1 //===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file declares a class to represent arbitrary precision floating point
11 /// values and provide a variety of arithmetic operations on them.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_ADT_APFLOAT_H
16 #define LLVM_ADT_APFLOAT_H
17 
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/FloatingPointMode.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include <memory>
23 
24 #define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL)                             \
25   do {                                                                         \
26     if (usesLayout<IEEEFloat>(getSemantics()))                                 \
27       return U.IEEE.METHOD_CALL;                                               \
28     if (usesLayout<DoubleAPFloat>(getSemantics()))                             \
29       return U.Double.METHOD_CALL;                                             \
30     llvm_unreachable("Unexpected semantics");                                  \
31   } while (false)
32 
33 namespace llvm {
34 
35 struct fltSemantics;
36 class APSInt;
37 class StringRef;
38 class APFloat;
39 class raw_ostream;
40 
41 template <typename T> class Expected;
42 template <typename T> class SmallVectorImpl;
43 
44 /// Enum that represents what fraction of the LSB truncated bits of an fp number
45 /// represent.
46 ///
47 /// This essentially combines the roles of guard and sticky bits.
48 enum lostFraction { // Example of truncated bits:
49   lfExactlyZero,    // 000000
50   lfLessThanHalf,   // 0xxxxx  x's not all zero
51   lfExactlyHalf,    // 100000
52   lfMoreThanHalf    // 1xxxxx  x's not all zero
53 };
54 
55 /// A self-contained host- and target-independent arbitrary-precision
56 /// floating-point software implementation.
57 ///
58 /// APFloat uses bignum integer arithmetic as provided by static functions in
59 /// the APInt class.  The library will work with bignum integers whose parts are
60 /// any unsigned type at least 16 bits wide, but 64 bits is recommended.
61 ///
62 /// Written for clarity rather than speed, in particular with a view to use in
63 /// the front-end of a cross compiler so that target arithmetic can be correctly
64 /// performed on the host.  Performance should nonetheless be reasonable,
65 /// particularly for its intended use.  It may be useful as a base
66 /// implementation for a run-time library during development of a faster
67 /// target-specific one.
68 ///
69 /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
70 /// implemented operations.  Currently implemented operations are add, subtract,
71 /// multiply, divide, fused-multiply-add, conversion-to-float,
72 /// conversion-to-integer and conversion-from-integer.  New rounding modes
73 /// (e.g. away from zero) can be added with three or four lines of code.
74 ///
75 /// Four formats are built-in: IEEE single precision, double precision,
76 /// quadruple precision, and x87 80-bit extended double (when operating with
77 /// full extended precision).  Adding a new format that obeys IEEE semantics
78 /// only requires adding two lines of code: a declaration and definition of the
79 /// format.
80 ///
81 /// All operations return the status of that operation as an exception bit-mask,
82 /// so multiple operations can be done consecutively with their results or-ed
83 /// together.  The returned status can be useful for compiler diagnostics; e.g.,
84 /// inexact, underflow and overflow can be easily diagnosed on constant folding,
85 /// and compiler optimizers can determine what exceptions would be raised by
86 /// folding operations and optimize, or perhaps not optimize, accordingly.
87 ///
88 /// At present, underflow tininess is detected after rounding; it should be
89 /// straight forward to add support for the before-rounding case too.
90 ///
91 /// The library reads hexadecimal floating point numbers as per C99, and
92 /// correctly rounds if necessary according to the specified rounding mode.
93 /// Syntax is required to have been validated by the caller.  It also converts
94 /// floating point numbers to hexadecimal text as per the C99 %a and %A
95 /// conversions.  The output precision (or alternatively the natural minimal
96 /// precision) can be specified; if the requested precision is less than the
97 /// natural precision the output is correctly rounded for the specified rounding
98 /// mode.
99 ///
100 /// It also reads decimal floating point numbers and correctly rounds according
101 /// to the specified rounding mode.
102 ///
103 /// Conversion to decimal text is not currently implemented.
104 ///
105 /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
106 /// signed exponent, and the significand as an array of integer parts.  After
107 /// normalization of a number of precision P the exponent is within the range of
108 /// the format, and if the number is not denormal the P-th bit of the
109 /// significand is set as an explicit integer bit.  For denormals the most
110 /// significant bit is shifted right so that the exponent is maintained at the
111 /// format's minimum, so that the smallest denormal has just the least
112 /// significant bit of the significand set.  The sign of zeroes and infinities
113 /// is significant; the exponent and significand of such numbers is not stored,
114 /// but has a known implicit (deterministic) value: 0 for the significands, 0
115 /// for zero exponent, all 1 bits for infinity exponent.  For NaNs the sign and
116 /// significand are deterministic, although not really meaningful, and preserved
117 /// in non-conversion operations.  The exponent is implicitly all 1 bits.
118 ///
119 /// APFloat does not provide any exception handling beyond default exception
120 /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
121 /// by encoding Signaling NaNs with the first bit of its trailing significand as
122 /// 0.
123 ///
124 /// TODO
125 /// ====
126 ///
127 /// Some features that may or may not be worth adding:
128 ///
129 /// Binary to decimal conversion (hard).
130 ///
131 /// Optional ability to detect underflow tininess before rounding.
132 ///
133 /// New formats: x87 in single and double precision mode (IEEE apart from
134 /// extended exponent range) (hard).
135 ///
136 /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
137 ///
138 
139 // This is the common type definitions shared by APFloat and its internal
140 // implementation classes. This struct should not define any non-static data
141 // members.
142 struct APFloatBase {
143   typedef APInt::WordType integerPart;
144   static constexpr unsigned integerPartWidth = APInt::APINT_BITS_PER_WORD;
145 
146   /// A signed type to represent a floating point numbers unbiased exponent.
147   typedef int32_t ExponentType;
148 
149   /// \name Floating Point Semantics.
150   /// @{
151   enum Semantics {
152     S_IEEEhalf,
153     S_BFloat,
154     S_IEEEsingle,
155     S_IEEEdouble,
156     S_IEEEquad,
157     S_PPCDoubleDouble,
158     // 8-bit floating point number following IEEE-754 conventions with bit
159     // layout S1E5M2 as described in https://arxiv.org/abs/2209.05433.
160     S_Float8E5M2,
161     // 8-bit floating point number mostly following IEEE-754 conventions
162     // and bit layout S1E5M2 described in https://arxiv.org/abs/2206.02915,
163     // with expanded range and with no infinity or signed zero.
164     // NaN is represented as negative zero. (FN -> Finite, UZ -> unsigned zero).
165     // This format's exponent bias is 16, instead of the 15 (2 ** (5 - 1) - 1)
166     // that IEEE precedent would imply.
167     S_Float8E5M2FNUZ,
168     // 8-bit floating point number mostly following IEEE-754 conventions with
169     // bit layout S1E4M3 as described in https://arxiv.org/abs/2209.05433.
170     // Unlike IEEE-754 types, there are no infinity values, and NaN is
171     // represented with the exponent and mantissa bits set to all 1s.
172     S_Float8E4M3FN,
173     // 8-bit floating point number mostly following IEEE-754 conventions
174     // and bit layout S1E4M3 described in https://arxiv.org/abs/2206.02915,
175     // with expanded range and with no infinity or signed zero.
176     // NaN is represented as negative zero. (FN -> Finite, UZ -> unsigned zero).
177     // This format's exponent bias is 8, instead of the 7 (2 ** (4 - 1) - 1)
178     // that IEEE precedent would imply.
179     S_Float8E4M3FNUZ,
180     // 8-bit floating point number mostly following IEEE-754 conventions
181     // and bit layout S1E4M3 with expanded range and with no infinity or signed
182     // zero.
183     // NaN is represented as negative zero. (FN -> Finite, UZ -> unsigned zero).
184     // This format's exponent bias is 11, instead of the 7 (2 ** (4 - 1) - 1)
185     // that IEEE precedent would imply.
