1 /* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998
6 Free Software Foundation, Inc.
7
8 NOTE: The canonical source of this file is maintained with the
9 GNU C Library. Bugs can be reported to bug-glibc@prep.ai.mit.edu.
10
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by the
13 Free Software Foundation; either version 2, or (at your option) any
14 later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software Foundation,
23 Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
24
25 #ifdef HAVE_CONFIG_H
26 # include <config.h>
27 #endif
28
29 /* GCC LOCAL: we don't need NLS here. */
30 #undef ENABLE_NLS
31 /* GCC LOCAL: to handle defining alloca. */
32 #include "libiberty.h"
33
34 /* Do not use a C alloca, we will leak memory and crash. */
35 #ifdef C_ALLOCA
36 # define REGEX_MALLOC
37 #endif
38
39 /* AIX requires this to be the first thing in the file. */
40 #if defined _AIX && !defined REGEX_MALLOC
41 #pragma alloca
42 #endif
43
44 #ifndef PARAMS
45 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
46 # define PARAMS(args) args
47 # else
48 # define PARAMS(args) ()
49 # endif /* GCC. */
50 #endif /* Not PARAMS. */
51
52 #if defined STDC_HEADERS && !defined emacs
53 # include <stddef.h>
54 #else
55 /* We need this for `gnu-regex.h', and perhaps for the Emacs include files. */
56 # include <sys/types.h>
57 #endif
58
59 /* For platform which support the ISO C amendement 1 functionality we
60 support user defined character classes. */
61 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
62 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
63 # include <wchar.h>
64 # include <wctype.h>
65 #endif
66
67 /* This is for other GNU distributions with internationalized messages. */
68 /* GCC LOCAL: ../intl will handle this for us */
69 #ifdef ENABLE_NLS
70 # include <libintl.h>
71 #else
72 # define gettext(msgid) (msgid)
73 #endif
74
75 #ifndef gettext_noop
76 /* This define is so xgettext can find the internationalizable
77 strings. */
78 # define gettext_noop(String) String
79 #endif
80
81 # if !defined(volatile) && !defined(HAVE_VOLATILE)
82 # define volatile
83 # endif
84
85 /* If we are not linking with Emacs proper,
86 we can't use the relocating allocator
87 even if config.h says that we can. */
88 # undef REL_ALLOC
89
90 # if defined STDC_HEADERS || defined _LIBC
91 # include <stdlib.h>
92 # else
93 char *malloc ();
94 char *realloc ();
95 # endif
96
97 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
98 If nothing else has been done, use the method below. */
99 # ifdef INHIBIT_STRING_HEADER
100 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
101 # if !defined bzero && !defined bcopy
102 # undef INHIBIT_STRING_HEADER
103 # endif
104 # endif
105 # endif
106
107 /* This is the normal way of making sure we have a bcopy and a bzero.
108 This is used in most programs--a few other programs avoid this
109 by defining INHIBIT_STRING_HEADER. */
110 # ifndef INHIBIT_STRING_HEADER
111 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
112 # include <string.h>
113 # ifndef bzero
114 # ifndef _LIBC
115 # define bzero(s, n) (memset (s, '\0', n), (s))
116 # else
117 # define bzero(s, n) __bzero (s, n)
118 # endif
119 # endif
120 # else
121 # include <strings.h>
122 # ifndef memcmp
123 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
124 # endif
125 # ifndef memcpy
126 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
127 # endif
128 # endif
129 # endif
130
131 /* Define the syntax stuff for \<, \>, etc. */
132
133 /* This must be nonzero for the wordchar and notwordchar pattern
134 commands in re_match_2. */
135 # ifndef Sword
136 # define Sword 1
137 # endif
138
139 # ifdef SWITCH_ENUM_BUG
140 # define SWITCH_ENUM_CAST(x) ((int)(x))
141 # else
142 # define SWITCH_ENUM_CAST(x) (x)
143 # endif
144
145 /* How many characters in the character set. */
146 # define CHAR_SET_SIZE 256
147
148 # ifdef SYNTAX_TABLE
149
150 extern char *re_syntax_table;
151
152 # else /* not SYNTAX_TABLE */
153
154 static char re_syntax_table[CHAR_SET_SIZE];
155
156 static void init_syntax_once PARAMS ((void));
157
158 static void
init_syntax_once()159 init_syntax_once ()
160 {
161 register int c;
162 static int done = 0;
163
164 if (done)
165 return;
166
167 bzero (re_syntax_table, sizeof re_syntax_table);
168
169 for (c = 'a'; c <= 'z'; c++)
170 re_syntax_table[c] = Sword;
171
172 for (c = 'A'; c <= 'Z'; c++)
173 re_syntax_table[c] = Sword;
174
175 for (c = '0'; c <= '9'; c++)
176 re_syntax_table[c] = Sword;
177
178 re_syntax_table['_'] = Sword;
179
180 done = 1;
181 }
182
183 # endif /* not SYNTAX_TABLE */
184
185 # define SYNTAX(c) re_syntax_table[c]
186
187 /* Get the interface, including the syntax bits. */
188 /* GCC LOCAL: call it gnu-regex.h, not regex.h, to avoid name conflicts */
189 #include "gnu-regex.h"
190
191 /* ISALPHA etc. are used for the character classes. */
192 /* GCC LOCAL: use libiberty's safe-ctype.h, don't bother defining
193 wrapper macros ourselves. */
194 #include <safe-ctype.h>
195
196 #ifndef NULL
197 # define NULL (void *)0
198 #endif
199
200 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
201 since ours (we hope) works properly with all combinations of
202 machines, compilers, `char' and `unsigned char' argument types.
203 (Per Bothner suggested the basic approach.) */
204 #undef SIGN_EXTEND_CHAR
205 #if __STDC__
206 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
207 #else /* not __STDC__ */
208 /* As in Harbison and Steele. */
209 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
210 #endif
211
212 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
213 use `alloca' instead of `malloc'. This is because using malloc in
214 re_search* or re_match* could cause memory leaks when C-g is used in
215 Emacs; also, malloc is slower and causes storage fragmentation. On
216 the other hand, malloc is more portable, and easier to debug.
217
218 Because we sometimes use alloca, some routines have to be macros,
219 not functions -- `alloca'-allocated space disappears at the end of the
220 function it is called in. */
221
222 #ifdef REGEX_MALLOC
223
224 # define REGEX_ALLOCATE malloc
225 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
226 # define REGEX_FREE free
227
228 #else /* not REGEX_MALLOC */
229
230 /* Emacs already defines alloca, sometimes. */
231 # ifndef alloca
232
233 /* Make alloca work the best possible way. */
234 # ifdef __GNUC__
235 # define alloca __builtin_alloca
236 # else /* not __GNUC__ */
237 # if HAVE_ALLOCA_H
238 # include <alloca.h>
239 # endif /* HAVE_ALLOCA_H */
240 # endif /* not __GNUC__ */
241
242 # endif /* not alloca */
243
244 # define REGEX_ALLOCATE alloca
245
246 /* Assumes a `char *destination' variable. */
247 # define REGEX_REALLOCATE(source, osize, nsize) \
248 (destination = (char *) alloca (nsize), \
249 memcpy (destination, source, osize))
250
251 /* No need to do anything to free, after alloca. */
252 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
253
254 #endif /* not REGEX_MALLOC */
255
256 /* Define how to allocate the failure stack. */
257
258 #if defined REL_ALLOC && defined REGEX_MALLOC
259
260 # define REGEX_ALLOCATE_STACK(size) \
261 r_alloc (&failure_stack_ptr, (size))
262 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
263 r_re_alloc (&failure_stack_ptr, (nsize))
264 # define REGEX_FREE_STACK(ptr) \
265 r_alloc_free (&failure_stack_ptr)
266
267 #else /* not using relocating allocator */
268
269 # ifdef REGEX_MALLOC
270
271 # define REGEX_ALLOCATE_STACK malloc
272 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
273 # define REGEX_FREE_STACK free
274
275 # else /* not REGEX_MALLOC */
276
277 # define REGEX_ALLOCATE_STACK alloca
278
279 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
280 REGEX_REALLOCATE (source, osize, nsize)
281 /* No need to explicitly free anything. */
282 # define REGEX_FREE_STACK(arg)
283
284 # endif /* not REGEX_MALLOC */
285 #endif /* not using relocating allocator */
286
287
288 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
289 `string1' or just past its end. This works if PTR is NULL, which is
290 a good thing. */
291 #define FIRST_STRING_P(ptr) \
292 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
293
294 /* (Re)Allocate N items of type T using malloc, or fail. */
295 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
296 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
297 #define RETALLOC_IF(addr, n, t) \
298 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
299 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
300
301 #define BYTEWIDTH 8 /* In bits. */
302
303 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
304
305 #undef MAX
306 #undef MIN
307 #define MAX(a, b) ((a) > (b) ? (a) : (b))
308 #define MIN(a, b) ((a) < (b) ? (a) : (b))
309
310 typedef char boolean;
311 #define false 0
312 #define true 1
313
314 static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
315 const char *string1, int size1,
316 const char *string2, int size2,
317 int pos,
318 struct re_registers *regs,
319 int stop));
320
321 /* These are the command codes that appear in compiled regular
322 expressions. Some opcodes are followed by argument bytes. A
323 command code can specify any interpretation whatsoever for its
324 arguments. Zero bytes may appear in the compiled regular expression. */
325
326 typedef enum
327 {
328 no_op = 0,
329
330 /* Succeed right away--no more backtracking. */
331 succeed,
332
333 /* Followed by one byte giving n, then by n literal bytes. */
334 exactn,
335
336 /* Matches any (more or less) character. */
337 anychar,
338
339 /* Matches any one char belonging to specified set. First
340 following byte is number of bitmap bytes. Then come bytes
341 for a bitmap saying which chars are in. Bits in each byte
342 are ordered low-bit-first. A character is in the set if its
343 bit is 1. A character too large to have a bit in the map is
344 automatically not in the set. */
345 charset,
346
347 /* Same parameters as charset, but match any character that is
348 not one of those specified. */
349 charset_not,
350
351 /* Start remembering the text that is matched, for storing in a
352 register. Followed by one byte with the register number, in
353 the range 0 to one less than the pattern buffer's re_nsub
354 field. Then followed by one byte with the number of groups
355 inner to this one. (This last has to be part of the
356 start_memory only because we need it in the on_failure_jump
357 of re_match_2.) */
358 start_memory,
359
360 /* Stop remembering the text that is matched and store it in a
361 memory register. Followed by one byte with the register
362 number, in the range 0 to one less than `re_nsub' in the
363 pattern buffer, and one byte with the number of inner groups,
364 just like `start_memory'. (We need the number of inner
365 groups here because we don't have any easy way of finding the
366 corresponding start_memory when we're at a stop_memory.) */
367 stop_memory,
368
369 /* Match a duplicate of something remembered. Followed by one
370 byte containing the register number. */
371 duplicate,
372
373 /* Fail unless at beginning of line. */
374 begline,
375
376 /* Fail unless at end of line. */
377 endline,
378
379 /* Succeeds if at beginning of buffer (if emacs) or at beginning
380 of string to be matched (if not). */
381 begbuf,
382
383 /* Analogously, for end of buffer/string. */
384 endbuf,
385
386 /* Followed by two byte relative address to which to jump. */
387 jump,
388
389 /* Same as jump, but marks the end of an alternative. */
390 jump_past_alt,
391
392 /* Followed by two-byte relative address of place to resume at
393 in case of failure. */
394 on_failure_jump,
395
396 /* Like on_failure_jump, but pushes a placeholder instead of the
397 current string position when executed. */
398 on_failure_keep_string_jump,
399
400 /* Throw away latest failure point and then jump to following
401 two-byte relative address. */
402 pop_failure_jump,
403
404 /* Change to pop_failure_jump if know won't have to backtrack to
405 match; otherwise change to jump. This is used to jump
406 back to the beginning of a repeat. If what follows this jump
407 clearly won't match what the repeat does, such that we can be
408 sure that there is no use backtracking out of repetitions
409 already matched, then we change it to a pop_failure_jump.
410 Followed by two-byte address. */
411 maybe_pop_jump,
412
413 /* Jump to following two-byte address, and push a dummy failure
414 point. This failure point will be thrown away if an attempt
415 is made to use it for a failure. A `+' construct makes this
416 before the first repeat. Also used as an intermediary kind
417 of jump when compiling an alternative. */
418 dummy_failure_jump,
419
420 /* Push a dummy failure point and continue. Used at the end of
421 alternatives. */
422 push_dummy_failure,
423
424 /* Followed by two-byte relative address and two-byte number n.
425 After matching N times, jump to the address upon failure. */
426 succeed_n,
427
428 /* Followed by two-byte relative address, and two-byte number n.
429 Jump to the address N times, then fail. */
430 jump_n,
431
432 /* Set the following two-byte relative address to the
433 subsequent two-byte number. The address *includes* the two
434 bytes of number. */
435 set_number_at,
436
437 wordchar, /* Matches any word-constituent character. */
438 notwordchar, /* Matches any char that is not a word-constituent. */
439
440 wordbeg, /* Succeeds if at word beginning. */
441 wordend, /* Succeeds if at word end. */
442
443 wordbound, /* Succeeds if at a word boundary. */
444 notwordbound /* Succeeds if not at a word boundary. */
445
446 #ifdef emacs
447 ,before_dot, /* Succeeds if before point. */
448 at_dot, /* Succeeds if at point. */
449 after_dot, /* Succeeds if after point. */
450
451 /* Matches any character whose syntax is specified. Followed by
452 a byte which contains a syntax code, e.g., Sword. */
453 syntaxspec,
454
455 /* Matches any character whose syntax is not that specified. */
456 notsyntaxspec
457 #endif /* emacs */
458 } re_opcode_t;
459
460 /* Common operations on the compiled pattern. */
461
462 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
463
464 #define STORE_NUMBER(destination, number) \
465 do { \
466 (destination)[0] = (number) & 0377; \
467 (destination)[1] = (number) >> 8; \
468 } while (0)
469
470 /* Same as STORE_NUMBER, except increment DESTINATION to
471 the byte after where the number is stored. Therefore, DESTINATION
472 must be an lvalue. */
473
474 #define STORE_NUMBER_AND_INCR(destination, number) \
475 do { \
476 STORE_NUMBER (destination, number); \
477 (destination) += 2; \
478 } while (0)
479
480 /* Put into DESTINATION a number stored in two contiguous bytes starting
481 at SOURCE. */
482
483 #define EXTRACT_NUMBER(destination, source) \
484 do { \
485 (destination) = *(source) & 0377; \
486 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
487 } while (0)
488
489 #ifdef DEBUG
490 static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
491 static void
extract_number(dest,source)492 extract_number (dest, source)
493 int *dest;
494 unsigned char *source;
495 {
496 int temp = SIGN_EXTEND_CHAR (*(source + 1));
497 *dest = *source & 0377;
498 *dest += temp << 8;
499 }
500
501 # ifndef EXTRACT_MACROS /* To debug the macros. */
502 # undef EXTRACT_NUMBER
503 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
504 # endif /* not EXTRACT_MACROS */
505
506 #endif /* DEBUG */
507
508 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
509 SOURCE must be an lvalue. */
510
511 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
512 do { \
513 EXTRACT_NUMBER (destination, source); \
514 (source) += 2; \
515 } while (0)
516
517 #ifdef DEBUG
518 static void extract_number_and_incr _RE_ARGS ((int *destination,
519 unsigned char **source));
520 static void
extract_number_and_incr(destination,source)521 extract_number_and_incr (destination, source)
522 int *destination;
523 unsigned char **source;
524 {
525 extract_number (destination, *source);
526 *source += 2;
527 }
528
529 # ifndef EXTRACT_MACROS
530 # undef EXTRACT_NUMBER_AND_INCR
531 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
532 extract_number_and_incr (&dest, &src)
533 # endif /* not EXTRACT_MACROS */
534
535 #endif /* DEBUG */
536
537 /* If DEBUG is defined, Regex prints many voluminous messages about what
538 it is doing (if the variable `debug' is nonzero). If linked with the
539 main program in `iregex.c', you can enter patterns and strings
540 interactively. And if linked with the main program in `main.c' and
541 the other test files, you can run the already-written tests. */
542
543 #ifdef DEBUG
544
545 /* We use standard I/O for debugging. */
546 # include <stdio.h>
547
548 /* It is useful to test things that ``must'' be true when debugging. */
549 # include <assert.h>
550
551 static int debug = 0;
552
553 # define DEBUG_STATEMENT(e) e
554 # define DEBUG_PRINT1(x) if (debug) printf (x)
555 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
556 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
557 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
558 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
559 if (debug) print_partial_compiled_pattern (s, e)
560 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
561 if (debug) print_double_string (w, s1, sz1, s2, sz2)
562
563
564 /* Print the fastmap in human-readable form. */
565
566 void
print_fastmap(fastmap)567 print_fastmap (fastmap)
568 char *fastmap;
569 {
570 unsigned was_a_range = 0;
571 unsigned i = 0;
572
573 while (i < (1 << BYTEWIDTH))
574 {
575 if (fastmap[i++])
576 {
577 was_a_range = 0;
578 putchar (i - 1);
579 while (i < (1 << BYTEWIDTH) && fastmap[i])
580 {
581 was_a_range = 1;
582 i++;
583 }
584 if (was_a_range)
585 {
586 printf ("-");
587 putchar (i - 1);
588 }
589 }
590 }
591 putchar ('\n');
592 }
593
594
595 /* Print a compiled pattern string in human-readable form, starting at
596 the START pointer into it and ending just before the pointer END. */
597
598 void
print_partial_compiled_pattern(start,end)599 print_partial_compiled_pattern (start, end)
600 unsigned char *start;
601 unsigned char *end;
602 {
603 int mcnt, mcnt2;
604 unsigned char *p1;
605 unsigned char *p = start;
606 unsigned char *pend = end;
607
608 if (start == NULL)
609 {
610 printf ("(null)\n");
611 return;
612 }
613
614 /* Loop over pattern commands. */
615 while (p < pend)
616 {
617 printf ("%d:\t", p - start);
618
619 switch ((re_opcode_t) *p++)
620 {
621 case no_op:
622 printf ("/no_op");
623 break;
624
625 case exactn:
626 mcnt = *p++;
627 printf ("/exactn/%d", mcnt);
628 do
629 {
630 putchar ('/');
631 putchar (*p++);
632 }
633 while (--mcnt);
634 break;
635
636 case start_memory:
637 mcnt = *p++;
638 printf ("/start_memory/%d/%d", mcnt, *p++);
639 break;
640
641 case stop_memory:
642 mcnt = *p++;
643 printf ("/stop_memory/%d/%d", mcnt, *p++);
644 break;
645
646 case duplicate:
647 printf ("/duplicate/%d", *p++);
648 break;
649
650 case anychar:
651 printf ("/anychar");
652 break;
653
654 case charset:
655 case charset_not:
656 {
657 register int c, last = -100;
658 register int in_range = 0;
659
660 printf ("/charset [%s",
661 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
662
663 assert (p + *p < pend);
664
665 for (c = 0; c < 256; c++)
666 if (c / 8 < *p
667 && (p[1 + (c/8)] & (1 << (c % 8))))
668 {
669 /* Are we starting a range? */
670 if (last + 1 == c && ! in_range)
671 {
672 putchar ('-');
673 in_range = 1;
674 }
675 /* Have we broken a range? */
676 else if (last + 1 != c && in_range)
677 {
678 putchar (last);
679 in_range = 0;
680 }
681
682 if (! in_range)
683 putchar (c);
684
685 last = c;
686 }
687
688 if (in_range)
689 putchar (last);
690
691 putchar (']');
692
693 p += 1 + *p;
694 }
695 break;
696
697 case begline:
698 printf ("/begline");
699 break;
700
701 case endline:
702 printf ("/endline");
703 break;
704
705 case on_failure_jump:
706 extract_number_and_incr (&mcnt, &p);
707 printf ("/on_failure_jump to %d", p + mcnt - start);
708 break;
709
710 case on_failure_keep_string_jump:
711 extract_number_and_incr (&mcnt, &p);
712 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
713 break;
714
715 case dummy_failure_jump:
716 extract_number_and_incr (&mcnt, &p);
717 printf ("/dummy_failure_jump to %d", p + mcnt - start);
718 break;
719
720 case push_dummy_failure:
721 printf ("/push_dummy_failure");
722 break;
723
724 case maybe_pop_jump:
725 extract_number_and_incr (&mcnt, &p);
726 printf ("/maybe_pop_jump to %d", p + mcnt - start);
727 break;
728
729 case pop_failure_jump:
730 extract_number_and_incr (&mcnt, &p);
731 printf ("/pop_failure_jump to %d", p + mcnt - start);
732 break;
733
734 case jump_past_alt:
735 extract_number_and_incr (&mcnt, &p);
736 printf ("/jump_past_alt to %d", p + mcnt - start);
737 break;
738
739 case jump:
740 extract_number_and_incr (&mcnt, &p);
741 printf ("/jump to %d", p + mcnt - start);
742 break;
743
744 case succeed_n:
745 extract_number_and_incr (&mcnt, &p);
746 p1 = p + mcnt;
747 extract_number_and_incr (&mcnt2, &p);
748 printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
749 break;
750
751 case jump_n:
752 extract_number_and_incr (&mcnt, &p);
753 p1 = p + mcnt;
754 extract_number_and_incr (&mcnt2, &p);
755 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
756 break;
757
758 case set_number_at:
759 extract_number_and_incr (&mcnt, &p);
760 p1 = p + mcnt;
761 extract_number_and_incr (&mcnt2, &p);
762 printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
763 break;
764
765 case wordbound:
766 printf ("/wordbound");
767 break;
768
769 case notwordbound:
770 printf ("/notwordbound");
771 break;
772
773 case wordbeg:
774 printf ("/wordbeg");
775 break;
776
777 case wordend:
778 printf ("/wordend");
779
780 # ifdef emacs
781 case before_dot:
782 printf ("/before_dot");
783 break;
784
785 case at_dot:
786 printf ("/at_dot");
787 break;
788
789 case after_dot:
790 printf ("/after_dot");
791 break;
792
793 case syntaxspec:
794 printf ("/syntaxspec");
795 mcnt = *p++;
796 printf ("/%d", mcnt);
797 break;
798
799 case notsyntaxspec:
800 printf ("/notsyntaxspec");
801 mcnt = *p++;
802 printf ("/%d", mcnt);
803 break;
804 # endif /* emacs */
805
806 case wordchar:
807 printf ("/wordchar");
808 break;
809
810 case notwordchar:
811 printf ("/notwordchar");
812 break;
813
814 case begbuf:
815 printf ("/begbuf");
816 break;
817
818 case endbuf:
819 printf ("/endbuf");
820 break;
821
822 default:
823 printf ("?%d", *(p-1));
824 }
825
826 putchar ('\n');
827 }
828
829 printf ("%d:\tend of pattern.\n", p - start);
830 }
831
832
833 void
print_compiled_pattern(bufp)834 print_compiled_pattern (bufp)
835 struct re_pattern_buffer *bufp;
836 {
837 unsigned char *buffer = bufp->buffer;
838
839 print_partial_compiled_pattern (buffer, buffer + bufp->used);
840 printf ("%ld bytes used/%ld bytes allocated.\n",
841 bufp->used, bufp->allocated);
842
843 if (bufp->fastmap_accurate && bufp->fastmap)
844 {
845 printf ("fastmap: ");
846 print_fastmap (bufp->fastmap);
847 }
848
849 printf ("re_nsub: %d\t", bufp->re_nsub);
850 printf ("regs_alloc: %d\t", bufp->regs_allocated);
851 printf ("can_be_null: %d\t", bufp->can_be_null);
852 printf ("newline_anchor: %d\n", bufp->newline_anchor);
853 printf ("no_sub: %d\t", bufp->no_sub);
854 printf ("not_bol: %d\t", bufp->not_bol);
855 printf ("not_eol: %d\t", bufp->not_eol);
856 printf ("syntax: %lx\n", bufp->syntax);
857 /* Perhaps we should print the translate table? */
858 }
859
860
861 void
print_double_string(where,string1,size1,string2,size2)862 print_double_string (where, string1, size1, string2, size2)
863 const char *where;
864 const char *string1;
865 const char *string2;
866 int size1;
867 int size2;
868 {
869 int this_char;
870
871 if (where == NULL)
872 printf ("(null)");
873 else
874 {
875 if (FIRST_STRING_P (where))
876 {
877 for (this_char = where - string1; this_char < size1; this_char++)
878 putchar (string1[this_char]);
879
880 where = string2;
881 }
882
883 for (this_char = where - string2; this_char < size2; this_char++)
884 putchar (string2[this_char]);
885 }
886 }
887
888 void
printchar(c)889 printchar (c)
890 int c;
891 {
892 putc (c, stderr);
893 }
894
895 #else /* not DEBUG */
896
897 # undef assert
898 # define assert(e)
899
900 # define DEBUG_STATEMENT(e)
901 # define DEBUG_PRINT1(x)
902 # define DEBUG_PRINT2(x1, x2)
903 # define DEBUG_PRINT3(x1, x2, x3)
904 # define DEBUG_PRINT4(x1, x2, x3, x4)
905 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
906 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
907
908 #endif /* not DEBUG */
909
910 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
911 also be assigned to arbitrarily: each pattern buffer stores its own
912 syntax, so it can be changed between regex compilations. */
913 /* This has no initializer because initialized variables in Emacs
914 become read-only after dumping. */
915 reg_syntax_t re_syntax_options;
916
917
918 /* Specify the precise syntax of regexps for compilation. This provides
919 for compatibility for various utilities which historically have
920 different, incompatible syntaxes.
