xref: /netbsd/external/mit/lua/dist/src/lcode.c (revision f13f21ab)
1 /*	$NetBSD: lcode.c,v 1.14 2023/06/08 21:12:08 nikita Exp $	*/
2 
3 /*
4 ** Id: lcode.c
5 ** Code generator for Lua
6 ** See Copyright Notice in lua.h
7 */
8 
9 #define lcode_c
10 #define LUA_CORE
11 
12 #include "lprefix.h"
13 
14 
15 #ifndef _KERNEL
16 #include <float.h>
17 #include <limits.h>
18 #include <math.h>
19 #include <stdlib.h>
20 #endif /* _KERNEL */
21 
22 #include "lua.h"
23 
24 #include "lcode.h"
25 #include "ldebug.h"
26 #include "ldo.h"
27 #include "lgc.h"
28 #include "llex.h"
29 #include "lmem.h"
30 #include "lobject.h"
31 #include "lopcodes.h"
32 #include "lparser.h"
33 #include "lstring.h"
34 #include "ltable.h"
35 #include "lvm.h"
36 
37 
38 /* Maximum number of registers in a Lua function (must fit in 8 bits) */
39 #define MAXREGS		255
40 
41 
42 #define hasjumps(e)	((e)->t != (e)->f)
43 
44 
45 static int codesJ (FuncState *fs, OpCode o, int sj, int k);
46 
47 
48 
49 /* semantic error */
luaK_semerror(LexState * ls,const char * msg)50 l_noret luaK_semerror (LexState *ls, const char *msg) {
51   ls->t.token = 0;  /* remove "near <token>" from final message */
52   luaX_syntaxerror(ls, msg);
53 }
54 
55 
56 /*
57 ** If expression is a numeric constant, fills 'v' with its value
58 ** and returns 1. Otherwise, returns 0.
59 */
tonumeral(const expdesc * e,TValue * v)60 static int tonumeral (const expdesc *e, TValue *v) {
61   if (hasjumps(e))
62     return 0;  /* not a numeral */
63   switch (e->k) {
64     case VKINT:
65       if (v) setivalue(v, e->u.ival);
66       return 1;
67 #ifndef _KERNEL
68     case VKFLT:
69       if (v) setfltvalue(v, e->u.nval);
70       return 1;
71 #endif /* _KERNEL */
72     default: return 0;
73   }
74 }
75 
76 
77 /*
78 ** Get the constant value from a constant expression
79 */
const2val(FuncState * fs,const expdesc * e)80 static TValue *const2val (FuncState *fs, const expdesc *e) {
81   lua_assert(e->k == VCONST);
82   return &fs->ls->dyd->actvar.arr[e->u.info].k;
83 }
84 
85 
86 /*
87 ** If expression is a constant, fills 'v' with its value
88 ** and returns 1. Otherwise, returns 0.
89 */
luaK_exp2const(FuncState * fs,const expdesc * e,TValue * v)90 int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) {
91   if (hasjumps(e))
92     return 0;  /* not a constant */
93   switch (e->k) {
94     case VFALSE:
95       setbfvalue(v);
96       return 1;
97     case VTRUE:
98       setbtvalue(v);
99       return 1;
100     case VNIL:
101       setnilvalue(v);
102       return 1;
103     case VKSTR: {
104       setsvalue(fs->ls->L, v, e->u.strval);
105       return 1;
106     }
107     case VCONST: {
108       setobj(fs->ls->L, v, const2val(fs, e));
109       return 1;
110     }
111     default: return tonumeral(e, v);
112   }
113 }
114 
115 
116 /*
117 ** Return the previous instruction of the current code. If there
118 ** may be a jump target between the current instruction and the
119 ** previous one, return an invalid instruction (to avoid wrong
120 ** optimizations).
121 */
previousinstruction(FuncState * fs)122 static Instruction *previousinstruction (FuncState *fs) {
123   static const Instruction invalidinstruction = ~(Instruction)0;
124   if (fs->pc > fs->lasttarget)
125     return &fs->f->code[fs->pc - 1];  /* previous instruction */
126   else
127     return cast(Instruction*, &invalidinstruction);
128 }
129 
130 
131 /*
132 ** Create a OP_LOADNIL instruction, but try to optimize: if the previous
133 ** instruction is also OP_LOADNIL and ranges are compatible, adjust
134 ** range of previous instruction instead of emitting a new one. (For
135 ** instance, 'local a; local b' will generate a single opcode.)
136 */
luaK_nil(FuncState * fs,int from,int n)137 void luaK_nil (FuncState *fs, int from, int n) {
138   int l = from + n - 1;  /* last register to set nil */
139   Instruction *previous = previousinstruction(fs);
140   if (GET_OPCODE(*previous) == OP_LOADNIL) {  /* previous is LOADNIL? */
141     int pfrom = GETARG_A(*previous);  /* get previous range */
142     int pl = pfrom + GETARG_B(*previous);
143     if ((pfrom <= from && from <= pl + 1) ||
144         (from <= pfrom && pfrom <= l + 1)) {  /* can connect both? */
145       if (pfrom < from) from = pfrom;  /* from = min(from, pfrom) */
146       if (pl > l) l = pl;  /* l = max(l, pl) */
147       SETARG_A(*previous, from);
148       SETARG_B(*previous, l - from);
149       return;
150     }  /* else go through */
151   }
152   luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0);  /* else no optimization */
153 }
154 
155 
156 /*
157 ** Gets the destination address of a jump instruction. Used to traverse
158 ** a list of jumps.
159 */
getjump(FuncState * fs,int pc)160 static int getjump (FuncState *fs, int pc) {
161   int offset = GETARG_sJ(fs->f->code[pc]);
162   if (offset == NO_JUMP)  /* point to itself represents end of list */
163     return NO_JUMP;  /* end of list */
164   else
165     return (pc+1)+offset;  /* turn offset into absolute position */
166 }
167 
168 
169 /*
170 ** Fix jump instruction at position 'pc' to jump to 'dest'.
171 ** (Jump addresses are relative in Lua)
172 */
fixjump(FuncState * fs,int pc,int dest)173 static void fixjump (FuncState *fs, int pc, int dest) {
174   Instruction *jmp = &fs->f->code[pc];
175   int offset = dest - (pc + 1);
176   lua_assert(dest != NO_JUMP);
177   if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ))
178     luaX_syntaxerror(fs->ls, "control structure too long");
179   lua_assert(GET_OPCODE(*jmp) == OP_JMP);
180   SETARG_sJ(*jmp, offset);
181 }
182 
183 
184 /*
185 ** Concatenate jump-list 'l2' into jump-list 'l1'
186 */
luaK_concat(FuncState * fs,int * l1,int l2)187 void luaK_concat (FuncState *fs, int *l1, int l2) {
188   if (l2 == NO_JUMP) return;  /* nothing to concatenate? */
189   else if (*l1 == NO_JUMP)  /* no original list? */
190     *l1 = l2;  /* 'l1' points to 'l2' */
191   else {
192     int list = *l1;
193     int next;
194     while ((next = getjump(fs, list)) != NO_JUMP)  /* find last element */
195       list = next;
196     fixjump(fs, list, l2);  /* last element links to 'l2' */
197   }
198 }
199 
200 
201 /*
202 ** Create a jump instruction and return its position, so its destination
203 ** can be fixed later (with 'fixjump').
204 */
luaK_jump(FuncState * fs)205 int luaK_jump (FuncState *fs) {
206   return codesJ(fs, OP_JMP, NO_JUMP, 0);
207 }
208 
209 
210 /*
211 ** Code a 'return' instruction
212 */
luaK_ret(FuncState * fs,int first,int nret)213 void luaK_ret (FuncState *fs, int first, int nret) {
214   OpCode op;
215   switch (nret) {
216     case 0: op = OP_RETURN0; break;
217     case 1: op = OP_RETURN1; break;
218     default: op = OP_RETURN; break;
219   }
220   luaK_codeABC(fs, op, first, nret + 1, 0);
221 }
222 
223 
224 /*
225 ** Code a "conditional jump", that is, a test or comparison opcode
226 ** followed by a jump. Return jump position.
227 */
condjump(FuncState * fs,OpCode op,int A,int B,int C,int k)228 static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) {
229   luaK_codeABCk(fs, op, A, B, C, k);
230   return luaK_jump(fs);
231 }
232 
233 
234 /*
235 ** returns current 'pc' and marks it as a jump target (to avoid wrong
236 ** optimizations with consecutive instructions not in the same basic block).
237 */
luaK_getlabel(FuncState * fs)238 int luaK_getlabel (FuncState *fs) {
239   fs->lasttarget = fs->pc;
240   return fs->pc;
241 }
242 
243 
244 /*
245 ** Returns the position of the instruction "controlling" a given
246 ** jump (that is, its condition), or the jump itself if it is
247 ** unconditional.