186     S_Float8E4M3B11FNUZ,
187     // Floating point number that occupies 32 bits or less of storage, providing
188     // improved range compared to half (16-bit) formats, at (potentially)
189     // greater throughput than single precision (32-bit) formats.
190     S_FloatTF32,
191 
192     S_x87DoubleExtended,
193     S_MaxSemantics = S_x87DoubleExtended,
194   };
195 
196   static const llvm::fltSemantics &EnumToSemantics(Semantics S);
197   static Semantics SemanticsToEnum(const llvm::fltSemantics &Sem);
198 
199   static const fltSemantics &IEEEhalf() LLVM_READNONE;
200   static const fltSemantics &BFloat() LLVM_READNONE;
201   static const fltSemantics &IEEEsingle() LLVM_READNONE;
202   static const fltSemantics &IEEEdouble() LLVM_READNONE;
203   static const fltSemantics &IEEEquad() LLVM_READNONE;
204   static const fltSemantics &PPCDoubleDouble() LLVM_READNONE;
205   static const fltSemantics &Float8E5M2() LLVM_READNONE;
206   static const fltSemantics &Float8E5M2FNUZ() LLVM_READNONE;
207   static const fltSemantics &Float8E4M3FN() LLVM_READNONE;
208   static const fltSemantics &Float8E4M3FNUZ() LLVM_READNONE;
209   static const fltSemantics &Float8E4M3B11FNUZ() LLVM_READNONE;
210   static const fltSemantics &FloatTF32() LLVM_READNONE;
211   static const fltSemantics &x87DoubleExtended() LLVM_READNONE;
212 
213   /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
214   /// anything real.
215   static const fltSemantics &Bogus() LLVM_READNONE;
216 
217   /// @}
218 
219   /// IEEE-754R 5.11: Floating Point Comparison Relations.
220   enum cmpResult {
221     cmpLessThan,
222     cmpEqual,
223     cmpGreaterThan,
224     cmpUnordered
225   };
226 
227   /// IEEE-754R 4.3: Rounding-direction attributes.
228   using roundingMode = llvm::RoundingMode;
229 
230   static constexpr roundingMode rmNearestTiesToEven =
231                                                 RoundingMode::NearestTiesToEven;
232   static constexpr roundingMode rmTowardPositive = RoundingMode::TowardPositive;
233   static constexpr roundingMode rmTowardNegative = RoundingMode::TowardNegative;
234   static constexpr roundingMode rmTowardZero     = RoundingMode::TowardZero;
235   static constexpr roundingMode rmNearestTiesToAway =
236                                                 RoundingMode::NearestTiesToAway;
237 
238   /// IEEE-754R 7: Default exception handling.
239   ///
240   /// opUnderflow or opOverflow are always returned or-ed with opInexact.
241   ///
242   /// APFloat models this behavior specified by IEEE-754:
243   ///   "For operations producing results in floating-point format, the default
244   ///    result of an operation that signals the invalid operation exception
245   ///    shall be a quiet NaN."
246   enum opStatus {
247     opOK = 0x00,
248     opInvalidOp = 0x01,
249     opDivByZero = 0x02,
250     opOverflow = 0x04,
251     opUnderflow = 0x08,
252     opInexact = 0x10
253   };
254 
255   /// Category of internally-represented number.
256   enum fltCategory {
257     fcInfinity,
258     fcNaN,
259     fcNormal,
260     fcZero
261   };
262 
263   /// Convenience enum used to construct an uninitialized APFloat.
264   enum uninitializedTag {
265     uninitialized
266   };
267 
268   /// Enumeration of \c ilogb error results.
269   enum IlogbErrorKinds {
270     IEK_Zero = INT_MIN + 1,
271     IEK_NaN = INT_MIN,
272     IEK_Inf = INT_MAX
273   };
274 
275   static unsigned int semanticsPrecision(const fltSemantics &);
276   static ExponentType semanticsMinExponent(const fltSemantics &);
277   static ExponentType semanticsMaxExponent(const fltSemantics &);
278   static unsigned int semanticsSizeInBits(const fltSemantics &);
279   static unsigned int semanticsIntSizeInBits(const fltSemantics&, bool);
280 
281   // Returns true if any number described by \p Src can be precisely represented
282   // by a normal (not subnormal) value in \p Dst.
283   static bool isRepresentableAsNormalIn(const fltSemantics &Src,
284                                         const fltSemantics &Dst);
285 
286   /// Returns the size of the floating point number (in bits) in the given
287   /// semantics.
288   static unsigned getSizeInBits(const fltSemantics &Sem);
289 };
290 
291 namespace detail {
292 
293 class IEEEFloat final : public APFloatBase {
294 public:
295   /// \name Constructors
296   /// @{
297 
298   IEEEFloat(const fltSemantics &); // Default construct to +0.0
299   IEEEFloat(const fltSemantics &, integerPart);
300   IEEEFloat(const fltSemantics &, uninitializedTag);
301   IEEEFloat(const fltSemantics &, const APInt &);
302   explicit IEEEFloat(double d);
303   explicit IEEEFloat(float f);
304   IEEEFloat(const IEEEFloat &);
305   IEEEFloat(IEEEFloat &&);
306   ~IEEEFloat();
307 
308   /// @}
309 
310   /// Returns whether this instance allocated memory.
needsCleanup()311   bool needsCleanup() const { return partCount() > 1; }
312 
313   /// \name Convenience "constructors"
314   /// @{
315 
316   /// @}
317 
318   /// \name Arithmetic
319   /// @{
320 
321   opStatus add(const IEEEFloat &, roundingMode);
322   opStatus subtract(const IEEEFloat &, roundingMode);
323   opStatus multiply(const IEEEFloat &, roundingMode);
324   opStatus divide(const IEEEFloat &, roundingMode);
325   /// IEEE remainder.
326   opStatus remainder(const IEEEFloat &);
327   /// C fmod, or llvm frem.
328   opStatus mod(const IEEEFloat &);
329   opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode);
330   opStatus roundToIntegral(roundingMode);
331   /// IEEE-754R 5.3.1: nextUp/nextDown.
332   opStatus next(bool nextDown);
333 
334   /// @}
335 
336   /// \name Sign operations.
337   /// @{
338 
339   void changeSign();
340 
341   /// @}
342 
343   /// \name Conversions
344   /// @{
345 
346   opStatus convert(const fltSemantics &, roundingMode, bool *);
347   opStatus convertToInteger(MutableArrayRef<integerPart>, unsigned int, bool,
348                             roundingMode, bool *) const;
349   opStatus convertFromAPInt(const APInt &, bool, roundingMode);
350   opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
351                                           bool, roundingMode);
352   opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
353                                           bool, roundingMode);
354   Expected<opStatus> convertFromString(StringRef, roundingMode);
355   APInt bitcastToAPInt() const;
356   double convertToDouble() const;
357   float convertToFloat() const;
358 
359   /// @}
360 
361   /// The definition of equality is not straightforward for floating point, so
362   /// we won't use operator==.  Use one of the following, or write whatever it
363   /// is you really mean.
364   bool operator==(const IEEEFloat &) const = delete;
365 
366   /// IEEE comparison with another floating point number (NaNs compare
367   /// unordered, 0==-0).
368   cmpResult compare(const IEEEFloat &) const;
369 
370   /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
371   bool bitwiseIsEqual(const IEEEFloat &) const;
372 
373   /// Write out a hexadecimal representation of the floating point value to DST,
374   /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
375   /// Return the number of characters written, excluding the terminating NUL.
376   unsigned int convertToHexString(char *dst, unsigned int hexDigits,
377                                   bool upperCase, roundingMode) const;
378 
379   /// \name IEEE-754R 5.7.2 General operations.
380   /// @{
381 
382   /// IEEE-754R isSignMinus: Returns true if and only if the current value is
383   /// negative.
384   ///
385   /// This applies to zeros and NaNs as well.
isNegative()386   bool isNegative() const { return sign; }
387 
388   /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
389   ///
390   /// This implies that the current value of the float is not zero, subnormal,
391   /// infinite, or NaN following the definition of normality from IEEE-754R.
isNormal()392   bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
393 
394   /// Returns true if and only if the current value is zero, subnormal, or
395   /// normal.