921
922 The argument SYNTAX is a bit mask comprised of the various bits
923 defined in gnu-regex.h. We return the old syntax. */
924
925 reg_syntax_t
re_set_syntax(syntax)926 re_set_syntax (syntax)
927 reg_syntax_t syntax;
928 {
929 reg_syntax_t ret = re_syntax_options;
930
931 re_syntax_options = syntax;
932 #ifdef DEBUG
933 if (syntax & RE_DEBUG)
934 debug = 1;
935 else if (debug) /* was on but now is not */
936 debug = 0;
937 #endif /* DEBUG */
938 return ret;
939 }
940 #ifdef _LIBC
941 weak_alias (__re_set_syntax, re_set_syntax)
942 #endif
943
944 /* This table gives an error message for each of the error codes listed
945 in gnu-regex.h. Obviously the order here has to be same as there.
946 POSIX doesn't require that we do anything for REG_NOERROR,
947 but why not be nice? */
948
949 static const char *const re_error_msgid[] =
950 {
951 gettext_noop ("Success"), /* REG_NOERROR */
952 gettext_noop ("No match"), /* REG_NOMATCH */
953 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
954 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
955 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
956 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
957 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
958 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
959 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
960 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
961 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
962 gettext_noop ("Invalid range end"), /* REG_ERANGE */
963 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
964 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
965 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
966 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
967 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
968 };
969
970 /* Avoiding alloca during matching, to placate r_alloc. */
971
972 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
973 searching and matching functions should not call alloca. On some
974 systems, alloca is implemented in terms of malloc, and if we're
975 using the relocating allocator routines, then malloc could cause a
976 relocation, which might (if the strings being searched are in the
977 ralloc heap) shift the data out from underneath the regexp
978 routines.
979
980 Here's another reason to avoid allocation: Emacs
981 processes input from X in a signal handler; processing X input may
982 call malloc; if input arrives while a matching routine is calling
983 malloc, then we're scrod. But Emacs can't just block input while
984 calling matching routines; then we don't notice interrupts when
985 they come in. So, Emacs blocks input around all regexp calls
986 except the matching calls, which it leaves unprotected, in the
987 faith that they will not malloc. */
988
989 /* Normally, this is fine. */
990 #define MATCH_MAY_ALLOCATE
991
992 /* When using GNU C, we are not REALLY using the C alloca, no matter
993 what config.h may say. So don't take precautions for it. */
994 #ifdef __GNUC__
995 # undef C_ALLOCA
996 #endif
997
998 /* The match routines may not allocate if (1) they would do it with malloc
999 and (2) it's not safe for them to use malloc.
1000 Note that if REL_ALLOC is defined, matching would not use malloc for the
1001 failure stack, but we would still use it for the register vectors;
1002 so REL_ALLOC should not affect this. */
1003 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1004 # undef MATCH_MAY_ALLOCATE
1005 #endif
1006
1007
1008 /* Failure stack declarations and macros; both re_compile_fastmap and
1009 re_match_2 use a failure stack. These have to be macros because of
1010 REGEX_ALLOCATE_STACK. */
1011
1012
1013 /* Number of failure points for which to initially allocate space
1014 when matching. If this number is exceeded, we allocate more
1015 space, so it is not a hard limit. */
1016 #ifndef INIT_FAILURE_ALLOC
1017 # define INIT_FAILURE_ALLOC 5
1018 #endif
1019
1020 /* Roughly the maximum number of failure points on the stack. Would be
1021 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1022 This is a variable only so users of regex can assign to it; we never
1023 change it ourselves. */
1024
1025 #ifdef INT_IS_16BIT
1026
1027 # if defined MATCH_MAY_ALLOCATE
1028 /* 4400 was enough to cause a crash on Alpha OSF/1,
1029 whose default stack limit is 2mb. */
1030 long int re_max_failures = 4000;
1031 # else
1032 long int re_max_failures = 2000;
1033 # endif
1034
1035 union fail_stack_elt
1036 {
1037 unsigned char *pointer;
1038 long int integer;
1039 };
1040
1041 typedef union fail_stack_elt fail_stack_elt_t;
1042
1043 typedef struct
1044 {
1045 fail_stack_elt_t *stack;
1046 unsigned long int size;
1047 unsigned long int avail; /* Offset of next open position. */
1048 } fail_stack_type;
1049
1050 #else /* not INT_IS_16BIT */
1051
1052 # if defined MATCH_MAY_ALLOCATE
1053 /* 4400 was enough to cause a crash on Alpha OSF/1,
1054 whose default stack limit is 2mb. */
1055 int re_max_failures = 20000;
1056 # else
1057 int re_max_failures = 2000;
1058 # endif
1059
1060 union fail_stack_elt
1061 {
1062 unsigned char *pointer;
1063 int integer;
1064 };
1065
1066 typedef union fail_stack_elt fail_stack_elt_t;
1067
1068 typedef struct
1069 {
1070 fail_stack_elt_t *stack;
1071 unsigned size;
1072 unsigned avail; /* Offset of next open position. */
1073 } fail_stack_type;
1074
1075 #endif /* INT_IS_16BIT */
1076
1077 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1078 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1079 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1080
1081
1082 /* Define macros to initialize and free the failure stack.
1083 Do `return -2' if the alloc fails. */
1084
1085 #ifdef MATCH_MAY_ALLOCATE
1086 # define INIT_FAIL_STACK() \
1087 do { \
1088 fail_stack.stack = (fail_stack_elt_t *) \
1089 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1090 \
1091 if (fail_stack.stack == NULL) \
1092 return -2; \
1093 \
1094 fail_stack.size = INIT_FAILURE_ALLOC; \
1095 fail_stack.avail = 0; \
1096 } while (0)
1097
1098 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1099 #else
1100 # define INIT_FAIL_STACK() \
1101 do { \
1102 fail_stack.avail = 0; \
1103 } while (0)
1104
1105 # define RESET_FAIL_STACK()
1106 #endif
1107
1108
1109 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1110
1111 Return 1 if succeeds, and 0 if either ran out of memory
1112 allocating space for it or it was already too large.
1113
1114 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1115
1116 #define DOUBLE_FAIL_STACK(fail_stack) \
1117 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1118 ? 0 \
1119 : ((fail_stack).stack = (fail_stack_elt_t *) \
1120 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1121 (fail_stack).size * sizeof (fail_stack_elt_t), \
1122 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1123 \
1124 (fail_stack).stack == NULL \
1125 ? 0 \
1126 : ((fail_stack).size <<= 1, \
1127 1)))
1128
1129
1130 /* Push pointer POINTER on FAIL_STACK.
1131 Return 1 if was able to do so and 0 if ran out of memory allocating
1132 space to do so. */
1133 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1134 ((FAIL_STACK_FULL () \
1135 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1136 ? 0 \
1137 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1138 1))
1139
1140 /* Push a pointer value onto the failure stack.
1141 Assumes the variable `fail_stack'. Probably should only
1142 be called from within `PUSH_FAILURE_POINT'. */
1143 #define PUSH_FAILURE_POINTER(item) \
1144 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1145
1146 /* This pushes an integer-valued item onto the failure stack.
1147 Assumes the variable `fail_stack'. Probably should only
1148 be called from within `PUSH_FAILURE_POINT'. */
1149 #define PUSH_FAILURE_INT(item) \
1150 fail_stack.stack[fail_stack.avail++].integer = (item)
1151
1152 /* Push a fail_stack_elt_t value onto the failure stack.
1153 Assumes the variable `fail_stack'. Probably should only
1154 be called from within `PUSH_FAILURE_POINT'. */
1155 #define PUSH_FAILURE_ELT(item) \
1156 fail_stack.stack[fail_stack.avail++] = (item)
1157
1158 /* These three POP... operations complement the three PUSH... operations.
1159 All assume that `fail_stack' is nonempty. */
1160 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1161 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1162 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1163
1164 /* Used to omit pushing failure point id's when we're not debugging. */
1165 #ifdef DEBUG
1166 # define DEBUG_PUSH PUSH_FAILURE_INT
1167 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1168 #else
1169 # define DEBUG_PUSH(item)
1170 # define DEBUG_POP(item_addr)
1171 #endif
1172
1173
1174 /* Push the information about the state we will need
1175 if we ever fail back to it.
1176
1177 Requires variables fail_stack, regstart, regend, reg_info, and
1178 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1179 be declared.
1180
1181 Does `return FAILURE_CODE' if runs out of memory. */
1182
1183 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1184 do { \
1185 char *destination; \
1186 /* Must be int, so when we don't save any registers, the arithmetic \
1187 of 0 + -1 isn't done as unsigned. */ \
1188 /* Can't be int, since there is not a shred of a guarantee that int \
1189 is wide enough to hold a value of something to which pointer can \
1190 be assigned */ \
1191 active_reg_t this_reg; \
1192 \
1193 DEBUG_STATEMENT (failure_id++); \
1194 DEBUG_STATEMENT (nfailure_points_pushed++); \
1195 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1196 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1197 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1198 \
1199 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1200 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1201 \
1202 /* Ensure we have enough space allocated for what we will push. */ \
1203 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1204 { \
1205 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1206 return failure_code; \
1207 \
1208 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1209 (fail_stack).size); \
1210 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1211 } \
1212 \
1213 /* Push the info, starting with the registers. */ \
1214 DEBUG_PRINT1 ("\n"); \
1215 \
1216 if (1) \
1217 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1218 this_reg++) \
1219 { \
1220 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1221 DEBUG_STATEMENT (num_regs_pushed++); \
1222 \
1223 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1224 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1225 \
1226 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1227 PUSH_FAILURE_POINTER (regend[this_reg]); \
1228 \
1229 DEBUG_PRINT2 (" info: %p\n ", \
1230 reg_info[this_reg].word.pointer); \
1231 DEBUG_PRINT2 (" match_null=%d", \
1232 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1233 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1234 DEBUG_PRINT2 (" matched_something=%d", \
1235 MATCHED_SOMETHING (reg_info[this_reg])); \
1236 DEBUG_PRINT2 (" ever_matched=%d", \
1237 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1238 DEBUG_PRINT1 ("\n"); \
1239 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1240 } \
1241 \
1242 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1243 PUSH_FAILURE_INT (lowest_active_reg); \
1244 \
1245 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1246 PUSH_FAILURE_INT (highest_active_reg); \
1247 \
1248 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1249 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1250 PUSH_FAILURE_POINTER (pattern_place); \
1251 \
1252 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1253 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1254 size2); \
1255 DEBUG_PRINT1 ("'\n"); \
1256 PUSH_FAILURE_POINTER (string_place); \
1257 \
1258 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1259 DEBUG_PUSH (failure_id); \
1260 } while (0)
1261
1262 /* This is the number of items that are pushed and popped on the stack
1263 for each register. */
1264 #define NUM_REG_ITEMS 3
1265
1266 /* Individual items aside from the registers. */
1267 #ifdef DEBUG
1268 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1269 #else
1270 # define NUM_NONREG_ITEMS 4
1271 #endif
1272
1273 /* We push at most this many items on the stack. */
1274 /* We used to use (num_regs - 1), which is the number of registers
1275 this regexp will save; but that was changed to 5
1276 to avoid stack overflow for a regexp with lots of parens. */
1277 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1278
1279 /* We actually push this many items. */
1280 #define NUM_FAILURE_ITEMS \
1281 (((0 \
1282 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1283 * NUM_REG_ITEMS) \
1284 + NUM_NONREG_ITEMS)
1285
1286 /* How many items can still be added to the stack without overflowing it. */
1287 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1288
1289
1290 /* Pops what PUSH_FAIL_STACK pushes.
1291
1292 We restore into the parameters, all of which should be lvalues:
1293 STR -- the saved data position.
1294 PAT -- the saved pattern position.
1295 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1296 REGSTART, REGEND -- arrays of string positions.
1297 REG_INFO -- array of information about each subexpression.
1298
1299 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1300 `pend', `string1', `size1', `string2', and `size2'. */
1301
1302 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1303 { \
1304 DEBUG_STATEMENT (unsigned failure_id;) \
1305 active_reg_t this_reg; \
1306 const unsigned char *string_temp; \
1307 \
1308 assert (!FAIL_STACK_EMPTY ()); \
1309 \
1310 /* Remove failure points and point to how many regs pushed. */ \
1311 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1312 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1313 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1314 \
1315 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1316 \
1317 DEBUG_POP (&failure_id); \
1318 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1319 \
1320 /* If the saved string location is NULL, it came from an \
1321 on_failure_keep_string_jump opcode, and we want to throw away the \
1322 saved NULL, thus retaining our current position in the string. */ \
1323 string_temp = POP_FAILURE_POINTER (); \
1324 if (string_temp != NULL) \
1325 str = (const char *) string_temp; \
1326 \
1327 DEBUG_PRINT2 (" Popping string %p: `", str); \
1328 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1329 DEBUG_PRINT1 ("'\n"); \
1330 \
1331 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1332 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1333 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1334 \
1335 /* Restore register info. */ \
1336 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1337 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1338 \
1339 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1340 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1341 \
1342 if (1) \
1343 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1344 { \
1345 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1346 \
1347 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1348 DEBUG_PRINT2 (" info: %p\n", \
1349 reg_info[this_reg].word.pointer); \
1350 \
1351 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1352 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1353 \
1354 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1355 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1356 } \
1357 else \
1358 { \
1359 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1360 { \
1361 reg_info[this_reg].word.integer = 0; \
1362 regend[this_reg] = 0; \
1363 regstart[this_reg] = 0; \
1364 } \
1365 highest_active_reg = high_reg; \
1366 } \
1367 \
1368 set_regs_matched_done = 0; \
1369 DEBUG_STATEMENT (nfailure_points_popped++); \
1370 } /* POP_FAILURE_POINT */
1371
1372
1373
1374 /* Structure for per-register (a.k.a. per-group) information.
1375 Other register information, such as the
1376 starting and ending positions (which are addresses), and the list of
1377 inner groups (which is a bits list) are maintained in separate
1378 variables.
1379
1380 We are making a (strictly speaking) nonportable assumption here: that
1381 the compiler will pack our bit fields into something that fits into
1382 the type of `word', i.e., is something that fits into one item on the
1383 failure stack. */
1384
1385
1386 /* Declarations and macros for re_match_2. */
1387
1388 typedef union
1389 {
1390 fail_stack_elt_t word;
1391 struct
1392 {
1393 /* This field is one if this group can match the empty string,
1394 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1395 #define MATCH_NULL_UNSET_VALUE 3
1396 unsigned match_null_string_p : 2;
1397 unsigned is_active : 1;
1398 unsigned matched_something : 1;
1399 unsigned ever_matched_something : 1;
1400 } bits;
1401 } register_info_type;
1402
1403 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1404 #define IS_ACTIVE(R) ((R).bits.is_active)
1405 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1406 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1407
1408
1409 /* Call this when have matched a real character; it sets `matched' flags
1410 for the subexpressions which we are currently inside. Also records
1411 that those subexprs have matched. */
1412 #define SET_REGS_MATCHED() \
1413 do \
1414 { \
1415 if (!set_regs_matched_done) \
1416 { \
1417 active_reg_t r; \
1418 set_regs_matched_done = 1; \
1419 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1420 { \
1421 MATCHED_SOMETHING (reg_info[r]) \
1422 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1423 = 1; \
1424 } \
1425 } \
1426 } \
1427 while (0)
1428
1429 /* Registers are set to a sentinel when they haven't yet matched. */
1430 static char reg_unset_dummy;
1431 #define REG_UNSET_VALUE (®_unset_dummy)
1432 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1433
1434 /* Subroutine declarations and macros for regex_compile. */
1435
1436 static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
1437 reg_syntax_t syntax,
1438 struct re_pattern_buffer *bufp));
1439 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1440 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1441 int arg1, int arg2));
1442 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1443 int arg, unsigned char *end));
1444 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1445 int arg1, int arg2, unsigned char *end));
1446 static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
1447 reg_syntax_t syntax));
1448 static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
1449 reg_syntax_t syntax));
1450 static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr,
1451 const char *pend,
1452 char *translate,
1453 reg_syntax_t syntax,
1454 unsigned char *b));
1455
1456 /* Fetch the next character in the uncompiled pattern---translating it
1457 if necessary. Also cast from a signed character in the constant
1458 string passed to us by the user to an unsigned char that we can use
1459 as an array index (in, e.g., `translate'). */
1460 #ifndef PATFETCH
1461 # define PATFETCH(c) \
1462 do {if (p == pend) return REG_EEND; \
1463 c = (unsigned char) *p++; \
1464 if (translate) c = (unsigned char) translate[c]; \
1465 } while (0)
1466 #endif
1467
1468 /* Fetch the next character in the uncompiled pattern, with no
1469 translation. */
1470 #define PATFETCH_RAW(c) \
1471 do {if (p == pend) return REG_EEND; \
1472 c = (unsigned char) *p++; \
1473 } while (0)
1474
1475 /* Go backwards one character in the pattern. */
1476 #define PATUNFETCH p--
1477
1478
1479 /* If `translate' is non-null, return translate[D], else just D. We
1480 cast the subscript to translate because some data is declared as
1481 `char *', to avoid warnings when a string constant is passed. But
1482 when we use a character as a subscript we must make it unsigned. */
1483 #ifndef TRANSLATE
1484 # define TRANSLATE(d) \
1485 (translate ? (char) translate[(unsigned char) (d)] : (d))
1486 #endif
1487
1488
1489 /* Macros for outputting the compiled pattern into `buffer'. */
1490
1491 /* If the buffer isn't allocated when it comes in, use this. */
1492 #define INIT_BUF_SIZE 32
1493
1494 /* Make sure we have at least N more bytes of space in buffer. */
1495 #define GET_BUFFER_SPACE(n) \
1496 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1497 EXTEND_BUFFER ()
1498
1499 /* Make sure we have one more byte of buffer space and then add C to it. */
1500 #define BUF_PUSH(c) \
1501 do { \
1502 GET_BUFFER_SPACE (1); \
1503 *b++ = (unsigned char) (c); \
1504 } while (0)
1505
1506
1507 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1508 #define BUF_PUSH_2(c1, c2) \
1509 do { \
1510 GET_BUFFER_SPACE (2); \
1511 *b++ = (unsigned char) (c1); \
1512 *b++ = (unsigned char) (c2); \
1513 } while (0)
1514
1515
1516 /* As with BUF_PUSH_2, except for three bytes. */
1517 #define BUF_PUSH_3(c1, c2, c3) \
1518 do { \
1519 GET_BUFFER_SPACE (3); \
1520 *b++ = (unsigned char) (c1); \
1521 *b++ = (unsigned char) (c2); \
1522 *b++ = (unsigned char) (c3); \
1523 } while (0)
1524
1525
1526 /* Store a jump with opcode OP at LOC to location TO. We store a
1527 relative address offset by the three bytes the jump itself occupies. */
1528 #define STORE_JUMP(op, loc, to) \
1529 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1530
1531 /* Likewise, for a two-argument jump. */
1532 #define STORE_JUMP2(op, loc, to, arg) \
1533 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1534
1535 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1536 #define INSERT_JUMP(op, loc, to) \
1537 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1538
1539 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1540 #define INSERT_JUMP2(op, loc, to, arg) \
1541 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1542
1543
1544 /* This is not an arbitrary limit: the arguments which represent offsets
1545 into the pattern are two bytes long. So if 2^16 bytes turns out to
1546 be too small, many things would have to change. */
1547 /* Any other compiler which, like MSC, has allocation limit below 2^16
1548 bytes will have to use approach similar to what was done below for
1549 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1550 reallocating to 0 bytes. Such thing is not going to work too well.
