xref: /netbsd/lib/libc/gdtoa/gdtoaimp.h (revision abd1934e)
1 /* $NetBSD: gdtoaimp.h,v 1.19 2022/04/19 20:32:15 rillig Exp $ */
2 
3 /****************************************************************
4 
5 The author of this software is David M. Gay.
6 
7 Copyright (C) 1998-2000 by Lucent Technologies
8 All Rights Reserved
9 
10 Permission to use, copy, modify, and distribute this software and
11 its documentation for any purpose and without fee is hereby
12 granted, provided that the above copyright notice appear in all
13 copies and that both that the copyright notice and this
14 permission notice and warranty disclaimer appear in supporting
15 documentation, and that the name of Lucent or any of its entities
16 not be used in advertising or publicity pertaining to
17 distribution of the software without specific, written prior
18 permission.
19 
20 LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
21 INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
22 IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
23 SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
24 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
25 IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
26 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
27 THIS SOFTWARE.
28 
29 ****************************************************************/
30 
31 /* This is a variation on dtoa.c that converts arbitrary binary
32    floating-point formats to and from decimal notation.  It uses
33    double-precision arithmetic internally, so there are still
34    various #ifdefs that adapt the calculations to the native
35    double-precision arithmetic (any of IEEE, VAX D_floating,
36    or IBM mainframe arithmetic).
37 
38    Please send bug reports to David M. Gay (dmg at acm dot org,
39    with " at " changed at "@" and " dot " changed to ".").
40  */
41 
42 /* On a machine with IEEE extended-precision registers, it is
43  * necessary to specify double-precision (53-bit) rounding precision
44  * before invoking strtod or dtoa.  If the machine uses (the equivalent
45  * of) Intel 80x87 arithmetic, the call
46  *	_control87(PC_53, MCW_PC);
47  * does this with many compilers.  Whether this or another call is
48  * appropriate depends on the compiler; for this to work, it may be
49  * necessary to #include "float.h" or another system-dependent header
50  * file.
51  */
52 
53 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
54  *
55  * This strtod returns a nearest machine number to the input decimal
56  * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
57  * broken by the IEEE round-even rule.  Otherwise ties are broken by
58  * biased rounding (add half and chop).
59  *
60  * Inspired loosely by William D. Clinger's paper "How to Read Floating
61  * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
62  *
63  * Modifications:
64  *
65  *	1. We only require IEEE, IBM, or VAX double-precision
66  *		arithmetic (not IEEE double-extended).
67  *	2. We get by with floating-point arithmetic in a case that
68  *		Clinger missed -- when we're computing d * 10^n
69  *		for a small integer d and the integer n is not too
70  *		much larger than 22 (the maximum integer k for which
71  *		we can represent 10^k exactly), we may be able to
72  *		compute (d*10^k) * 10^(e-k) with just one roundoff.
73  *	3. Rather than a bit-at-a-time adjustment of the binary
74  *		result in the hard case, we use floating-point
75  *		arithmetic to determine the adjustment to within
76  *		one bit; only in really hard cases do we need to
77  *		compute a second residual.
78  *	4. Because of 3., we don't need a large table of powers of 10
79  *		for ten-to-e (just some small tables, e.g. of 10^k
80  *		for 0 <= k <= 22).
81  */
82 
83 /*
84  * #define IEEE_LITTLE_ENDIAN for IEEE-arithmetic machines where the least
85  *	significant byte has the lowest address.
86  * #define IEEE_BIG_ENDIAN for IEEE-arithmetic machines where the most
87  *	significant byte has the lowest address.
88  * #define Long int on machines with 32-bit ints and 64-bit longs.
89  * #define Sudden_Underflow for IEEE-format machines without gradual
90  *	underflow (i.e., that flush to zero on underflow).
91  * #define IBM for IBM mainframe-style floating-point arithmetic.
92  * #define VAX for VAX-style floating-point arithmetic (D_floating).
