xref: /qemu/include/exec/cpu-common.h (revision 5c627197)
1 /*
2  * CPU interfaces that are target independent.
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * SPDX-License-Identifier: LGPL-2.1+
7  */
8 #ifndef CPU_COMMON_H
9 #define CPU_COMMON_H
10 
11 #include "exec/vaddr.h"
12 #ifndef CONFIG_USER_ONLY
13 #include "exec/hwaddr.h"
14 #endif
15 #include "hw/core/cpu.h"
16 #include "tcg/debug-assert.h"
17 #include "exec/page-protection.h"
18 
19 #define EXCP_INTERRUPT  0x10000 /* async interruption */
20 #define EXCP_HLT        0x10001 /* hlt instruction reached */
21 #define EXCP_DEBUG      0x10002 /* cpu stopped after a breakpoint or singlestep */
22 #define EXCP_HALTED     0x10003 /* cpu is halted (waiting for external event) */
23 #define EXCP_YIELD      0x10004 /* cpu wants to yield timeslice to another */
24 #define EXCP_ATOMIC     0x10005 /* stop-the-world and emulate atomic */
25 
26 void cpu_exec_init_all(void);
27 void cpu_exec_step_atomic(CPUState *cpu);
28 
29 #define REAL_HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_real_host_page_size())
30 
31 /* The CPU list lock nests outside page_(un)lock or mmap_(un)lock */
32 extern QemuMutex qemu_cpu_list_lock;
33 void qemu_init_cpu_list(void);
34 void cpu_list_lock(void);
35 void cpu_list_unlock(void);
36 unsigned int cpu_list_generation_id_get(void);
37 
38 void tcg_iommu_init_notifier_list(CPUState *cpu);
39 void tcg_iommu_free_notifier_list(CPUState *cpu);
40 
41 #if !defined(CONFIG_USER_ONLY)
42 
43 enum device_endian {
44     DEVICE_NATIVE_ENDIAN,
45     DEVICE_BIG_ENDIAN,
46     DEVICE_LITTLE_ENDIAN,
47 };
48 
49 #if HOST_BIG_ENDIAN
50 #define DEVICE_HOST_ENDIAN DEVICE_BIG_ENDIAN
51 #else
52 #define DEVICE_HOST_ENDIAN DEVICE_LITTLE_ENDIAN
53 #endif
54 
55 /* address in the RAM (different from a physical address) */
56 #if defined(CONFIG_XEN_BACKEND)
57 typedef uint64_t ram_addr_t;
58 #  define RAM_ADDR_MAX UINT64_MAX
59 #  define RAM_ADDR_FMT "%" PRIx64
60 #else
61 typedef uintptr_t ram_addr_t;
62 #  define RAM_ADDR_MAX UINTPTR_MAX
63 #  define RAM_ADDR_FMT "%" PRIxPTR
64 #endif
65 
66 /* memory API */
67 
68 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length);
69 /* This should not be used by devices.  */
70 ram_addr_t qemu_ram_addr_from_host(void *ptr);
71 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr);
72 RAMBlock *qemu_ram_block_by_name(const char *name);
73 
74 /*
75  * Translates a host ptr back to a RAMBlock and an offset in that RAMBlock.
76  *
77  * @ptr: The host pointer to translate.
78  * @round_offset: Whether to round the result offset down to a target page
79  * @offset: Will be set to the offset within the returned RAMBlock.
80  *
81  * Returns: RAMBlock (or NULL if not found)
82  *
83  * By the time this function returns, the returned pointer is not protected
84  * by RCU anymore.  If the caller is not within an RCU critical section and
85  * does not hold the BQL, it must have other means of protecting the
86  * pointer, such as a reference to the memory region that owns the RAMBlock.
87  */
88 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
89                                    ram_addr_t *offset);
90 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host);
91 void qemu_ram_set_idstr(RAMBlock *block, const char *name, DeviceState *dev);
92 void qemu_ram_unset_idstr(RAMBlock *block);
93 const char *qemu_ram_get_idstr(RAMBlock *rb);
94 void *qemu_ram_get_host_addr(RAMBlock *rb);
95 ram_addr_t qemu_ram_get_offset(RAMBlock *rb);
96 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb);
97 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb);
98 bool qemu_ram_is_shared(RAMBlock *rb);
99 bool qemu_ram_is_noreserve(RAMBlock *rb);
100 bool qemu_ram_is_uf_zeroable(RAMBlock *rb);
101 void qemu_ram_set_uf_zeroable(RAMBlock *rb);
102 bool qemu_ram_is_migratable(RAMBlock *rb);
103 void qemu_ram_set_migratable(RAMBlock *rb);
104 void qemu_ram_unset_migratable(RAMBlock *rb);
105 bool qemu_ram_is_named_file(RAMBlock *rb);
106 int qemu_ram_get_fd(RAMBlock *rb);
107 
108 size_t qemu_ram_pagesize(RAMBlock *block);
109 size_t qemu_ram_pagesize_largest(void);
110 
111 /**
112  * cpu_address_space_init:
113  * @cpu: CPU to add this address space to
114  * @asidx: integer index of this address space
115  * @prefix: prefix to be used as name of address space
116  * @mr: the root memory region of address space
117  *
118  * Add the specified address space to the CPU's cpu_ases list.
119  * The address space added with @asidx 0 is the one used for the
120  * convenience pointer cpu->as.