248 */
getjumpcontrol(FuncState * fs,int pc)249 static Instruction *getjumpcontrol (FuncState *fs, int pc) {
250   Instruction *pi = &fs->f->code[pc];
251   if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
252     return pi-1;
253   else
254     return pi;
255 }
256 
257 
258 /*
259 ** Patch destination register for a TESTSET instruction.
260 ** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
261 ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
262 ** register. Otherwise, change instruction to a simple 'TEST' (produces
263 ** no register value)
264 */
patchtestreg(FuncState * fs,int node,int reg)265 static int patchtestreg (FuncState *fs, int node, int reg) {
266   Instruction *i = getjumpcontrol(fs, node);
267   if (GET_OPCODE(*i) != OP_TESTSET)
268     return 0;  /* cannot patch other instructions */
269   if (reg != NO_REG && reg != GETARG_B(*i))
270     SETARG_A(*i, reg);
271   else {
272      /* no register to put value or register already has the value;
273         change instruction to simple test */
274     *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i));
275   }
276   return 1;
277 }
278 
279 
280 /*
281 ** Traverse a list of tests ensuring no one produces a value
282 */
removevalues(FuncState * fs,int list)283 static void removevalues (FuncState *fs, int list) {
284   for (; list != NO_JUMP; list = getjump(fs, list))
285       patchtestreg(fs, list, NO_REG);
286 }
287 
288 
289 /*
290 ** Traverse a list of tests, patching their destination address and
291 ** registers: tests producing values jump to 'vtarget' (and put their
292 ** values in 'reg'), other tests jump to 'dtarget'.
293 */
patchlistaux(FuncState * fs,int list,int vtarget,int reg,int dtarget)294 static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
295                           int dtarget) {
296   while (list != NO_JUMP) {
297     int next = getjump(fs, list);
298     if (patchtestreg(fs, list, reg))
299       fixjump(fs, list, vtarget);
300     else
301       fixjump(fs, list, dtarget);  /* jump to default target */
302     list = next;
303   }
304 }
305 
306 
307 /*
308 ** Path all jumps in 'list' to jump to 'target'.
309 ** (The assert means that we cannot fix a jump to a forward address
310 ** because we only know addresses once code is generated.)
311 */
luaK_patchlist(FuncState * fs,int list,int target)312 void luaK_patchlist (FuncState *fs, int list, int target) {
313   lua_assert(target <= fs->pc);
314   patchlistaux(fs, list, target, NO_REG, target);
315 }
316 
317 
luaK_patchtohere(FuncState * fs,int list)318 void luaK_patchtohere (FuncState *fs, int list) {
319   int hr = luaK_getlabel(fs);  /* mark "here" as a jump target */
320   luaK_patchlist(fs, list, hr);
321 }
322 
323 
324 /* limit for difference between lines in relative line info. */
325 #define LIMLINEDIFF	0x80
326 
327 
328 /*
329 ** Save line info for a new instruction. If difference from last line
330 ** does not fit in a byte, of after that many instructions, save a new
331 ** absolute line info; (in that case, the special value 'ABSLINEINFO'
332 ** in 'lineinfo' signals the existence of this absolute information.)
333 ** Otherwise, store the difference from last line in 'lineinfo'.
334 */
savelineinfo(FuncState * fs,Proto * f,int line)335 static void savelineinfo (FuncState *fs, Proto *f, int line) {
336   int linedif = line - fs->previousline;
337   int pc = fs->pc - 1;  /* last instruction coded */
338   if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ >= MAXIWTHABS) {
339     luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo,
340                     f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines");
341     f->abslineinfo[fs->nabslineinfo].pc = pc;
342     f->abslineinfo[fs->nabslineinfo++].line = line;
343     linedif = ABSLINEINFO;  /* signal that there is absolute information */
344     fs->iwthabs = 1;  /* restart counter */
345   }
346   luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
347                   MAX_INT, "opcodes");
348   f->lineinfo[pc] = linedif;
349   fs->previousline = line;  /* last line saved */
350 }
351 
352 
353 /*
354 ** Remove line information from the last instruction.
355 ** If line information for that instruction is absolute, set 'iwthabs'
356 ** above its max to force the new (replacing) instruction to have
357 ** absolute line info, too.
358 */
removelastlineinfo(FuncState * fs)359 static void removelastlineinfo (FuncState *fs) {
360   Proto *f = fs->f;
361   int pc = fs->pc - 1;  /* last instruction coded */
362   if (f->lineinfo[pc] != ABSLINEINFO) {  /* relative line info? */
363     fs->previousline -= f->lineinfo[pc];  /* correct last line saved */
364     fs->iwthabs--;  /* undo previous increment */
365   }
366   else {  /* absolute line information */
367     lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc);
368     fs->nabslineinfo--;  /* remove it */
369     fs->iwthabs = MAXIWTHABS + 1;  /* force next line info to be absolute */
370   }
371 }
372 
373 
374 /*
375 ** Remove the last instruction created, correcting line information
376 ** accordingly.
377 */
removelastinstruction(FuncState * fs)378 static void removelastinstruction (FuncState *fs) {
379   removelastlineinfo(fs);
380   fs->pc--;
381 }
382 
383 
384 /*
385 ** Emit instruction 'i', checking for array sizes and saving also its
386 ** line information. Return 'i' position.
387 */
luaK_code(FuncState * fs,Instruction i)388 int luaK_code (FuncState *fs, Instruction i) {
389   Proto *f = fs->f;
390   /* put new instruction in code array */
391   luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
392                   MAX_INT, "opcodes");
393   f->code[fs->pc++] = i;
394   savelineinfo(fs, f, fs->ls->lastline);
395   return fs->pc - 1;  /* index of new instruction */
396 }
397 
398 
399 /*
400 ** Format and emit an 'iABC' instruction. (Assertions check consistency
401 ** of parameters versus opcode.)
402 */
luaK_codeABCk(FuncState * fs,OpCode o,int a,int b,int c,int k)403 int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) {
404   lua_assert(getOpMode(o) == iABC);
405   lua_assert(a <= MAXARG_A && b <= MAXARG_B &&
406              c <= MAXARG_C && (k & ~1) == 0);
407   return luaK_code(fs, CREATE_ABCk(o, a, b, c, k));
408 }
409 
410 
411 /*
412 ** Format and emit an 'iABx' instruction.
413 */
luaK_codeABx(FuncState * fs,OpCode o,int a,unsigned int bc)414 int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
415   lua_assert(getOpMode(o) == iABx);
416   lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
417   return luaK_code(fs, CREATE_ABx(o, a, bc));
418 }
419 
420 
421 /*
422 ** Format and emit an 'iAsBx' instruction.
423 */
luaK_codeAsBx(FuncState * fs,OpCode o,int a,int bc)424 int luaK_codeAsBx (FuncState *fs, OpCode o, int a, int bc) {
425   unsigned int b = bc + OFFSET_sBx;
426   lua_assert(getOpMode(o) == iAsBx);
427   lua_assert(a <= MAXARG_A && b <= MAXARG_Bx);
428   return luaK_code(fs, CREATE_ABx(o, a, b));
429 }
430 
431 
432 /*
433 ** Format and emit an 'isJ' instruction.
434 */
codesJ(FuncState * fs,OpCode o,int sj,int k)435 static int codesJ (FuncState *fs, OpCode o, int sj, int k) {
436   unsigned int j = sj + OFFSET_sJ;
437   lua_assert(getOpMode(o) == isJ);
438   lua_assert(j <= MAXARG_sJ && (k & ~1) == 0);
439   return luaK_code(fs, CREATE_sJ(o, j, k));
440 }
441 
442 
443 /*
444 ** Emit an "extra argument" instruction (format 'iAx')
445 */
codeextraarg(FuncState * fs,int a)446 static int codeextraarg (FuncState *fs, int a) {
447   lua_assert(a <= MAXARG_Ax);
448   return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
449 }
450 
451 
452 /*
453 ** Emit a "load constant" instruction, using either 'OP_LOADK'
454 ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
455 ** instruction with "extra argument".
456 */
luaK_codek(FuncState * fs,int reg,int k)457 static int luaK_codek (FuncState *fs, int reg, int k) {
458   if (k <= MAXARG_Bx)
459     return luaK_codeABx(fs, OP_LOADK, reg, k);
460   else {
461     int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
462     codeextraarg(fs, k);
463     return p;
464   }
465 }
466 
467 
468 /*
469 ** Check register-stack level, keeping track of its maximum size
470 ** in field 'maxstacksize'
471 */
luaK_checkstack(FuncState * fs,int n)472 void luaK_checkstack (FuncState *fs, int n) {
473   int newstack = fs->freereg + n;
474   if (newstack > fs->f->maxstacksize) {
475     if (newstack >= MAXREGS)
476       luaX_syntaxerror(fs->ls,
477         "function or expression needs too many registers");
478     fs->f->maxstacksize = cast_byte(newstack);
479   }
480 }
481 
482 
483 /*
484 ** Reserve 'n' registers in register stack
485 */
luaK_reserveregs(FuncState * fs,int n)486 void luaK_reserveregs (FuncState *fs, int n) {
487   luaK_checkstack(fs, n);
488   fs->freereg += n;
489 }
490 
491 
492 /*
493 ** Free register 'reg', if it is neither a constant index nor
494 ** a local variable.