93  * #define No_leftright to omit left-right logic in fast floating-point
94  *	computation of dtoa.
95  * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
96  * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
97  *	that use extended-precision instructions to compute rounded
98  *	products and quotients) with IBM.
99  * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic
100  *	that rounds toward +Infinity.
101  * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased
102  *	rounding when the underlying floating-point arithmetic uses
103  *	unbiased rounding.  This prevent using ordinary floating-point
104  *	arithmetic when the result could be computed with one rounding error.
105  * #define Inaccurate_Divide for IEEE-format with correctly rounded
106  *	products but inaccurate quotients, e.g., for Intel i860.
107  * #define NO_LONG_LONG on machines that do not have a "long long"
108  *	integer type (of >= 64 bits).  On such machines, you can
109  *	#define Just_16 to store 16 bits per 32-bit Long when doing
110  *	high-precision integer arithmetic.  Whether this speeds things
111  *	up or slows things down depends on the machine and the number
112  *	being converted.  If long long is available and the name is
113  *	something other than "long long", #define Llong to be the name,
114  *	and if "unsigned Llong" does not work as an unsigned version of
115  *	Llong, #define #ULLong to be the corresponding unsigned type.
116  * #define KR_headers for old-style C function headers.
117  * #define Bad_float_h if your system lacks a float.h or if it does not
118  *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
119  *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
120  * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
121  *	if memory is available and otherwise does something you deem
122  *	appropriate.  If MALLOC is undefined, malloc will be invoked
123  *	directly -- and assumed always to succeed.  Similarly, if you
124  *	want something other than the system's free() to be called to
125  *	recycle memory acquired from MALLOC, #define FREE to be the
126  *	name of the alternate routine.  (FREE or free is only called in
127  *	pathological cases, e.g., in a gdtoa call after a gdtoa return in
128  *	mode 3 with thousands of digits requested.)
129  * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
130  *	memory allocations from a private pool of memory when possible.
131  *	When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
132  *	unless #defined to be a different length.  This default length
133  *	suffices to get rid of MALLOC calls except for unusual cases,
134  *	such as decimal-to-binary conversion of a very long string of
135  *	digits.  When converting IEEE double precision values, the
136  *	longest string gdtoa can return is about 751 bytes long.  For
137  *	conversions by strtod of strings of 800 digits and all gdtoa
138  *	conversions of IEEE doubles in single-threaded executions with
139  *	8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
140  *	4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
141  * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
142  *	#defined automatically on IEEE systems.  On such systems,
143  *	when INFNAN_CHECK is #defined, strtod checks
144  *	for Infinity and NaN (case insensitively).
145  *	When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
146  *	strtodg also accepts (case insensitively) strings of the form
147  *	NaN(x), where x is a string of hexadecimal digits (optionally
148  *	preceded by 0x or 0X) and spaces; if there is only one string
149  *	of hexadecimal digits, it is taken for the fraction bits of the
150  *	resulting NaN; if there are two or more strings of hexadecimal
151  *	digits, each string is assigned to the next available sequence
152  *	of 32-bit words of fractions bits (starting with the most
153  *	significant), right-aligned in each sequence.
154  *	Unless GDTOA_NON_PEDANTIC_NANCHECK is #defined, input "NaN(...)"
155  *	is consumed even when ... has the wrong form (in which case the
156  *	"(...)" is consumed but ignored).
157  * #define MULTIPLE_THREADS if the system offers preemptively scheduled
158  *	multiple threads.  In this case, you must provide (or suitably
159  *	#define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
160  *	by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
161  *	in pow5mult, ensures lazy evaluation of only one copy of high
162  *	powers of 5; omitting this lock would introduce a small
163  *	probability of wasting memory, but would otherwise be harmless.)
