..D2') would *not* be properly aligned (as it must be on some
6389      machines) to a 4 byte boundary.
6390 
6391      In order to force the label `..D2' to get aligned to a 4 byte boundary,
6392      the trick used is to insert extra (otherwise useless) padding bytes
6393      into the (null) DIE that we know must precede the ..D2 label in the
6394      .debug section.  The amount of padding required can be anywhere between
6395      0 and 3 bytes.  The length word at the start of this DIE (i.e. the one
6396      with the padding) would normally contain the value 4, but now it will
6397      also have to include the padding bytes, so it will instead have some
6398      value in the range 4..7.
6399 
6400      Fortunately, the rules of Dwarf say that any DIE whose length word
6401      contains *any* value less than 8 should be treated as a null DIE, so
6402      this trick works out nicely.  Clever, eh?  Don't give me any credit
6403      (or blame).  I didn't think of this scheme.  I just conformed to it.
6404   */
6405 
6406   output_die (output_padded_null_die, (void *) 0);
6407   dienum_pop ();
6408 
6409   sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
6410   ASM_OUTPUT_LABEL (asm_out_file, label);	/* should be ..D2 */
6411   ASM_OUTPUT_POP_SECTION (asm_out_file);
6412 
6413   /* Output a terminator label for the .text section.  */
6414 
6415   fputc ('\n', asm_out_file);
6416   ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION_NAME);
6417   ASM_OUTPUT_LABEL (asm_out_file, TEXT_END_LABEL);
6418   ASM_OUTPUT_POP_SECTION (asm_out_file);
6419 
6420   /* Output a terminator label for the .data section.  */
6421 
6422   fputc ('\n', asm_out_file);
6423   ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION_NAME);
6424   ASM_OUTPUT_LABEL (asm_out_file, DATA_END_LABEL);
6425   ASM_OUTPUT_POP_SECTION (asm_out_file);
6426 
6427 #if 0 /* GNU C doesn't currently use .data1.  */
6428   /* Output a terminator label for the .data1 section.  */
6429 
6430   fputc ('\n', asm_out_file);
6431   ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION_NAME);
6432   ASM_OUTPUT_LABEL (asm_out_file, DATA1_END_LABEL);
6433   ASM_OUTPUT_POP_SECTION (asm_out_file);
6434 #endif
6435 
6436   /* Output a terminator label for the .rodata section.  */
6437 
6438   fputc ('\n', asm_out_file);
6439   ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION_NAME);
6440   ASM_OUTPUT_LABEL (asm_out_file, RODATA_END_LABEL);
6441   ASM_OUTPUT_POP_SECTION (asm_out_file);
6442 
6443 #if 0 /* GNU C doesn't currently use .rodata1.  */
6444   /* Output a terminator label for the .rodata1 section.  */
6445 
6446   fputc ('\n', asm_out_file);
6447   ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION_NAME);
6448   ASM_OUTPUT_LABEL (asm_out_file, RODATA1_END_LABEL);
6449   ASM_OUTPUT_POP_SECTION (asm_out_file);
6450 #endif
6451 
6452   /* Output a terminator label for the .bss section.  */
6453 
6454   fputc ('\n', asm_out_file);
6455   ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION_NAME);
6456   ASM_OUTPUT_LABEL (asm_out_file, BSS_END_LABEL);
6457   ASM_OUTPUT_POP_SECTION (asm_out_file);
6458 
6459   if (debug_info_level >= DINFO_LEVEL_NORMAL)
6460     {
6461       /* Output a terminating entry for the .line section.  */
6462 
6463       fputc ('\n', asm_out_file);
6464       ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
6465       ASM_OUTPUT_LABEL (asm_out_file, LINE_LAST_ENTRY_LABEL);
6466       ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6467       ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
6468       ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
6469       ASM_OUTPUT_LABEL (asm_out_file, LINE_END_LABEL);
6470       ASM_OUTPUT_POP_SECTION (asm_out_file);
6471 
6472       if (use_gnu_debug_info_extensions)
6473 	{
6474 	  /* Output a terminating entry for the .debug_srcinfo section.  */
6475 