396   ///
397   /// This means that the value is not infinite or NaN.
isFinite()398   bool isFinite() const { return !isNaN() && !isInfinity(); }
399 
400   /// Returns true if and only if the float is plus or minus zero.
isZero()401   bool isZero() const { return category == fcZero; }
402 
403   /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
404   /// denormal.
405   bool isDenormal() const;
406 
407   /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
isInfinity()408   bool isInfinity() const { return category == fcInfinity; }
409 
410   /// Returns true if and only if the float is a quiet or signaling NaN.
isNaN()411   bool isNaN() const { return category == fcNaN; }
412 
413   /// Returns true if and only if the float is a signaling NaN.
414   bool isSignaling() const;
415 
416   /// @}
417 
418   /// \name Simple Queries
419   /// @{
420 
getCategory()421   fltCategory getCategory() const { return category; }
getSemantics()422   const fltSemantics &getSemantics() const { return *semantics; }
isNonZero()423   bool isNonZero() const { return category != fcZero; }
isFiniteNonZero()424   bool isFiniteNonZero() const { return isFinite() && !isZero(); }
isPosZero()425   bool isPosZero() const { return isZero() && !isNegative(); }
isNegZero()426   bool isNegZero() const { return isZero() && isNegative(); }
427 
428   /// Returns true if and only if the number has the smallest possible non-zero
429   /// magnitude in the current semantics.
430   bool isSmallest() const;
431 
432   /// Returns true if this is the smallest (by magnitude) normalized finite
433   /// number in the given semantics.
434   bool isSmallestNormalized() const;
435 
436   /// Returns true if and only if the number has the largest possible finite
437   /// magnitude in the current semantics.
438   bool isLargest() const;
439 
440   /// Returns true if and only if the number is an exact integer.
441   bool isInteger() const;
442 
443   /// @}
444 
445   IEEEFloat &operator=(const IEEEFloat &);
446   IEEEFloat &operator=(IEEEFloat &&);
447 
448   /// Overload to compute a hash code for an APFloat value.
449   ///
450   /// Note that the use of hash codes for floating point values is in general
451   /// frought with peril. Equality is hard to define for these values. For
452   /// example, should negative and positive zero hash to different codes? Are
453   /// they equal or not? This hash value implementation specifically
454   /// emphasizes producing different codes for different inputs in order to
455   /// be used in canonicalization and memoization. As such, equality is
456   /// bitwiseIsEqual, and 0 != -0.
457   friend hash_code hash_value(const IEEEFloat &Arg);
458 
459   /// Converts this value into a decimal string.
460   ///
461   /// \param FormatPrecision The maximum number of digits of
462   ///   precision to output.  If there are fewer digits available,
463   ///   zero padding will not be used unless the value is
464   ///   integral and small enough to be expressed in
465   ///   FormatPrecision digits.  0 means to use the natural
466   ///   precision of the number.
467   /// \param FormatMaxPadding The maximum number of zeros to
468   ///   consider inserting before falling back to scientific
469   ///   notation.  0 means to always use scientific notation.
470   ///
471   /// \param TruncateZero Indicate whether to remove the trailing zero in
472   ///   fraction part or not. Also setting this parameter to false forcing
473   ///   producing of output more similar to default printf behavior.
474   ///   Specifically the lower e is used as exponent delimiter and exponent
475   ///   always contains no less than two digits.
476   ///
477   /// Number       Precision    MaxPadding      Result
478   /// ------       ---------    ----------      ------
479   /// 1.01E+4              5             2       10100
480   /// 1.01E+4              4             2       1.01E+4
481   /// 1.01E+4              5             1       1.01E+4
482   /// 1.01E-2              5             2       0.0101
483   /// 1.01E-2              4             2       0.0101
484   /// 1.01E-2              4             1       1.01E-2
485   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
486                 unsigned FormatMaxPadding = 3, bool TruncateZero = true) const;
487 
488   /// If this value has an exact multiplicative inverse, store it in inv and
489   /// return true.
490   bool getExactInverse(APFloat *inv) const;
491 
492   // If this is an exact power of two, return the exponent while ignoring the
493   // sign bit. If it's not an exact power of 2, return INT_MIN
494   LLVM_READONLY
495   int getExactLog2Abs() const;
496 
497   // If this is an exact power of two, return the exponent. If it's not an exact
498   // power of 2, return INT_MIN
499   LLVM_READONLY
getExactLog2()500   int getExactLog2() const {
501     return isNegative() ? INT_MIN : getExactLog2Abs();
502   }
503 
504   /// Returns the exponent of the internal representation of the APFloat.
505   ///
506   /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)).
507   /// For special APFloat values, this returns special error codes:
508   ///
509   ///   NaN -> \c IEK_NaN
510   ///   0   -> \c IEK_Zero
511   ///   Inf -> \c IEK_Inf
512   ///
513   friend int ilogb(const IEEEFloat &Arg);
514 
515   /// Returns: X * 2^Exp for integral exponents.
516   friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode);
517 
518   friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode);
519 
520   /// \name Special value setters.
521   /// @{
522 
523   void makeLargest(bool Neg = false);
524   void makeSmallest(bool Neg = false);
525   void makeNaN(bool SNaN = false, bool Neg = false,
526                const APInt *fill = nullptr);
527   void makeInf(bool Neg = false);
528   void makeZero(bool Neg = false);
529   void makeQuiet();
530 
531   /// Returns the smallest (by magnitude) normalized finite number in the given
532   /// semantics.
533   ///
534   /// \param Negative - True iff the number should be negative
535   void makeSmallestNormalized(bool Negative = false);
536 
537   /// @}
538 
539   cmpResult compareAbsoluteValue(const IEEEFloat &) const;
540 
541 private:
542   /// \name Simple Queries
543   /// @{
544 
545   integerPart *significandParts();
546   const integerPart *significandParts() const;
547   unsigned int partCount() const;
548 
549   /// @}
550 
551   /// \name Significand operations.
552   /// @{
553 
554   integerPart addSignificand(const IEEEFloat &);
555   integerPart subtractSignificand(const IEEEFloat &, integerPart);
556   lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract);
557   lostFraction multiplySignificand(const IEEEFloat &, IEEEFloat);
558   lostFraction multiplySignificand(const IEEEFloat&);
559   lostFraction divideSignificand(const IEEEFloat &);
560   void incrementSignificand();
561   void initialize(const fltSemantics *);
562   void shiftSignificandLeft(unsigned int);
563   lostFraction shiftSignificandRight(unsigned int);
564   unsigned int significandLSB() const;
565   unsigned int significandMSB() const;
566   void zeroSignificand();
567   /// Return true if the significand excluding the integral bit is all ones.
568   bool isSignificandAllOnes() const;
569   bool isSignificandAllOnesExceptLSB() const;
570   /// Return true if the significand excluding the integral bit is all zeros.
571   bool isSignificandAllZeros() const;
572   bool isSignificandAllZerosExceptMSB() const;
573 
574   /// @}
575 
576   /// \name Arithmetic on special values.