164  *	You must also invoke freedtoa(s) to free the value s returned by
165  *	dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
166  * #define IMPRECISE_INEXACT if you do not care about the setting of
167  *	the STRTOG_Inexact bits in the special case of doing IEEE double
168  *	precision conversions (which could also be done by the strtod in
169  *	dtoa.c).
170  * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
171  *	floating-point constants.
172  * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
173  *	strtodg.c).
174  * #define NO_STRING_H to use private versions of memcpy.
175  *	On some K&R systems, it may also be necessary to
176  *	#define DECLARE_SIZE_T in this case.
177  * #define USE_LOCALE to use the current locale's decimal_point value.
178  */
179 
180 /* #define IEEE_{BIG,LITTLE}_ENDIAN in ${ARCHDIR}/gdtoa/arith.h */
181 
182 #include <assert.h>
183 #include <stdint.h>
184 #define Short   int16_t
185 #define UShort uint16_t
186 #define Long    int32_t
187 #define ULong  uint32_t
188 #define LLong   int64_t
189 #define ULLong uint64_t
190 
191 #define INFNAN_CHECK
192 #ifdef _REENTRANT
193 #define MULTIPLE_THREADS
194 #endif
195 #define USE_LOCALE
196 
197 #ifndef GDTOAIMP_H_INCLUDED
198 #define GDTOAIMP_H_INCLUDED
199 #include "gdtoa.h"
200 #include "gd_qnan.h"
201 #ifdef Honor_FLT_ROUNDS
202 #include <fenv.h>
203 __unused __weakref_visible int __libc_fegetround_ref(void)
204   __weak_reference(fegetround);
205 #define fegetround()							\
206 	(__libc_fegetround_ref ? __libc_fegetround_ref() : FE_TONEAREST)
207 #endif
208 
209 #ifdef DEBUG
210 #include "stdio.h"
211 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
212 #endif
213 
214 #include "stdlib.h"
215 #include "string.h"
216 
217 #ifdef KR_headers
218 #define Char char
219 #else
220 #define Char void
221 #endif
222 
223 #ifdef MALLOC
224 extern Char *MALLOC ANSI((size_t));
225 #else
226 #define MALLOC malloc
227 #endif
228 
229 #undef IEEE_Arith
230 #undef Avoid_Underflow
231 #ifdef IEEE_BIG_ENDIAN
232 #define IEEE_Arith
233 #endif
234 #ifdef IEEE_LITTLE_ENDIAN
235 #define IEEE_Arith
236 #endif
237 
238 #include "errno.h"
239 #ifdef Bad_float_h
240 
241 #ifdef IEEE_Arith
242 #define DBL_DIG 15
243 #define DBL_MAX_10_EXP 308
244 #define DBL_MAX_EXP 1024
245 #define FLT_RADIX 2
246 #define DBL_MAX 1.7976931348623157e+308
247 #endif
248 
249 #ifdef IBM
250 #define DBL_DIG 16
251 #define DBL_MAX_10_EXP 75
252 #define DBL_MAX_EXP 63
253 #define FLT_RADIX 16
254 #define DBL_MAX 7.2370055773322621e+75
255 #endif
256 
257 #ifdef VAX
258 #define DBL_DIG 16
259 #define DBL_MAX_10_EXP 38
260 #define DBL_MAX_EXP 127
261 #define FLT_RADIX 2
262 #define DBL_MAX 1.7014118346046923e+38
263 #define n_bigtens 2
264 #endif
265 
266 #ifndef LONG_MAX
267 #define LONG_MAX 2147483647
268 #endif
269 
270 #else /* ifndef Bad_float_h */
271 #include "float.h"
272 #endif /* Bad_float_h */
273 
274 #ifdef IEEE_Arith
275 #define Scale_Bit 0x10
276 #define n_bigtens 5
277 #endif
278 
279 #ifdef IBM
280 #define n_bigtens 3
281 #endif
282 
283 #ifdef VAX
284 #define n_bigtens 2
285 #endif
286 
287 #include "math.h"
288 
289 #ifdef __cplusplus
290 extern "C" {
291 #endif
292 
293 #if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) + defined(VAX) + defined(IBM) != 1