495 )
496 */
freereg(FuncState * fs,int reg)497 static void freereg (FuncState *fs, int reg) {
498   if (reg >= luaY_nvarstack(fs)) {
499     fs->freereg--;
500     lua_assert(reg == fs->freereg);
501   }
502 }
503 
504 
505 /*
506 ** Free two registers in proper order
507 */
freeregs(FuncState * fs,int r1,int r2)508 static void freeregs (FuncState *fs, int r1, int r2) {
509   if (r1 > r2) {
510     freereg(fs, r1);
511     freereg(fs, r2);
512   }
513   else {
514     freereg(fs, r2);
515     freereg(fs, r1);
516   }
517 }
518 
519 
520 /*
521 ** Free register used by expression 'e' (if any)
522 */
freeexp(FuncState * fs,expdesc * e)523 static void freeexp (FuncState *fs, expdesc *e) {
524   if (e->k == VNONRELOC)
525     freereg(fs, e->u.info);
526 }
527 
528 
529 /*
530 ** Free registers used by expressions 'e1' and 'e2' (if any) in proper
531 ** order.
532 */
freeexps(FuncState * fs,expdesc * e1,expdesc * e2)533 static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
534   int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
535   int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
536   freeregs(fs, r1, r2);
537 }
538 
539 
540 /*
541 ** Add constant 'v' to prototype's list of constants (field 'k').
542 ** Use scanner's table to cache position of constants in constant list
543 ** and try to reuse constants. Because some values should not be used
544 ** as keys (nil cannot be a key, integer keys can collapse with float
545 ** keys), the caller must provide a useful 'key' for indexing the cache.
546 ** Note that all functions share the same table, so entering or exiting
547 ** a function can make some indices wrong.
548 */
addk(FuncState * fs,TValue * key,TValue * v)549 static int addk (FuncState *fs, TValue *key, TValue *v) {
550   TValue val;
551   lua_State *L = fs->ls->L;
552   Proto *f = fs->f;
553   const TValue *idx = luaH_get(fs->ls->h, key);  /* query scanner table */
554   int k, oldsize;
555   if (ttisinteger(idx)) {  /* is there an index there? */
556     k = cast_int(ivalue(idx));
557     /* correct value? (warning: must distinguish floats from integers!) */
558     if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) &&
559                       luaV_rawequalobj(&f->k[k], v))
560       return k;  /* reuse index */
561   }
562   /* constant not found; create a new entry */
563   oldsize = f->sizek;
564   k = fs->nk;
565   /* numerical value does not need GC barrier;
566      table has no metatable, so it does not need to invalidate cache */
567   setivalue(&val, k);
568   luaH_finishset(L, fs->ls->h, key, idx, &val);
569   luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
570   while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
571   setobj(L, &f->k[k], v);
572   fs->nk++;
573   luaC_barrier(L, f, v);
574   return k;
575 }
576 
577 
578 /*
579 ** Add a string to list of constants and return its index.
580 */
stringK(FuncState * fs,TString * s)581 static int stringK (FuncState *fs, TString *s) {
582   TValue o;
583   setsvalue(fs->ls->L, &o, s);
584   return addk(fs, &o, &o);  /* use string itself as key */
585 }
586 
587 
588 /*
589 ** Add an integer to list of constants and return its index.
590 */
luaK_intK(FuncState * fs,lua_Integer n)591 static int luaK_intK (FuncState *fs, lua_Integer n) {
592   TValue o;
593   setivalue(&o, n);
594   return addk(fs, &o, &o);  /* use integer itself as key */
595 }
596 
597 
598 #ifndef _KERNEL
599 /*
600 ** Add a float to list of constants and return its index. Floats
601 ** with integral values need a different key, to avoid collision
602 ** with actual integers. To that, we add to the number its smaller
603 ** power-of-two fraction that is still significant in its scale.
604 ** For doubles, that would be 1/2^52.
605 ** (This method is not bulletproof: there may be another float
606 ** with that value, and for floats larger than 2^53 the result is
607 ** still an integer. At worst, this only wastes an entry with
608 ** a duplicate.)
609 */
luaK_numberK(FuncState * fs,lua_Number r)610 static int luaK_numberK (FuncState *fs, lua_Number r) {
611   TValue o;
612   lua_Integer ik;
613   setfltvalue(&o, r);
614   if (!luaV_flttointeger(r, &ik, F2Ieq))  /* not an integral value? */
615     return addk(fs, &o, &o);  /* use number itself as key */
616   else {  /* must build an alternative key */
617     const int nbm = l_floatatt(MANT_DIG);
618     const lua_Number q = l_mathop(ldexp)(l_mathop(1.0), -nbm + 1);
619     const lua_Number k = (ik == 0) ? q : r + r*q;  /* new key */
620     TValue kv;
621     setfltvalue(&kv, k);
622     /* result is not an integral value, unless value is too large */
623     lua_assert(!luaV_flttointeger(k, &ik, F2Ieq) ||
624                 l_mathop(fabs)(r) >= l_mathop(1e6));
625     return addk(fs, &kv, &o);
626   }
627 }
628 #endif /* _KERNEL */
629 
630 
631 /*
632 ** Add a false to list of constants and return its index.
633 */
boolF(FuncState * fs)634 static int boolF (FuncState *fs) {
635   TValue o;
636   setbfvalue(&o);
637   return addk(fs, &o, &o);  /* use boolean itself as key */
638 }
639 
640 
641 /*
642 ** Add a true to list of constants and return its index.
643 */
boolT(FuncState * fs)644 static int boolT (FuncState *fs) {
645   TValue o;
646   setbtvalue(&o);
647   return addk(fs, &o, &o);  /* use boolean itself as key */
648 }
649 
650 
651 /*
652 ** Add nil to list of constants and return its index.
653 */
nilK(FuncState * fs)654 static int nilK (FuncState *fs) {
655   TValue k, v;
656   setnilvalue(&v);
657   /* cannot use nil as key; instead use table itself to represent nil */
658   sethvalue(fs->ls->L, &k, fs->ls->h);
659   return addk(fs, &k, &v);
660 }
661 
662 
663 /*
664 ** Check whether 'i' can be stored in an 'sC' operand. Equivalent to
665 ** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of
666 ** overflows in the hidden addition inside 'int2sC'.
667 */
fitsC(lua_Integer i)668 static int fitsC (lua_Integer i) {
669   return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C));
670 }
671 
672 
673 /*
674 ** Check whether 'i' can be stored in an 'sBx' operand.
675 */
fitsBx(lua_Integer i)676 static int fitsBx (lua_Integer i) {
677   return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx);
678 }
679 
680 
luaK_int(FuncState * fs,int reg,lua_Integer i)681 void luaK_int (FuncState *fs, int reg, lua_Integer i) {
682   if (fitsBx(i))
683     luaK_codeAsBx(fs, OP_LOADI, reg, cast_int(i));
684   else
685     luaK_codek(fs, reg, luaK_intK(fs, i));
686 }
687 
688 
689 #ifndef _KERNEL
luaK_float(FuncState * fs,int reg,lua_Number f)690 static void luaK_float (FuncState *fs, int reg, lua_Number f) {
691   lua_Integer fi;
692   if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi))
693     luaK_codeAsBx(fs, OP_LOADF, reg, cast_int(fi));
694   else
695     luaK_codek(fs, reg, luaK_numberK(fs, f));
696 }
697 #endif /* _KERNEL */
698 
699 
700 /*
701 ** Convert a constant in 'v' into an expression description 'e'
702 */
const2exp(TValue * v,expdesc * e)703 static void const2exp (TValue *v, expdesc *e) {
704   switch (ttypetag(v)) {
705     case LUA_VNUMINT:
706       e->k = VKINT; e->u.ival = ivalue(v);
707       break;
708 #ifndef _KERNEL
709     case LUA_VNUMFLT:
710       e->k = VKFLT; e->u.nval = fltvalue(v);
711       break;
712 #endif /* _KERNEL */
713     case LUA_VFALSE:
714       e->k = VFALSE;
715       break;
716     case LUA_VTRUE:
717       e->k = VTRUE;
718       break;
719     case LUA_VNIL:
720       e->k = VNIL;
721       break;
722     case LUA_VSHRSTR:  case LUA_VLNGSTR:
723       e->k = VKSTR; e->u.strval = tsvalue(v);
724       break;
725     default: lua_assert(0);
726   }
727 }
728 
729 
730 /*
731 ** Fix an expression to return the number of results 'nresults'.
732 ** 'e' must be a multi-ret expression (function call or vararg).