577   /// @{
578 
579   opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract);
580   opStatus divideSpecials(const IEEEFloat &);
581   opStatus multiplySpecials(const IEEEFloat &);
582   opStatus modSpecials(const IEEEFloat &);
583   opStatus remainderSpecials(const IEEEFloat&);
584 
585   /// @}
586 
587   /// \name Miscellany
588   /// @{
589 
590   bool convertFromStringSpecials(StringRef str);
591   opStatus normalize(roundingMode, lostFraction);
592   opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract);
593   opStatus handleOverflow(roundingMode);
594   bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
595   opStatus convertToSignExtendedInteger(MutableArrayRef<integerPart>,
596                                         unsigned int, bool, roundingMode,
597                                         bool *) const;
598   opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
599                                     roundingMode);
600   Expected<opStatus> convertFromHexadecimalString(StringRef, roundingMode);
601   Expected<opStatus> convertFromDecimalString(StringRef, roundingMode);
602   char *convertNormalToHexString(char *, unsigned int, bool,
603                                  roundingMode) const;
604   opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
605                                         roundingMode);
606   ExponentType exponentNaN() const;
607   ExponentType exponentInf() const;
608   ExponentType exponentZero() const;
609 
610   /// @}
611 
612   template <const fltSemantics &S> APInt convertIEEEFloatToAPInt() const;
613   APInt convertHalfAPFloatToAPInt() const;
614   APInt convertBFloatAPFloatToAPInt() const;
615   APInt convertFloatAPFloatToAPInt() const;
616   APInt convertDoubleAPFloatToAPInt() const;
617   APInt convertQuadrupleAPFloatToAPInt() const;
618   APInt convertF80LongDoubleAPFloatToAPInt() const;
619   APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
620   APInt convertFloat8E5M2APFloatToAPInt() const;
621   APInt convertFloat8E5M2FNUZAPFloatToAPInt() const;
622   APInt convertFloat8E4M3FNAPFloatToAPInt() const;
623   APInt convertFloat8E4M3FNUZAPFloatToAPInt() const;
624   APInt convertFloat8E4M3B11FNUZAPFloatToAPInt() const;
625   APInt convertFloatTF32APFloatToAPInt() const;
626   void initFromAPInt(const fltSemantics *Sem, const APInt &api);
627   template <const fltSemantics &S> void initFromIEEEAPInt(const APInt &api);
628   void initFromHalfAPInt(const APInt &api);
629   void initFromBFloatAPInt(const APInt &api);
630   void initFromFloatAPInt(const APInt &api);
631   void initFromDoubleAPInt(const APInt &api);
632   void initFromQuadrupleAPInt(const APInt &api);
633   void initFromF80LongDoubleAPInt(const APInt &api);
634   void initFromPPCDoubleDoubleAPInt(const APInt &api);
635   void initFromFloat8E5M2APInt(const APInt &api);
636   void initFromFloat8E5M2FNUZAPInt(const APInt &api);
637   void initFromFloat8E4M3FNAPInt(const APInt &api);
638   void initFromFloat8E4M3FNUZAPInt(const APInt &api);
639   void initFromFloat8E4M3B11FNUZAPInt(const APInt &api);
640   void initFromFloatTF32APInt(const APInt &api);
641 
642   void assign(const IEEEFloat &);
643   void copySignificand(const IEEEFloat &);
644   void freeSignificand();
645 
646   /// Note: this must be the first data member.
647   /// The semantics that this value obeys.
648   const fltSemantics *semantics;
649 
650   /// A binary fraction with an explicit integer bit.
651   ///
652   /// The significand must be at least one bit wider than the target precision.
653   union Significand {
654     integerPart part;
655     integerPart *parts;
656   } significand;
657 
658   /// The signed unbiased exponent of the value.
659   ExponentType exponent;
660 
661   /// What kind of floating point number this is.
662   ///
663   /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
664   /// Using the extra bit keeps it from failing under VisualStudio.
665   fltCategory category : 3;
666 
667   /// Sign bit of the number.
668   unsigned int sign : 1;
669 };
670 
671 hash_code hash_value(const IEEEFloat &Arg);
672 int ilogb(const IEEEFloat &Arg);
673 IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode);
674 IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM);
675 
676 // This mode implements more precise float in terms of two APFloats.
677 // The interface and layout is designed for arbitrary underlying semantics,
678 // though currently only PPCDoubleDouble semantics are supported, whose
679 // corresponding underlying semantics are IEEEdouble.
680 class DoubleAPFloat final : public APFloatBase {
681   // Note: this must be the first data member.
682   const fltSemantics *Semantics;
683   std::unique_ptr<APFloat[]> Floats;
684 
685   opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c,
686                    const APFloat &cc, roundingMode RM);
687 
688   opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS,
689                           DoubleAPFloat &Out, roundingMode RM);
690 
691 public:
692   DoubleAPFloat(const fltSemantics &S);
693   DoubleAPFloat(const fltSemantics &S, uninitializedTag);
694   DoubleAPFloat(const fltSemantics &S, integerPart);
695   DoubleAPFloat(const fltSemantics &S, const APInt &I);
696   DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second);
697   DoubleAPFloat(const DoubleAPFloat &RHS);
698   DoubleAPFloat(DoubleAPFloat &&RHS);
699 
700   DoubleAPFloat &operator=(const DoubleAPFloat &RHS);
701   inline DoubleAPFloat &operator=(DoubleAPFloat &&RHS);
702 
needsCleanup()703   bool needsCleanup() const { return Floats != nullptr; }
704 
705   inline APFloat &getFirst();
706   inline const APFloat &getFirst() const;
707   inline APFloat &getSecond();
708   inline const APFloat &getSecond() const;
709 
710   opStatus add(const DoubleAPFloat &RHS, roundingMode RM);
711   opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM);
712   opStatus multiply(const DoubleAPFloat &RHS, roundingMode RM);
713   opStatus divide(const DoubleAPFloat &RHS, roundingMode RM);
714   opStatus remainder(const DoubleAPFloat &RHS);
715   opStatus mod(const DoubleAPFloat &RHS);
716   opStatus fusedMultiplyAdd(const DoubleAPFloat &Multiplicand,
717                             const DoubleAPFloat &Addend, roundingMode RM);
718   opStatus roundToIntegral(roundingMode RM);
719   void changeSign();
720   cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const;
721 
722   fltCategory getCategory() const;
723   bool isNegative() const;
724 
725   void makeInf(bool Neg);
726   void makeZero(bool Neg);
727   void makeLargest(bool Neg);
728   void makeSmallest(bool Neg);
729   void makeSmallestNormalized(bool Neg);
730   void makeNaN(bool SNaN, bool Neg, const APInt *fill);
731 
732   cmpResult compare(const DoubleAPFloat &RHS) const;
733   bool bitwiseIsEqual(const DoubleAPFloat &RHS) const;
734   APInt bitcastToAPInt() const;
735   Expected<opStatus> convertFromString(StringRef, roundingMode);
736   opStatus next(bool nextDown);
737 
738   opStatus convertToInteger(MutableArrayRef<integerPart> Input,
739                             unsigned int Width, bool IsSigned, roundingMode RM,
740                             bool *IsExact) const;
741   opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM);
742   opStatus convertFromSignExtendedInteger(const integerPart *Input,
743                                           unsigned int InputSize, bool IsSigned,
744                                           roundingMode RM);
745   opStatus convertFromZeroExtendedInteger(const integerPart *Input,
746                                           unsigned int InputSize, bool IsSigned,
747                                           roundingMode RM);
748   unsigned int convertToHexString(char *DST, unsigned int HexDigits,
749                                   bool UpperCase, roundingMode RM) const;
750 
751   bool isDenormal() const;
752   bool isSmallest() const;
753   bool isSmallestNormalized() const;
754   bool isLargest() const;
755   bool isInteger() const;
756 
757   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision,
758                 unsigned FormatMaxPadding, bool TruncateZero = true) const;
759 
760   bool getExactInverse(APFloat *inv) const;
761 
762   LLVM_READONLY
763   int getExactLog2() const;
764   LLVM_READONLY
765   int getExactLog2Abs() const;
766 
767   friend DoubleAPFloat scalbn(const DoubleAPFloat &X, int Exp, roundingMode);
768   friend DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, roundingMode);
769   friend hash_code hash_value(const DoubleAPFloat &Arg);
770 };
771 
772 hash_code hash_value(const DoubleAPFloat &Arg);
773 DoubleAPFloat scalbn(const DoubleAPFloat &Arg, int Exp, IEEEFloat::roundingMode RM);
774 DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, IEEEFloat::roundingMode);
775 
776 } // End detail namespace
777 
778 // This is a interface class that is currently forwarding functionalities from
779 // detail::IEEEFloat.