294 Exactly one of IEEE_LITTLE_ENDIAN, IEEE_BIG_ENDIAN, VAX, or IBM should be defined.
295 #endif
296 
297 typedef union { double d; ULong L[2]; } __attribute__((__may_alias__)) U;
298 
299 #ifdef YES_ALIAS
300 #define dval(x) x
301 #ifdef IEEE_LITTLE_ENDIAN
302 #define word0(x) ((ULong *)x)[1]
303 #define word1(x) ((ULong *)x)[0]
304 #else
305 #define word0(x) ((ULong *)x)[0]
306 #define word1(x) ((ULong *)x)[1]
307 #endif
308 #else /* !YES_ALIAS */
309 #ifdef IEEE_LITTLE_ENDIAN
310 #define word0(x) ( /* LINTED */ (U*)x)->L[1]
311 #define word1(x) ( /* LINTED */ (U*)x)->L[0]
312 #else
313 #define word0(x) ( /* LINTED */ (U*)x)->L[0]
314 #define word1(x) ( /* LINTED */ (U*)x)->L[1]
315 #endif
316 #define dval(x) ( /* LINTED */ (U*)x)->d
317 #endif /* YES_ALIAS */
318 
319 /* The following definition of Storeinc is appropriate for MIPS processors.
320  * An alternative that might be better on some machines is
321  * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
322  */
323 #if defined(IEEE_LITTLE_ENDIAN) + defined(VAX)
324 #define Storeinc(a,b,c) \
325  (((unsigned short *)(void *)a)[1] = (unsigned short)b, \
326   ((unsigned short *)(void *)a)[0] = (unsigned short)c, \
327   a++)
328 #else
329 #define Storeinc(a,b,c) \
330  (((unsigned short *)(void *)a)[0] = (unsigned short)b, \
331   ((unsigned short *)(void *)a)[1] = (unsigned short)c, \
332   a++)
333 #endif
334 
335 /* #define P DBL_MANT_DIG */
336 /* Ten_pmax = floor(P*log(2)/log(5)) */
337 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
338 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
339 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
340 
341 #ifdef IEEE_Arith
342 #define Exp_shift  20
343 #define Exp_shift1 20
344 #define Exp_msk1    0x100000
345 #define Exp_msk11   0x100000
346 #define Exp_mask  0x7ff00000
347 #define P 53
348 #define Bias 1023
349 #define Emin (-1022)
350 #define Exp_1  0x3ff00000
351 #define Exp_11 0x3ff00000
352 #define Ebits 11
353 #define Frac_mask  0xfffff
354 #define Frac_mask1 0xfffff
355 #define Ten_pmax 22
356 #define Bletch 0x10
357 #define Bndry_mask  0xfffff
358 #define Bndry_mask1 0xfffff
359 #define LSB 1
360 #define Sign_bit 0x80000000
361 #define Log2P 1
362 #define Tiny0 0
363 #define Tiny1 1
364 #define Quick_max 14
365 #define Int_max 14
366 
367 #ifndef Flt_Rounds
368 #ifdef FLT_ROUNDS
369 #define Flt_Rounds FLT_ROUNDS
370 #else
371 #define Flt_Rounds 1
372 #endif
373 #endif /*Flt_Rounds*/
374 
375 #else /* ifndef IEEE_Arith */
376 #undef  Sudden_Underflow
377 #define Sudden_Underflow
378 #ifdef IBM