733 */
luaK_setreturns(FuncState * fs,expdesc * e,int nresults)734 void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
735   Instruction *pc = &getinstruction(fs, e);
736   if (e->k == VCALL)  /* expression is an open function call? */
737     SETARG_C(*pc, nresults + 1);
738   else {
739     lua_assert(e->k == VVARARG);
740     SETARG_C(*pc, nresults + 1);
741     SETARG_A(*pc, fs->freereg);
742     luaK_reserveregs(fs, 1);
743   }
744 }
745 
746 
747 /*
748 ** Convert a VKSTR to a VK
749 */
str2K(FuncState * fs,expdesc * e)750 static void str2K (FuncState *fs, expdesc *e) {
751   lua_assert(e->k == VKSTR);
752   e->u.info = stringK(fs, e->u.strval);
753   e->k = VK;
754 }
755 
756 
757 /*
758 ** Fix an expression to return one result.
759 ** If expression is not a multi-ret expression (function call or
760 ** vararg), it already returns one result, so nothing needs to be done.
761 ** Function calls become VNONRELOC expressions (as its result comes
762 ** fixed in the base register of the call), while vararg expressions
763 ** become VRELOC (as OP_VARARG puts its results where it wants).
764 ** (Calls are created returning one result, so that does not need
765 ** to be fixed.)
766 */
luaK_setoneret(FuncState * fs,expdesc * e)767 void luaK_setoneret (FuncState *fs, expdesc *e) {
768   if (e->k == VCALL) {  /* expression is an open function call? */
769     /* already returns 1 value */
770     lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
771     e->k = VNONRELOC;  /* result has fixed position */
772     e->u.info = GETARG_A(getinstruction(fs, e));
773   }
774   else if (e->k == VVARARG) {
775     SETARG_C(getinstruction(fs, e), 2);
776     e->k = VRELOC;  /* can relocate its simple result */
777   }
778 }
779 
780 
781 /*
782 ** Ensure that expression 'e' is not a variable (nor a <const>).
783 ** (Expression still may have jump lists.)
784 */
luaK_dischargevars(FuncState * fs,expdesc * e)785 void luaK_dischargevars (FuncState *fs, expdesc *e) {
786   switch (e->k) {
787     case VCONST: {
788       const2exp(const2val(fs, e), e);
789       break;
790     }
791     case VLOCAL: {  /* already in a register */
792       e->u.info = e->u.var.ridx;
793       e->k = VNONRELOC;  /* becomes a non-relocatable value */
794       break;
795     }
796     case VUPVAL: {  /* move value to some (pending) register */
797       e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
798       e->k = VRELOC;
799       break;
800     }
801     case VINDEXUP: {
802       e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
803       e->k = VRELOC;
804       break;
805     }
806     case VINDEXI: {
807       freereg(fs, e->u.ind.t);
808       e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
809       e->k = VRELOC;
810       break;
811     }
812     case VINDEXSTR: {
813       freereg(fs, e->u.ind.t);
814       e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
815       e->k = VRELOC;
816       break;
817     }
818     case VINDEXED: {
819       freeregs(fs, e->u.ind.t, e->u.ind.idx);
820       e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
821       e->k = VRELOC;
822       break;
823     }
824     case VVARARG: case VCALL: {
825       luaK_setoneret(fs, e);
826       break;
827     }
828     default: break;  /* there is one value available (somewhere) */
829   }
830 }
831 
832 
833 /*
834 ** Ensure expression value is in register 'reg', making 'e' a
835 ** non-relocatable expression.
836 ** (Expression still may have jump lists.)
837 */
discharge2reg(FuncState * fs,expdesc * e,int reg)838 static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
839   luaK_dischargevars(fs, e);
840   switch (e->k) {
841     case VNIL: {
842       luaK_nil(fs, reg, 1);
843       break;
844     }
845     case VFALSE: {
846       luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0);
847       break;
848     }
849     case VTRUE: {
850       luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0);
851       break;
852     }
853     case VKSTR: {
854       str2K(fs, e);
855     }  /* FALLTHROUGH */
856     case VK: {
857       luaK_codek(fs, reg, e->u.info);
858       break;
859     }
860 #ifndef _KERNEL
861     case VKFLT: {
862       luaK_float(fs, reg, e->u.nval);
863       break;
864     }
865 #endif /* _KERNEL */
866     case VKINT: {
867       luaK_int(fs, reg, e->u.ival);
868       break;
869     }
870     case VRELOC: {
871       Instruction *pc = &getinstruction(fs, e);
872       SETARG_A(*pc, reg);  /* instruction will put result in 'reg' */
873       break;
874     }
875     case VNONRELOC: {
876       if (reg != e->u.info)
877         luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
878       break;
879     }
880     default: {
881       lua_assert(e->k == VJMP);
882       return;  /* nothing to do... */
883     }
884   }
885   e->u.info = reg;
886   e->k = VNONRELOC;
887 }
888 
889 
890 /*
891 ** Ensure expression value is in a register, making 'e' a
892 ** non-relocatable expression.
893 ** (Expression still may have jump lists.)
894 */
discharge2anyreg(FuncState * fs,expdesc * e)895 static void discharge2anyreg (FuncState *fs, expdesc *e) {
896   if (e->k != VNONRELOC) {  /* no fixed register yet? */
897     luaK_reserveregs(fs, 1);  /* get a register */
898     discharge2reg(fs, e, fs->freereg-1);  /* put value there */
899   }
900 }
901 
902 
code_loadbool(FuncState * fs,int A,OpCode op)903 static int code_loadbool (FuncState *fs, int A, OpCode op) {
904   luaK_getlabel(fs);  /* those instructions may be jump targets */
905   return luaK_codeABC(fs, op, A, 0, 0);
906 }
907 
908 
909 /*
910 ** check whether list has any jump that do not produce a value
911 ** or produce an inverted value
912 */
need_value(FuncState * fs,int list)913 static int need_value (FuncState *fs, int list) {
914   for (; list != NO_JUMP; list = getjump(fs, list)) {
915     Instruction i = *getjumpcontrol(fs, list);
916     if (GET_OPCODE(i) != OP_TESTSET) return 1;
917   }
918   return 0;  /* not found */
919 }
920 
921 
922 /*
923 ** Ensures final expression result (which includes results from its
924 ** jump lists) is in register 'reg'.
925 ** If expression has jumps, need to patch these jumps either to
926 ** its final position or to "load" instructions (for those tests
927 ** that do not produce values).
928 */
exp2reg(FuncState * fs,expdesc * e,int reg)929 static void exp2reg (FuncState *fs, expdesc *e, int reg) {
930   discharge2reg(fs, e, reg);
931   if (e->k == VJMP)  /* expression itself is a test? */
932     luaK_concat(fs, &e->t, e->u.info);  /* put this jump in 't' list */
933   if (hasjumps(e)) {
934     int final;  /* position after whole expression */
935     int p_f = NO_JUMP;  /* position of an eventual LOAD false */
936     int p_t = NO_JUMP;  /* position of an eventual LOAD true */
937     if (need_value(fs, e->t) || need_value(fs, e->f)) {
938       int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
939       p_f = code_loadbool(fs, reg, OP_LFALSESKIP);  /* skip next inst. */
940       p_t = code_loadbool(fs, reg, OP_LOADTRUE);
941       /* jump around these booleans if 'e' is not a test */
942       luaK_patchtohere(fs, fj);
943     }
944     final = luaK_getlabel(fs);
945     patchlistaux(fs, e->f, final, reg, p_f);
946     patchlistaux(fs, e->t, final, reg, p_t);
947   }
948   e->f = e->t = NO_JUMP;
949   e->u.info = reg;
950   e->k = VNONRELOC;
951 }
952 
953 
954 /*
955 ** Ensures final expression result is in next available register.
956 */
luaK_exp2nextreg(FuncState * fs,expdesc * e)957 void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
958   luaK_dischargevars(fs, e);
959   freeexp(fs, e);
960   luaK_reserveregs(fs, 1);
961   exp2reg(fs, e, fs->freereg - 1);
962 }
963 
964 
965 /*
966 ** Ensures final expression result is in some (any) register
967 ** and return that register.
968 */
luaK_exp2anyreg(FuncState * fs,expdesc * e)969 int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
970   luaK_dischargevars(fs, e);
971   if (e->k == VNONRELOC) {  /* expression already has a register? */
972     if (!hasjumps(e))  /* no jumps? */
973       return e->u.info;  /* result is already in a register */
974     if (e->u.info >= luaY_nvarstack(fs)) {  /* reg. is not a local? */
975       exp2reg(fs, e, e->u.info);  /* put final result in it */
976       return e->u.info;
977     }
978     /* else expression has jumps and cannot change its register
979        to hold the jump values, because it is a local variable.
980        Go through to the default case. */
981   }
982   luaK_exp2nextreg(fs, e);  /* default: use next available register */
983   return e->u.info;
984 }
985 
986 
987 /*
988 ** Ensures final expression result is either in a register
989 ** or in an upvalue.