1551 You have been warned!! */
1552 #if defined _MSC_VER && !defined WIN32
1553 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1554 The REALLOC define eliminates a flurry of conversion warnings,
1555 but is not required. */
1556 # define MAX_BUF_SIZE 65500L
1557 # define REALLOC(p,s) realloc ((p), (size_t) (s))
1558 #else
1559 # define MAX_BUF_SIZE (1L << 16)
1560 # define REALLOC(p,s) realloc ((p), (s))
1561 #endif
1562
1563 /* Extend the buffer by twice its current size via realloc and
1564 reset the pointers that pointed into the old block to point to the
1565 correct places in the new one. If extending the buffer results in it
1566 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1567 #define EXTEND_BUFFER() \
1568 do { \
1569 unsigned char *old_buffer = bufp->buffer; \
1570 if (bufp->allocated == MAX_BUF_SIZE) \
1571 return REG_ESIZE; \
1572 bufp->allocated <<= 1; \
1573 if (bufp->allocated > MAX_BUF_SIZE) \
1574 bufp->allocated = MAX_BUF_SIZE; \
1575 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1576 if (bufp->buffer == NULL) \
1577 return REG_ESPACE; \
1578 /* If the buffer moved, move all the pointers into it. */ \
1579 if (old_buffer != bufp->buffer) \
1580 { \
1581 b = (b - old_buffer) + bufp->buffer; \
1582 begalt = (begalt - old_buffer) + bufp->buffer; \
1583 if (fixup_alt_jump) \
1584 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1585 if (laststart) \
1586 laststart = (laststart - old_buffer) + bufp->buffer; \
1587 if (pending_exact) \
1588 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1589 } \
1590 } while (0)
1591
1592
1593 /* Since we have one byte reserved for the register number argument to
1594 {start,stop}_memory, the maximum number of groups we can report
1595 things about is what fits in that byte. */
1596 #define MAX_REGNUM 255
1597
1598 /* But patterns can have more than `MAX_REGNUM' registers. We just
1599 ignore the excess. */
1600 typedef unsigned regnum_t;
1601
1602
1603 /* Macros for the compile stack. */
1604
1605 /* Since offsets can go either forwards or backwards, this type needs to
1606 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1607 /* int may be not enough when sizeof(int) == 2. */
1608 typedef long pattern_offset_t;
1609
1610 typedef struct
1611 {
1612 pattern_offset_t begalt_offset;
1613 pattern_offset_t fixup_alt_jump;
1614 pattern_offset_t inner_group_offset;
1615 pattern_offset_t laststart_offset;
1616 regnum_t regnum;
1617 } compile_stack_elt_t;
1618
1619
1620 typedef struct
1621 {
1622 compile_stack_elt_t *stack;
1623 unsigned size;
1624 unsigned avail; /* Offset of next open position. */
1625 } compile_stack_type;
1626
1627
1628 #define INIT_COMPILE_STACK_SIZE 32
1629
1630 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1631 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1632
1633 /* The next available element. */
1634 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1635
1636
1637 /* Set the bit for character C in a list. */
1638 #define SET_LIST_BIT(c) \
1639 (b[((unsigned char) (c)) / BYTEWIDTH] \
1640 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1641
1642
1643 /* Get the next unsigned number in the uncompiled pattern. */
1644 #define GET_UNSIGNED_NUMBER(num) \
1645 { if (p != pend) \
1646 { \
1647 PATFETCH (c); \
1648 while (ISDIGIT (c)) \
1649 { \
1650 if (num < 0) \
1651 num = 0; \
1652 num = num * 10 + c - '0'; \
1653 if (p == pend) \
1654 break; \
1655 PATFETCH (c); \
1656 } \
1657 } \
1658 }
1659
1660 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
1661 /* The GNU C library provides support for user-defined character classes
1662 and the functions from ISO C amendement 1. */
1663 # ifdef CHARCLASS_NAME_MAX
1664 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1665 # else
1666 /* This shouldn't happen but some implementation might still have this
1667 problem. Use a reasonable default value. */
1668 # define CHAR_CLASS_MAX_LENGTH 256
1669 # endif
1670
1671 # ifdef _LIBC
1672 # define IS_CHAR_CLASS(string) __wctype (string)
1673 # else
1674 # define IS_CHAR_CLASS(string) wctype (string)
1675 # endif
1676 #else
1677 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1678
1679 # define IS_CHAR_CLASS(string) \
1680 (STREQ (string, "alpha") || STREQ (string, "upper") \
1681 || STREQ (string, "lower") || STREQ (string, "digit") \
1682 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1683 || STREQ (string, "space") || STREQ (string, "print") \
1684 || STREQ (string, "punct") || STREQ (string, "graph") \
1685 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1686 #endif
1687
1688 #ifndef MATCH_MAY_ALLOCATE
1689
1690 /* If we cannot allocate large objects within re_match_2_internal,
1691 we make the fail stack and register vectors global.
1692 The fail stack, we grow to the maximum size when a regexp
1693 is compiled.
1694 The register vectors, we adjust in size each time we
1695 compile a regexp, according to the number of registers it needs. */
1696
1697 static fail_stack_type fail_stack;
1698
1699 /* Size with which the following vectors are currently allocated.
1700 That is so we can make them bigger as needed,
1701 but never make them smaller. */
1702 static int regs_allocated_size;
1703
1704 static const char ** regstart, ** regend;
1705 static const char ** old_regstart, ** old_regend;
1706 static const char **best_regstart, **best_regend;
1707 static register_info_type *reg_info;
1708 static const char **reg_dummy;
1709 static register_info_type *reg_info_dummy;
1710
1711 /* Make the register vectors big enough for NUM_REGS registers,
1712 but don't make them smaller. */
1713
1714 static
regex_grow_registers(num_regs)1715 regex_grow_registers (num_regs)
1716 int num_regs;
1717 {
1718 if (num_regs > regs_allocated_size)
1719 {
1720 RETALLOC_IF (regstart, num_regs, const char *);
1721 RETALLOC_IF (regend, num_regs, const char *);
1722 RETALLOC_IF (old_regstart, num_regs, const char *);
1723 RETALLOC_IF (old_regend, num_regs, const char *);
1724 RETALLOC_IF (best_regstart, num_regs, const char *);
1725 RETALLOC_IF (best_regend, num_regs, const char *);
1726 RETALLOC_IF (reg_info, num_regs, register_info_type);
1727 RETALLOC_IF (reg_dummy, num_regs, const char *);
1728 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1729
1730 regs_allocated_size = num_regs;
1731 }
1732 }
1733
1734 #endif /* not MATCH_MAY_ALLOCATE */
1735
1736 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
1737 compile_stack,
1738 regnum_t regnum));
1739
1740 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1741 Returns one of error codes defined in `gnu-regex.h', or zero for success.
1742
1743 Assumes the `allocated' (and perhaps `buffer') and `translate'
1744 fields are set in BUFP on entry.
1745
1746 If it succeeds, results are put in BUFP (if it returns an error, the
1747 contents of BUFP are undefined):
1748 `buffer' is the compiled pattern;
1749 `syntax' is set to SYNTAX;
1750 `used' is set to the length of the compiled pattern;
1751 `fastmap_accurate' is zero;
1752 `re_nsub' is the number of subexpressions in PATTERN;
1753 `not_bol' and `not_eol' are zero;
1754
1755 The `fastmap' and `newline_anchor' fields are neither
1756 examined nor set. */
1757
1758 /* Return, freeing storage we allocated. */
1759 #define FREE_STACK_RETURN(value) \
1760 return (free (compile_stack.stack), value)
1761
1762 static reg_errcode_t
regex_compile(pattern,size,syntax,bufp)1763 regex_compile (pattern, size, syntax, bufp)
1764 const char *pattern;
1765 size_t size;
1766 reg_syntax_t syntax;
1767 struct re_pattern_buffer *bufp;
1768 {
1769 /* We fetch characters from PATTERN here. Even though PATTERN is
1770 `char *' (i.e., signed), we declare these variables as unsigned, so
1771 they can be reliably used as array indices. */
1772 register unsigned char c, c1;
1773
1774 /* A random temporary spot in PATTERN. */
1775 const char *p1;
1776
1777 /* Points to the end of the buffer, where we should append. */
1778 register unsigned char *b;
1779
1780 /* Keeps track of unclosed groups. */
1781 compile_stack_type compile_stack;
1782
1783 /* Points to the current (ending) position in the pattern. */
1784 const char *p = pattern;
1785 const char *pend = pattern + size;
1786
1787 /* How to translate the characters in the pattern. */
1788 RE_TRANSLATE_TYPE translate = bufp->translate;
1789
1790 /* Address of the count-byte of the most recently inserted `exactn'
1791 command. This makes it possible to tell if a new exact-match
1792 character can be added to that command or if the character requires
1793 a new `exactn' command. */
1794 unsigned char *pending_exact = 0;
1795
1796 /* Address of start of the most recently finished expression.
1797 This tells, e.g., postfix * where to find the start of its
1798 operand. Reset at the beginning of groups and alternatives. */
1799 unsigned char *laststart = 0;
1800
1801 /* Address of beginning of regexp, or inside of last group. */
1802 unsigned char *begalt;
1803
1804 /* Place in the uncompiled pattern (i.e., the {) to
1805 which to go back if the interval is invalid. */
1806 const char *beg_interval;
1807
1808 /* Address of the place where a forward jump should go to the end of
1809 the containing expression. Each alternative of an `or' -- except the
1810 last -- ends with a forward jump of this sort. */
1811 unsigned char *fixup_alt_jump = 0;
1812
1813 /* Counts open-groups as they are encountered. Remembered for the
1814 matching close-group on the compile stack, so the same register
1815 number is put in the stop_memory as the start_memory. */
1816 regnum_t regnum = 0;
1817
1818 #ifdef DEBUG
1819 DEBUG_PRINT1 ("\nCompiling pattern: ");
1820 if (debug)
1821 {
1822 unsigned debug_count;
1823
1824 for (debug_count = 0; debug_count < size; debug_count++)
1825 putchar (pattern[debug_count]);
1826 putchar ('\n');
1827 }
1828 #endif /* DEBUG */
1829
1830 /* Initialize the compile stack. */
1831 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1832 if (compile_stack.stack == NULL)
1833 return REG_ESPACE;
1834
1835 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1836 compile_stack.avail = 0;
1837
1838 /* Initialize the pattern buffer. */
1839 bufp->syntax = syntax;
1840 bufp->fastmap_accurate = 0;
1841 bufp->not_bol = bufp->not_eol = 0;
1842
1843 /* Set `used' to zero, so that if we return an error, the pattern
1844 printer (for debugging) will think there's no pattern. We reset it
1845 at the end. */
1846 bufp->used = 0;
1847
1848 /* Always count groups, whether or not bufp->no_sub is set. */
1849 bufp->re_nsub = 0;
1850
1851 #if !defined emacs && !defined SYNTAX_TABLE
1852 /* Initialize the syntax table. */
1853 init_syntax_once ();
1854 #endif
1855
1856 if (bufp->allocated == 0)
1857 {
1858 if (bufp->buffer)
1859 { /* If zero allocated, but buffer is non-null, try to realloc
1860 enough space. This loses if buffer's address is bogus, but
1861 that is the user's responsibility. */
1862 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1863 }
1864 else
1865 { /* Caller did not allocate a buffer. Do it for them. */
1866 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1867 }
1868 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1869
1870 bufp->allocated = INIT_BUF_SIZE;
1871 }
1872
1873 begalt = b = bufp->buffer;
1874
1875 /* Loop through the uncompiled pattern until we're at the end. */
1876 while (p != pend)
1877 {
1878 PATFETCH (c);
1879
1880 switch (c)
1881 {
1882 case '^':
1883 {
1884 if ( /* If at start of pattern, it's an operator. */
1885 p == pattern + 1
1886 /* If context independent, it's an operator. */
1887 || syntax & RE_CONTEXT_INDEP_ANCHORS
1888 /* Otherwise, depends on what's come before. */
1889 || at_begline_loc_p (pattern, p, syntax))
1890 BUF_PUSH (begline);
1891 else
1892 goto normal_char;
1893 }
1894 break;
1895
1896
1897 case '$':
1898 {
1899 if ( /* If at end of pattern, it's an operator. */
1900 p == pend
1901 /* If context independent, it's an operator. */
1902 || syntax & RE_CONTEXT_INDEP_ANCHORS
1903 /* Otherwise, depends on what's next. */
1904 || at_endline_loc_p (p, pend, syntax))
1905 BUF_PUSH (endline);
1906 else
1907 goto normal_char;
1908 }
1909 break;
1910
1911
1912 case '+':
1913 case '?':
1914 if ((syntax & RE_BK_PLUS_QM)
1915 || (syntax & RE_LIMITED_OPS))
1916 goto normal_char;
1917 handle_plus:
1918 case '*':
1919 /* If there is no previous pattern... */
1920 if (!laststart)
1921 {
1922 if (syntax & RE_CONTEXT_INVALID_OPS)
1923 FREE_STACK_RETURN (REG_BADRPT);
1924 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1925 goto normal_char;
1926 }
1927
1928 {
1929 /* Are we optimizing this jump? */
1930 boolean keep_string_p = false;
1931
1932 /* 1 means zero (many) matches is allowed. */
1933 char zero_times_ok = 0, many_times_ok = 0;
1934
1935 /* If there is a sequence of repetition chars, collapse it
1936 down to just one (the right one). We can't combine
1937 interval operators with these because of, e.g., `a{2}*',
1938 which should only match an even number of `a's. */
1939
1940 for (;;)
1941 {
1942 zero_times_ok |= c != '+';
1943 many_times_ok |= c != '?';
1944
1945 if (p == pend)
1946 break;
1947
1948 PATFETCH (c);
1949
1950 if (c == '*'
1951 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1952 ;
1953
1954 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1955 {
1956 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
1957
1958 PATFETCH (c1);
1959 if (!(c1 == '+' || c1 == '?'))
1960 {
1961 PATUNFETCH;
1962 PATUNFETCH;
1963 break;
1964 }
1965
1966 c = c1;
1967 }
1968 else
1969 {
1970 PATUNFETCH;
1971 break;
1972 }
1973
1974 /* If we get here, we found another repeat character. */
1975 }
1976
1977 /* Star, etc. applied to an empty pattern is equivalent
1978 to an empty pattern. */
1979 if (!laststart)
1980 break;
1981
1982 /* Now we know whether or not zero matches is allowed
1983 and also whether or not two or more matches is allowed. */
1984 if (many_times_ok)
1985 { /* More than one repetition is allowed, so put in at the
1986 end a backward relative jump from `b' to before the next
1987 jump we're going to put in below (which jumps from
1988 laststart to after this jump).