379 #undef Flt_Rounds
380 #define Flt_Rounds 0
381 #define Exp_shift  24
382 #define Exp_shift1 24
383 #define Exp_msk1   0x1000000
384 #define Exp_msk11  0x1000000
385 #define Exp_mask  0x7f000000
386 #define P 14
387 #define Bias 65
388 #define Exp_1  0x41000000
389 #define Exp_11 0x41000000
390 #define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
391 #define Frac_mask  0xffffff
392 #define Frac_mask1 0xffffff
393 #define Bletch 4
394 #define Ten_pmax 22
395 #define Bndry_mask  0xefffff
396 #define Bndry_mask1 0xffffff
397 #define LSB 1
398 #define Sign_bit 0x80000000
399 #define Log2P 4
400 #define Tiny0 0x100000
401 #define Tiny1 0
402 #define Quick_max 14
403 #define Int_max 15
404 #else /* VAX */
405 #undef Flt_Rounds
406 #define Flt_Rounds 1
407 #define Exp_shift  23
408 #define Exp_shift1 7
409 #define Exp_msk1    0x80
410 #define Exp_msk11   0x800000
411 #define Exp_mask  0x7f80
412 #define P 56
413 #define Bias 129
414 #define Emin (-127)	/* XXX: Check this */
415 #define Exp_1  0x40800000
416 #define Exp_11 0x4080
417 #define Ebits 8
418 #define Frac_mask  0x7fffff
419 #define Frac_mask1 0xffff007f
420 #define Ten_pmax 24
421 #define Bletch 2
422 #define Bndry_mask  0xffff007f
423 #define Bndry_mask1 0xffff007f
424 #define LSB 0x10000
425 #define Sign_bit 0x8000
426 #define Log2P 1
427 #define Tiny0 0x80
428 #define Tiny1 0
429 #define Quick_max 15
430 #define Int_max 15
431 #endif /* IBM, VAX */
432 #endif /* IEEE_Arith */
433 
434 #ifndef IEEE_Arith
435 #define ROUND_BIASED
436 #else
437 #ifdef ROUND_BIASED_without_Round_Up
438 #undef  ROUND_BIASED
439 #define ROUND_BIASED
440 #endif
441 #endif
442 
443 #ifdef RND_PRODQUOT
444 #define rounded_product(a,b) a = rnd_prod(a, b)
445 #define rounded_quotient(a,b) a = rnd_quot(a, b)
446 #ifdef KR_headers
447 extern double rnd_prod(), rnd_quot();
448 #else
449 extern double rnd_prod(double, double), rnd_quot(double, double);
450 #endif
451 #else
452 #define rounded_product(a,b) a *= b
453 #define rounded_quotient(a,b) a /= b
454 #endif
455 
456 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
457 #define Big1 0xffffffff
458 
459 #undef  Pack_16
460 #ifndef Pack_32
461 #define Pack_32
462 #endif
463 
464 #ifdef NO_LONG_LONG
465 #undef ULLong
466 #ifdef Just_16
467 #undef Pack_32
468 #define Pack_16
469 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
470  * This makes some inner loops simpler and sometimes saves work
471  * during multiplications, but it often seems to make things slightly
472  * slower.  Hence the default is now to store 32 bits per Long.