780 class APFloat : public APFloatBase {
781   typedef detail::IEEEFloat IEEEFloat;
782   typedef detail::DoubleAPFloat DoubleAPFloat;
783 
784   static_assert(std::is_standard_layout<IEEEFloat>::value);
785 
786   union Storage {
787     const fltSemantics *semantics;
788     IEEEFloat IEEE;
789     DoubleAPFloat Double;
790 
791     explicit Storage(IEEEFloat F, const fltSemantics &S);
Storage(DoubleAPFloat F,const fltSemantics & S)792     explicit Storage(DoubleAPFloat F, const fltSemantics &S)
793         : Double(std::move(F)) {
794       assert(&S == &PPCDoubleDouble());
795     }
796 
797     template <typename... ArgTypes>
Storage(const fltSemantics & Semantics,ArgTypes &&...Args)798     Storage(const fltSemantics &Semantics, ArgTypes &&... Args) {
799       if (usesLayout<IEEEFloat>(Semantics)) {
800         new (&IEEE) IEEEFloat(Semantics, std::forward<ArgTypes>(Args)...);
801         return;
802       }
803       if (usesLayout<DoubleAPFloat>(Semantics)) {
804         new (&Double) DoubleAPFloat(Semantics, std::forward<ArgTypes>(Args)...);
805         return;
806       }
807       llvm_unreachable("Unexpected semantics");
808     }
809 
~Storage()810     ~Storage() {
811       if (usesLayout<IEEEFloat>(*semantics)) {
812         IEEE.~IEEEFloat();
813         return;
814       }
815       if (usesLayout<DoubleAPFloat>(*semantics)) {
816         Double.~DoubleAPFloat();
817         return;
818       }
819       llvm_unreachable("Unexpected semantics");
820     }
821 
Storage(const Storage & RHS)822     Storage(const Storage &RHS) {
823       if (usesLayout<IEEEFloat>(*RHS.semantics)) {
824         new (this) IEEEFloat(RHS.IEEE);
825         return;
826       }
827       if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
828         new (this) DoubleAPFloat(RHS.Double);
829         return;
830       }
831       llvm_unreachable("Unexpected semantics");
832     }
833 
Storage(Storage && RHS)834     Storage(Storage &&RHS) {
835       if (usesLayout<IEEEFloat>(*RHS.semantics)) {
836         new (this) IEEEFloat(std::move(RHS.IEEE));
837         return;
838       }
839       if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
840         new (this) DoubleAPFloat(std::move(RHS.Double));
841         return;
842       }
843       llvm_unreachable("Unexpected semantics");
844     }
845 
846     Storage &operator=(const Storage &RHS) {
847       if (usesLayout<IEEEFloat>(*semantics) &&
848           usesLayout<IEEEFloat>(*RHS.semantics)) {
849         IEEE = RHS.IEEE;
850       } else if (usesLayout<DoubleAPFloat>(*semantics) &&
851                  usesLayout<DoubleAPFloat>(*RHS.semantics)) {
852         Double = RHS.Double;
853       } else if (this != &RHS) {
854         this->~Storage();
855         new (this) Storage(RHS);
856       }
857       return *this;
858     }
859 
860     Storage &operator=(Storage &&RHS) {
861       if (usesLayout<IEEEFloat>(*semantics) &&
862           usesLayout<IEEEFloat>(*RHS.semantics)) {
863         IEEE = std::move(RHS.IEEE);
864       } else if (usesLayout<DoubleAPFloat>(*semantics) &&
865                  usesLayout<DoubleAPFloat>(*RHS.semantics)) {
866         Double = std::move(RHS.Double);
867       } else if (this != &RHS) {
868         this->~Storage();
869         new (this) Storage(std::move(RHS));
870       }
871       return *this;
872     }
873   } U;
874 
usesLayout(const fltSemantics & Semantics)875   template <typename T> static bool usesLayout(const fltSemantics &Semantics) {
876     static_assert(std::is_same<T, IEEEFloat>::value ||
877                   std::is_same<T, DoubleAPFloat>::value);
878     if (std::is_same<T, DoubleAPFloat>::value) {
879       return &Semantics == &PPCDoubleDouble();
880     }
881     return &Semantics != &PPCDoubleDouble();
882   }
883 
getIEEE()884   IEEEFloat &getIEEE() {
885     if (usesLayout<IEEEFloat>(*U.semantics))
886       return U.IEEE;
887     if (usesLayout<DoubleAPFloat>(*U.semantics))
888       return U.Double.getFirst().U.IEEE;
889     llvm_unreachable("Unexpected semantics");
890   }
891 
getIEEE()892   const IEEEFloat &getIEEE() const {
893     if (usesLayout<IEEEFloat>(*U.semantics))
894       return U.IEEE;
895     if (usesLayout<DoubleAPFloat>(*U.semantics))
896       return U.Double.getFirst().U.IEEE;
897     llvm_unreachable("Unexpected semantics");
898   }
899 
makeZero(bool Neg)900   void makeZero(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeZero(Neg)); }
901 
makeInf(bool Neg)902   void makeInf(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeInf(Neg)); }
903 
makeNaN(bool SNaN,bool Neg,const APInt * fill)904   void makeNaN(bool SNaN, bool Neg, const APInt *fill) {
905     APFLOAT_DISPATCH_ON_SEMANTICS(makeNaN(SNaN, Neg, fill));
906   }
907 
makeLargest(bool Neg)908   void makeLargest(bool Neg) {
909     APFLOAT_DISPATCH_ON_SEMANTICS(makeLargest(Neg));
910   }
911 
makeSmallest(bool Neg)912   void makeSmallest(bool Neg) {
913     APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallest(Neg));
914   }
915 
makeSmallestNormalized(bool Neg)916   void makeSmallestNormalized(bool Neg) {
917     APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallestNormalized(Neg));
918   }
919 
APFloat(IEEEFloat F,const fltSemantics & S)920   explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {}
APFloat(DoubleAPFloat F,const fltSemantics & S)921   explicit APFloat(DoubleAPFloat F, const fltSemantics &S)
922       : U(std::move(F), S) {}
923 
compareAbsoluteValue(const APFloat & RHS)924   cmpResult compareAbsoluteValue(const APFloat &RHS) const {
925     assert(&getSemantics() == &RHS.getSemantics() &&
926            "Should only compare APFloats with the same semantics");
927     if (usesLayout<IEEEFloat>(getSemantics()))
928       return U.IEEE.compareAbsoluteValue(RHS.U.IEEE);
929     if (usesLayout<DoubleAPFloat>(getSemantics()))
930       return U.Double.compareAbsoluteValue(RHS.U.Double);
931     llvm_unreachable("Unexpected semantics");
932   }
933 
934 public:
APFloat(const fltSemantics & Semantics)935   APFloat(const fltSemantics &Semantics) : U(Semantics) {}
936   APFloat(const fltSemantics &Semantics, StringRef S);
APFloat(const fltSemantics & Semantics,integerPart I)937   APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {}
938   template <typename T,
939             typename = std::enable_if_t<std::is_floating_point<T>::value>>
940   APFloat(const fltSemantics &Semantics, T V) = delete;
941   // TODO: Remove this constructor. This isn't faster than the first one.
APFloat(const fltSemantics & Semantics,uninitializedTag)942   APFloat(const fltSemantics &Semantics, uninitializedTag)
943       : U(Semantics, uninitialized) {}
APFloat(const fltSemantics & Semantics,const APInt & I)944   APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {}
APFloat(double d)945   explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {}
APFloat(float f)946   explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {}
947   APFloat(const APFloat &RHS) = default;
948   APFloat(APFloat &&RHS) = default;
949 
950   ~APFloat() = default;
951 
needsCleanup()952   bool needsCleanup() const { APFLOAT_DISPATCH_ON_SEMANTICS(needsCleanup()); }
953 
954   /// Factory for Positive and Negative Zero.
955   ///
956   /// \param Negative True iff the number should be negative.