1989
1990 But if we are at the `*' in the exact sequence `.*\n',
1991 insert an unconditional jump backwards to the .,
1992 instead of the beginning of the loop. This way we only
1993 push a failure point once, instead of every time
1994 through the loop. */
1995 assert (p - 1 > pattern);
1996
1997 /* Allocate the space for the jump. */
1998 GET_BUFFER_SPACE (3);
1999
2000 /* We know we are not at the first character of the pattern,
2001 because laststart was nonzero. And we've already
2002 incremented `p', by the way, to be the character after
2003 the `*'. Do we have to do something analogous here
2004 for null bytes, because of RE_DOT_NOT_NULL? */
2005 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2006 && zero_times_ok
2007 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2008 && !(syntax & RE_DOT_NEWLINE))
2009 { /* We have .*\n. */
2010 STORE_JUMP (jump, b, laststart);
2011 keep_string_p = true;
2012 }
2013 else
2014 /* Anything else. */
2015 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2016
2017 /* We've added more stuff to the buffer. */
2018 b += 3;
2019 }
2020
2021 /* On failure, jump from laststart to b + 3, which will be the
2022 end of the buffer after this jump is inserted. */
2023 GET_BUFFER_SPACE (3);
2024 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2025 : on_failure_jump,
2026 laststart, b + 3);
2027 pending_exact = 0;
2028 b += 3;
2029
2030 if (!zero_times_ok)
2031 {
2032 /* At least one repetition is required, so insert a
2033 `dummy_failure_jump' before the initial
2034 `on_failure_jump' instruction of the loop. This
2035 effects a skip over that instruction the first time
2036 we hit that loop. */
2037 GET_BUFFER_SPACE (3);
2038 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2039 b += 3;
2040 }
2041 }
2042 break;
2043
2044
2045 case '.':
2046 laststart = b;
2047 BUF_PUSH (anychar);
2048 break;
2049
2050
2051 case '[':
2052 {
2053 boolean had_char_class = false;
2054
2055 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2056
2057 /* Ensure that we have enough space to push a charset: the
2058 opcode, the length count, and the bitset; 34 bytes in all. */
2059 GET_BUFFER_SPACE (34);
2060
2061 laststart = b;
2062
2063 /* We test `*p == '^' twice, instead of using an if
2064 statement, so we only need one BUF_PUSH. */
2065 BUF_PUSH (*p == '^' ? charset_not : charset);
2066 if (*p == '^')
2067 p++;
2068
2069 /* Remember the first position in the bracket expression. */
2070 p1 = p;
2071
2072 /* Push the number of bytes in the bitmap. */
2073 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2074
2075 /* Clear the whole map. */
2076 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2077
2078 /* charset_not matches newline according to a syntax bit. */
2079 if ((re_opcode_t) b[-2] == charset_not
2080 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2081 SET_LIST_BIT ('\n');
2082
2083 /* Read in characters and ranges, setting map bits. */
2084 for (;;)
2085 {
2086 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2087
2088 PATFETCH (c);
2089
2090 /* \ might escape characters inside [...] and [^...]. */
2091 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2092 {
2093 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2094
2095 PATFETCH (c1);
2096 SET_LIST_BIT (c1);
2097 continue;
2098 }
2099
2100 /* Could be the end of the bracket expression. If it's
2101 not (i.e., when the bracket expression is `[]' so
2102 far), the ']' character bit gets set way below. */
2103 if (c == ']' && p != p1 + 1)
2104 break;
2105
2106 /* Look ahead to see if it's a range when the last thing
2107 was a character class. */
2108 if (had_char_class && c == '-' && *p != ']')
2109 FREE_STACK_RETURN (REG_ERANGE);
2110
2111 /* Look ahead to see if it's a range when the last thing
2112 was a character: if this is a hyphen not at the
2113 beginning or the end of a list, then it's the range
2114 operator. */
2115 if (c == '-'
2116 && !(p - 2 >= pattern && p[-2] == '[')
2117 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2118 && *p != ']')
2119 {
2120 reg_errcode_t ret
2121 = compile_range (&p, pend, translate, syntax, b);
2122 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2123 }
2124
2125 else if (p[0] == '-' && p[1] != ']')
2126 { /* This handles ranges made up of characters only. */
2127 reg_errcode_t ret;
2128
2129 /* Move past the `-'. */
2130 PATFETCH (c1);
2131
2132 ret = compile_range (&p, pend, translate, syntax, b);
2133 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2134 }
2135
2136 /* See if we're at the beginning of a possible character
2137 class. */
2138
2139 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2140 { /* Leave room for the null. */
2141 char str[CHAR_CLASS_MAX_LENGTH + 1];
2142
2143 PATFETCH (c);
2144 c1 = 0;
2145
2146 /* If pattern is `[[:'. */
2147 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2148
2149 for (;;)
2150 {
2151 PATFETCH (c);
2152 if ((c == ':' && *p == ']') || p == pend
2153 || c1 == CHAR_CLASS_MAX_LENGTH)
2154 break;
2155 str[c1++] = c;
2156 }
2157 str[c1] = '\0';
2158
2159 /* If isn't a word bracketed by `[:' and `:]':
2160 undo the ending character, the letters, and leave
2161 the leading `:' and `[' (but set bits for them). */
2162 if (c == ':' && *p == ']')
2163 {
2164 /* GCC LOCAL: Skip this code if we don't have btowc(). btowc() is */
2165 /* defined in the 1994 Amendment 1 to ISO C and may not be present on */
2166 /* systems where we have wchar.h and wctype.h. */
2167 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H && defined HAVE_BTOWC)
2168 boolean is_lower = STREQ (str, "lower");
2169 boolean is_upper = STREQ (str, "upper");
2170 wctype_t wt;
2171 int ch;
2172
2173 wt = IS_CHAR_CLASS (str);
2174 if (wt == 0)
2175 FREE_STACK_RETURN (REG_ECTYPE);
2176
2177 /* Throw away the ] at the end of the character
2178 class. */
2179 PATFETCH (c);
2180
2181 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2182
2183 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2184 {
2185 # ifdef _LIBC
2186 if (__iswctype (__btowc (ch), wt))
2187 SET_LIST_BIT (ch);
2188 #else
2189 if (iswctype (btowc (ch), wt))
2190 SET_LIST_BIT (ch);
2191 #endif
2192
2193 if (translate && (is_upper || is_lower)
2194 && (ISUPPER (ch) || ISLOWER (ch)))
2195 SET_LIST_BIT (ch);
2196 }
2197
2198 had_char_class = true;
2199 #else
2200 int ch;
2201 boolean is_alnum = STREQ (str, "alnum");
2202 boolean is_alpha = STREQ (str, "alpha");
2203 boolean is_blank = STREQ (str, "blank");
2204 boolean is_cntrl = STREQ (str, "cntrl");
2205 boolean is_digit = STREQ (str, "digit");
2206 boolean is_graph = STREQ (str, "graph");
2207 boolean is_lower = STREQ (str, "lower");
2208 boolean is_print = STREQ (str, "print");
2209 boolean is_punct = STREQ (str, "punct");
2210 boolean is_space = STREQ (str, "space");
2211 boolean is_upper = STREQ (str, "upper");
2212 boolean is_xdigit = STREQ (str, "xdigit");
2213
2214 if (!IS_CHAR_CLASS (str))
2215 FREE_STACK_RETURN (REG_ECTYPE);
2216
2217 /* Throw away the ] at the end of the character
2218 class. */
2219 PATFETCH (c);
2220
2221 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2222
2223 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2224 {
2225 /* This was split into 3 if's to
2226 avoid an arbitrary limit in some compiler. */
2227 if ( (is_alnum && ISALNUM (ch))
2228 || (is_alpha && ISALPHA (ch))
2229 || (is_blank && ISBLANK (ch))
2230 || (is_cntrl && ISCNTRL (ch)))
2231 SET_LIST_BIT (ch);
2232 if ( (is_digit && ISDIGIT (ch))
2233 || (is_graph && ISGRAPH (ch))
2234 || (is_lower && ISLOWER (ch))
2235 || (is_print && ISPRINT (ch)))
2236 SET_LIST_BIT (ch);
2237 if ( (is_punct && ISPUNCT (ch))
2238 || (is_space && ISSPACE (ch))
2239 || (is_upper && ISUPPER (ch))
2240 || (is_xdigit && ISXDIGIT (ch)))
2241 SET_LIST_BIT (ch);
2242 if ( translate && (is_upper || is_lower)
2243 && (ISUPPER (ch) || ISLOWER (ch)))
2244 SET_LIST_BIT (ch);
2245 }
2246 had_char_class = true;
2247 #endif /* libc || wctype.h */
2248 }
2249 else
2250 {
2251 c1++;
2252 while (c1--)
2253 PATUNFETCH;
2254 SET_LIST_BIT ('[');
2255 SET_LIST_BIT (':');
2256 had_char_class = false;
2257 }
2258 }
2259 else
2260 {
2261 had_char_class = false;
2262 SET_LIST_BIT (c);
2263 }
2264 }
2265
2266 /* Discard any (non)matching list bytes that are all 0 at the
2267 end of the map. Decrease the map-length byte too. */
2268 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2269 b[-1]--;
2270 b += b[-1];
2271 }
2272 break;
2273
2274
2275 case '(':
2276 if (syntax & RE_NO_BK_PARENS)
2277 goto handle_open;
2278 else
2279 goto normal_char;
2280
2281
2282 case ')':
2283 if (syntax & RE_NO_BK_PARENS)
2284 goto handle_close;
2285 else
2286 goto normal_char;
2287
2288
2289 case '\n':
2290 if (syntax & RE_NEWLINE_ALT)
2291 goto handle_alt;
2292 else
2293 goto normal_char;
2294
2295
2296 case '|':
2297 if (syntax & RE_NO_BK_VBAR)
2298 goto handle_alt;
2299 else
2300 goto normal_char;
2301
2302
2303 case '{':
2304 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2305 goto handle_interval;
2306 else
2307 goto normal_char;
2308
2309
2310 case '\\':
2311 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2312
2313 /* Do not translate the character after the \, so that we can
2314 distinguish, e.g., \B from \b, even if we normally would
2315 translate, e.g., B to b. */
2316 PATFETCH_RAW (c);
2317
2318 switch (c)
2319 {
2320 case '(':
2321 if (syntax & RE_NO_BK_PARENS)
2322 goto normal_backslash;
2323
2324 handle_open:
2325 bufp->re_nsub++;
2326 regnum++;
2327
2328 if (COMPILE_STACK_FULL)
2329 {
2330 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2331 compile_stack_elt_t);
2332 if (compile_stack.stack == NULL) return REG_ESPACE;
2333
2334 compile_stack.size <<= 1;
2335 }
2336
2337 /* These are the values to restore when we hit end of this
2338 group. They are all relative offsets, so that if the
2339 whole pattern moves because of realloc, they will still
2340 be valid. */
2341 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2342 COMPILE_STACK_TOP.fixup_alt_jump
2343 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2344 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2345 COMPILE_STACK_TOP.regnum = regnum;
2346
2347 /* We will eventually replace the 0 with the number of
2348 groups inner to this one. But do not push a
2349 start_memory for groups beyond the last one we can
2350 represent in the compiled pattern. */
2351 if (regnum <= MAX_REGNUM)
2352 {
2353 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2354 BUF_PUSH_3 (start_memory, regnum, 0);
2355 }
2356
2357 compile_stack.avail++;
2358
2359 fixup_alt_jump = 0;
2360 laststart = 0;
2361 begalt = b;
2362 /* If we've reached MAX_REGNUM groups, then this open
2363 won't actually generate any code, so we'll have to
2364 clear pending_exact explicitly. */
2365 pending_exact = 0;
2366 break;
2367
2368
2369 case ')':
2370 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2371
2372 if (COMPILE_STACK_EMPTY)
2373 {
2374 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2375 goto normal_backslash;
2376 else
2377 FREE_STACK_RETURN (REG_ERPAREN);
2378 }
2379
2380 handle_close:
2381 if (fixup_alt_jump)
2382 { /* Push a dummy failure point at the end of the
2383 alternative for a possible future
2384 `pop_failure_jump' to pop. See comments at
2385 `push_dummy_failure' in `re_match_2'. */
2386 BUF_PUSH (push_dummy_failure);
2387
2388 /* We allocated space for this jump when we assigned
2389 to `fixup_alt_jump', in the `handle_alt' case below. */
2390 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2391 }
2392
2393 /* See similar code for backslashed left paren above. */
2394 if (COMPILE_STACK_EMPTY)
2395 {
2396 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2397 goto normal_char;
2398 else
2399 FREE_STACK_RETURN (REG_ERPAREN);
2400 }
2401
2402 /* Since we just checked for an empty stack above, this
2403 ``can't happen''. */
2404 assert (compile_stack.avail != 0);
2405 {
2406 /* We don't just want to restore into `regnum', because
2407 later groups should continue to be numbered higher,
2408 as in `(ab)c(de)' -- the second group is #2. */
2409 regnum_t this_group_regnum;
2410
2411 compile_stack.avail--;
2412 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2413 fixup_alt_jump
2414 = COMPILE_STACK_TOP.fixup_alt_jump
2415 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2416 : 0;
2417 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2418 this_group_regnum = COMPILE_STACK_TOP.regnum;
2419 /* If we've reached MAX_REGNUM groups, then this open
2420 won't actually generate any code, so we'll have to
2421 clear pending_exact explicitly. */
2422 pending_exact = 0;
2423
2424 /* We're at the end of the group, so now we know how many
2425 groups were inside this one. */
2426 if (this_group_regnum <= MAX_REGNUM)
2427 {
2428 unsigned char *inner_group_loc
2429 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2430
2431 *inner_group_loc = regnum - this_group_regnum;
2432 BUF_PUSH_3 (stop_memory, this_group_regnum,
2433 regnum - this_group_regnum);
2434 }
2435 }
2436 break;
2437
2438
2439 case '|': /* `\|'. */
2440 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2441 goto normal_backslash;
2442 handle_alt:
2443 if (syntax & RE_LIMITED_OPS)
2444 goto normal_char;
2445
2446 /* Insert before the previous alternative a jump which
2447 jumps to this alternative if the former fails. */
2448 GET_BUFFER_SPACE (3);
2449 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2450 pending_exact = 0;
2451 b += 3;
2452
2453 /* The alternative before this one has a jump after it
2454 which gets executed if it gets matched. Adjust that
2455 jump so it will jump to this alternative's analogous
2456 jump (put in below, which in turn will jump to the next
2457 (if any) alternative's such jump, etc.). The last such
2458 jump jumps to the correct final destination. A picture:
2459 _____ _____
2460 | | | |
2461 | v | v
2462 a | b | c
2463
2464 If we are at `b', then fixup_alt_jump right now points to a
2465 three-byte space after `a'. We'll put in the jump, set
2466 fixup_alt_jump to right after `b', and leave behind three
2467 bytes which we'll fill in when we get to after `c'. */
2468
2469 if (fixup_alt_jump)
2470 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2471
2472 /* Mark and leave space for a jump after this alternative,
2473 to be filled in later either by next alternative or
2474 when know we're at the end of a series of alternatives. */
2475 fixup_alt_jump = b;
2476 GET_BUFFER_SPACE (3);
2477 b += 3;
2478
2479 laststart = 0;
2480 begalt = b;
2481 break;
2482
2483
2484 case '{':
2485 /* If \{ is a literal. */
2486 if (!(syntax & RE_INTERVALS)
2487 /* If we're at `\{' and it's not the open-interval
2488 operator. */
2489 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2490 || (p - 2 == pattern && p == pend))
2491 goto normal_backslash;
2492
2493 handle_interval:
2494 {
2495 /* If got here, then the syntax allows intervals. */
2496
2497 /* At least (most) this many matches must be made. */
2498 int lower_bound = -1, upper_bound = -1;
2499
2500 beg_interval = p - 1;
2501
2502 if (p == pend)
2503 {
2504 if (syntax & RE_NO_BK_BRACES)
2505 goto unfetch_interval;
2506 else
2507 FREE_STACK_RETURN (REG_EBRACE);
2508 }
2509
2510 GET_UNSIGNED_NUMBER (lower_bound);
2511
2512 if (c == ',')
2513 {
2514 GET_UNSIGNED_NUMBER (upper_bound);
2515 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2516 }
2517 else
2518 /* Interval such as `{1}' => match exactly once. */
2519 upper_bound = lower_bound;
2520
2521 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2522 || lower_bound > upper_bound)
2523 {
2524 if (syntax & RE_NO_BK_BRACES)
2525 goto unfetch_interval;
2526 else
2527 FREE_STACK_RETURN (REG_BADBR);
2528 }
2529
2530 if (!(syntax & RE_NO_BK_BRACES))
2531 {
2532 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2533
2534 PATFETCH (c);
2535 }
2536
2537 if (c != '}')
2538 {
2539 if (syntax & RE_NO_BK_BRACES)
2540 goto unfetch_interval;
2541 else
2542 FREE_STACK_RETURN (REG_BADBR);
2543 }
2544
2545 /* We just parsed a valid interval. */
2546
2547 /* If it's invalid to have no preceding re. */
2548 if (!laststart)
2549 {
2550 if (syntax & RE_CONTEXT_INVALID_OPS)
2551 FREE_STACK_RETURN (REG_BADRPT);
2552 else if (syntax & RE_CONTEXT_INDEP_OPS)
2553 laststart = b;
2554 else
2555 goto unfetch_interval;
2556 }
2557
2558 /* If the upper bound is zero, don't want to succeed at
2559 all; jump from `laststart' to `b + 3', which will be
2560 the end of the buffer after we insert the jump. */
2561 if (upper_bound == 0)
2562 {
2563 GET_BUFFER_SPACE (3);
2564 INSERT_JUMP (jump, laststart, b + 3);
2565 b += 3;
2566 }
2567
2568 /* Otherwise, we have a nontrivial interval. When
2569 we're all done, the pattern will look like:
2570 set_number_at <jump count> <upper bound>
2571 set_number_at <succeed_n count> <lower bound>
2572 succeed_n <after jump addr> <succeed_n count>
2573 <body of loop>
2574 jump_n <succeed_n addr> <jump count>
2575 (The upper bound and `jump_n' are omitted if
2576 `upper_bound' is 1, though.) */
2577 else
2578 { /* If the upper bound is > 1, we need to insert
2579 more at the end of the loop. */
2580 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2581
2582 GET_BUFFER_SPACE (nbytes);
2583
2584 /* Initialize lower bound of the `succeed_n', even
2585 though it will be set during matching by its
2586 attendant `set_number_at' (inserted next),
2587 because `re_compile_fastmap' needs to know.
2588 Jump to the `jump_n' we might insert below. */
2589 INSERT_JUMP2 (succeed_n, laststart,
2590 b + 5 + (upper_bound > 1) * 5,
2591 lower_bound);
2592 b += 5;
2593
2594 /* Code to initialize the lower bound. Insert
2595 before the `succeed_n'. The `5' is the last two
2596 bytes of this `set_number_at', plus 3 bytes of
2597 the following `succeed_n'. */
2598 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2599 b += 5;
2600
2601 if (upper_bound > 1)
2602 { /* More than one repetition is allowed, so
2603 append a backward jump to the `succeed_n'
2604 that starts this interval.
2605
2606 When we've reached this during matching,
2607 we'll have matched the interval once, so
2608 jump back only `upper_bound - 1' times. */
2609 STORE_JUMP2 (jump_n, b, laststart + 5,
2610 upper_bound - 1);
2611 b += 5;
2612
2613 /* The location we want to set is the second
2614 parameter of the `jump_n'; that is `b-2' as
2615 an absolute address. `laststart' will be
2616 the `set_number_at' we're about to insert;
2617 `laststart+3' the number to set, the source
2618 for the relative address. But we are
2619 inserting into the middle of the pattern --
2620 so everything is getting moved up by 5.
2621 Conclusion: (b - 2) - (laststart + 3) + 5,
2622 i.e., b - laststart.
2623
2624 We insert this at the beginning of the loop
2625 so that if we fail during matching, we'll
2626 reinitialize the bounds. */
2627 insert_op2 (set_number_at, laststart, b - laststart,
2628 upper_bound - 1, b);
2629 b += 5;
2630 }
2631 }
2632 pending_exact = 0;
2633 beg_interval = NULL;
2634 }
2635 break;
2636
2637 unfetch_interval:
2638 /* If an invalid interval, match the characters as literals. */
2639 assert (beg_interval);
2640 p = beg_interval;
2641 beg_interval = NULL;
2642
2643 /* normal_char and normal_backslash need `c'. */
2644 PATFETCH (c);
2645
2646 if (!(syntax & RE_NO_BK_BRACES))
2647 {
2648 if (p > pattern && p[-1] == '\\')
2649 goto normal_backslash;
2650 }
2651 goto normal_char;
2652
2653 #ifdef emacs
2654 /* There is no way to specify the before_dot and after_dot
2655 operators. rms says this is ok. --karl */
2656 case '=':
2657 BUF_PUSH (at_dot);
2658 break;
2659
2660 case 's':
2661 laststart = b;
2662 PATFETCH (c);
2663 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2664 break;
2665
2666 case 'S':
2667 laststart = b;
2668 PATFETCH (c);
2669 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2670 break;
2671 #endif /* emacs */
2672
2673
2674 case 'w':
2675 if (syntax & RE_NO_GNU_OPS)
2676 goto normal_char;
2677 laststart = b;
2678 BUF_PUSH (wordchar);
2679 break;
2680
2681
2682 case 'W':
2683 if (syntax & RE_NO_GNU_OPS)
2684 goto normal_char;
2685 laststart = b;
2686 BUF_PUSH (notwordchar);
2687 break;
2688
2689
2690 case '<':
2691 if (syntax & RE_NO_GNU_OPS)
2692 goto normal_char;
2693 BUF_PUSH (wordbeg);
2694 break;
2695
2696 case '>':
2697 if (syntax & RE_NO_GNU_OPS)
2698 goto normal_char;
2699 BUF_PUSH (wordend);
2700 break;
2701
2702 case 'b':
2703 if (syntax & RE_NO_GNU_OPS)
2704 goto normal_char;
2705 BUF_PUSH (wordbound);
2706 break;
2707
2708 case 'B':
2709 if (syntax & RE_NO_GNU_OPS)
2710 goto normal_char;
2711 BUF_PUSH (notwordbound);
2712 break;
2713
2714 case '`':
2715 if (syntax & RE_NO_GNU_OPS)
2716 goto normal_char;
2717 BUF_PUSH (begbuf);
2718 break;
2719
2720 case '\'':
2721 if (syntax & RE_NO_GNU_OPS)
2722 goto normal_char;
2723 BUF_PUSH (endbuf);
2724 break;
2725
2726 case '1': case '2': case '3': case '4': case '5':
2727 case '6': case '7': case '8': case '9':
2728 if (syntax & RE_NO_BK_REFS)
2729 goto normal_char;
2730
2731 c1 = c - '0';
2732
2733 if (c1 > regnum)
2734 FREE_STACK_RETURN (REG_ESUBREG);
2735
2736 /* Can't back reference to a subexpression if inside of it. */
2737 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
2738 goto normal_char;
2739
2740 laststart = b;
2741 BUF_PUSH_2 (duplicate, c1);
2742 break;
2743
2744
2745 case '+':
2746 case '?':
2747 if (syntax & RE_BK_PLUS_QM)
2748 goto handle_plus;
2749 else
2750 goto normal_backslash;
2751
2752 default:
2753 normal_backslash:
2754 /* You might think it would be useful for \ to mean
2755 not to translate; but if we don't translate it
2756 it will never match anything. */
2757 c = TRANSLATE (c);
2758 goto normal_char;
2759 }
2760 break;
2761
2762
2763 default:
2764 /* Expects the character in `c'. */
2765 normal_char:
2766 /* If no exactn currently being built. */
2767 if (!pending_exact
2768
2769 /* If last exactn not at current position. */
2770 || pending_exact + *pending_exact + 1 != b
2771
2772 /* We have only one byte following the exactn for the count. */
2773 || *pending_exact == (1 << BYTEWIDTH) - 1
2774
2775 /* If followed by a repetition operator. */
2776 || *p == '*' || *p == '^'
2777 || ((syntax & RE_BK_PLUS_QM)
2778 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2779 : (*p == '+' || *p == '?'))