473  */
474 #endif
475 #else	/* long long available */
476 #ifndef Llong
477 #define Llong long long
478 #endif
479 #ifndef ULLong
480 #define ULLong unsigned Llong
481 #endif
482 #endif /* NO_LONG_LONG */
483 
484 #ifdef Pack_32
485 #define ULbits 32
486 #define kshift 5
487 #define kmask 31
488 #define ALL_ON 0xffffffff
489 #else
490 #define ULbits 16
491 #define kshift 4
492 #define kmask 15
493 #define ALL_ON 0xffff
494 #endif
495 
496 #ifndef MULTIPLE_THREADS
497 #define ACQUIRE_DTOA_LOCK(n)	/*nothing*/
498 #define FREE_DTOA_LOCK(n)	/*nothing*/
499 #else
500 #include "reentrant.h"
501 
502 extern mutex_t __gdtoa_locks[2];
503 
504 #define ACQUIRE_DTOA_LOCK(n)	\
505 	do {							\
506 		if (__isthreaded)				\
507 			mutex_lock(&__gdtoa_locks[n]);		\
508 	} while (0)
509 #define FREE_DTOA_LOCK(n)	\
510 	do {							\
511 		if (__isthreaded)				\
512 			mutex_unlock(&__gdtoa_locks[n]);	\
513 	} while (0)
514 #endif
515 
516 #define Kmax (sizeof(size_t) << 3)
517 
518  struct
519 Bigint {
520 	struct Bigint *next;
521 	int k, maxwds, sign, wds;
522 	ULong x[1];
523 	};
524 
525  typedef struct Bigint Bigint;
526 
527 #ifdef NO_STRING_H
528 #ifdef DECLARE_SIZE_T
529 typedef unsigned int size_t;
530 #endif
531 extern void memcpy_D2A ANSI((void*, const void*, size_t));
532 #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
533 #else /* !NO_STRING_H */
534 #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
535 #endif /* NO_STRING_H */
536 
537 #define Balloc		__Balloc_D2A
538 #define Bfree		__Bfree_D2A
539 #define ULtoQ		__ULtoQ_D2A
540 #define ULtof		__ULtof_D2A
541 #define ULtod		__ULtod_D2A
542 #define ULtodd		__ULtodd_D2A
543 #define ULtox		__ULtox_D2A
544 #define ULtoxL		__ULtoxL_D2A
545 #define any_on 		__any_on_D2A
546 #define b2d 		__b2d_D2A
547 #define bigtens 	__bigtens_D2A
548 #define cmp 		__cmp_D2A
549 #define copybits 	__copybits_D2A
550 #define d2b 		__d2b_D2A
551 #define decrement 	__decrement_D2A
552 #define diff 		__diff_D2A
553 #define dtoa_result 	__dtoa_result_D2A
554 #define g__fmt 		__g__fmt_D2A
555 #define gethex 		__gethex_D2A
556 #define hexdig 		__hexdig_D2A
557 #define hexdig_init_D2A	__hexdig_init_D2A
558 #define hexnan		__hexnan_D2A
559 #define hi0bits		__hi0bits_D2A
560 #define hi0bits_D2A	__hi0bits_D2A
561 #define i2b		__i2b_D2A
562 #define increment	__increment_D2A
563 #define lo0bits		__lo0bits_D2A
564 #define lshift		__lshift_D2A
565 #define match		__match_D2A
566 #define mult		__mult_D2A
567 #define multadd		__multadd_D2A
568 #define nrv_alloc	__nrv_alloc_D2A
569 #define pow5mult	__pow5mult_D2A
570 #define quorem		__quorem_D2A
571 #define ratio		__ratio_D2A
572 #define rshift		__rshift_D2A
573 #define rv_alloc	__rv_alloc_D2A
574 #define s2b		__s2b_D2A
575 #define set_ones	__set_ones_D2A
576 #define strcp		__strcp_D2A
577 #define strcp_D2A	__strcp_D2A
578 #define strtoIg		__strtoIg_D2A
579 #define sum		__sum_D2A
580 #define tens		__tens_D2A
581 #define tinytens	__tinytens_D2A
582 #define tinytens	__tinytens_D2A
583 #define trailz		__trailz_D2A
584 #define ulp		__ulp_D2A
585 
586  extern char *dtoa_result;
587  extern CONST double bigtens[], tens[], tinytens[];
588  extern unsigned char hexdig[];
589 
590  extern Bigint *Balloc ANSI((int));
591  extern void Bfree ANSI((Bigint*));
592  extern void ULtof ANSI((ULong*, ULong*, Long, int));