957   static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
958     APFloat Val(Sem, uninitialized);
959     Val.makeZero(Negative);
960     return Val;
961   }
962 
963   /// Factory for Positive and Negative Infinity.
964   ///
965   /// \param Negative True iff the number should be negative.
966   static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
967     APFloat Val(Sem, uninitialized);
968     Val.makeInf(Negative);
969     return Val;
970   }
971 
972   /// Factory for NaN values.
973   ///
974   /// \param Negative - True iff the NaN generated should be negative.
975   /// \param payload - The unspecified fill bits for creating the NaN, 0 by
976   /// default.  The value is truncated as necessary.
977   static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
978                         uint64_t payload = 0) {
979     if (payload) {
980       APInt intPayload(64, payload);
981       return getQNaN(Sem, Negative, &intPayload);
982     } else {
983       return getQNaN(Sem, Negative, nullptr);
984     }
985   }
986 
987   /// Factory for QNaN values.
988   static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
989                          const APInt *payload = nullptr) {
990     APFloat Val(Sem, uninitialized);
991     Val.makeNaN(false, Negative, payload);
992     return Val;
993   }
994 
995   /// Factory for SNaN values.
996   static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
997                          const APInt *payload = nullptr) {
998     APFloat Val(Sem, uninitialized);
999     Val.makeNaN(true, Negative, payload);
1000     return Val;
1001   }
1002 
1003   /// Returns the largest finite number in the given semantics.
1004   ///
1005   /// \param Negative - True iff the number should be negative
1006   static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) {
1007     APFloat Val(Sem, uninitialized);
1008     Val.makeLargest(Negative);
1009     return Val;
1010   }
1011 
1012   /// Returns the smallest (by magnitude) finite number in the given semantics.
1013   /// Might be denormalized, which implies a relative loss of precision.
1014   ///
1015   /// \param Negative - True iff the number should be negative
1016   static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) {
1017     APFloat Val(Sem, uninitialized);
1018     Val.makeSmallest(Negative);
1019     return Val;
1020   }
1021 
1022   /// Returns the smallest (by magnitude) normalized finite number in the given
1023   /// semantics.
1024   ///
1025   /// \param Negative - True iff the number should be negative
1026   static APFloat getSmallestNormalized(const fltSemantics &Sem,
1027                                        bool Negative = false) {
1028     APFloat Val(Sem, uninitialized);
1029     Val.makeSmallestNormalized(Negative);
1030     return Val;
1031   }
1032 
1033   /// Returns a float which is bitcasted from an all one value int.
1034   ///
1035   /// \param Semantics - type float semantics
1036   static APFloat getAllOnesValue(const fltSemantics &Semantics);
1037 
1038   /// Used to insert APFloat objects, or objects that contain APFloat objects,
1039   /// into FoldingSets.
1040   void Profile(FoldingSetNodeID &NID) const;
1041 
add(const APFloat & RHS,roundingMode RM)1042   opStatus add(const APFloat &RHS, roundingMode RM) {
1043     assert(&getSemantics() == &RHS.getSemantics() &&
1044            "Should only call on two APFloats with the same semantics");
1045     if (usesLayout<IEEEFloat>(getSemantics()))
1046       return U.IEEE.add(RHS.U.IEEE, RM);
1047     if (usesLayout<DoubleAPFloat>(getSemantics()))
1048       return U.Double.add(RHS.U.Double, RM);
1049     llvm_unreachable("Unexpected semantics");
1050   }
subtract(const APFloat & RHS,roundingMode RM)1051   opStatus subtract(const APFloat &RHS, roundingMode RM) {
1052     assert(&getSemantics() == &RHS.getSemantics() &&
1053            "Should only call on two APFloats with the same semantics");
1054     if (usesLayout<IEEEFloat>(getSemantics()))
1055       return U.IEEE.subtract(RHS.U.IEEE, RM);
1056     if (usesLayout<DoubleAPFloat>(getSemantics()))
1057       return U.Double.subtract(RHS.U.Double, RM);
1058     llvm_unreachable("Unexpected semantics");
1059   }
multiply(const APFloat & RHS,roundingMode RM)1060   opStatus multiply(const APFloat &RHS, roundingMode RM) {
1061     assert(&getSemantics() == &RHS.getSemantics() &&
1062            "Should only call on two APFloats with the same semantics");
1063     if (usesLayout<IEEEFloat>(getSemantics()))
1064       return U.IEEE.multiply(RHS.U.IEEE, RM);
1065     if (usesLayout<DoubleAPFloat>(getSemantics()))
1066       return U.Double.multiply(RHS.U.Double, RM);
1067     llvm_unreachable("Unexpected semantics");
1068   }
divide(const APFloat & RHS,roundingMode RM)1069   opStatus divide(const APFloat &RHS, roundingMode RM) {
1070     assert(&getSemantics() == &RHS.getSemantics() &&
1071            "Should only call on two APFloats with the same semantics");
1072     if (usesLayout<IEEEFloat>(getSemantics()))
1073       return U.IEEE.divide(RHS.U.IEEE, RM);
1074     if (usesLayout<DoubleAPFloat>(getSemantics()))
1075       return U.Double.divide(RHS.U.Double, RM);
1076     llvm_unreachable("Unexpected semantics");
1077   }
remainder(const APFloat & RHS)1078   opStatus remainder(const APFloat &RHS) {
1079     assert(&getSemantics() == &RHS.getSemantics() &&
1080            "Should only call on two APFloats with the same semantics");
1081     if (usesLayout<IEEEFloat>(getSemantics()))
1082       return U.IEEE.remainder(RHS.U.IEEE);
1083     if (usesLayout<DoubleAPFloat>(getSemantics()))
1084       return U.Double.remainder(RHS.U.Double);
1085     llvm_unreachable("Unexpected semantics");
1086   }
mod(const APFloat & RHS)1087   opStatus mod(const APFloat &RHS) {
1088     assert(&getSemantics() == &RHS.getSemantics() &&
1089            "Should only call on two APFloats with the same semantics");
1090     if (usesLayout<IEEEFloat>(getSemantics()))
1091       return U.IEEE.mod(RHS.U.IEEE);
1092     if (usesLayout<DoubleAPFloat>(getSemantics()))
1093       return U.Double.mod(RHS.U.Double);
1094     llvm_unreachable("Unexpected semantics");
1095   }
fusedMultiplyAdd(const APFloat & Multiplicand,const APFloat & Addend,roundingMode RM)1096   opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend,
1097                             roundingMode RM) {
1098     assert(&getSemantics() == &Multiplicand.getSemantics() &&
1099            "Should only call on APFloats with the same semantics");
1100     assert(&getSemantics() == &Addend.getSemantics() &&
1101            "Should only call on APFloats with the same semantics");
1102     if (usesLayout<IEEEFloat>(getSemantics()))
1103       return U.IEEE.fusedMultiplyAdd(Multiplicand.U.IEEE, Addend.U.IEEE, RM);
1104     if (usesLayout<DoubleAPFloat>(getSemantics()))
1105       return U.Double.fusedMultiplyAdd(Multiplicand.U.Double, Addend.U.Double,
1106                                        RM);
1107     llvm_unreachable("Unexpected semantics");
1108   }
roundToIntegral(roundingMode RM)1109   opStatus roundToIntegral(roundingMode RM) {
1110     APFLOAT_DISPATCH_ON_SEMANTICS(roundToIntegral(RM));
1111   }
1112 
1113   // TODO: bool parameters are not readable and a source of bugs.
1114   // Do something.
next(bool nextDown)1115   opStatus next(bool nextDown) {
1116     APFLOAT_DISPATCH_ON_SEMANTICS(next(nextDown));
1117   }
1118 
1119   /// Negate an APFloat.
1120   APFloat operator-() const {
1121     APFloat Result(*this);
1122     Result.changeSign();
1123     return Result;
1124   }
1125 
1126   /// Add two APFloats, rounding ties to the nearest even.
1127   /// No error checking.