2780 || ((syntax & RE_INTERVALS)
2781 && ((syntax & RE_NO_BK_BRACES)
2782 ? *p == '{'
2783 : (p[0] == '\\' && p[1] == '{'))))
2784 {
2785 /* Start building a new exactn. */
2786
2787 laststart = b;
2788
2789 BUF_PUSH_2 (exactn, 0);
2790 pending_exact = b - 1;
2791 }
2792
2793 BUF_PUSH (c);
2794 (*pending_exact)++;
2795 break;
2796 } /* switch (c) */
2797 } /* while p != pend */
2798
2799
2800 /* Through the pattern now. */
2801
2802 if (fixup_alt_jump)
2803 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2804
2805 if (!COMPILE_STACK_EMPTY)
2806 FREE_STACK_RETURN (REG_EPAREN);
2807
2808 /* If we don't want backtracking, force success
2809 the first time we reach the end of the compiled pattern. */
2810 if (syntax & RE_NO_POSIX_BACKTRACKING)
2811 BUF_PUSH (succeed);
2812
2813 free (compile_stack.stack);
2814
2815 /* We have succeeded; set the length of the buffer. */
2816 bufp->used = b - bufp->buffer;
2817
2818 #ifdef DEBUG
2819 if (debug)
2820 {
2821 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2822 print_compiled_pattern (bufp);
2823 }
2824 #endif /* DEBUG */
2825
2826 #ifndef MATCH_MAY_ALLOCATE
2827 /* Initialize the failure stack to the largest possible stack. This
2828 isn't necessary unless we're trying to avoid calling alloca in
2829 the search and match routines. */
2830 {
2831 int num_regs = bufp->re_nsub + 1;
2832
2833 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2834 is strictly greater than re_max_failures, the largest possible stack
2835 is 2 * re_max_failures failure points. */
2836 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2837 {
2838 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2839
2840 # ifdef emacs
2841 if (! fail_stack.stack)
2842 fail_stack.stack
2843 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2844 * sizeof (fail_stack_elt_t));
2845 else
2846 fail_stack.stack
2847 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2848 (fail_stack.size
2849 * sizeof (fail_stack_elt_t)));
2850 # else /* not emacs */
2851 if (! fail_stack.stack)
2852 fail_stack.stack
2853 = (fail_stack_elt_t *) malloc (fail_stack.size
2854 * sizeof (fail_stack_elt_t));
2855 else
2856 fail_stack.stack
2857 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2858 (fail_stack.size
2859 * sizeof (fail_stack_elt_t)));
2860 # endif /* not emacs */
2861 }
2862
2863 regex_grow_registers (num_regs);
2864 }
2865 #endif /* not MATCH_MAY_ALLOCATE */
2866
2867 return REG_NOERROR;
2868 } /* regex_compile */
2869
2870 /* Subroutines for `regex_compile'. */
2871
2872 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2873
2874 static void
store_op1(op,loc,arg)2875 store_op1 (op, loc, arg)
2876 re_opcode_t op;
2877 unsigned char *loc;
2878 int arg;
2879 {
2880 *loc = (unsigned char) op;
2881 STORE_NUMBER (loc + 1, arg);
2882 }
2883
2884
2885 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2886
2887 static void
store_op2(op,loc,arg1,arg2)2888 store_op2 (op, loc, arg1, arg2)
2889 re_opcode_t op;
2890 unsigned char *loc;
2891 int arg1, arg2;
2892 {
2893 *loc = (unsigned char) op;
2894 STORE_NUMBER (loc + 1, arg1);
2895 STORE_NUMBER (loc + 3, arg2);
2896 }
2897
2898
2899 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2900 for OP followed by two-byte integer parameter ARG. */
2901
2902 static void
insert_op1(op,loc,arg,end)2903 insert_op1 (op, loc, arg, end)
2904 re_opcode_t op;
2905 unsigned char *loc;
2906 int arg;
2907 unsigned char *end;
2908 {
2909 register unsigned char *pfrom = end;
2910 register unsigned char *pto = end + 3;
2911
2912 while (pfrom != loc)
2913 *--pto = *--pfrom;
2914
2915 store_op1 (op, loc, arg);
2916 }
2917
2918
2919 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2920
2921 static void
insert_op2(op,loc,arg1,arg2,end)2922 insert_op2 (op, loc, arg1, arg2, end)
2923 re_opcode_t op;
2924 unsigned char *loc;
2925 int arg1, arg2;
2926 unsigned char *end;
2927 {
2928 register unsigned char *pfrom = end;
2929 register unsigned char *pto = end + 5;
2930
2931 while (pfrom != loc)
2932 *--pto = *--pfrom;
2933
2934 store_op2 (op, loc, arg1, arg2);
2935 }
2936
2937
2938 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2939 after an alternative or a begin-subexpression. We assume there is at
2940 least one character before the ^. */
2941
2942 static boolean
at_begline_loc_p(pattern,p,syntax)2943 at_begline_loc_p (pattern, p, syntax)
2944 const char *pattern, *p;
2945 reg_syntax_t syntax;
2946 {
2947 const char *prev = p - 2;
2948 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2949
2950 return
2951 /* After a subexpression? */
2952 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2953 /* After an alternative? */
2954 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2955 }
2956
2957
2958 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2959 at least one character after the $, i.e., `P < PEND'. */
2960
2961 static boolean
at_endline_loc_p(p,pend,syntax)2962 at_endline_loc_p (p, pend, syntax)
2963 const char *p, *pend;
2964 reg_syntax_t syntax;
2965 {
2966 const char *next = p;
2967 boolean next_backslash = *next == '\\';
2968 const char *next_next = p + 1 < pend ? p + 1 : 0;
2969
2970 return
2971 /* Before a subexpression? */
2972 (syntax & RE_NO_BK_PARENS ? *next == ')'
2973 : next_backslash && next_next && *next_next == ')')
2974 /* Before an alternative? */
2975 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2976 : next_backslash && next_next && *next_next == '|');
2977 }
2978
2979
2980 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2981 false if it's not. */
2982
2983 static boolean
group_in_compile_stack(compile_stack,regnum)2984 group_in_compile_stack (compile_stack, regnum)
2985 compile_stack_type compile_stack;
2986 regnum_t regnum;
2987 {
2988 int this_element;
2989
2990 for (this_element = compile_stack.avail - 1;
2991 this_element >= 0;
2992 this_element--)
2993 if (compile_stack.stack[this_element].regnum == regnum)
2994 return true;
2995
2996 return false;
2997 }
2998
2999
3000 /* Read the ending character of a range (in a bracket expression) from the
3001 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3002 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3003 Then we set the translation of all bits between the starting and
3004 ending characters (inclusive) in the compiled pattern B.
3005
3006 Return an error code.
3007
3008 We use these short variable names so we can use the same macros as
3009 `regex_compile' itself. */
3010
3011 static reg_errcode_t
compile_range(p_ptr,pend,translate,syntax,b)3012 compile_range (p_ptr, pend, translate, syntax, b)
3013 const char **p_ptr, *pend;
3014 RE_TRANSLATE_TYPE translate;
3015 reg_syntax_t syntax;
3016 unsigned char *b;
3017 {
3018 unsigned this_char;
3019
3020 const char *p = *p_ptr;
3021 unsigned int range_start, range_end;
3022
3023 if (p == pend)
3024 return REG_ERANGE;
3025
3026 /* Even though the pattern is a signed `char *', we need to fetch
3027 with unsigned char *'s; if the high bit of the pattern character
3028 is set, the range endpoints will be negative if we fetch using a
3029 signed char *.
3030
3031 We also want to fetch the endpoints without translating them; the
3032 appropriate translation is done in the bit-setting loop below. */
3033 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3034 range_start = ((const unsigned char *) p)[-2];
3035 range_end = ((const unsigned char *) p)[0];
3036
3037 /* Have to increment the pointer into the pattern string, so the
3038 caller isn't still at the ending character. */
3039 (*p_ptr)++;
3040
3041 /* If the start is after the end, the range is empty. */
3042 if (range_start > range_end)
3043 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3044
3045 /* Here we see why `this_char' has to be larger than an `unsigned
3046 char' -- the range is inclusive, so if `range_end' == 0xff
3047 (assuming 8-bit characters), we would otherwise go into an infinite
3048 loop, since all characters <= 0xff. */
3049 for (this_char = range_start; this_char <= range_end; this_char++)
3050 {
3051 SET_LIST_BIT (TRANSLATE (this_char));
3052 }
3053
3054 return REG_NOERROR;
3055 }
3056
3057 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3058 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3059 characters can start a string that matches the pattern. This fastmap
3060 is used by re_search to skip quickly over impossible starting points.
3061
3062 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3063 area as BUFP->fastmap.
3064
3065 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3066 the pattern buffer.
3067
3068 Returns 0 if we succeed, -2 if an internal error. */
3069
3070 int
re_compile_fastmap(bufp)3071 re_compile_fastmap (bufp)
3072 struct re_pattern_buffer *bufp;
3073 {
3074 int j, k;
3075 #ifdef MATCH_MAY_ALLOCATE
3076 fail_stack_type fail_stack;
3077 #endif
3078 #ifndef REGEX_MALLOC
3079 char *destination;
3080 #endif
3081
3082 register char *fastmap = bufp->fastmap;
3083 unsigned char *pattern = bufp->buffer;
3084 unsigned char *p = pattern;
3085 register unsigned char *pend = pattern + bufp->used;
3086
3087 #ifdef REL_ALLOC
3088 /* This holds the pointer to the failure stack, when
3089 it is allocated relocatably. */
3090 fail_stack_elt_t *failure_stack_ptr;
3091 #endif
3092
3093 /* Assume that each path through the pattern can be null until
3094 proven otherwise. We set this false at the bottom of switch
3095 statement, to which we get only if a particular path doesn't
3096 match the empty string. */
3097 boolean path_can_be_null = true;
3098
3099 /* We aren't doing a `succeed_n' to begin with. */
3100 boolean succeed_n_p = false;
3101
3102 assert (fastmap != NULL && p != NULL);
3103
3104 INIT_FAIL_STACK ();
3105 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3106 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3107 bufp->can_be_null = 0;
3108
3109 while (1)
3110 {
3111 if (p == pend || *p == succeed)
3112 {
3113 /* We have reached the (effective) end of pattern. */
3114 if (!FAIL_STACK_EMPTY ())
3115 {
3116 bufp->can_be_null |= path_can_be_null;
3117
3118 /* Reset for next path. */
3119 path_can_be_null = true;
3120
3121 p = fail_stack.stack[--fail_stack.avail].pointer;
3122
3123 continue;
3124 }
3125 else
3126 break;
3127 }
3128
3129 /* We should never be about to go beyond the end of the pattern. */
3130 assert (p < pend);
3131
3132 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3133 {
3134
3135 /* I guess the idea here is to simply not bother with a fastmap
3136 if a backreference is used, since it's too hard to figure out
3137 the fastmap for the corresponding group. Setting
3138 `can_be_null' stops `re_search_2' from using the fastmap, so
3139 that is all we do. */
3140 case duplicate:
3141 bufp->can_be_null = 1;
3142 goto done;
3143
3144
3145 /* Following are the cases which match a character. These end
3146 with `break'. */
3147
3148 case exactn:
3149 fastmap[p[1]] = 1;
3150 break;
3151
3152
3153 case charset:
3154 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3155 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3156 fastmap[j] = 1;
3157 break;
3158
3159
3160 case charset_not:
3161 /* Chars beyond end of map must be allowed. */
3162 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3163 fastmap[j] = 1;
3164
3165 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3166 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3167 fastmap[j] = 1;
3168 break;
3169
3170
3171 case wordchar:
3172 for (j = 0; j < (1 << BYTEWIDTH); j++)
3173 if (SYNTAX (j) == Sword)
3174 fastmap[j] = 1;
3175 break;
3176
3177
3178 case notwordchar:
3179 for (j = 0; j < (1 << BYTEWIDTH); j++)
3180 if (SYNTAX (j) != Sword)
3181 fastmap[j] = 1;
3182 break;
3183
3184
3185 case anychar:
3186 {
3187 int fastmap_newline = fastmap['\n'];
3188
3189 /* `.' matches anything ... */
3190 for (j = 0; j < (1 << BYTEWIDTH); j++)
3191 fastmap[j] = 1;
3192
3193 /* ... except perhaps newline. */
3194 if (!(bufp->syntax & RE_DOT_NEWLINE))
3195 fastmap['\n'] = fastmap_newline;
3196
3197 /* Return if we have already set `can_be_null'; if we have,
3198 then the fastmap is irrelevant. Something's wrong here. */
3199 else if (bufp->can_be_null)
3200 goto done;
3201
3202 /* Otherwise, have to check alternative paths. */
3203 break;
3204 }
3205
3206 #ifdef emacs
3207 case syntaxspec:
3208 k = *p++;
3209 for (j = 0; j < (1 << BYTEWIDTH); j++)
3210 if (SYNTAX (j) == (enum syntaxcode) k)
3211 fastmap[j] = 1;
3212 break;
3213
3214
3215 case notsyntaxspec:
3216 k = *p++;
3217 for (j = 0; j < (1 << BYTEWIDTH); j++)
3218 if (SYNTAX (j) != (enum syntaxcode) k)
3219 fastmap[j] = 1;
3220 break;
3221
3222
3223 /* All cases after this match the empty string. These end with
3224 `continue'. */
3225
3226
3227 case before_dot:
3228 case at_dot:
3229 case after_dot:
3230 continue;
3231 #endif /* emacs */
3232
3233
3234 case no_op:
3235 case begline:
3236 case endline:
3237 case begbuf:
3238 case endbuf:
3239 case wordbound:
3240 case notwordbound:
3241 case wordbeg:
3242 case wordend:
3243 case push_dummy_failure:
3244 continue;
3245
3246
3247 case jump_n:
3248 case pop_failure_jump:
3249 case maybe_pop_jump:
3250 case jump:
3251 case jump_past_alt:
3252 case dummy_failure_jump:
3253 EXTRACT_NUMBER_AND_INCR (j, p);
3254 p += j;
3255 if (j > 0)
3256 continue;
3257
3258 /* Jump backward implies we just went through the body of a
3259 loop and matched nothing. Opcode jumped to should be
3260 `on_failure_jump' or `succeed_n'. Just treat it like an
3261 ordinary jump. For a * loop, it has pushed its failure
3262 point already; if so, discard that as redundant. */
3263 if ((re_opcode_t) *p != on_failure_jump
3264 && (re_opcode_t) *p != succeed_n)
3265 continue;
3266
3267 p++;
3268 EXTRACT_NUMBER_AND_INCR (j, p);
3269 p += j;
3270
3271 /* If what's on the stack is where we are now, pop it. */
3272 if (!FAIL_STACK_EMPTY ()
3273 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3274 fail_stack.avail--;
3275
3276 continue;
3277
3278
3279 case on_failure_jump:
3280 case on_failure_keep_string_jump:
3281 handle_on_failure_jump:
3282 EXTRACT_NUMBER_AND_INCR (j, p);
3283
3284 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3285 end of the pattern. We don't want to push such a point,
3286 since when we restore it above, entering the switch will
3287 increment `p' past the end of the pattern. We don't need
3288 to push such a point since we obviously won't find any more
3289 fastmap entries beyond `pend'. Such a pattern can match
3290 the null string, though. */
3291 if (p + j < pend)
3292 {
3293 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3294 {
3295 RESET_FAIL_STACK ();
3296 return -2;
3297 }
3298 }
3299 else
3300 bufp->can_be_null = 1;
3301
3302 if (succeed_n_p)
3303 {
3304 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3305 succeed_n_p = false;
3306 }
3307
3308 continue;
3309
3310
3311 case succeed_n:
3312 /* Get to the number of times to succeed. */
3313 p += 2;
3314
3315 /* Increment p past the n for when k != 0. */
3316 EXTRACT_NUMBER_AND_INCR (k, p);
3317 if (k == 0)
3318 {
3319 p -= 4;
3320 succeed_n_p = true; /* Spaghetti code alert. */
3321 goto handle_on_failure_jump;
3322 }
3323 continue;
3324
3325
3326 case set_number_at:
3327 p += 4;
3328 continue;
3329
3330
3331 case start_memory:
3332 case stop_memory:
3333 p += 2;
3334 continue;
3335
3336
3337 default:
3338 abort (); /* We have listed all the cases. */
3339 } /* switch *p++ */
3340
3341 /* Getting here means we have found the possible starting
3342 characters for one path of the pattern -- and that the empty
3343 string does not match. We need not follow this path further.
3344 Instead, look at the next alternative (remembered on the
3345 stack), or quit if no more. The test at the top of the loop
3346 does these things. */
3347 path_can_be_null = false;
3348 p = pend;
3349 } /* while p */
3350
3351 /* Set `can_be_null' for the last path (also the first path, if the
3352 pattern is empty). */
3353 bufp->can_be_null |= path_can_be_null;
3354
3355 done:
3356 RESET_FAIL_STACK ();
3357 return 0;
3358 } /* re_compile_fastmap */
3359 #ifdef _LIBC
3360 weak_alias (__re_compile_fastmap, re_compile_fastmap)
3361 #endif
3362
3363 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3364 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3365 this memory for recording register information. STARTS and ENDS
3366 must be allocated using the malloc library routine, and must each
3367 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3368
3369 If NUM_REGS == 0, then subsequent matches should allocate their own
3370 register data.
3371
3372 Unless this function is called, the first search or match using
3373 PATTERN_BUFFER will allocate its own register data, without
3374 freeing the old data. */
3375
3376 void
3377 re_set_registers (bufp, regs, num_regs, starts, ends)
3378 struct re_pattern_buffer *bufp;
3379 struct re_registers *regs;
3380 unsigned num_regs;
3381 regoff_t *starts, *ends;
3382 {
3383 if (num_regs)
3384 {
3385 bufp->regs_allocated = REGS_REALLOCATE;
3386 regs->num_regs = num_regs;
3387 regs->start = starts;
3388 regs->end = ends;
3389 }
3390 else
3391 {
3392 bufp->regs_allocated = REGS_UNALLOCATED;
3393 regs->num_regs = 0;
3394 regs->start = regs->end = (regoff_t *) 0;
3395 }
3396 }
3397 #ifdef _LIBC
3398 weak_alias (__re_set_registers, re_set_registers)
3399 #endif
3400
3401 /* Searching routines. */
3402
3403 /* Like re_search_2, below, but only one string is specified, and
3404 doesn't let you say where to stop matching. */
3405
3406 int
3407 re_search (bufp, string, size, startpos, range, regs)
3408 struct re_pattern_buffer *bufp;
3409 const char *string;
3410 int size, startpos, range;
3411 struct re_registers *regs;
3412 {
3413 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3414 regs, size);
3415 }
3416 #ifdef _LIBC
3417 weak_alias (__re_search, re_search)
3418 #endif
3419
3420
3421 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3422 virtual concatenation of STRING1 and STRING2, starting first at index
3423 STARTPOS, then at STARTPOS + 1, and so on.
3424
3425 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3426
3427 RANGE is how far to scan while trying to match. RANGE = 0 means try
3428 only at STARTPOS; in general, the last start tried is STARTPOS +
3429 RANGE.
3430
3431 In REGS, return the indices of the virtual concatenation of STRING1
3432 and STRING2 that matched the entire BUFP->buffer and its contained
3433 subexpressions.
3434
3435 Do not consider matching one past the index STOP in the virtual
3436 concatenation of STRING1 and STRING2.
3437
3438 We return either the position in the strings at which the match was
3439 found, -1 if no match, or -2 if error (such as failure
3440 stack overflow). */
3441
3442 int
3443 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3444 struct re_pattern_buffer *bufp;
3445 const char *string1, *string2;
3446 int size1, size2;
3447 int startpos;
3448 int range;
3449 struct re_registers *regs;
3450 int stop;
3451 {
3452 int val;
3453 register char *fastmap = bufp->fastmap;
3454 register RE_TRANSLATE_TYPE translate = bufp->translate;
3455 int total_size = size1 + size2;
3456 int endpos = startpos + range;
3457
3458 /* Check for out-of-range STARTPOS. */
3459 if (startpos < 0 || startpos > total_size)
3460 return -1;
3461
3462 /* Fix up RANGE if it might eventually take us outside
3463 the virtual concatenation of STRING1 and STRING2.
3464 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3465 if (endpos < 0)
3466 range = 0 - startpos;
3467 else if (endpos > total_size)
3468 range = total_size - startpos;
3469
3470 /* If the search isn't to be a backwards one, don't waste time in a
3471 search for a pattern that must be anchored. */
3472 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3473 {
3474 if (startpos > 0)
3475 return -1;
3476 else
3477 range = 1;
3478 }
3479
3480 #ifdef emacs
3481 /* In a forward search for something that starts with \=.
3482 don't keep searching past point. */
3483 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3484 {
3485 range = PT - startpos;
3486 if (range <= 0)
3487 return -1;
3488 }
3489 #endif /* emacs */
3490
3491 /* Update the fastmap now if not correct already. */
3492 if (fastmap && !bufp->fastmap_accurate)
3493 if (re_compile_fastmap (bufp) == -2)
3494 return -2;
3495
3496 /* Loop through the string, looking for a place to start matching. */
3497 for (;;)
3498 {
3499 /* If a fastmap is supplied, skip quickly over characters that
3500 cannot be the start of a match. If the pattern can match the
3501 null string, however, we don't need to skip characters; we want
3502 the first null string. */
3503 if (fastmap && startpos < total_size && !bufp->can_be_null)
3504 {
3505 if (range > 0) /* Searching forwards. */
3506 {
3507 register const char *d;
3508 register int lim = 0;
3509 int irange = range;
3510
3511 if (startpos < size1 && startpos + range >= size1)
3512 lim = range - (size1 - startpos);
3513
3514 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3515
3516 /* Written out as an if-else to avoid testing `translate'
3517 inside the loop. */
3518 if (translate)
3519 while (range > lim
3520 && !fastmap[(unsigned char)
3521 translate[(unsigned char) *d++]])
3522 range--;
3523 else
3524 while (range > lim && !fastmap[(unsigned char) *d++])
3525 range--;
3526
3527 startpos += irange - range;
3528 }
3529 else /* Searching backwards. */
3530 {
3531 register char c = (size1 == 0 || startpos >= size1
3532 ? string2[startpos - size1]
3533 : string1[startpos]);
3534
3535 if (!fastmap[(unsigned char) TRANSLATE (c)])
3536 goto advance;
3537 }
3538 }
3539
3540 /* If can't match the null string, and that's all we have left, fail. */
3541 if (range >= 0 && startpos == total_size && fastmap
3542 && !bufp->can_be_null)
3543 return -1;
3544
3545 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3546 startpos, regs, stop);
3547 #ifndef REGEX_MALLOC
3548 # ifdef C_ALLOCA
3549 alloca (0);
3550 # endif
3551 #endif
3552
3553 if (val >= 0)
3554 return startpos;
3555
3556 if (val == -2)
3557 return -2;
3558
3559 advance:
3560 if (!range)
3561 break;
3562 else if (range > 0)
3563 {
3564 range--;
3565 startpos++;
3566 }
3567 else
3568 {
3569 range++;
3570 startpos--;
3571 }
3572 }
3573 return -1;
3574 } /* re_search_2 */
3575 #ifdef _LIBC
3576 weak_alias (__re_search_2, re_search_2)
3577 #endif
3578
3579 /* This converts PTR, a pointer into one of the search strings `string1'
3580 and `string2' into an offset from the beginning of that string. */
3581 #define POINTER_TO_OFFSET(ptr) \
3582 (FIRST_STRING_P (ptr) \
3583 ? ((regoff_t) ((ptr) - string1)) \
3584 : ((regoff_t) ((ptr) - string2 + size1)))
3585
3586 /* Macros for dealing with the split strings in re_match_2. */
3587
3588 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3589
3590 /* Call before fetching a character with *d. This switches over to
3591 string2 if necessary. */
3592 #define PREFETCH() \
3593 while (d == dend) \
3594 { \
3595 /* End of string2 => fail. */ \
3596 if (dend == end_match_2) \
3597 goto fail; \
3598 /* End of string1 => advance to string2. */ \
3599 d = string2; \
3600 dend = end_match_2; \
3601 }
3602
3603
3604 /* Test if at very beginning or at very end of the virtual concatenation
3605 of `string1' and `string2'. If only one string, it's `string2'. */
3606 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3607 #define AT_STRINGS_END(d) ((d) == end2)
3608
3609
3610 /* Test if D points to a character which is word-constituent. We have
3611 two special cases to check for: if past the end of string1, look at
3612 the first character in string2; and if before the beginning of
3613 string2, look at the last character in string1. */
3614 #define WORDCHAR_P(d) \
3615 (SYNTAX ((d) == end1 ? *string2 \
3616 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3617 == Sword)
3618
3619 /* Disabled due to a compiler bug -- see comment at case wordbound */
3620 #if 0
3621 /* Test if the character before D and the one at D differ with respect
3622 to being word-constituent. */
3623 #define AT_WORD_BOUNDARY(d) \
3624 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3625 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3626 #endif
3627
3628 /* Free everything we malloc. */
3629 #ifdef MATCH_MAY_ALLOCATE
3630 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3631 # define FREE_VARIABLES() \
3632 do { \
3633 REGEX_FREE_STACK (fail_stack.stack); \
3634 FREE_VAR (regstart); \
3635 FREE_VAR (regend); \
3636 FREE_VAR (old_regstart); \
3637 FREE_VAR (old_regend); \
3638 FREE_VAR (best_regstart); \
3639 FREE_VAR (best_regend); \
3640 FREE_VAR (reg_info); \
3641 FREE_VAR (reg_dummy); \
3642 FREE_VAR (reg_info_dummy); \
3643 } while (0)
3644 #else
3645 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3646 #endif /* not MATCH_MAY_ALLOCATE */
3647
3648 /* These values must meet several constraints. They must not be valid
3649 register values; since we have a limit of 255 registers (because
3650 we use only one byte in the pattern for the register number), we can
3651 use numbers larger than 255. They must differ by 1, because of
3652 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3653 be larger than the value for the highest register, so we do not try
3654 to actually save any registers when none are active. */
3655 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3656 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3657
3658 /* Matching routines. */
3659
3660 #ifndef emacs /* Emacs never uses this. */
3661 /* re_match is like re_match_2 except it takes only a single string. */
3662
3663 int
3664 re_match (bufp, string, size, pos, regs)
3665 struct re_pattern_buffer *bufp;
3666 const char *string;
3667 int size, pos;
3668 struct re_registers *regs;
3669 {
3670 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3671 pos, regs, size);
3672 # ifndef REGEX_MALLOC
3673 # ifdef C_ALLOCA
3674 alloca (0);
3675 # endif
3676 # endif
3677 return result;
3678 }
3679 # ifdef _LIBC
3680 weak_alias (__re_match, re_match)
3681 # endif
3682 #endif /* not emacs */
3683
3684 static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
3685 unsigned char *end,
3686 register_info_type *reg_info));
3687 static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p,
3688 unsigned char *end,
3689 register_info_type *reg_info));
3690 static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p,
3691 unsigned char *end,
3692 register_info_type *reg_info));
3693 static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2,
3694 int len, char *translate));
3695
3696 /* re_match_2 matches the compiled pattern in BUFP against the
3697 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3698 and SIZE2, respectively). We start matching at POS, and stop
3699 matching at STOP.