990 */
luaK_exp2anyregup(FuncState * fs,expdesc * e)991 void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
992   if (e->k != VUPVAL || hasjumps(e))
993     luaK_exp2anyreg(fs, e);
994 }
995 
996 
997 /*
998 ** Ensures final expression result is either in a register
999 ** or it is a constant.
1000 */
luaK_exp2val(FuncState * fs,expdesc * e)1001 void luaK_exp2val (FuncState *fs, expdesc *e) {
1002   if (hasjumps(e))
1003     luaK_exp2anyreg(fs, e);
1004   else
1005     luaK_dischargevars(fs, e);
1006 }
1007 
1008 
1009 /*
1010 ** Try to make 'e' a K expression with an index in the range of R/K
1011 ** indices. Return true iff succeeded.
1012 */
luaK_exp2K(FuncState * fs,expdesc * e)1013 static int luaK_exp2K (FuncState *fs, expdesc *e) {
1014   if (!hasjumps(e)) {
1015     int info;
1016     switch (e->k) {  /* move constants to 'k' */
1017       case VTRUE: info = boolT(fs); break;
1018       case VFALSE: info = boolF(fs); break;
1019       case VNIL: info = nilK(fs); break;
1020       case VKINT: info = luaK_intK(fs, e->u.ival); break;
1021 #ifndef _KERNEL
1022       case VKFLT: info = luaK_numberK(fs, e->u.nval); break;
1023 #endif /* _KERNEL */
1024       case VKSTR: info = stringK(fs, e->u.strval); break;
1025       case VK: info = e->u.info; break;
1026       default: return 0;  /* not a constant */
1027     }
1028     if (info <= MAXINDEXRK) {  /* does constant fit in 'argC'? */
1029       e->k = VK;  /* make expression a 'K' expression */
1030       e->u.info = info;
1031       return 1;
1032     }
1033   }
1034   /* else, expression doesn't fit; leave it unchanged */
1035   return 0;
1036 }
1037 
1038 
1039 /*
1040 ** Ensures final expression result is in a valid R/K index
1041 ** (that is, it is either in a register or in 'k' with an index
1042 ** in the range of R/K indices).
1043 ** Returns 1 iff expression is K.
1044 */
luaK_exp2RK(FuncState * fs,expdesc * e)1045 int luaK_exp2RK (FuncState *fs, expdesc *e) {
1046   if (luaK_exp2K(fs, e))
1047     return 1;
1048   else {  /* not a constant in the right range: put it in a register */
1049     luaK_exp2anyreg(fs, e);
1050     return 0;
1051   }
1052 }
1053 
1054 
codeABRK(FuncState * fs,OpCode o,int a,int b,expdesc * ec)1055 static void codeABRK (FuncState *fs, OpCode o, int a, int b,
1056                       expdesc *ec) {
1057   int k = luaK_exp2RK(fs, ec);
1058   luaK_codeABCk(fs, o, a, b, ec->u.info, k);
1059 }
1060 
1061 
1062 /*
1063 ** Generate code to store result of expression 'ex' into variable 'var'.
1064 */
luaK_storevar(FuncState * fs,expdesc * var,expdesc * ex)1065 void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
1066   switch (var->k) {
1067     case VLOCAL: {
1068       freeexp(fs, ex);
1069       exp2reg(fs, ex, var->u.var.ridx);  /* compute 'ex' into proper place */
1070       return;
1071     }
1072     case VUPVAL: {
1073       int e = luaK_exp2anyreg(fs, ex);
1074       luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
1075       break;
1076     }
1077     case VINDEXUP: {
1078       codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex);
1079       break;
1080     }
1081     case VINDEXI: {
1082       codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex);
1083       break;
1084     }
1085     case VINDEXSTR: {
1086       codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex);
1087       break;
1088     }
1089     case VINDEXED: {
1090       codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex);
1091       break;
1092     }
1093     default: lua_assert(0);  /* invalid var kind to store */
1094   }
1095   freeexp(fs, ex);
1096 }
1097 
1098 
1099 /*
1100 ** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
1101 */
luaK_self(FuncState * fs,expdesc * e,expdesc * key)1102 void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
1103   int ereg;
1104   luaK_exp2anyreg(fs, e);
1105   ereg = e->u.info;  /* register where 'e' was placed */
1106   freeexp(fs, e);
1107   e->u.info = fs->freereg;  /* base register for op_self */
1108   e->k = VNONRELOC;  /* self expression has a fixed register */
1109   luaK_reserveregs(fs, 2);  /* function and 'self' produced by op_self */
1110   codeABRK(fs, OP_SELF, e->u.info, ereg, key);
1111   freeexp(fs, key);
1112 }
1113 
1114 
1115 /*
1116 ** Negate condition 'e' (where 'e' is a comparison).
1117 */
negatecondition(FuncState * fs,expdesc * e)1118 static void negatecondition (FuncState *fs, expdesc *e) {
1119   Instruction *pc = getjumpcontrol(fs, e->u.info);
1120   lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
1121                                            GET_OPCODE(*pc) != OP_TEST);
1122   SETARG_k(*pc, (GETARG_k(*pc) ^ 1));
1123 }
1124 
1125 
1126 /*
1127 ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
1128 ** is true, code will jump if 'e' is true.) Return jump position.
1129 ** Optimize when 'e' is 'not' something, inverting the condition
1130 ** and removing the 'not'.
1131 */
jumponcond(FuncState * fs,expdesc * e,int cond)1132 static int jumponcond (FuncState *fs, expdesc *e, int cond) {
1133   if (e->k == VRELOC) {
1134     Instruction ie = getinstruction(fs, e);
1135     if (GET_OPCODE(ie) == OP_NOT) {
1136       removelastinstruction(fs);  /* remove previous OP_NOT */
1137       return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond);
1138     }
1139     /* else go through */
1140   }
1141   discharge2anyreg(fs, e);
1142   freeexp(fs, e);
1143   return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond);
1144 }
1145 
1146 
1147 /*
1148 ** Emit code to go through if 'e' is true, jump otherwise.
1149 */
luaK_goiftrue(FuncState * fs,expdesc * e)1150 void luaK_goiftrue (FuncState *fs, expdesc *e) {
1151   int pc;  /* pc of new jump */
1152   luaK_dischargevars(fs, e);
1153   switch (e->k) {
1154     case VJMP: {  /* condition? */
1155       negatecondition(fs, e);  /* jump when it is false */
1156       pc = e->u.info;  /* save jump position */
1157       break;
1158     }
1159 #ifndef _KERNEL
1160     case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
1161 #else /* _KERNEL */
1162     case VK: case VKINT: case VKSTR: case VTRUE: {
1163 #endif /* _KERNEL */
1164       pc = NO_JUMP;  /* always true; do nothing */
1165       break;
1166     }
1167     default: {
1168       pc = jumponcond(fs, e, 0);  /* jump when false */
1169       break;
1170     }
1171   }
1172   luaK_concat(fs, &e->f, pc);  /* insert new jump in false list */
1173   luaK_patchtohere(fs, e->t);  /* true list jumps to here (to go through) */
1174   e->t = NO_JUMP;
1175 }
1176 
1177 
1178 /*
1179 ** Emit code to go through if 'e' is false, jump otherwise.
1180 */
1181 void luaK_goiffalse (FuncState *fs, expdesc *e) {
1182   int pc;  /* pc of new jump */
1183   luaK_dischargevars(fs, e);
1184   switch (e->k) {
1185     case VJMP: {
1186       pc = e->u.info;  /* already jump if true */
1187       break;
1188     }
1189     case VNIL: case VFALSE: {
1190       pc = NO_JUMP;  /* always false; do nothing */
1191       break;
1192     }
1193     default: {
1194       pc = jumponcond(fs, e, 1);  /* jump if true */
1195       break;
1196     }
1197   }
1198   luaK_concat(fs, &e->t, pc);  /* insert new jump in 't' list */
1199   luaK_patchtohere(fs, e->f);  /* false list jumps to here (to go through) */
1200   e->f = NO_JUMP;
1201 }
1202 
1203 
1204 /*
1205 ** Code 'not e', doing constant folding.