593  extern void ULtod ANSI((ULong*, ULong*, Long, int));
594  extern void ULtodd ANSI((ULong*, ULong*, Long, int));
595  extern void ULtoQ ANSI((ULong*, ULong*, Long, int));
596  extern void ULtox ANSI((UShort*, ULong*, Long, int));
597  extern void ULtoxL ANSI((ULong*, ULong*, Long, int));
598  extern ULong any_on ANSI((Bigint*, int));
599  extern double b2d ANSI((Bigint*, int*));
600  extern int cmp ANSI((Bigint*, Bigint*));
601  extern void copybits ANSI((ULong*, int, Bigint*));
602  extern Bigint *d2b ANSI((double, int*, int*));
603  extern void decrement ANSI((Bigint*));
604  extern Bigint *diff ANSI((Bigint*, Bigint*));
605  extern char *dtoa ANSI((double d, int mode, int ndigits,
606 			int *decpt, int *sign, char **rve));
607  extern char *g__fmt ANSI((char*, char*, char*, int, ULong, size_t));
608  extern int gethex ANSI((CONST char**, CONST FPI*, Long*, Bigint**, int, locale_t));
609  extern void hexdig_init_D2A(Void);
610  extern int hexnan ANSI((CONST char**, CONST FPI*, ULong*));
611  extern int hi0bits_D2A ANSI((ULong));
612  extern Bigint *i2b ANSI((int));
613  extern Bigint *increment ANSI((Bigint*));
614  extern int lo0bits ANSI((ULong*));
615  extern Bigint *lshift ANSI((Bigint*, int));
616  extern int match ANSI((CONST char**, CONST char*));
617  extern Bigint *mult ANSI((Bigint*, Bigint*));
618  extern Bigint *multadd ANSI((Bigint*, int, int));
619  extern char *nrv_alloc ANSI((CONST char*, char **, size_t));
620  extern Bigint *pow5mult ANSI((Bigint*, int));
621  extern int quorem ANSI((Bigint*, Bigint*));
622  extern double ratio ANSI((Bigint*, Bigint*));
623  extern void rshift ANSI((Bigint*, int));
624  extern char *rv_alloc ANSI((size_t));
625  extern Bigint *s2b ANSI((CONST char*, int, int, ULong, size_t));
626  extern Bigint *set_ones ANSI((Bigint*, int));
627  extern char *strcp ANSI((char*, const char*));
628  extern int strtoIg ANSI((CONST char*, char**, CONST FPI*, Long*, Bigint**, int*));
629  extern double strtod ANSI((const char *s00, char **se));
630  extern Bigint *sum ANSI((Bigint*, Bigint*));
631  extern int trailz ANSI((CONST Bigint*));
632  extern double ulp ANSI((U*));
633 
634 #ifdef __cplusplus
635 }
636 #endif
637 /*
638  * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c.  Prior to
639  * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
640  * respectively), but now are determined by compiling and running
641  * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
642  * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
643  * and -DNAN_WORD1=...  values if necessary.  This should still work.
644  * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
645  */
646 #ifdef IEEE_Arith
647 #ifndef NO_INFNAN_CHECK
648 #undef INFNAN_CHECK
649 #define INFNAN_CHECK
650 #endif
651 #ifdef IEEE_BIG_ENDIAN
652 #define _0 0
653 #define _1 1
654 #ifndef NAN_WORD0
655 #define NAN_WORD0 d_QNAN0
656 #endif
657 #ifndef NAN_WORD1
658 #define NAN_WORD1 d_QNAN1
659 #endif
660 #else
661 #define _0 1
662 #define _1 0
663 #ifndef NAN_WORD0
664 #define NAN_WORD0 d_QNAN1
665 #endif
666 #ifndef NAN_WORD1
667 #define NAN_WORD1 d_QNAN0
668 #endif
669 #endif
670 #else
671 #undef INFNAN_CHECK
672 #endif
673 
674 #undef SI
675 #ifdef Sudden_Underflow
676 #define SI 1
677 #else
678 #define SI 0
679 #endif
680 
681 #endif /* GDTOAIMP_H_INCLUDED */
682