3700
3701 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3702 store offsets for the substring each group matched in REGS. See the
3703 documentation for exactly how many groups we fill.
3704
3705 We return -1 if no match, -2 if an internal error (such as the
3706 failure stack overflowing). Otherwise, we return the length of the
3707 matched substring. */
3708
3709 int
re_match_2(bufp,string1,size1,string2,size2,pos,regs,stop)3710 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3711 struct re_pattern_buffer *bufp;
3712 const char *string1, *string2;
3713 int size1, size2;
3714 int pos;
3715 struct re_registers *regs;
3716 int stop;
3717 {
3718 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3719 pos, regs, stop);
3720 #ifndef REGEX_MALLOC
3721 # ifdef C_ALLOCA
3722 alloca (0);
3723 # endif
3724 #endif
3725 return result;
3726 }
3727 #ifdef _LIBC
3728 weak_alias (__re_match_2, re_match_2)
3729 #endif
3730
3731 /* This is a separate function so that we can force an alloca cleanup
3732 afterwards. */
3733 static int
3734 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3735 struct re_pattern_buffer *bufp;
3736 const char *string1, *string2;
3737 int size1, size2;
3738 int pos;
3739 struct re_registers *regs;
3740 int stop;
3741 {
3742 /* General temporaries. */
3743 int mcnt;
3744 unsigned char *p1;
3745
3746 /* Just past the end of the corresponding string. */
3747 const char *end1, *end2;
3748
3749 /* Pointers into string1 and string2, just past the last characters in
3750 each to consider matching. */
3751 const char *end_match_1, *end_match_2;
3752
3753 /* Where we are in the data, and the end of the current string. */
3754 const char *d, *dend;
3755
3756 /* Where we are in the pattern, and the end of the pattern. */
3757 unsigned char *p = bufp->buffer;
3758 register unsigned char *pend = p + bufp->used;
3759
3760 /* Mark the opcode just after a start_memory, so we can test for an
3761 empty subpattern when we get to the stop_memory. */
3762 unsigned char *just_past_start_mem = 0;
3763
3764 /* We use this to map every character in the string. */
3765 RE_TRANSLATE_TYPE translate = bufp->translate;
3766
3767 /* Failure point stack. Each place that can handle a failure further
3768 down the line pushes a failure point on this stack. It consists of
3769 restart, regend, and reg_info for all registers corresponding to
3770 the subexpressions we're currently inside, plus the number of such
3771 registers, and, finally, two char *'s. The first char * is where
3772 to resume scanning the pattern; the second one is where to resume
3773 scanning the strings. If the latter is zero, the failure point is
3774 a ``dummy''; if a failure happens and the failure point is a dummy,
3775 it gets discarded and the next next one is tried. */
3776 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3777 fail_stack_type fail_stack;
3778 #endif
3779 #ifdef DEBUG
3780 static unsigned failure_id = 0;
3781 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3782 #endif
3783
3784 #ifdef REL_ALLOC
3785 /* This holds the pointer to the failure stack, when
3786 it is allocated relocatably. */
3787 fail_stack_elt_t *failure_stack_ptr;
3788 #endif
3789
3790 /* We fill all the registers internally, independent of what we
3791 return, for use in backreferences. The number here includes
3792 an element for register zero. */
3793 size_t num_regs = bufp->re_nsub + 1;
3794
3795 /* The currently active registers. */
3796 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3797 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3798
3799 /* Information on the contents of registers. These are pointers into
3800 the input strings; they record just what was matched (on this
3801 attempt) by a subexpression part of the pattern, that is, the
3802 regnum-th regstart pointer points to where in the pattern we began
3803 matching and the regnum-th regend points to right after where we
3804 stopped matching the regnum-th subexpression. (The zeroth register
3805 keeps track of what the whole pattern matches.) */
3806 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3807 const char **regstart, **regend;
3808 #endif
3809
3810 /* If a group that's operated upon by a repetition operator fails to
3811 match anything, then the register for its start will need to be
3812 restored because it will have been set to wherever in the string we
3813 are when we last see its open-group operator. Similarly for a
3814 register's end. */
3815 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3816 const char **old_regstart, **old_regend;
3817 #endif
3818
3819 /* The is_active field of reg_info helps us keep track of which (possibly
3820 nested) subexpressions we are currently in. The matched_something
3821 field of reg_info[reg_num] helps us tell whether or not we have
3822 matched any of the pattern so far this time through the reg_num-th
3823 subexpression. These two fields get reset each time through any
3824 loop their register is in. */
3825 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3826 register_info_type *reg_info;
3827 #endif
3828
3829 /* The following record the register info as found in the above
3830 variables when we find a match better than any we've seen before.
3831 This happens as we backtrack through the failure points, which in
3832 turn happens only if we have not yet matched the entire string. */
3833 unsigned best_regs_set = false;
3834 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3835 const char **best_regstart, **best_regend;
3836 #endif
3837
3838 /* Logically, this is `best_regend[0]'. But we don't want to have to
3839 allocate space for that if we're not allocating space for anything
3840 else (see below). Also, we never need info about register 0 for
3841 any of the other register vectors, and it seems rather a kludge to
3842 treat `best_regend' differently than the rest. So we keep track of
3843 the end of the best match so far in a separate variable. We
3844 initialize this to NULL so that when we backtrack the first time
3845 and need to test it, it's not garbage. */
3846 const char *match_end = NULL;
3847
3848 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3849 int set_regs_matched_done = 0;
3850
3851 /* Used when we pop values we don't care about. */
3852 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3853 const char **reg_dummy;
3854 register_info_type *reg_info_dummy;
3855 #endif
3856
3857 #ifdef DEBUG
3858 /* Counts the total number of registers pushed. */
3859 unsigned num_regs_pushed = 0;
3860 #endif
3861
3862 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3863
3864 INIT_FAIL_STACK ();
3865
3866 #ifdef MATCH_MAY_ALLOCATE
3867 /* Do not bother to initialize all the register variables if there are
3868 no groups in the pattern, as it takes a fair amount of time. If
3869 there are groups, we include space for register 0 (the whole
3870 pattern), even though we never use it, since it simplifies the
3871 array indexing. We should fix this. */
3872 if (bufp->re_nsub)
3873 {
3874 regstart = REGEX_TALLOC (num_regs, const char *);
3875 regend = REGEX_TALLOC (num_regs, const char *);
3876 old_regstart = REGEX_TALLOC (num_regs, const char *);
3877 old_regend = REGEX_TALLOC (num_regs, const char *);
3878 best_regstart = REGEX_TALLOC (num_regs, const char *);
3879 best_regend = REGEX_TALLOC (num_regs, const char *);
3880 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3881 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3882 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3883
3884 if (!(regstart && regend && old_regstart && old_regend && reg_info
3885 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3886 {
3887 FREE_VARIABLES ();
3888 return -2;
3889 }
3890 }
3891 else
3892 {
3893 /* We must initialize all our variables to NULL, so that
3894 `FREE_VARIABLES' doesn't try to free them. */
3895 regstart = regend = old_regstart = old_regend = best_regstart
3896 = best_regend = reg_dummy = NULL;
3897 reg_info = reg_info_dummy = (register_info_type *) NULL;
3898 }
3899 #endif /* MATCH_MAY_ALLOCATE */
3900
3901 /* The starting position is bogus. */
3902 if (pos < 0 || pos > size1 + size2)
3903 {
3904 FREE_VARIABLES ();
3905 return -1;
3906 }
3907
3908 /* Initialize subexpression text positions to -1 to mark ones that no
3909 start_memory/stop_memory has been seen for. Also initialize the
3910 register information struct. */
3911 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
3912 {
3913 regstart[mcnt] = regend[mcnt]
3914 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3915
3916 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3917 IS_ACTIVE (reg_info[mcnt]) = 0;
3918 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3919 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3920 }
3921
3922 /* We move `string1' into `string2' if the latter's empty -- but not if
3923 `string1' is null. */
3924 if (size2 == 0 && string1 != NULL)
3925 {
3926 string2 = string1;
3927 size2 = size1;
3928 string1 = 0;
3929 size1 = 0;
3930 }
3931 end1 = string1 + size1;
3932 end2 = string2 + size2;
3933
3934 /* Compute where to stop matching, within the two strings. */
3935 if (stop <= size1)
3936 {
3937 end_match_1 = string1 + stop;
3938 end_match_2 = string2;
3939 }
3940 else
3941 {
3942 end_match_1 = end1;
3943 end_match_2 = string2 + stop - size1;
3944 }
3945
3946 /* `p' scans through the pattern as `d' scans through the data.
3947 `dend' is the end of the input string that `d' points within. `d'
3948 is advanced into the following input string whenever necessary, but
3949 this happens before fetching; therefore, at the beginning of the
3950 loop, `d' can be pointing at the end of a string, but it cannot
3951 equal `string2'. */
3952 if (size1 > 0 && pos <= size1)
3953 {
3954 d = string1 + pos;
3955 dend = end_match_1;
3956 }
3957 else
3958 {
3959 d = string2 + pos - size1;
3960 dend = end_match_2;
3961 }
3962
3963 DEBUG_PRINT1 ("The compiled pattern is:\n");
3964 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3965 DEBUG_PRINT1 ("The string to match is: `");
3966 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3967 DEBUG_PRINT1 ("'\n");
3968
3969 /* This loops over pattern commands. It exits by returning from the
3970 function if the match is complete, or it drops through if the match
3971 fails at this starting point in the input data. */
3972 for (;;)
3973 {
3974 #ifdef _LIBC
3975 DEBUG_PRINT2 ("\n%p: ", p);
3976 #else
3977 DEBUG_PRINT2 ("\n0x%x: ", p);
3978 #endif
3979
3980 if (p == pend)
3981 { /* End of pattern means we might have succeeded. */
3982 DEBUG_PRINT1 ("end of pattern ... ");
3983
3984 /* If we haven't matched the entire string, and we want the
3985 longest match, try backtracking. */
3986 if (d != end_match_2)
3987 {
3988 /* 1 if this match ends in the same string (string1 or string2)
3989 as the best previous match. */
3990 boolean same_str_p = (FIRST_STRING_P (match_end)
3991 == MATCHING_IN_FIRST_STRING);
3992 /* 1 if this match is the best seen so far. */
3993 boolean best_match_p;
3994
3995 /* AIX compiler got confused when this was combined
3996 with the previous declaration. */
3997 if (same_str_p)
3998 best_match_p = d > match_end;
3999 else
4000 best_match_p = !MATCHING_IN_FIRST_STRING;
4001
4002 DEBUG_PRINT1 ("backtracking.\n");
4003
4004 if (!FAIL_STACK_EMPTY ())
4005 { /* More failure points to try. */
4006
4007 /* If exceeds best match so far, save it. */
4008 if (!best_regs_set || best_match_p)
4009 {
4010 best_regs_set = true;
4011 match_end = d;
4012
4013 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4014
4015 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4016 {
4017 best_regstart[mcnt] = regstart[mcnt];
4018 best_regend[mcnt] = regend[mcnt];
4019 }
4020 }
4021 goto fail;
4022 }
4023
4024 /* If no failure points, don't restore garbage. And if
4025 last match is real best match, don't restore second
4026 best one. */
4027 else if (best_regs_set && !best_match_p)
4028 {
4029 restore_best_regs:
4030 /* Restore best match. It may happen that `dend ==
4031 end_match_1' while the restored d is in string2.
4032 For example, the pattern `x.*y.*z' against the
4033 strings `x-' and `y-z-', if the two strings are
4034 not consecutive in memory. */
4035 DEBUG_PRINT1 ("Restoring best registers.\n");
4036
4037 d = match_end;
4038 dend = ((d >= string1 && d <= end1)
4039 ? end_match_1 : end_match_2);
4040
4041 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4042 {
4043 regstart[mcnt] = best_regstart[mcnt];
4044 regend[mcnt] = best_regend[mcnt];
4045 }
4046 }
4047 } /* d != end_match_2 */
4048
4049 succeed_label:
4050 DEBUG_PRINT1 ("Accepting match.\n");
4051
4052 /* If caller wants register contents data back, do it. */
4053 if (regs && !bufp->no_sub)
4054 {
4055 /* Have the register data arrays been allocated? */
4056 if (bufp->regs_allocated == REGS_UNALLOCATED)
4057 { /* No. So allocate them with malloc. We need one
4058 extra element beyond `num_regs' for the `-1' marker
4059 GNU code uses. */
4060 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4061 regs->start = TALLOC (regs->num_regs, regoff_t);
4062 regs->end = TALLOC (regs->num_regs, regoff_t);
4063 if (regs->start == NULL || regs->end == NULL)
4064 {
4065 FREE_VARIABLES ();
4066 return -2;
4067 }
4068 bufp->regs_allocated = REGS_REALLOCATE;
4069 }
4070 else if (bufp->regs_allocated == REGS_REALLOCATE)
4071 { /* Yes. If we need more elements than were already
4072 allocated, reallocate them. If we need fewer, just
4073 leave it alone. */
4074 if (regs->num_regs < num_regs + 1)
4075 {
4076 regs->num_regs = num_regs + 1;
4077 RETALLOC (regs->start, regs->num_regs, regoff_t);
4078 RETALLOC (regs->end, regs->num_regs, regoff_t);
4079 if (regs->start == NULL || regs->end == NULL)
4080 {
4081 FREE_VARIABLES ();
4082 return -2;
4083 }
4084 }
4085 }
4086 else
4087 {
4088 /* These braces fend off a "empty body in an else-statement"
4089 warning under GCC when assert expands to nothing. */
4090 assert (bufp->regs_allocated == REGS_FIXED);
4091 }
4092
4093 /* Convert the pointer data in `regstart' and `regend' to
4094 indices. Register zero has to be set differently,
4095 since we haven't kept track of any info for it. */
4096 if (regs->num_regs > 0)
4097 {
4098 regs->start[0] = pos;
4099 regs->end[0] = (MATCHING_IN_FIRST_STRING
4100 ? ((regoff_t) (d - string1))
4101 : ((regoff_t) (d - string2 + size1)));
4102 }
4103
4104 /* Go through the first `min (num_regs, regs->num_regs)'
4105 registers, since that is all we initialized. */
4106 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
4107 mcnt++)
4108 {
4109 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4110 regs->start[mcnt] = regs->end[mcnt] = -1;
4111 else
4112 {
4113 regs->start[mcnt]
4114 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4115 regs->end[mcnt]
4116 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4117 }
4118 }
4119
4120 /* If the regs structure we return has more elements than
4121 were in the pattern, set the extra elements to -1. If
4122 we (re)allocated the registers, this is the case,
4123 because we always allocate enough to have at least one
4124 -1 at the end. */
4125 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
4126 regs->start[mcnt] = regs->end[mcnt] = -1;
4127 } /* regs && !bufp->no_sub */
4128
4129 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4130 nfailure_points_pushed, nfailure_points_popped,
4131 nfailure_points_pushed - nfailure_points_popped);
4132 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4133
4134 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4135 ? string1
4136 : string2 - size1);
4137
4138 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4139
4140 FREE_VARIABLES ();
4141 return mcnt;
4142 }
4143
4144 /* Otherwise match next pattern command. */
4145 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4146 {
4147 /* Ignore these. Used to ignore the n of succeed_n's which
4148 currently have n == 0. */
4149 case no_op:
4150 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4151 break;
4152
4153 case succeed:
4154 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4155 goto succeed_label;
4156
4157 /* Match the next n pattern characters exactly. The following
4158 byte in the pattern defines n, and the n bytes after that
4159 are the characters to match. */
4160 case exactn:
4161 mcnt = *p++;
4162 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4163
4164 /* This is written out as an if-else so we don't waste time
4165 testing `translate' inside the loop. */
4166 if (translate)
4167 {
4168 do
4169 {
4170 PREFETCH ();
4171 if ((unsigned char) translate[(unsigned char) *d++]
4172 != (unsigned char) *p++)
4173 goto fail;
4174 }
4175 while (--mcnt);
4176 }
4177 else
4178 {
4179 do
4180 {
4181 PREFETCH ();
4182 if (*d++ != (char) *p++) goto fail;
4183 }
4184 while (--mcnt);
4185 }
4186 SET_REGS_MATCHED ();
4187 break;
4188
4189
4190 /* Match any character except possibly a newline or a null. */
4191 case anychar:
4192 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4193
4194 PREFETCH ();
4195
4196 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4197 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4198 goto fail;
4199
4200 SET_REGS_MATCHED ();
4201 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4202 d++;
4203 break;
4204
4205
4206 case charset:
4207 case charset_not:
4208 {
4209 register unsigned char c;
4210 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4211
4212 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4213
4214 PREFETCH ();
4215 c = TRANSLATE (*d); /* The character to match. */
4216
4217 /* Cast to `unsigned' instead of `unsigned char' in case the
4218 bit list is a full 32 bytes long. */
4219 if (c < (unsigned) (*p * BYTEWIDTH)
4220 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4221 not = !not;
4222
4223 p += 1 + *p;
4224
4225 if (!not) goto fail;
4226
4227 SET_REGS_MATCHED ();
4228 d++;
4229 break;
4230 }
4231
4232
4233 /* The beginning of a group is represented by start_memory.