1206 */
1207 static void codenot (FuncState *fs, expdesc *e) {
1208   switch (e->k) {
1209     case VNIL: case VFALSE: {
1210       e->k = VTRUE;  /* true == not nil == not false */
1211       break;
1212     }
1213 #ifndef _KERNEL
1214     case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
1215 #else /* _KERNEL */
1216     case VK: case VKINT: case VKSTR: case VTRUE: {
1217 #endif /* _KERNEL */
1218       e->k = VFALSE;  /* false == not "x" == not 0.5 == not 1 == not true */
1219       break;
1220     }
1221     case VJMP: {
1222       negatecondition(fs, e);
1223       break;
1224     }
1225     case VRELOC:
1226     case VNONRELOC: {
1227       discharge2anyreg(fs, e);
1228       freeexp(fs, e);
1229       e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
1230       e->k = VRELOC;
1231       break;
1232     }
1233     default: lua_assert(0);  /* cannot happen */
1234   }
1235   /* interchange true and false lists */
1236   { int temp = e->f; e->f = e->t; e->t = temp; }
1237   removevalues(fs, e->f);  /* values are useless when negated */
1238   removevalues(fs, e->t);
1239 }
1240 
1241 
1242 /*
1243 ** Check whether expression 'e' is a small literal string
1244 */
1245 static int isKstr (FuncState *fs, expdesc *e) {
1246   return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B &&
1247           ttisshrstring(&fs->f->k[e->u.info]));
1248 }
1249 
1250 /*
1251 ** Check whether expression 'e' is a literal integer.
1252 */
1253 int luaK_isKint (expdesc *e) {
1254   return (e->k == VKINT && !hasjumps(e));
1255 }
1256 
1257 
1258 /*
1259 ** Check whether expression 'e' is a literal integer in
1260 ** proper range to fit in register C
1261 */
1262 static int isCint (expdesc *e) {
1263   return luaK_isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
1264 }
1265 
1266 
1267 /*
1268 ** Check whether expression 'e' is a literal integer in
1269 ** proper range to fit in register sC
1270 */
1271 static int isSCint (expdesc *e) {
1272   return luaK_isKint(e) && fitsC(e->u.ival);
1273 }
1274 
1275 
1276 /*
1277 ** Check whether expression 'e' is a literal integer or float in
1278 ** proper range to fit in a register (sB or sC).
1279 */
1280 static int isSCnumber (expdesc *e, int *pi, int *isfloat) {
1281   lua_Integer i;
1282   if (e->k == VKINT)
1283     i = e->u.ival;
1284 #ifndef _KERNEL
1285   else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq))
1286     *isfloat = 1;
1287 #endif /* _KERNEL */
1288   else
1289     return 0;  /* not a number */
1290   if (!hasjumps(e) && fitsC(i)) {
1291     *pi = int2sC(cast_int(i));
1292     return 1;
1293   }
1294   else
1295     return 0;
1296 }
1297 
1298 
1299 /*
1300 ** Create expression 't[k]'. 't' must have its final result already in a
1301 ** register or upvalue. Upvalues can only be indexed by literal strings.
1302 ** Keys can be literal strings in the constant table or arbitrary
1303 ** values in registers.
1304 */
1305 void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
1306   if (k->k == VKSTR)
1307     str2K(fs, k);
1308   lua_assert(!hasjumps(t) &&
1309              (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL));
1310   if (t->k == VUPVAL && !isKstr(fs, k))  /* upvalue indexed by non 'Kstr'? */
1311     luaK_exp2anyreg(fs, t);  /* put it in a register */
1312   if (t->k == VUPVAL) {
1313     t->u.ind.t = t->u.info;  /* upvalue index */
1314     t->u.ind.idx = k->u.info;  /* literal string */
1315     t->k = VINDEXUP;
1316   }
1317   else {
1318     /* register index of the table */
1319     t->u.ind.t = (t->k == VLOCAL) ? t->u.var.ridx: t->u.info;
1320     if (isKstr(fs, k)) {
1321       t->u.ind.idx = k->u.info;  /* literal string */
1322       t->k = VINDEXSTR;
1323     }
1324     else if (isCint(k)) {
1325       t->u.ind.idx = cast_int(k->u.ival);  /* int. constant in proper range */
1326       t->k = VINDEXI;
1327     }
1328     else {
1329       t->u.ind.idx = luaK_exp2anyreg(fs, k);  /* register */
1330       t->k = VINDEXED;
1331     }
1332   }
1333 }
1334 
1335 
1336 /*
1337 ** Return false if folding can raise an error.
1338 ** Bitwise operations need operands convertible to integers; division
1339 ** operations cannot have 0 as divisor.
1340 */
1341 static int validop (int op, TValue *v1, TValue *v2) {
1342   switch (op) {
1343     case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
1344     case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: {  /* conversion errors */
1345       lua_Integer i;
1346       return (luaV_tointegerns(v1, &i, LUA_FLOORN2I) &&
1347               luaV_tointegerns(v2, &i, LUA_FLOORN2I));
1348     }
1349 #ifndef _KERNEL
1350     case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD:  /* division by 0 */
1351 #else /* _KERNEL */
1352     case LUA_OPIDIV: case LUA_OPMOD:  /* division by 0 */
1353 #endif /* _KERNEL */
1354       return (nvalue(v2) != 0);
1355     default: return 1;  /* everything else is valid */
1356   }
1357 }
1358 
1359 
1360 /*
1361 ** Try to "constant-fold" an operation; return 1 iff successful.
1362 ** (In this case, 'e1' has the final result.)
1363 */
1364 static int constfolding (FuncState *fs, int op, expdesc *e1,
1365                                         const expdesc *e2) {
1366   TValue v1, v2, res;
1367   if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
1368     return 0;  /* non-numeric operands or not safe to fold */
1369   luaO_rawarith(fs->ls->L, op, &v1, &v2, &res);  /* does operation */
1370   if (ttisinteger(&res)) {
1371     e1->k = VKINT;
1372     e1->u.ival = ivalue(&res);
1373   }
1374   else {  /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
1375 #ifndef _KERNEL
1376     lua_Number n = fltvalue(&res);
1377     if (luai_numisnan(n) || n == 0)
1378       return 0;
1379     e1->k = VKFLT;
1380     e1->u.nval = n;
1381 #else /* _KERNEL */
1382     return 0;  /* if it is not integer, we must fail */
1383 #endif /* _KERNEL */
1384   }
1385   return 1;
1386 }
1387 
1388 
1389 /*
1390 ** Convert a BinOpr to an OpCode  (ORDER OPR - ORDER OP)
1391 */
1392 l_sinline OpCode binopr2op (BinOpr opr, BinOpr baser, OpCode base) {
1393   lua_assert(baser <= opr &&
1394             ((baser == OPR_ADD && opr <= OPR_SHR) ||
1395              (baser == OPR_LT && opr <= OPR_LE)));
1396   return cast(OpCode, (cast_int(opr) - cast_int(baser)) + cast_int(base));
1397 }
1398 
1399 
1400 /*
1401 ** Convert a UnOpr to an OpCode  (ORDER OPR - ORDER OP)
1402 */
1403 l_sinline OpCode unopr2op (UnOpr opr) {
1404   return cast(OpCode, (cast_int(opr) - cast_int(OPR_MINUS)) +
1405                                        cast_int(OP_UNM));
1406 }
1407 
1408 
1409 /*
1410 ** Convert a BinOpr to a tag method  (ORDER OPR - ORDER TM)
1411 */
1412 l_sinline TMS binopr2TM (BinOpr opr) {
1413   lua_assert(OPR_ADD <= opr && opr <= OPR_SHR);
1414   return cast(TMS, (cast_int(opr) - cast_int(OPR_ADD)) + cast_int(TM_ADD));
1415 }
1416 
1417 
1418 /*
1419 ** Emit code for unary expressions that "produce values"
1420 ** (everything but 'not').
1421 ** Expression to produce final result will be encoded in 'e'.
1422 */
1423 static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
1424   int r = luaK_exp2anyreg(fs, e);  /* opcodes operate only on registers */
1425   freeexp(fs, e);
1426   e->u.info = luaK_codeABC(fs, op, 0, r, 0);  /* generate opcode */
1427   e->k = VRELOC;  /* all those operations are relocatable */
1428   luaK_fixline(fs, line);
1429 }
1430 
1431 
1432 /*
1433 ** Emit code for binary expressions that "produce values"
1434 ** (everything but logical operators 'and'/'or' and comparison
1435 ** operators).
1436 ** Expression to produce final result will be encoded in 'e1'.
1437 */
1438 static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2,
1439                              OpCode op, int v2, int flip, int line,
1440                              OpCode mmop, TMS event) {
1441   int v1 = luaK_exp2anyreg(fs, e1);
1442   int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0);
1443   freeexps(fs, e1, e2);
1444   e1->u.info = pc;
1445   e1->k = VRELOC;  /* all those operations are relocatable */
1446   luaK_fixline(fs, line);
1447   luaK_codeABCk(fs, mmop, v1, v2, event, flip);  /* to call metamethod */
1448   luaK_fixline(fs, line);
1449 }
1450 
1451 
1452 /*
1453 ** Emit code for binary expressions that "produce values" over
1454 ** two registers.