1128   APFloat operator+(const APFloat &RHS) const {
1129     APFloat Result(*this);
1130     (void)Result.add(RHS, rmNearestTiesToEven);
1131     return Result;
1132   }
1133 
1134   /// Subtract two APFloats, rounding ties to the nearest even.
1135   /// No error checking.
1136   APFloat operator-(const APFloat &RHS) const {
1137     APFloat Result(*this);
1138     (void)Result.subtract(RHS, rmNearestTiesToEven);
1139     return Result;
1140   }
1141 
1142   /// Multiply two APFloats, rounding ties to the nearest even.
1143   /// No error checking.
1144   APFloat operator*(const APFloat &RHS) const {
1145     APFloat Result(*this);
1146     (void)Result.multiply(RHS, rmNearestTiesToEven);
1147     return Result;
1148   }
1149 
1150   /// Divide the first APFloat by the second, rounding ties to the nearest even.
1151   /// No error checking.
1152   APFloat operator/(const APFloat &RHS) const {
1153     APFloat Result(*this);
1154     (void)Result.divide(RHS, rmNearestTiesToEven);
1155     return Result;
1156   }
1157 
changeSign()1158   void changeSign() { APFLOAT_DISPATCH_ON_SEMANTICS(changeSign()); }
clearSign()1159   void clearSign() {
1160     if (isNegative())
1161       changeSign();
1162   }
copySign(const APFloat & RHS)1163   void copySign(const APFloat &RHS) {
1164     if (isNegative() != RHS.isNegative())
1165       changeSign();
1166   }
1167 
1168   /// A static helper to produce a copy of an APFloat value with its sign
1169   /// copied from some other APFloat.
copySign(APFloat Value,const APFloat & Sign)1170   static APFloat copySign(APFloat Value, const APFloat &Sign) {
1171     Value.copySign(Sign);
1172     return Value;
1173   }
1174 
1175   /// Assuming this is an IEEE-754 NaN value, quiet its signaling bit.
1176   /// This preserves the sign and payload bits.
makeQuiet()1177   APFloat makeQuiet() const {
1178     APFloat Result(*this);
1179     Result.getIEEE().makeQuiet();
1180     return Result;
1181   }
1182 
1183   opStatus convert(const fltSemantics &ToSemantics, roundingMode RM,
1184                    bool *losesInfo);
convertToInteger(MutableArrayRef<integerPart> Input,unsigned int Width,bool IsSigned,roundingMode RM,bool * IsExact)1185   opStatus convertToInteger(MutableArrayRef<integerPart> Input,
1186                             unsigned int Width, bool IsSigned, roundingMode RM,
1187                             bool *IsExact) const {
1188     APFLOAT_DISPATCH_ON_SEMANTICS(
1189         convertToInteger(Input, Width, IsSigned, RM, IsExact));
1190   }
1191   opStatus convertToInteger(APSInt &Result, roundingMode RM,
1192                             bool *IsExact) const;
convertFromAPInt(const APInt & Input,bool IsSigned,roundingMode RM)1193   opStatus convertFromAPInt(const APInt &Input, bool IsSigned,
1194                             roundingMode RM) {
1195     APFLOAT_DISPATCH_ON_SEMANTICS(convertFromAPInt(Input, IsSigned, RM));
1196   }
convertFromSignExtendedInteger(const integerPart * Input,unsigned int InputSize,bool IsSigned,roundingMode RM)1197   opStatus convertFromSignExtendedInteger(const integerPart *Input,
1198                                           unsigned int InputSize, bool IsSigned,
1199                                           roundingMode RM) {
1200     APFLOAT_DISPATCH_ON_SEMANTICS(
1201         convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM));
1202   }
convertFromZeroExtendedInteger(const integerPart * Input,unsigned int InputSize,bool IsSigned,roundingMode RM)1203   opStatus convertFromZeroExtendedInteger(const integerPart *Input,
1204                                           unsigned int InputSize, bool IsSigned,
1205                                           roundingMode RM) {
1206     APFLOAT_DISPATCH_ON_SEMANTICS(
1207         convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM));
1208   }
1209   Expected<opStatus> convertFromString(StringRef, roundingMode);
bitcastToAPInt()1210   APInt bitcastToAPInt() const {
1211     APFLOAT_DISPATCH_ON_SEMANTICS(bitcastToAPInt());
1212   }
1213 
1214   /// Converts this APFloat to host double value.
1215   ///
1216   /// \pre The APFloat must be built using semantics, that can be represented by
1217   /// the host double type without loss of precision. It can be IEEEdouble and
1218   /// shorter semantics, like IEEEsingle and others.
1219   double convertToDouble() const;
1220 
1221   /// Converts this APFloat to host float value.
1222   ///
1223   /// \pre The APFloat must be built using semantics, that can be represented by
1224   /// the host float type without loss of precision. It can be IEEEsingle and
1225   /// shorter semantics, like IEEEhalf.
1226   float convertToFloat() const;
1227 
1228   bool operator==(const APFloat &RHS) const { return compare(RHS) == cmpEqual; }
1229 
1230   bool operator!=(const APFloat &RHS) const { return compare(RHS) != cmpEqual; }
1231 
1232   bool operator<(const APFloat &RHS) const {
1233     return compare(RHS) == cmpLessThan;
1234   }
1235 
1236   bool operator>(const APFloat &RHS) const {
1237     return compare(RHS) == cmpGreaterThan;
1238   }
1239 
1240   bool operator<=(const APFloat &RHS) const {
1241     cmpResult Res = compare(RHS);
1242     return Res == cmpLessThan || Res == cmpEqual;
1243   }
1244 
1245   bool operator>=(const APFloat &RHS) const {
1246     cmpResult Res = compare(RHS);
1247     return Res == cmpGreaterThan || Res == cmpEqual;
1248   }
1249 
compare(const APFloat & RHS)1250   cmpResult compare(const APFloat &RHS) const {
1251     assert(&getSemantics() == &RHS.getSemantics() &&
1252            "Should only compare APFloats with the same semantics");
1253     if (usesLayout<IEEEFloat>(getSemantics()))
1254       return U.IEEE.compare(RHS.U.IEEE);
1255     if (usesLayout<DoubleAPFloat>(getSemantics()))
1256       return U.Double.compare(RHS.U.Double);
1257     llvm_unreachable("Unexpected semantics");
1258   }
1259 
bitwiseIsEqual(const APFloat & RHS)1260   bool bitwiseIsEqual(const APFloat &RHS) const {
1261     if (&getSemantics() != &RHS.getSemantics())
1262       return false;
1263     if (usesLayout<IEEEFloat>(getSemantics()))
1264       return U.IEEE.bitwiseIsEqual(RHS.U.IEEE);
1265     if (usesLayout<DoubleAPFloat>(getSemantics()))
1266       return U.Double.bitwiseIsEqual(RHS.U.Double);
1267     llvm_unreachable("Unexpected semantics");
1268   }
1269 
1270   /// We don't rely on operator== working on double values, as
1271   /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1272   /// As such, this method can be used to do an exact bit-for-bit comparison of
1273   /// two floating point values.