4234 The arguments are the register number in the next byte, and the
4235 number of groups inner to this one in the next. The text
4236 matched within the group is recorded (in the internal
4237 registers data structure) under the register number. */
4238 case start_memory:
4239 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4240
4241 /* Find out if this group can match the empty string. */
4242 p1 = p; /* To send to group_match_null_string_p. */
4243
4244 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4245 REG_MATCH_NULL_STRING_P (reg_info[*p])
4246 = group_match_null_string_p (&p1, pend, reg_info);
4247
4248 /* Save the position in the string where we were the last time
4249 we were at this open-group operator in case the group is
4250 operated upon by a repetition operator, e.g., with `(a*)*b'
4251 against `ab'; then we want to ignore where we are now in
4252 the string in case this attempt to match fails. */
4253 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4254 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4255 : regstart[*p];
4256 DEBUG_PRINT2 (" old_regstart: %d\n",
4257 POINTER_TO_OFFSET (old_regstart[*p]));
4258
4259 regstart[*p] = d;
4260 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4261
4262 IS_ACTIVE (reg_info[*p]) = 1;
4263 MATCHED_SOMETHING (reg_info[*p]) = 0;
4264
4265 /* Clear this whenever we change the register activity status. */
4266 set_regs_matched_done = 0;
4267
4268 /* This is the new highest active register. */
4269 highest_active_reg = *p;
4270
4271 /* If nothing was active before, this is the new lowest active
4272 register. */
4273 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4274 lowest_active_reg = *p;
4275
4276 /* Move past the register number and inner group count. */
4277 p += 2;
4278 just_past_start_mem = p;
4279
4280 break;
4281
4282
4283 /* The stop_memory opcode represents the end of a group. Its
4284 arguments are the same as start_memory's: the register
4285 number, and the number of inner groups. */
4286 case stop_memory:
4287 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4288
4289 /* We need to save the string position the last time we were at
4290 this close-group operator in case the group is operated
4291 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4292 against `aba'; then we want to ignore where we are now in
4293 the string in case this attempt to match fails. */
4294 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4295 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4296 : regend[*p];
4297 DEBUG_PRINT2 (" old_regend: %d\n",
4298 POINTER_TO_OFFSET (old_regend[*p]));
4299
4300 regend[*p] = d;
4301 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4302
4303 /* This register isn't active anymore. */
4304 IS_ACTIVE (reg_info[*p]) = 0;
4305
4306 /* Clear this whenever we change the register activity status. */
4307 set_regs_matched_done = 0;
4308
4309 /* If this was the only register active, nothing is active
4310 anymore. */
4311 if (lowest_active_reg == highest_active_reg)
4312 {
4313 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4314 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4315 }
4316 else
4317 { /* We must scan for the new highest active register, since
4318 it isn't necessarily one less than now: consider
4319 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4320 new highest active register is 1. */
4321 unsigned char r = *p - 1;
4322 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4323 r--;
4324
4325 /* If we end up at register zero, that means that we saved
4326 the registers as the result of an `on_failure_jump', not
4327 a `start_memory', and we jumped to past the innermost
4328 `stop_memory'. For example, in ((.)*) we save
4329 registers 1 and 2 as a result of the *, but when we pop
4330 back to the second ), we are at the stop_memory 1.
4331 Thus, nothing is active. */
4332 if (r == 0)
4333 {
4334 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4335 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4336 }
4337 else
4338 highest_active_reg = r;
4339 }
4340
4341 /* If just failed to match something this time around with a
4342 group that's operated on by a repetition operator, try to
4343 force exit from the ``loop'', and restore the register
4344 information for this group that we had before trying this
4345 last match. */
4346 if ((!MATCHED_SOMETHING (reg_info[*p])
4347 || just_past_start_mem == p - 1)
4348 && (p + 2) < pend)
4349 {
4350 boolean is_a_jump_n = false;
4351
4352 p1 = p + 2;
4353 mcnt = 0;
4354 switch ((re_opcode_t) *p1++)
4355 {
4356 case jump_n:
4357 is_a_jump_n = true;
4358 case pop_failure_jump:
4359 case maybe_pop_jump:
4360 case jump:
4361 case dummy_failure_jump:
4362 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4363 if (is_a_jump_n)
4364 p1 += 2;
4365 break;
4366
4367 default:
4368 /* do nothing */ ;
4369 }
4370 p1 += mcnt;
4371
4372 /* If the next operation is a jump backwards in the pattern
4373 to an on_failure_jump right before the start_memory
4374 corresponding to this stop_memory, exit from the loop
4375 by forcing a failure after pushing on the stack the
4376 on_failure_jump's jump in the pattern, and d. */
4377 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4378 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4379 {
4380 /* If this group ever matched anything, then restore
4381 what its registers were before trying this last
4382 failed match, e.g., with `(a*)*b' against `ab' for
4383 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4384 against `aba' for regend[3].
4385
4386 Also restore the registers for inner groups for,
4387 e.g., `((a*)(b*))*' against `aba' (register 3 would
4388 otherwise get trashed). */
4389
4390 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4391 {
4392 unsigned r;
4393
4394 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4395
4396 /* Restore this and inner groups' (if any) registers. */
4397 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
4398 r++)
4399 {
4400 regstart[r] = old_regstart[r];
4401
4402 /* xx why this test? */
4403 if (old_regend[r] >= regstart[r])
4404 regend[r] = old_regend[r];
4405 }
4406 }
4407 p1++;
4408 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4409 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4410
4411 goto fail;
4412 }
4413 }
4414
4415 /* Move past the register number and the inner group count. */
4416 p += 2;
4417 break;
4418
4419
4420 /* \<digit> has been turned into a `duplicate' command which is
4421 followed by the numeric value of <digit> as the register number. */
4422 case duplicate:
4423 {
4424 register const char *d2, *dend2;
4425 int regno = *p++; /* Get which register to match against. */
4426 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4427
4428 /* Can't back reference a group which we've never matched. */
4429 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4430 goto fail;
4431
4432 /* Where in input to try to start matching. */
4433 d2 = regstart[regno];
4434
4435 /* Where to stop matching; if both the place to start and
4436 the place to stop matching are in the same string, then
4437 set to the place to stop, otherwise, for now have to use
4438 the end of the first string. */
4439
4440 dend2 = ((FIRST_STRING_P (regstart[regno])
4441 == FIRST_STRING_P (regend[regno]))
4442 ? regend[regno] : end_match_1);
4443 for (;;)
4444 {
4445 /* If necessary, advance to next segment in register
4446 contents. */
4447 while (d2 == dend2)
4448 {
4449 if (dend2 == end_match_2) break;
4450 if (dend2 == regend[regno]) break;
4451
4452 /* End of string1 => advance to string2. */
4453 d2 = string2;
4454 dend2 = regend[regno];
4455 }
4456 /* At end of register contents => success */
4457 if (d2 == dend2) break;
4458
4459 /* If necessary, advance to next segment in data. */
4460 PREFETCH ();
4461
4462 /* How many characters left in this segment to match. */
4463 mcnt = dend - d;
4464
4465 /* Want how many consecutive characters we can match in
4466 one shot, so, if necessary, adjust the count. */
4467 if (mcnt > dend2 - d2)
4468 mcnt = dend2 - d2;
4469
4470 /* Compare that many; failure if mismatch, else move
4471 past them. */
4472 if (translate
4473 ? bcmp_translate (d, d2, mcnt, translate)
4474 : memcmp (d, d2, mcnt))
4475 goto fail;
4476 d += mcnt, d2 += mcnt;
4477
4478 /* Do this because we've match some characters. */
4479 SET_REGS_MATCHED ();
4480 }
4481 }
4482 break;
4483
4484
4485 /* begline matches the empty string at the beginning of the string
4486 (unless `not_bol' is set in `bufp'), and, if
4487 `newline_anchor' is set, after newlines. */
4488 case begline:
4489 DEBUG_PRINT1 ("EXECUTING begline.\n");
4490
4491 if (AT_STRINGS_BEG (d))
4492 {
4493 if (!bufp->not_bol) break;
4494 }
4495 else if (d[-1] == '\n' && bufp->newline_anchor)
4496 {
4497 break;
4498 }
4499 /* In all other cases, we fail. */
4500 goto fail;
4501
4502
4503 /* endline is the dual of begline. */
4504 case endline:
4505 DEBUG_PRINT1 ("EXECUTING endline.\n");
4506
4507 if (AT_STRINGS_END (d))
4508 {
4509 if (!bufp->not_eol) break;
4510 }
4511
4512 /* We have to ``prefetch'' the next character. */
4513 else if ((d == end1 ? *string2 : *d) == '\n'
4514 && bufp->newline_anchor)
4515 {
4516 break;
4517 }
4518 goto fail;
4519
4520
4521 /* Match at the very beginning of the data. */
4522 case begbuf:
4523 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4524 if (AT_STRINGS_BEG (d))
4525 break;
4526 goto fail;
4527
4528
4529 /* Match at the very end of the data. */
4530 case endbuf:
4531 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4532 if (AT_STRINGS_END (d))
4533 break;
4534 goto fail;
4535
4536
4537 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4538 pushes NULL as the value for the string on the stack. Then
4539 `pop_failure_point' will keep the current value for the
4540 string, instead of restoring it. To see why, consider
4541 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4542 then the . fails against the \n. But the next thing we want
4543 to do is match the \n against the \n; if we restored the
4544 string value, we would be back at the foo.
4545
4546 Because this is used only in specific cases, we don't need to
4547 check all the things that `on_failure_jump' does, to make
4548 sure the right things get saved on the stack. Hence we don't
4549 share its code. The only reason to push anything on the
4550 stack at all is that otherwise we would have to change
4551 `anychar's code to do something besides goto fail in this
4552 case; that seems worse than this. */
4553 case on_failure_keep_string_jump:
4554 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4555
4556 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4557 #ifdef _LIBC
4558 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
4559 #else
4560 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4561 #endif
4562
4563 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4564 break;
4565
4566
4567 /* Uses of on_failure_jump:
4568
4569 Each alternative starts with an on_failure_jump that points
4570 to the beginning of the next alternative. Each alternative
4571 except the last ends with a jump that in effect jumps past
4572 the rest of the alternatives. (They really jump to the
4573 ending jump of the following alternative, because tensioning
4574 these jumps is a hassle.)
4575
4576 Repeats start with an on_failure_jump that points past both
4577 the repetition text and either the following jump or
4578 pop_failure_jump back to this on_failure_jump. */
4579 case on_failure_jump:
4580 on_failure:
4581 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4582
4583 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4584 #ifdef _LIBC
4585 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
4586 #else
4587 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4588 #endif
4589
4590 /* If this on_failure_jump comes right before a group (i.e.,
4591 the original * applied to a group), save the information
4592 for that group and all inner ones, so that if we fail back
4593 to this point, the group's information will be correct.
4594 For example, in \(a*\)*\1, we need the preceding group,
4595 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4596
4597 /* We can't use `p' to check ahead because we push
4598 a failure point to `p + mcnt' after we do this. */
4599 p1 = p;
4600
4601 /* We need to skip no_op's before we look for the
4602 start_memory in case this on_failure_jump is happening as
4603 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4604 against aba. */
4605 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4606 p1++;
4607
4608 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4609 {
4610 /* We have a new highest active register now. This will
4611 get reset at the start_memory we are about to get to,
4612 but we will have saved all the registers relevant to
4613 this repetition op, as described above. */
4614 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4615 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4616 lowest_active_reg = *(p1 + 1);
4617 }
4618
4619 DEBUG_PRINT1 (":\n");
4620 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4621 break;
4622
4623
4624 /* A smart repeat ends with `maybe_pop_jump'.
4625 We change it to either `pop_failure_jump' or `jump'. */
4626 case maybe_pop_jump:
4627 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4628 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4629 {
4630 register unsigned char *p2 = p;
4631
4632 /* Compare the beginning of the repeat with what in the
4633 pattern follows its end. If we can establish that there
4634 is nothing that they would both match, i.e., that we
4635 would have to backtrack because of (as in, e.g., `a*a')
4636 then we can change to pop_failure_jump, because we'll
4637 never have to backtrack.
4638
4639 This is not true in the case of alternatives: in
4640 `(a|ab)*' we do need to backtrack to the `ab' alternative
4641 (e.g., if the string was `ab'). But instead of trying to
4642 detect that here, the alternative has put on a dummy
4643 failure point which is what we will end up popping. */
4644
4645 /* Skip over open/close-group commands.
4646 If what follows this loop is a ...+ construct,
4647 look at what begins its body, since we will have to
4648 match at least one of that. */
4649 while (1)
4650 {
4651 if (p2 + 2 < pend
4652 && ((re_opcode_t) *p2 == stop_memory
4653 || (re_opcode_t) *p2 == start_memory))
4654 p2 += 3;
4655 else if (p2 + 6 < pend
4656 && (re_opcode_t) *p2 == dummy_failure_jump)
4657 p2 += 6;
4658 else
4659 break;
4660 }
4661
4662 p1 = p + mcnt;
4663 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4664 to the `maybe_finalize_jump' of this case. Examine what
4665 follows. */
4666
4667 /* If we're at the end of the pattern, we can change. */
4668 if (p2 == pend)
4669 {
4670 /* Consider what happens when matching ":\(.*\)"
4671 against ":/". I don't really understand this code
4672 yet. */
4673 p[-3] = (unsigned char) pop_failure_jump;
4674 DEBUG_PRINT1
4675 (" End of pattern: change to `pop_failure_jump'.\n");
4676 }
4677
4678 else if ((re_opcode_t) *p2 == exactn
4679 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4680 {
4681 register unsigned char c
4682 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4683
4684 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4685 {
4686 p[-3] = (unsigned char) pop_failure_jump;
4687 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4688 c, p1[5]);
4689 }
4690
4691 else if ((re_opcode_t) p1[3] == charset
4692 || (re_opcode_t) p1[3] == charset_not)
4693 {
4694 int not = (re_opcode_t) p1[3] == charset_not;
4695
4696 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4697 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4698 not = !not;
4699
4700 /* `not' is equal to 1 if c would match, which means
4701 that we can't change to pop_failure_jump. */
4702 if (!not)
4703 {
4704 p[-3] = (unsigned char) pop_failure_jump;
4705 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4706 }
4707 }
4708 }
4709 else if ((re_opcode_t) *p2 == charset)
4710 {
4711 #ifdef DEBUG
4712 register unsigned char c
4713 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4714 #endif
4715
4716 #if 0
4717 if ((re_opcode_t) p1[3] == exactn
4718 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4719 && (p2[2 + p1[5] / BYTEWIDTH]
4720 & (1 << (p1[5] % BYTEWIDTH)))))
4721 #else
4722 if ((re_opcode_t) p1[3] == exactn
4723 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
4724 && (p2[2 + p1[4] / BYTEWIDTH]
4725 & (1 << (p1[4] % BYTEWIDTH)))))
4726 #endif
4727 {
4728 p[-3] = (unsigned char) pop_failure_jump;
4729 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4730 c, p1[5]);
4731 }
4732
4733 else if ((re_opcode_t) p1[3] == charset_not)
4734 {
4735 int idx;
4736 /* We win if the charset_not inside the loop
4737 lists every character listed in the charset after. */
4738 for (idx = 0; idx < (int) p2[1]; idx++)
4739 if (! (p2[2 + idx] == 0
4740 || (idx < (int) p1[4]
4741 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4742 break;
4743
4744 if (idx == p2[1])
4745 {
4746 p[-3] = (unsigned char) pop_failure_jump;
4747 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4748 }
4749 }
4750 else if ((re_opcode_t) p1[3] == charset)
4751 {
4752 int idx;
4753 /* We win if the charset inside the loop
4754 has no overlap with the one after the loop. */
4755 for (idx = 0;
4756 idx < (int) p2[1] && idx < (int) p1[4];
4757 idx++)
4758 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4759 break;
4760
4761 if (idx == p2[1] || idx == p1[4])
4762 {
4763 p[-3] = (unsigned char) pop_failure_jump;
4764 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4765 }
4766 }
4767 }
4768 }
4769 p -= 2; /* Point at relative address again. */
4770 if ((re_opcode_t) p[-1] != pop_failure_jump)
4771 {
4772 p[-1] = (unsigned char) jump;
4773 DEBUG_PRINT1 (" Match => jump.\n");
4774 goto unconditional_jump;
4775 }
4776 /* Note fall through. */
4777
4778
4779 /* The end of a simple repeat has a pop_failure_jump back to
4780 its matching on_failure_jump, where the latter will push a
4781 failure point. The pop_failure_jump takes off failure
4782 points put on by this pop_failure_jump's matching
4783 on_failure_jump; we got through the pattern to here from the
4784 matching on_failure_jump, so didn't fail. */
4785 case pop_failure_jump:
4786 {
4787 /* We need to pass separate storage for the lowest and
4788 highest registers, even though we don't care about the
4789 actual values. Otherwise, we will restore only one
4790 register from the stack, since lowest will == highest in
4791 `pop_failure_point'. */
4792 active_reg_t dummy_low_reg, dummy_high_reg;
4793 unsigned char *pdummy;
4794 const char *sdummy;
4795
4796 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4797 POP_FAILURE_POINT (sdummy, pdummy,
4798 dummy_low_reg, dummy_high_reg,
4799 reg_dummy, reg_dummy, reg_info_dummy);
4800 }
4801 /* Note fall through. */
4802
4803 unconditional_jump:
4804 #ifdef _LIBC
4805 DEBUG_PRINT2 ("\n%p: ", p);
4806 #else
4807 DEBUG_PRINT2 ("\n0x%x: ", p);
4808 #endif
4809 /* Note fall through. */
4810
4811 /* Unconditionally jump (without popping any failure points). */
4812 case jump:
4813 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4814 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4815 p += mcnt; /* Do the jump. */
4816 #ifdef _LIBC
4817 DEBUG_PRINT2 ("(to %p).\n", p);
4818 #else
4819 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4820 #endif
4821 break;
4822
4823
4824 /* We need this opcode so we can detect where alternatives end
4825 in `group_match_null_string_p' et al. */
4826 case jump_past_alt:
4827 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4828 goto unconditional_jump;
4829
4830
4831 /* Normally, the on_failure_jump pushes a failure point, which
4832 then gets popped at pop_failure_jump. We will end up at
4833 pop_failure_jump, also, and with a pattern of, say, `a+', we
4834 are skipping over the on_failure_jump, so we have to push
4835 something meaningless for pop_failure_jump to pop. */
4836 case dummy_failure_jump:
4837 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4838 /* It doesn't matter what we push for the string here. What
4839 the code at `fail' tests is the value for the pattern. */
4840 PUSH_FAILURE_POINT (NULL, NULL, -2);
4841 goto unconditional_jump;
4842
4843
4844 /* At the end of an alternative, we need to push a dummy failure
4845 point in case we are followed by a `pop_failure_jump', because
4846 we don't want the failure point for the alternative to be
4847 popped. For example, matching `(a|ab)*' against `aab'
4848 requires that we match the `ab' alternative. */
4849 case push_dummy_failure:
4850 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4851 /* See comments just above at `dummy_failure_jump' about the
4852 two zeroes. */
4853 PUSH_FAILURE_POINT (NULL, NULL, -2);
4854 break;
4855
4856 /* Have to succeed matching what follows at least n times.
4857 After that, handle like `on_failure_jump'. */
4858 case succeed_n:
4859 EXTRACT_NUMBER (mcnt, p + 2);
4860 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4861
4862 assert (mcnt >= 0);
4863 /* Originally, this is how many times we HAVE to succeed. */
4864 if (mcnt > 0)
4865 {
4866 mcnt--;
4867 p += 2;
4868 STORE_NUMBER_AND_INCR (p, mcnt);
4869 #ifdef _LIBC
4870 DEBUG_PRINT3 (" Setting %p to %d.\n", p - 2, mcnt);
4871 #else
4872 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - 2, mcnt);
4873 #endif
4874 }
4875 else if (mcnt == 0)
4876 {
4877 #ifdef _LIBC
4878 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p+2);
4879 #else
4880 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4881 #endif
4882 p[2] = (unsigned char) no_op;
4883 p[3] = (unsigned char) no_op;
4884 goto on_failure;
4885 }
4886 break;
4887
4888 case jump_n:
4889 EXTRACT_NUMBER (mcnt, p + 2);
4890 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4891
4892 /* Originally, this is how many times we CAN jump. */
4893 if (mcnt)
4894 {
4895 mcnt--;
4896 STORE_NUMBER (p + 2, mcnt);
4897 #ifdef _LIBC
4898 DEBUG_PRINT3 (" Setting %p to %d.\n", p + 2, mcnt);
4899 #else
4900 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + 2, mcnt);
4901 #endif
4902 goto unconditional_jump;
4903 }
4904 /* If don't have to jump any more, skip over the rest of command. */
4905 else
4906 p += 4;
4907 break;
4908
4909 case set_number_at:
4910 {
4911 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4912
4913 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4914 p1 = p + mcnt;
4915 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4916 #ifdef _LIBC
4917 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
4918 #else
4919 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4920 #endif
4921 STORE_NUMBER (p1, mcnt);
4922 break;
4923 }
4924
4925 #if 0
4926 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4927 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4928 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4929 macro and introducing temporary variables works around the bug. */
4930
4931 case wordbound:
4932 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4933 if (AT_WORD_BOUNDARY (d))
4934 break;
4935 goto fail;
4936
4937 case notwordbound:
4938 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4939 if (AT_WORD_BOUNDARY (d))
4940 goto fail;
4941 break;
4942 #else
4943 case wordbound:
4944 {
4945 boolean prevchar, thischar;
4946
4947 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4948 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4949 break;
4950
4951 prevchar = WORDCHAR_P (d - 1);
4952 thischar = WORDCHAR_P (d);
4953 if (prevchar != thischar)
4954 break;
4955 goto fail;
4956 }
4957
4958 case notwordbound:
4959 {
4960 boolean prevchar, thischar;
4961
4962 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4963 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4964 goto fail;
4965
4966 prevchar = WORDCHAR_P (d - 1);
4967 thischar = WORDCHAR_P (d);
4968 if (prevchar != thischar)
4969 goto fail;
4970 break;
4971 }
4972 #endif
4973
4974 case wordbeg:
4975 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4976 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4977 break;
4978 goto fail;
4979
4980 case wordend:
4981 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4982 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4983 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4984 break;
4985 goto fail;
4986
4987 #ifdef emacs
4988 case before_dot:
4989 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4990 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4991 goto fail;
4992 break;
4993
4994 case at_dot:
4995 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4996 if (PTR_CHAR_POS ((unsigned char *) d) != point)
4997 goto fail;
4998 break;
4999
5000 case after_dot:
5001 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5002 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
5003 goto fail;
5004 break;
5005
5006 case syntaxspec:
5007 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
5008 mcnt = *p++;
5009 goto matchsyntax;
5010
5011 case wordchar:
5012 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5013 mcnt = (int) Sword;
5014 matchsyntax:
5015 PREFETCH ();
5016 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5017 d++;
5018 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
5019 goto fail;
5020 SET_REGS_MATCHED ();
5021 break;
5022
5023 case notsyntaxspec:
5024 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
5025 mcnt = *p++;
5026 goto matchnotsyntax;
5027
5028 case notwordchar:
5029 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5030 mcnt = (int) Sword;
5031 matchnotsyntax:
5032 PREFETCH ();
5033 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5034 d++;
5035 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
5036 goto fail;
5037 SET_REGS_MATCHED ();
5038 break;
5039
5040 #else /* not emacs */
5041 case wordchar:
5042 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5043 PREFETCH ();
5044 if (!WORDCHAR_P (d))
5045 goto fail;
5046 SET_REGS_MATCHED ();
5047 d++;
5048 break;
5049
5050 case notwordchar:
5051 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5052 PREFETCH ();
5053 if (WORDCHAR_P (d))
5054 goto fail;
5055 SET_REGS_MATCHED ();
5056 d++;
5057 break;
5058 #endif /* not emacs */
5059
5060 default:
5061 abort ();
5062 }
5063 continue; /* Successfully executed one pattern command; keep going. */
5064
5065
5066 /* We goto here if a matching operation fails. */
5067 fail:
5068 if (!FAIL_STACK_EMPTY ())
5069 { /* A restart point is known. Restore to that state. */
5070 DEBUG_PRINT1 ("\nFAIL:\n");
5071 POP_FAILURE_POINT (d, p,
5072 lowest_active_reg, highest_active_reg,
5073 regstart, regend, reg_info);
5074
5075 /* If this failure point is a dummy, try the next one. */
5076 if (!p)
5077 goto fail;
5078
5079 /* If we failed to the end of the pattern, don't examine *p. */
5080 assert (p <= pend);
5081 if (p < pend)
5082 {
5083 boolean is_a_jump_n = false;
5084
5085 /* If failed to a backwards jump that's part of a repetition
5086 loop, need to pop this failure point and use the next one. */
5087 switch ((re_opcode_t) *p)
5088 {
5089 case jump_n:
5090 is_a_jump_n = true;
5091 case maybe_pop_jump:
5092 case pop_failure_jump:
5093 case jump:
5094 p1 = p + 1;
5095 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5096 p1 += mcnt;
5097
5098 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5099 || (!is_a_jump_n
5100 && (re_opcode_t) *p1 == on_failure_jump))
5101 goto fail;
5102 break;
5103 default:
5104 /* do nothing */ ;
5105 }
5106 }
5107
5108 if (d >= string1 && d <= end1)
5109 dend = end_match_1;
5110 }
5111 else
5112 break; /* Matching at this starting point really fails. */
5113 } /* for (;;) */
5114
5115 if (best_regs_set)
5116 goto restore_best_regs;
5117
5118 FREE_VARIABLES ();
5119
5120 return -1; /* Failure to match. */
5121 } /* re_match_2 */
5122
5123 /* Subroutine definitions for re_match_2. */
5124
5125
5126 /* We are passed P pointing to a register number after a start_memory.