1455 */
1456 static void codebinexpval (FuncState *fs, BinOpr opr,
1457                            expdesc *e1, expdesc *e2, int line) {
1458   OpCode op = binopr2op(opr, OPR_ADD, OP_ADD);
1459   int v2 = luaK_exp2anyreg(fs, e2);  /* make sure 'e2' is in a register */
1460   /* 'e1' must be already in a register or it is a constant */
1461   lua_assert((VNIL <= e1->k && e1->k <= VKSTR) ||
1462              e1->k == VNONRELOC || e1->k == VRELOC);
1463   lua_assert(OP_ADD <= op && op <= OP_SHR);
1464   finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN, binopr2TM(opr));
1465 }
1466 
1467 
1468 /*
1469 ** Code binary operators with immediate operands.
1470 */
1471 static void codebini (FuncState *fs, OpCode op,
1472                        expdesc *e1, expdesc *e2, int flip, int line,
1473                        TMS event) {
1474   int v2 = int2sC(cast_int(e2->u.ival));  /* immediate operand */
1475   lua_assert(e2->k == VKINT);
1476   finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event);
1477 }
1478 
1479 
1480 /*
1481 ** Code binary operators with K operand.
1482 */
1483 static void codebinK (FuncState *fs, BinOpr opr,
1484                       expdesc *e1, expdesc *e2, int flip, int line) {
1485   TMS event = binopr2TM(opr);
1486   int v2 = e2->u.info;  /* K index */
1487   OpCode op = binopr2op(opr, OPR_ADD, OP_ADDK);
1488   finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event);
1489 }
1490 
1491 
1492 /* Try to code a binary operator negating its second operand.
1493 ** For the metamethod, 2nd operand must keep its original value.
1494 */
1495 static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2,
1496                              OpCode op, int line, TMS event) {
1497   if (!luaK_isKint(e2))
1498     return 0;  /* not an integer constant */
1499   else {
1500     lua_Integer i2 = e2->u.ival;
1501     if (!(fitsC(i2) && fitsC(-i2)))
1502       return 0;  /* not in the proper range */
1503     else {  /* operating a small integer constant */
1504       int v2 = cast_int(i2);
1505       finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event);
1506       /* correct metamethod argument */
1507       SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2));
1508       return 1;  /* successfully coded */
1509     }
1510   }
1511 }
1512 
1513 
1514 static void swapexps (expdesc *e1, expdesc *e2) {
1515   expdesc temp = *e1; *e1 = *e2; *e2 = temp;  /* swap 'e1' and 'e2' */
1516 }
1517 
1518 
1519 /*
1520 ** Code binary operators with no constant operand.
1521 */
1522 static void codebinNoK (FuncState *fs, BinOpr opr,
1523                         expdesc *e1, expdesc *e2, int flip, int line) {
1524   if (flip)
1525     swapexps(e1, e2);  /* back to original order */
1526   codebinexpval(fs, opr, e1, e2, line);  /* use standard operators */
1527 }
1528 
1529 
1530 /*
1531 ** Code arithmetic operators ('+', '-', ...). If second operand is a
1532 ** constant in the proper range, use variant opcodes with K operands.
1533 */
1534 static void codearith (FuncState *fs, BinOpr opr,
1535                        expdesc *e1, expdesc *e2, int flip, int line) {
1536   if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2))  /* K operand? */
1537     codebinK(fs, opr, e1, e2, flip, line);
1538   else  /* 'e2' is neither an immediate nor a K operand */
1539     codebinNoK(fs, opr, e1, e2, flip, line);
1540 }
1541 
1542 
1543 /*
1544 ** Code commutative operators ('+', '*'). If first operand is a
1545 ** numeric constant, change order of operands to try to use an
1546 ** immediate or K operator.
1547 */
1548 static void codecommutative (FuncState *fs, BinOpr op,
1549                              expdesc *e1, expdesc *e2, int line) {
1550   int flip = 0;
1551   if (tonumeral(e1, NULL)) {  /* is first operand a numeric constant? */
1552     swapexps(e1, e2);  /* change order */
1553     flip = 1;
1554   }
1555   if (op == OPR_ADD && isSCint(e2))  /* immediate operand? */
1556     codebini(fs, OP_ADDI, e1, e2, flip, line, TM_ADD);
1557   else
1558     codearith(fs, op, e1, e2, flip, line);
1559 }
1560 
1561 
1562 /*
1563 ** Code bitwise operations; they are all commutative, so the function
1564 ** tries to put an integer constant as the 2nd operand (a K operand).
1565 */
1566 static void codebitwise (FuncState *fs, BinOpr opr,
1567                          expdesc *e1, expdesc *e2, int line) {
1568   int flip = 0;
1569   if (e1->k == VKINT) {
1570     swapexps(e1, e2);  /* 'e2' will be the constant operand */
1571     flip = 1;
1572   }
1573   if (e2->k == VKINT && luaK_exp2K(fs, e2))  /* K operand? */
1574     codebinK(fs, opr, e1, e2, flip, line);
1575   else  /* no constants */
1576     codebinNoK(fs, opr, e1, e2, flip, line);
1577 }
1578 
1579 
1580 /*
1581 ** Emit code for order comparisons. When using an immediate operand,
1582 ** 'isfloat' tells whether the original value was a float.
1583 */
1584 static void codeorder (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
1585   int r1, r2;
1586   int im;
1587   int isfloat = 0;
1588   OpCode op;
1589   if (isSCnumber(e2, &im, &isfloat)) {
1590     /* use immediate operand */
1591     r1 = luaK_exp2anyreg(fs, e1);
1592     r2 = im;
1593     op = binopr2op(opr, OPR_LT, OP_LTI);
1594   }
1595   else if (isSCnumber(e1, &im, &isfloat)) {
1596     /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */
1597     r1 = luaK_exp2anyreg(fs, e2);
1598     r2 = im;
1599     op = binopr2op(opr, OPR_LT, OP_GTI);
1600   }
1601   else {  /* regular case, compare two registers */
1602     r1 = luaK_exp2anyreg(fs, e1);
1603     r2 = luaK_exp2anyreg(fs, e2);
1604     op = binopr2op(opr, OPR_LT, OP_LT);
1605   }
1606   freeexps(fs, e1, e2);
1607   e1->u.info = condjump(fs, op, r1, r2, isfloat, 1);
1608   e1->k = VJMP;
1609 }
1610 
1611 
1612 /*
1613 ** Emit code for equality comparisons ('==', '~=').
1614 ** 'e1' was already put as RK by 'luaK_infix'.
1615 */
1616 static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
1617   int r1, r2;
1618   int im;
1619   int isfloat = 0;  /* not needed here, but kept for symmetry */
1620   OpCode op;
1621   if (e1->k != VNONRELOC) {
1622     lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT);
1623     swapexps(e1, e2);
1624   }
1625   r1 = luaK_exp2anyreg(fs, e1);  /* 1st expression must be in register */
1626   if (isSCnumber(e2, &im, &isfloat)) {
1627     op = OP_EQI;
1628     r2 = im;  /* immediate operand */
1629   }
1630   else if (luaK_exp2RK(fs, e2)) {  /* 2nd expression is constant? */
1631     op = OP_EQK;
1632     r2 = e2->u.info;  /* constant index */
1633   }
1634   else {
1635     op = OP_EQ;  /* will compare two registers */
1636     r2 = luaK_exp2anyreg(fs, e2);
1637   }
1638   freeexps(fs, e1, e2);
1639   e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ));
1640   e1->k = VJMP;
1641 }
1642 
1643 
1644 /*
1645 ** Apply prefix operation 'op' to expression 'e'.
1646 */
1647 void luaK_prefix (FuncState *fs, UnOpr opr, expdesc *e, int line) {
1648   static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
1649   luaK_dischargevars(fs, e);
1650   switch (opr) {
1651     case OPR_MINUS: case OPR_BNOT:  /* use 'ef' as fake 2nd operand */
1652       if (constfolding(fs, opr + LUA_OPUNM, e, &ef))
1653         break;
1654       /* else */ /* FALLTHROUGH */
1655     case OPR_LEN:
1656       codeunexpval(fs, unopr2op(opr), e, line);
1657       break;
1658     case OPR_NOT: codenot(fs, e); break;
1659     default: lua_assert(0);
1660   }
1661 }
1662 
1663 
1664 /*
1665 ** Process 1st operand 'v' of binary operation 'op' before reading
1666 ** 2nd operand.