6476 	  fputc ('\n', asm_out_file);
6477 	  ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SRCINFO_SECTION);
6478 	  ASM_OUTPUT_DWARF_DELTA4 (asm_out_file,
6479 				   LINE_LAST_ENTRY_LABEL, LINE_BEGIN_LABEL);
6480 	  ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
6481 	  ASM_OUTPUT_POP_SECTION (asm_out_file);
6482 	}
6483 
6484       if (debug_info_level >= DINFO_LEVEL_VERBOSE)
6485 	{
6486 	  /* Output terminating entries for the .debug_macinfo section.  */
6487 
6488 	  dwarfout_end_source_file (0);
6489 
6490 	  fputc ('\n', asm_out_file);
6491 	  ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_MACINFO_SECTION);
6492 	  ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6493 	  ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
6494 	  ASM_OUTPUT_POP_SECTION (asm_out_file);
6495 	}
6496 
6497       /* Generate the terminating entry for the .debug_pubnames section.  */
6498 
6499       fputc ('\n', asm_out_file);
6500       ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_PUBNAMES_SECTION);
6501       ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6502       ASM_OUTPUT_DWARF_STRING_NEWLINE (asm_out_file, "");
6503       ASM_OUTPUT_POP_SECTION (asm_out_file);
6504 
6505       /* Generate the terminating entries for the .debug_aranges section.
6506 
6507 	 Note that we want to do this only *after* we have output the end
6508 	 labels (for the various program sections) which we are going to
6509 	 refer to here.  This allows us to work around a bug in the m68k
6510 	 svr4 assembler.  That assembler gives bogus assembly-time errors
6511 	 if (within any given section) you try to take the difference of
6512 	 two relocatable symbols, both of which are located within some
6513 	 other section, and if one (or both?) of the symbols involved is
6514 	 being forward-referenced.  By generating the .debug_aranges
6515 	 entries at this late point in the assembly output, we skirt the
6516 	 issue simply by avoiding forward-references.
6517       */
6518 
6519       fputc ('\n', asm_out_file);
6520       ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_ARANGES_SECTION);
6521 
6522       ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
6523       ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
6524 
6525       ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA_BEGIN_LABEL);
6526       ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA_END_LABEL, DATA_BEGIN_LABEL);
6527 
6528 #if 0 /* GNU C doesn't currently use .data1.  */
6529       ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA1_BEGIN_LABEL);
6530       ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA1_END_LABEL,
6531 					     DATA1_BEGIN_LABEL);
6532 #endif
6533 
6534       ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA_BEGIN_LABEL);
6535       ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA_END_LABEL,
6536 					     RODATA_BEGIN_LABEL);
6537 
6538 #if 0 /* GNU C doesn't currently use .rodata1.  */
6539       ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA1_BEGIN_LABEL);
6540       ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA1_END_LABEL,
6541 					     RODATA1_BEGIN_LABEL);
6542 #endif
6543 
6544       ASM_OUTPUT_DWARF_ADDR (asm_out_file, BSS_BEGIN_LABEL);
6545       ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, BSS_END_LABEL, BSS_BEGIN_LABEL);
6546 
6547       ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6548       ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
6549 
6550       ASM_OUTPUT_LABEL (asm_out_file, DEBUG_ARANGES_END_LABEL);
6551       ASM_OUTPUT_POP_SECTION (asm_out_file);
6552     }
6553 
6554   /* There should not be any pending types left at the end.  We need
6555      this now because it may not have been checked on the last call to
6556      dwarfout_file_scope_decl.  */
6557   if (pending_types != 0)
6558     abort ();
6559 }
6560 
6561 #endif /* DWARF_DEBUGGING_INFO */
6562