5127
5128 Return true if the pattern up to the corresponding stop_memory can
5129 match the empty string, and false otherwise.
5130
5131 If we find the matching stop_memory, sets P to point to one past its number.
5132 Otherwise, sets P to an undefined byte less than or equal to END.
5133
5134 We don't handle duplicates properly (yet). */
5135
5136 static boolean
group_match_null_string_p(p,end,reg_info)5137 group_match_null_string_p (p, end, reg_info)
5138 unsigned char **p, *end;
5139 register_info_type *reg_info;
5140 {
5141 int mcnt;
5142 /* Point to after the args to the start_memory. */
5143 unsigned char *p1 = *p + 2;
5144
5145 while (p1 < end)
5146 {
5147 /* Skip over opcodes that can match nothing, and return true or
5148 false, as appropriate, when we get to one that can't, or to the
5149 matching stop_memory. */
5150
5151 switch ((re_opcode_t) *p1)
5152 {
5153 /* Could be either a loop or a series of alternatives. */
5154 case on_failure_jump:
5155 p1++;
5156 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5157
5158 /* If the next operation is not a jump backwards in the
5159 pattern. */
5160
5161 if (mcnt >= 0)
5162 {
5163 /* Go through the on_failure_jumps of the alternatives,
5164 seeing if any of the alternatives cannot match nothing.
5165 The last alternative starts with only a jump,
5166 whereas the rest start with on_failure_jump and end
5167 with a jump, e.g., here is the pattern for `a|b|c':
5168
5169 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5170 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5171 /exactn/1/c
5172
5173 So, we have to first go through the first (n-1)
5174 alternatives and then deal with the last one separately. */
5175
5176
5177 /* Deal with the first (n-1) alternatives, which start
5178 with an on_failure_jump (see above) that jumps to right
5179 past a jump_past_alt. */
5180
5181 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5182 {
5183 /* `mcnt' holds how many bytes long the alternative
5184 is, including the ending `jump_past_alt' and
5185 its number. */
5186
5187 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5188 reg_info))
5189 return false;
5190
5191 /* Move to right after this alternative, including the
5192 jump_past_alt. */
5193 p1 += mcnt;
5194
5195 /* Break if it's the beginning of an n-th alternative
5196 that doesn't begin with an on_failure_jump. */
5197 if ((re_opcode_t) *p1 != on_failure_jump)
5198 break;
5199
5200 /* Still have to check that it's not an n-th
5201 alternative that starts with an on_failure_jump. */
5202 p1++;
5203 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5204 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5205 {
5206 /* Get to the beginning of the n-th alternative. */
5207 p1 -= 3;
5208 break;
5209 }
5210 }
5211
5212 /* Deal with the last alternative: go back and get number
5213 of the `jump_past_alt' just before it. `mcnt' contains
5214 the length of the alternative. */
5215 EXTRACT_NUMBER (mcnt, p1 - 2);
5216
5217 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5218 return false;
5219
5220 p1 += mcnt; /* Get past the n-th alternative. */
5221 } /* if mcnt > 0 */
5222 break;
5223
5224
5225 case stop_memory:
5226 assert (p1[1] == **p);
5227 *p = p1 + 2;
5228 return true;
5229
5230
5231 default:
5232 if (!common_op_match_null_string_p (&p1, end, reg_info))
5233 return false;
5234 }
5235 } /* while p1 < end */
5236
5237 return false;
5238 } /* group_match_null_string_p */
5239
5240
5241 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5242 It expects P to be the first byte of a single alternative and END one
5243 byte past the last. The alternative can contain groups. */
5244
5245 static boolean
alt_match_null_string_p(p,end,reg_info)5246 alt_match_null_string_p (p, end, reg_info)
5247 unsigned char *p, *end;
5248 register_info_type *reg_info;
5249 {
5250 int mcnt;
5251 unsigned char *p1 = p;
5252
5253 while (p1 < end)
5254 {
5255 /* Skip over opcodes that can match nothing, and break when we get
5256 to one that can't. */
5257
5258 switch ((re_opcode_t) *p1)
5259 {
5260 /* It's a loop. */
5261 case on_failure_jump:
5262 p1++;
5263 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5264 p1 += mcnt;
5265 break;
5266
5267 default:
5268 if (!common_op_match_null_string_p (&p1, end, reg_info))
5269 return false;
5270 }
5271 } /* while p1 < end */
5272
5273 return true;
5274 } /* alt_match_null_string_p */
5275
5276
5277 /* Deals with the ops common to group_match_null_string_p and
5278 alt_match_null_string_p.
5279
5280 Sets P to one after the op and its arguments, if any. */
5281
5282 static boolean
common_op_match_null_string_p(p,end,reg_info)5283 common_op_match_null_string_p (p, end, reg_info)
5284 unsigned char **p, *end;
5285 register_info_type *reg_info;
5286 {
5287 int mcnt;
5288 boolean ret;
5289 int reg_no;
5290 unsigned char *p1 = *p;
5291
5292 switch ((re_opcode_t) *p1++)
5293 {
5294 case no_op:
5295 case begline:
5296 case endline:
5297 case begbuf:
5298 case endbuf:
5299 case wordbeg:
5300 case wordend:
5301 case wordbound:
5302 case notwordbound:
5303 #ifdef emacs
5304 case before_dot:
5305 case at_dot:
5306 case after_dot:
5307 #endif
5308 break;
5309
5310 case start_memory:
5311 reg_no = *p1;
5312 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5313 ret = group_match_null_string_p (&p1, end, reg_info);
5314
5315 /* Have to set this here in case we're checking a group which
5316 contains a group and a back reference to it. */
5317
5318 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5319 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5320
5321 if (!ret)
5322 return false;
5323 break;
5324
5325 /* If this is an optimized succeed_n for zero times, make the jump. */
5326 case jump:
5327 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5328 if (mcnt >= 0)
5329 p1 += mcnt;
5330 else
5331 return false;
5332 break;
5333
5334 case succeed_n:
5335 /* Get to the number of times to succeed. */
5336 p1 += 2;
5337 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5338
5339 if (mcnt == 0)
5340 {
5341 p1 -= 4;
5342 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5343 p1 += mcnt;
5344 }
5345 else
5346 return false;
5347 break;
5348
5349 case duplicate:
5350 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5351 return false;
5352 break;
5353
5354 case set_number_at:
5355 p1 += 4;
5356
5357 default:
5358 /* All other opcodes mean we cannot match the empty string. */
5359 return false;
5360 }
5361
5362 *p = p1;
5363 return true;
5364 } /* common_op_match_null_string_p */
5365
5366
5367 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5368 bytes; nonzero otherwise. */
5369
5370 static int
bcmp_translate(s1,s2,len,translate)5371 bcmp_translate (s1, s2, len, translate)
5372 const char *s1, *s2;
5373 register int len;
5374 RE_TRANSLATE_TYPE translate;
5375 {
5376 register const unsigned char *p1 = (const unsigned char *) s1;
5377 register const unsigned char *p2 = (const unsigned char *) s2;
5378 while (len)
5379 {
5380 if (translate[*p1++] != translate[*p2++]) return 1;
5381 len--;
5382 }
5383 return 0;
5384 }
5385
5386 /* Entry points for GNU code. */
5387
5388 /* re_compile_pattern is the GNU regular expression compiler: it
5389 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5390 Returns 0 if the pattern was valid, otherwise an error string.
5391
5392 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5393 are set in BUFP on entry.
5394
5395 We call regex_compile to do the actual compilation. */
5396
5397 const char *
re_compile_pattern(pattern,length,bufp)5398 re_compile_pattern (pattern, length, bufp)
5399 const char *pattern;
5400 size_t length;
5401 struct re_pattern_buffer *bufp;
5402 {
5403 reg_errcode_t ret;
5404
5405 /* GNU code is written to assume at least RE_NREGS registers will be set
5406 (and at least one extra will be -1). */
5407 bufp->regs_allocated = REGS_UNALLOCATED;
5408
5409 /* And GNU code determines whether or not to get register information
5410 by passing null for the REGS argument to re_match, etc., not by
5411 setting no_sub. */
5412 bufp->no_sub = 0;
5413
5414 /* Match anchors at newline. */
5415 bufp->newline_anchor = 1;
5416
5417 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5418
5419 if (!ret)
5420 return NULL;
5421 return gettext (re_error_msgid[(int) ret]);
5422 }
5423 #ifdef _LIBC
5424 weak_alias (__re_compile_pattern, re_compile_pattern)
5425 #endif
5426
5427 /* Entry points compatible with 4.2 BSD regex library. We don't define
5428 them unless specifically requested. */
5429
5430 #if defined _REGEX_RE_COMP || defined _LIBC
5431
5432 /* BSD has one and only one pattern buffer. */
5433 static struct re_pattern_buffer re_comp_buf;
5434
5435 char *
5436 #ifdef _LIBC
5437 /* Make these definitions weak in libc, so POSIX programs can redefine
5438 these names if they don't use our functions, and still use
5439 regcomp/regexec below without link errors. */
5440 weak_function
5441 #endif
re_comp(s)5442 re_comp (s)
5443 const char *s;
5444 {
5445 reg_errcode_t ret;
5446
5447 if (!s)
5448 {
5449 if (!re_comp_buf.buffer)
5450 return gettext ("No previous regular expression");
5451 return 0;
5452 }
5453
5454 if (!re_comp_buf.buffer)
5455 {
5456 re_comp_buf.buffer = (unsigned char *) malloc (200);
5457 if (re_comp_buf.buffer == NULL)
5458 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
5459 re_comp_buf.allocated = 200;
5460
5461 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5462 if (re_comp_buf.fastmap == NULL)
5463 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
5464 }
5465
5466 /* Since `re_exec' always passes NULL for the `regs' argument, we
5467 don't need to initialize the pattern buffer fields which affect it. */
5468
5469 /* Match anchors at newlines. */
5470 re_comp_buf.newline_anchor = 1;
5471
5472 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5473
5474 if (!ret)
5475 return NULL;
5476
5477 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5478 return (char *) gettext (re_error_msgid[(int) ret]);
5479 }
5480
5481
5482 int
5483 #ifdef _LIBC
5484 weak_function
5485 #endif
re_exec(s)5486 re_exec (s)
5487 const char *s;
5488 {
5489 const int len = strlen (s);
5490 return
5491 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5492 }
5493
5494 #endif /* _REGEX_RE_COMP */
5495
5496 /* POSIX.2 functions. Don't define these for Emacs. */
5497
5498 #ifndef emacs
5499
5500 /* regcomp takes a regular expression as a string and compiles it.
5501
5502 PREG is a regex_t *. We do not expect any fields to be initialized,
5503 since POSIX says we shouldn't. Thus, we set
5504
5505 `buffer' to the compiled pattern;
5506 `used' to the length of the compiled pattern;
5507 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5508 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5509 RE_SYNTAX_POSIX_BASIC;
5510 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5511 `fastmap' to an allocated space for the fastmap;
5512 `fastmap_accurate' to 1;
5513 `re_nsub' to the number of subexpressions in PATTERN.
5514
5515 PATTERN is the address of the pattern string.
5516
5517 CFLAGS is a series of bits which affect compilation.
5518
5519 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5520 use POSIX basic syntax.
5521
5522 If REG_NEWLINE is set, then . and [^...] don't match newline.
5523 Also, regexec will try a match beginning after every newline.
5524
5525 If REG_ICASE is set, then we considers upper- and lowercase
5526 versions of letters to be equivalent when matching.
5527
5528 If REG_NOSUB is set, then when PREG is passed to regexec, that
5529 routine will report only success or failure, and nothing about the
5530 registers.
5531
5532 It returns 0 if it succeeds, nonzero if it doesn't. (See gnu-regex.h for
5533 the return codes and their meanings.) */
5534
5535 int
regcomp(preg,pattern,cflags)5536 regcomp (preg, pattern, cflags)
5537 regex_t *preg;
5538 const char *pattern;
5539 int cflags;
5540 {
5541 reg_errcode_t ret;
5542 reg_syntax_t syntax
5543 = (cflags & REG_EXTENDED) ?
5544 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5545
5546 /* regex_compile will allocate the space for the compiled pattern. */
5547 preg->buffer = 0;
5548 preg->allocated = 0;
5549 preg->used = 0;
5550
5551 /* Try to allocate space for the fastmap. */
5552 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
5553
5554 if (cflags & REG_ICASE)
5555 {
5556 unsigned i;
5557
5558 preg->translate
5559 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5560 * sizeof (*(RE_TRANSLATE_TYPE)0));
5561 if (preg->translate == NULL)
5562 return (int) REG_ESPACE;
5563
5564 /* Map uppercase characters to corresponding lowercase ones. */
5565 for (i = 0; i < CHAR_SET_SIZE; i++)
5566 preg->translate[i] = TOLOWER (i);
5567 }
5568 else
5569 preg->translate = NULL;
5570
5571 /* If REG_NEWLINE is set, newlines are treated differently. */
5572 if (cflags & REG_NEWLINE)
5573 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5574 syntax &= ~RE_DOT_NEWLINE;
5575 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5576 /* It also changes the matching behavior. */
5577 preg->newline_anchor = 1;
5578 }
5579 else
5580 preg->newline_anchor = 0;
5581
5582 preg->no_sub = !!(cflags & REG_NOSUB);
5583
5584 /* POSIX says a null character in the pattern terminates it, so we
5585 can use strlen here in compiling the pattern. */
5586 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5587
5588 /* POSIX doesn't distinguish between an unmatched open-group and an
5589 unmatched close-group: both are REG_EPAREN. */
5590 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5591
5592 if (ret == REG_NOERROR && preg->fastmap)
5593 {
5594 /* Compute the fastmap now, since regexec cannot modify the pattern
5595 buffer. */
5596 if (re_compile_fastmap (preg) == -2)
5597 {
5598 /* Some error occured while computing the fastmap, just forget
5599 about it. */
5600 free (preg->fastmap);
5601 preg->fastmap = NULL;
5602 }
5603 }
5604
5605 return (int) ret;
5606 }
5607 #ifdef _LIBC
5608 weak_alias (__regcomp, regcomp)
5609 #endif
5610
5611
5612 /* regexec searches for a given pattern, specified by PREG, in the
5613 string STRING.
5614
5615 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5616 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5617 least NMATCH elements, and we set them to the offsets of the
5618 corresponding matched substrings.
5619
5620 EFLAGS specifies `execution flags' which affect matching: if
5621 REG_NOTBOL is set, then ^ does not match at the beginning of the
5622 string; if REG_NOTEOL is set, then $ does not match at the end.
5623
5624 We return 0 if we find a match and REG_NOMATCH if not. */
5625
5626 int
5627 regexec (preg, string, nmatch, pmatch, eflags)
5628 const regex_t *preg;
5629 const char *string;
5630 size_t nmatch;
5631 regmatch_t pmatch[];
5632 int eflags;
5633 {
5634 int ret;
5635 struct re_registers regs;
5636 regex_t private_preg;
5637 int len = strlen (string);
5638 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5639
5640 private_preg = *preg;
5641
5642 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5643 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5644
5645 /* The user has told us exactly how many registers to return
5646 information about, via `nmatch'. We have to pass that on to the
5647 matching routines. */
5648 private_preg.regs_allocated = REGS_FIXED;
5649
5650 if (want_reg_info)
5651 {
5652 regs.num_regs = nmatch;
5653 regs.start = TALLOC (nmatch, regoff_t);
5654 regs.end = TALLOC (nmatch, regoff_t);
5655 if (regs.start == NULL || regs.end == NULL)
5656 return (int) REG_NOMATCH;
5657 }
5658
5659 /* Perform the searching operation. */
5660 ret = re_search (&private_preg, string, len,
5661 /* start: */ 0, /* range: */ len,
5662 want_reg_info ? ®s : (struct re_registers *) 0);
5663
5664 /* Copy the register information to the POSIX structure. */
5665 if (want_reg_info)
5666 {
5667 if (ret >= 0)
5668 {
5669 unsigned r;
5670
5671 for (r = 0; r < nmatch; r++)
5672 {
5673 pmatch[r].rm_so = regs.start[r];
5674 pmatch[r].rm_eo = regs.end[r];
5675 }
5676 }
5677
5678 /* If we needed the temporary register info, free the space now. */
5679 free (regs.start);
5680 free (regs.end);
5681 }
5682
5683 /* We want zero return to mean success, unlike `re_search'. */
5684 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5685 }
5686 #ifdef _LIBC
5687 weak_alias (__regexec, regexec)
5688 #endif
5689
5690
5691 /* Returns a message corresponding to an error code, ERRCODE, returned
5692 from either regcomp or regexec. We don't use PREG here. */
5693
5694 size_t
5695 regerror (errcode, preg, errbuf, errbuf_size)
5696 int errcode;
5697 const regex_t *preg;
5698 char *errbuf;
5699 size_t errbuf_size;
5700 {
5701 const char *msg;
5702 size_t msg_size;
5703 (void)preg;
5704
5705 if (errcode < 0
5706 || errcode >= (int) (sizeof (re_error_msgid)
5707 / sizeof (re_error_msgid[0])))
5708 /* Only error codes returned by the rest of the code should be passed
5709 to this routine. If we are given anything else, or if other regex
5710 code generates an invalid error code, then the program has a bug.
5711 Dump core so we can fix it. */
5712 abort ();
5713
5714 msg = gettext (re_error_msgid[errcode]);
5715
5716 msg_size = strlen (msg) + 1; /* Includes the null. */
5717
5718 if (errbuf_size != 0)
5719 {
5720 if (msg_size > errbuf_size)
5721 {
5722 #if defined HAVE_MEMPCPY || defined _LIBC
5723 *((char *) mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
5724 #else
5725 memcpy (errbuf, msg, errbuf_size - 1);
5726 errbuf[errbuf_size - 1] = 0;
5727 #endif
5728 }
5729 else
5730 memcpy (errbuf, msg, msg_size);
5731 }
5732
5733 return msg_size;
5734 }
5735 #ifdef _LIBC
5736 weak_alias (__regerror, regerror)
5737 #endif
5738
5739
5740 /* Free dynamically allocated space used by PREG. */
5741
5742 void
5743 regfree (preg)
5744 regex_t *preg;
5745 {
5746 if (preg->buffer != NULL)
5747 free (preg->buffer);
5748 preg->buffer = NULL;
5749
5750 preg->allocated = 0;
5751 preg->used = 0;
5752
5753 if (preg->fastmap != NULL)
5754 free (preg->fastmap);
5755 preg->fastmap = NULL;
5756 preg->fastmap_accurate = 0;
5757
5758 if (preg->translate != NULL)
5759 free (preg->translate);
5760 preg->translate = NULL;
5761 }
5762 #ifdef _LIBC
5763 weak_alias (__regfree, regfree)
5764 #endif
5765
5766 #endif /* not emacs */
5767