1667 */
1668 void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
1669   luaK_dischargevars(fs, v);
1670   switch (op) {
1671     case OPR_AND: {
1672       luaK_goiftrue(fs, v);  /* go ahead only if 'v' is true */
1673       break;
1674     }
1675     case OPR_OR: {
1676       luaK_goiffalse(fs, v);  /* go ahead only if 'v' is false */
1677       break;
1678     }
1679     case OPR_CONCAT: {
1680       luaK_exp2nextreg(fs, v);  /* operand must be on the stack */
1681       break;
1682     }
1683     case OPR_ADD: case OPR_SUB:
1684 #ifndef _KERNEL
1685     case OPR_MUL: case OPR_DIV: case OPR_IDIV:
1686     case OPR_MOD: case OPR_POW:
1687 #else /* _KERNEL */
1688     case OPR_MUL: case OPR_IDIV:
1689     case OPR_MOD:
1690 #endif /* _KERNEL */
1691     case OPR_BAND: case OPR_BOR: case OPR_BXOR:
1692     case OPR_SHL: case OPR_SHR: {
1693       if (!tonumeral(v, NULL))
1694         luaK_exp2anyreg(fs, v);
1695       /* else keep numeral, which may be folded or used as an immediate
1696          operand */
1697       break;
1698     }
1699     case OPR_EQ: case OPR_NE: {
1700       if (!tonumeral(v, NULL))
1701         luaK_exp2RK(fs, v);
1702       /* else keep numeral, which may be an immediate operand */
1703       break;
1704     }
1705     case OPR_LT: case OPR_LE:
1706     case OPR_GT: case OPR_GE: {
1707       int dummy, dummy2;
1708       if (!isSCnumber(v, &dummy, &dummy2))
1709         luaK_exp2anyreg(fs, v);
1710       /* else keep numeral, which may be an immediate operand */
1711       break;
1712     }
1713     default: lua_assert(0);
1714   }
1715 }
1716 
1717 /*
1718 ** Create code for '(e1 .. e2)'.
1719 ** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))',
1720 ** because concatenation is right associative), merge both CONCATs.
1721 */
1722 static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) {
1723   Instruction *ie2 = previousinstruction(fs);
1724   if (GET_OPCODE(*ie2) == OP_CONCAT) {  /* is 'e2' a concatenation? */
1725     int n = GETARG_B(*ie2);  /* # of elements concatenated in 'e2' */
1726     lua_assert(e1->u.info + 1 == GETARG_A(*ie2));
1727     freeexp(fs, e2);
1728     SETARG_A(*ie2, e1->u.info);  /* correct first element ('e1') */
1729     SETARG_B(*ie2, n + 1);  /* will concatenate one more element */
1730   }
1731   else {  /* 'e2' is not a concatenation */
1732     luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0);  /* new concat opcode */
1733     freeexp(fs, e2);
1734     luaK_fixline(fs, line);
1735   }
1736 }
1737 
1738 
1739 /*
1740 ** Finalize code for binary operation, after reading 2nd operand.
1741 */
1742 void luaK_posfix (FuncState *fs, BinOpr opr,
1743                   expdesc *e1, expdesc *e2, int line) {
1744   luaK_dischargevars(fs, e2);
1745   if (foldbinop(opr) && constfolding(fs, opr + LUA_OPADD, e1, e2))
1746     return;  /* done by folding */
1747   switch (opr) {
1748     case OPR_AND: {
1749       lua_assert(e1->t == NO_JUMP);  /* list closed by 'luaK_infix' */
1750       luaK_concat(fs, &e2->f, e1->f);
1751       *e1 = *e2;
1752       break;
1753     }
1754     case OPR_OR: {
1755       lua_assert(e1->f == NO_JUMP);  /* list closed by 'luaK_infix' */
1756       luaK_concat(fs, &e2->t, e1->t);
1757       *e1 = *e2;
1758       break;
1759     }
1760     case OPR_CONCAT: {  /* e1 .. e2 */
1761       luaK_exp2nextreg(fs, e2);
1762       codeconcat(fs, e1, e2, line);
1763       break;
1764     }
1765     case OPR_ADD: case OPR_MUL: {
1766       codecommutative(fs, opr, e1, e2, line);
1767       break;
1768     }
1769     case OPR_SUB: {
1770       if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB))
1771         break; /* coded as (r1 + -I) */
1772       /* ELSE */
1773     }  /* FALLTHROUGH */
1774 #ifndef _KERNEL
1775     case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: {
1776 #else /* _KERNEL */
1777     case OPR_IDIV: case OPR_MOD: {
1778 #endif
1779       codearith(fs, opr, e1, e2, 0, line);
1780       break;
1781     }
1782     case OPR_BAND: case OPR_BOR: case OPR_BXOR: {
1783       codebitwise(fs, opr, e1, e2, line);
1784       break;
1785     }
1786     case OPR_SHL: {
1787       if (isSCint(e1)) {
1788         swapexps(e1, e2);
1789         codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL);  /* I << r2 */
1790       }
1791       else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) {
1792         /* coded as (r1 >> -I) */;
1793       }
1794       else  /* regular case (two registers) */
1795        codebinexpval(fs, opr, e1, e2, line);
1796       break;
1797     }
1798     case OPR_SHR: {
1799       if (isSCint(e2))
1800         codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR);  /* r1 >> I */
1801       else  /* regular case (two registers) */
1802         codebinexpval(fs, opr, e1, e2, line);
1803       break;
1804     }
1805     case OPR_EQ: case OPR_NE: {
1806       codeeq(fs, opr, e1, e2);
1807       break;
1808     }
1809     case OPR_GT: case OPR_GE: {
1810       /* '(a > b)' <=> '(b < a)';  '(a >= b)' <=> '(b <= a)' */
1811       swapexps(e1, e2);
1812       opr = cast(BinOpr, (opr - OPR_GT) + OPR_LT);
1813     }  /* FALLTHROUGH */
1814     case OPR_LT: case OPR_LE: {
1815       codeorder(fs, opr, e1, e2);
1816       break;
1817     }
1818     default: lua_assert(0);
1819   }
1820 }
1821 
1822 
1823 /*
1824 ** Change line information associated with current position, by removing
1825 ** previous info and adding it again with new line.
1826 */
1827 void luaK_fixline (FuncState *fs, int line) {
1828   removelastlineinfo(fs);
1829   savelineinfo(fs, fs->f, line);
1830 }
1831 
1832 
1833 void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) {
1834   Instruction *inst = &fs->f->code[pc];
1835   int rb = (hsize != 0) ? luaO_ceillog2(hsize) + 1 : 0;  /* hash size */
1836   int extra = asize / (MAXARG_C + 1);  /* higher bits of array size */
1837   int rc = asize % (MAXARG_C + 1);  /* lower bits of array size */
1838   int k = (extra > 0);  /* true iff needs extra argument */
1839   *inst = CREATE_ABCk(OP_NEWTABLE, ra, rb, rc, k);
1840   *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra);
1841 }
1842 
1843 
1844 /*
1845 ** Emit a SETLIST instruction.
1846 ** 'base' is register that keeps table;
1847 ** 'nelems' is #table plus those to be stored now;
1848 ** 'tostore' is number of values (in registers 'base + 1',...) to add to
1849 ** table (or LUA_MULTRET to add up to stack top).
1850 */
1851 void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
1852   lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
1853   if (tostore == LUA_MULTRET)
1854     tostore = 0;
1855   if (nelems <= MAXARG_C)
1856     luaK_codeABC(fs, OP_SETLIST, base, tostore, nelems);
1857   else {
1858     int extra = nelems / (MAXARG_C + 1);
1859     nelems %= (MAXARG_C + 1);
1860     luaK_codeABCk(fs, OP_SETLIST, base, tostore, nelems, 1);
1861     codeextraarg(fs, extra);
1862   }
1863   fs->freereg = base + 1;  /* free registers with list values */
1864 }
1865 
1866 
1867 /*
1868 ** return the final target of a jump (skipping jumps to jumps)
1869 */
1870 static int finaltarget (Instruction *code, int i) {
1871   int count;
1872   for (count = 0; count < 100; count++) {  /* avoid infinite loops */
1873     Instruction pc = code[i];
1874     if (GET_OPCODE(pc) != OP_JMP)
1875       break;
1876      else
1877        i += GETARG_sJ(pc) + 1;
1878   }
1879   return i;
1880 }
1881 
1882 
1883 /*
1884 ** Do a final pass over the code of a function, doing small peephole
1885 ** optimizations and adjustments.
1886 */
1887 void luaK_finish (FuncState *fs) {
1888   int i;
1889   Proto *p = fs->f;
1890   for (i = 0; i < fs->pc; i++) {
1891     Instruction *pc = &p->code[i];
1892     lua_assert(i == 0 || isOT(*(pc - 1)) == isIT(*pc));
1893     switch (GET_OPCODE(*pc)) {
1894       case OP_RETURN0: case OP_RETURN1: {
1895         if (!(fs->needclose || p->is_vararg))
1896           break;  /* no extra work */
1897         /* else use OP_RETURN to do the extra work */
1898         SET_OPCODE(*pc, OP_RETURN);
1899       }  /* FALLTHROUGH */
1900       case OP_RETURN: case OP_TAILCALL: {
1901         if (fs->needclose)
1902           SETARG_k(*pc, 1);  /* signal that it needs to close */
1903         if (p->is_vararg)
1904           SETARG_C(*pc, p->numparams + 1);  /* signal that it is vararg */
1905         break;
1906       }
1907       case OP_JMP: {
1908         int target = finaltarget(p->code, i);
1909         fixjump(fs, i, target);
1910         break;
1911       }
1912       default: break;
1913     }
1914   }
1915 }
1916