121  * The target-specific code which registers ASes is responsible
122  * for defining what semantics address space 0, 1, 2, etc have.
123  *
124  * Before the first call to this function, the caller must set
125  * cpu->num_ases to the total number of address spaces it needs
126  * to support.
127  *
128  * Note that with KVM only one address space is supported.
129  */
130 void cpu_address_space_init(CPUState *cpu, int asidx,
131                             const char *prefix, MemoryRegion *mr);
132 
133 void cpu_physical_memory_rw(hwaddr addr, void *buf,
134                             hwaddr len, bool is_write);
cpu_physical_memory_read(hwaddr addr,void * buf,hwaddr len)135 static inline void cpu_physical_memory_read(hwaddr addr,
136                                             void *buf, hwaddr len)
137 {
138     cpu_physical_memory_rw(addr, buf, len, false);
139 }
cpu_physical_memory_write(hwaddr addr,const void * buf,hwaddr len)140 static inline void cpu_physical_memory_write(hwaddr addr,
141                                              const void *buf, hwaddr len)
142 {
143     cpu_physical_memory_rw(addr, (void *)buf, len, true);
144 }
145 void *cpu_physical_memory_map(hwaddr addr,
146                               hwaddr *plen,
147                               bool is_write);
148 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
149                                bool is_write, hwaddr access_len);
150 
151 bool cpu_physical_memory_is_io(hwaddr phys_addr);
152 
153 /* Coalesced MMIO regions are areas where write operations can be reordered.
154  * This usually implies that write operations are side-effect free.  This allows
155  * batching which can make a major impact on performance when using
156  * virtualization.
157  */
158 void qemu_flush_coalesced_mmio_buffer(void);
159 
160 void cpu_flush_icache_range(hwaddr start, hwaddr len);
161 
162 typedef int (RAMBlockIterFunc)(RAMBlock *rb, void *opaque);
163 
164 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque);
165 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length);
166 int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start,
167                                         size_t length);
168 
169 #endif
170 
171 /* Returns: 0 on success, -1 on error */
172 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
173                         void *ptr, size_t len, bool is_write);
174 
175 /* vl.c */
176 void list_cpus(void);
177 
178 #ifdef CONFIG_TCG
179 
180 bool tcg_cflags_has(CPUState *cpu, uint32_t flags);
181 void tcg_cflags_set(CPUState *cpu, uint32_t flags);
182 
183 /* current cflags for hashing/comparison */
184 uint32_t curr_cflags(CPUState *cpu);
185 
186 /**
187  * cpu_unwind_state_data:
188  * @cpu: the cpu context
189  * @host_pc: the host pc within the translation
190  * @data: output data
191  *
192  * Attempt to load the the unwind state for a host pc occurring in
193  * translated code.  If @host_pc is not in translated code, the
194  * function returns false; otherwise @data is loaded.
195  * This is the same unwind info as given to restore_state_to_opc.
196  */
197 bool cpu_unwind_state_data(CPUState *cpu, uintptr_t host_pc, uint64_t *data);
198 
199 /**
200  * cpu_restore_state:
201  * @cpu: the cpu context
202  * @host_pc: the host pc within the translation
203  * @return: true if state was restored, false otherwise
204  *
205  * Attempt to restore the state for a fault occurring in translated
206  * code. If @host_pc is not in translated code no state is
207  * restored and the function returns false.
208  */
209 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc);
210 
211 G_NORETURN void cpu_loop_exit_noexc(CPUState *cpu);
212 G_NORETURN void cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
213 #endif /* CONFIG_TCG */
214 G_NORETURN void cpu_loop_exit(CPUState *cpu);
215 G_NORETURN void cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
216 
217 /* accel/tcg/cpu-exec.c */
218 int cpu_exec(CPUState *cpu);
219 
220 /**
221  * env_archcpu(env)
222  * @env: The architecture environment
223  *
224  * Return the ArchCPU associated with the environment.
225  */
env_archcpu(CPUArchState * env)226 static inline ArchCPU *env_archcpu(CPUArchState *env)
227 {
228     return (void *)env - sizeof(CPUState);
229 }
230 
231 /**
232  * env_cpu(env)
233  * @env: The architecture environment
234  *
235  * Return the CPUState associated with the environment.
236  */
env_cpu(CPUArchState * env)237 static inline CPUState *env_cpu(CPUArchState *env)
238 {
239     return (void *)env - sizeof(CPUState);
240 }
241 
242 #ifndef CONFIG_USER_ONLY
243 /**
244  * cpu_mmu_index:
245  * @env: The cpu environment
246  * @ifetch: True for code access, false for data access.
247  *
248  * Return the core mmu index for the current translation regime.
249  * This function is used by generic TCG code paths.
250  *
251  * The user-only version of this function is inline in cpu-all.h,
252  * where it always returns MMU_USER_IDX.
253  */
cpu_mmu_index(CPUState * cs,bool ifetch)254 static inline int cpu_mmu_index(CPUState *cs, bool ifetch)
255 {
256     int ret = cs->cc->mmu_index(cs, ifetch);
257     tcg_debug_assert(ret >= 0 && ret < NB_MMU_MODES);
258     return ret;
259 }
260 #endif /* !CONFIG_USER_ONLY */
261 
262 #endif /* CPU_COMMON_H */
263