1274   ///
1275   /// We leave the version with the double argument here because it's just so
1276   /// convenient to write "2.0" and the like.  Without this function we'd
1277   /// have to duplicate its logic everywhere it's called.
isExactlyValue(double V)1278   bool isExactlyValue(double V) const {
1279     bool ignored;
1280     APFloat Tmp(V);
1281     Tmp.convert(getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
1282     return bitwiseIsEqual(Tmp);
1283   }
1284 
convertToHexString(char * DST,unsigned int HexDigits,bool UpperCase,roundingMode RM)1285   unsigned int convertToHexString(char *DST, unsigned int HexDigits,
1286                                   bool UpperCase, roundingMode RM) const {
1287     APFLOAT_DISPATCH_ON_SEMANTICS(
1288         convertToHexString(DST, HexDigits, UpperCase, RM));
1289   }
1290 
isZero()1291   bool isZero() const { return getCategory() == fcZero; }
isInfinity()1292   bool isInfinity() const { return getCategory() == fcInfinity; }
isNaN()1293   bool isNaN() const { return getCategory() == fcNaN; }
1294 
isNegative()1295   bool isNegative() const { return getIEEE().isNegative(); }
isDenormal()1296   bool isDenormal() const { APFLOAT_DISPATCH_ON_SEMANTICS(isDenormal()); }
isSignaling()1297   bool isSignaling() const { return getIEEE().isSignaling(); }
1298 
isNormal()1299   bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
isFinite()1300   bool isFinite() const { return !isNaN() && !isInfinity(); }
1301 
getCategory()1302   fltCategory getCategory() const { return getIEEE().getCategory(); }
getSemantics()1303   const fltSemantics &getSemantics() const { return *U.semantics; }
isNonZero()1304   bool isNonZero() const { return !isZero(); }
isFiniteNonZero()1305   bool isFiniteNonZero() const { return isFinite() && !isZero(); }
isPosZero()1306   bool isPosZero() const { return isZero() && !isNegative(); }
isNegZero()1307   bool isNegZero() const { return isZero() && isNegative(); }
isPosInfinity()1308   bool isPosInfinity() const { return isInfinity() && !isNegative(); }
isNegInfinity()1309   bool isNegInfinity() const { return isInfinity() && isNegative(); }
isSmallest()1310   bool isSmallest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isSmallest()); }
isLargest()1311   bool isLargest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isLargest()); }
isInteger()1312   bool isInteger() const { APFLOAT_DISPATCH_ON_SEMANTICS(isInteger()); }
isIEEE()1313   bool isIEEE() const { return usesLayout<IEEEFloat>(getSemantics()); }
1314 
isSmallestNormalized()1315   bool isSmallestNormalized() const {
1316     APFLOAT_DISPATCH_ON_SEMANTICS(isSmallestNormalized());
1317   }
1318 
1319   /// Return the FPClassTest which will return true for the value.
1320   FPClassTest classify() const;
1321 
1322   APFloat &operator=(const APFloat &RHS) = default;
1323   APFloat &operator=(APFloat &&RHS) = default;
1324 
1325   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
1326                 unsigned FormatMaxPadding = 3, bool TruncateZero = true) const {
1327     APFLOAT_DISPATCH_ON_SEMANTICS(
1328         toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero));
1329   }
1330 
1331   void print(raw_ostream &) const;
1332   void dump() const;
1333 
getExactInverse(APFloat * inv)1334   bool getExactInverse(APFloat *inv) const {
1335     APFLOAT_DISPATCH_ON_SEMANTICS(getExactInverse(inv));
1336   }
1337 
1338   LLVM_READONLY
getExactLog2Abs()1339   int getExactLog2Abs() const {
1340     APFLOAT_DISPATCH_ON_SEMANTICS(getExactLog2Abs());
1341   }
1342 
1343   LLVM_READONLY
getExactLog2()1344   int getExactLog2() const {
1345     APFLOAT_DISPATCH_ON_SEMANTICS(getExactLog2());
1346   }
1347 
1348   friend hash_code hash_value(const APFloat &Arg);
ilogb(const APFloat & Arg)1349   friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); }
1350   friend APFloat scalbn(APFloat X, int Exp, roundingMode RM);
1351   friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM);
1352   friend IEEEFloat;
1353   friend DoubleAPFloat;
1354 };
1355 
1356 /// See friend declarations above.
1357 ///
1358 /// These additional declarations are required in order to compile LLVM with IBM
1359 /// xlC compiler.
1360 hash_code hash_value(const APFloat &Arg);
scalbn(APFloat X,int Exp,APFloat::roundingMode RM)1361 inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) {
1362   if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
1363     return APFloat(scalbn(X.U.IEEE, Exp, RM), X.getSemantics());
1364   if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
1365     return APFloat(scalbn(X.U.Double, Exp, RM), X.getSemantics());
1366   llvm_unreachable("Unexpected semantics");
1367 }
1368 
1369 /// Equivalent of C standard library function.
1370 ///
1371 /// While the C standard says Exp is an unspecified value for infinity and nan,
1372 /// this returns INT_MAX for infinities, and INT_MIN for NaNs.
frexp(const APFloat & X,int & Exp,APFloat::roundingMode RM)1373 inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) {
1374   if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
1375     return APFloat(frexp(X.U.IEEE, Exp, RM), X.getSemantics());
1376   if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
1377     return APFloat(frexp(X.U.Double, Exp, RM), X.getSemantics());
1378   llvm_unreachable("Unexpected semantics");
1379 }
1380 /// Returns the absolute value of the argument.
abs(APFloat X)1381 inline APFloat abs(APFloat X) {
1382   X.clearSign();
1383   return X;
1384 }
1385 
1386 /// Returns the negated value of the argument.
neg(APFloat X)1387 inline APFloat neg(APFloat X) {
1388   X.changeSign();
1389   return X;
1390 }
1391 
1392 /// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if
1393 /// both are not NaN. If either argument is a NaN, returns the other argument.
1394 LLVM_READONLY
minnum(const APFloat & A,const APFloat & B)1395 inline APFloat minnum(const APFloat &A, const APFloat &B) {
1396   if (A.isNaN())
1397     return B;
1398   if (B.isNaN())
1399     return A;
1400   return B < A ? B : A;
1401 }
1402 
1403 /// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if
1404 /// both are not NaN. If either argument is a NaN, returns the other argument.
1405 LLVM_READONLY
maxnum(const APFloat & A,const APFloat & B)1406 inline APFloat maxnum(const APFloat &A, const APFloat &B) {
1407   if (A.isNaN())
1408     return B;
1409   if (B.isNaN())
1410     return A;
1411   return A < B ? B : A;
1412 }
1413 
1414 /// Implements IEEE 754-2018 minimum semantics. Returns the smaller of 2
1415 /// arguments, propagating NaNs and treating -0 as less than +0.
1416 LLVM_READONLY
minimum(const APFloat & A,const APFloat & B)1417 inline APFloat minimum(const APFloat &A, const APFloat &B) {
1418   if (A.isNaN())
1419     return A;
1420   if (B.isNaN())
1421     return B;
1422   if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1423     return A.isNegative() ? A : B;
1424   return B < A ? B : A;
1425 }
1426 
1427 /// Implements IEEE 754-2018 maximum semantics. Returns the larger of 2
1428 /// arguments, propagating NaNs and treating -0 as less than +0.
1429 LLVM_READONLY
maximum(const APFloat & A,const APFloat & B)1430 inline APFloat maximum(const APFloat &A, const APFloat &B) {
1431   if (A.isNaN())
1432     return A;
1433   if (B.isNaN())
1434     return B;
1435   if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1436     return A.isNegative() ? B : A;
1437   return A < B ? B : A;
1438 }
1439 
1440 // We want the following functions to be available in the header for inlining.
1441 // We cannot define them inline in the class definition of `DoubleAPFloat`
1442 // because doing so would instantiate `std::unique_ptr<APFloat[]>` before
1443 // `APFloat` is defined, and that would be undefined behavior.
1444 namespace detail {
1445 
1446 DoubleAPFloat &DoubleAPFloat::operator=(DoubleAPFloat &&RHS) {
1447   if (this != &RHS) {
1448     this->~DoubleAPFloat();
1449     new (this) DoubleAPFloat(std::move(RHS));
1450   }
1451   return *this;
1452 }
1453 
getFirst()1454 APFloat &DoubleAPFloat::getFirst() { return Floats[0]; }
getFirst()1455 const APFloat &DoubleAPFloat::getFirst() const { return Floats[0]; }
getSecond()1456 APFloat &DoubleAPFloat::getSecond() { return Floats[1]; }
getSecond()1457 const APFloat &DoubleAPFloat::getSecond() const { return Floats[1]; }
1458 
1459 } // namespace detail
1460 
1461 } // namespace llvm
1462 
1463 #undef APFLOAT_DISPATCH_ON_SEMANTICS
1464 #endif // LLVM_ADT_APFLOAT_H
1465