1 //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file defines the SmallVector class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ADT_SMALLVECTOR_H
15 #define LLVM_ADT_SMALLVECTOR_H
16 
17 #include "llvm/Support/Compiler.h"
18 #include "llvm/Support/type_traits.h"
19 #include <algorithm>
20 #include <cassert>
21 #include <cstddef>
22 #include <cstdlib>
23 #include <cstring>
24 #include <functional>
25 #include <initializer_list>
26 #include <iterator>
27 #include <limits>
28 #include <memory>
29 #include <new>
30 #include <type_traits>
31 #include <utility>
32 
33 namespace llvm {
34 
35 template <typename T> class ArrayRef;
36 
37 template <typename IteratorT> class iterator_range;
38 
39 template <class Iterator>
40 using EnableIfConvertibleToInputIterator = std::enable_if_t<std::is_convertible<
41     typename std::iterator_traits<Iterator>::iterator_category,
42     std::input_iterator_tag>::value>;
43 
44 /// This is all the stuff common to all SmallVectors.
45 ///
46 /// The template parameter specifies the type which should be used to hold the
47 /// Size and Capacity of the SmallVector, so it can be adjusted.
48 /// Using 32 bit size is desirable to shrink the size of the SmallVector.
49 /// Using 64 bit size is desirable for cases like SmallVector<char>, where a
50 /// 32 bit size would limit the vector to ~4GB. SmallVectors are used for
51 /// buffering bitcode output - which can exceed 4GB.
52 template <class Size_T> class SmallVectorBase {
53 protected:
54   void *BeginX;
55   Size_T Size = 0, Capacity;
56 
57   /// The maximum value of the Size_T used.
SizeTypeMax()58   static constexpr size_t SizeTypeMax() {
59     return std::numeric_limits<Size_T>::max();
60   }
61 
62   SmallVectorBase() = delete;
SmallVectorBase(void * FirstEl,size_t TotalCapacity)63   SmallVectorBase(void *FirstEl, size_t TotalCapacity)
64       : BeginX(FirstEl), Capacity(TotalCapacity) {}
65 
66   /// This is a helper for \a grow() that's out of line to reduce code
67   /// duplication.  This function will report a fatal error if it can't grow at
68   /// least to \p MinSize.
69   void *mallocForGrow(void *FirstEl, size_t MinSize, size_t TSize,
70                       size_t &NewCapacity);
71 
72   /// This is an implementation of the grow() method which only works
73   /// on POD-like data types and is out of line to reduce code duplication.
74   /// This function will report a fatal error if it cannot increase capacity.
75   void grow_pod(void *FirstEl, size_t MinSize, size_t TSize);
76 
77   /// If vector was first created with capacity 0, getFirstEl() points to the
78   /// memory right after, an area unallocated. If a subsequent allocation,
79   /// that grows the vector, happens to return the same pointer as getFirstEl(),
80   /// get a new allocation, otherwise isSmall() will falsely return that no
81   /// allocation was done (true) and the memory will not be freed in the
82   /// destructor. If a VSize is given (vector size), also copy that many
83   /// elements to the new allocation - used if realloca fails to increase
84   /// space, and happens to allocate precisely at BeginX.
85   /// This is unlikely to be called often, but resolves a memory leak when the
86   /// situation does occur.
87   void *replaceAllocation(void *NewElts, size_t TSize, size_t NewCapacity,
88                           size_t VSize = 0);
89 
90 public:
size()91   size_t size() const { return Size; }
capacity()92   size_t capacity() const { return Capacity; }
93 
empty()94   [[nodiscard]] bool empty() const { return !Size; }
95 
96 protected:
97   /// Set the array size to \p N, which the current array must have enough
98   /// capacity for.
99   ///
100   /// This does not construct or destroy any elements in the vector.
set_size(size_t N)101   void set_size(size_t N) {
102     assert(N <= capacity());
103     Size = N;
104   }
105 };
106 
107 template <class T>
108 using SmallVectorSizeType =
109     std::conditional_t<sizeof(T) < 4 && sizeof(void *) >= 8, uint64_t,
110                        uint32_t>;
111 
112 /// Figure out the offset of the first element.
113 template <class T, typename = void> struct SmallVectorAlignmentAndSize {
114   alignas(SmallVectorBase<SmallVectorSizeType<T>>) char Base[sizeof(
115       SmallVectorBase<SmallVectorSizeType<T>>)];
116   alignas(T) char FirstEl[sizeof(T)];
117 };
118 
119 /// This is the part of SmallVectorTemplateBase which does not depend on whether
120 /// the type T is a POD. The extra dummy template argument is used by ArrayRef
121 /// to avoid unnecessarily requiring T to be complete.
122 template <typename T, typename = void>
123 class SmallVectorTemplateCommon
124     : public SmallVectorBase<SmallVectorSizeType<T>> {
125   using Base = SmallVectorBase<SmallVectorSizeType<T>>;
126 
127 protected:
128   /// Find the address of the first element.  For this pointer math to be valid
129   /// with small-size of 0 for T with lots of alignment, it's important that
130   /// SmallVectorStorage is properly-aligned even for small-size of 0.
getFirstEl()131   void *getFirstEl() const {
132     return const_cast<void *>(reinterpret_cast<const void *>(
133         reinterpret_cast<const char *>(this) +
134         offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)));
135   }
136   // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
137 
SmallVectorTemplateCommon(size_t Size)138   SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {}
139 
grow_pod(size_t MinSize,size_t TSize)140   void grow_pod(size_t MinSize, size_t TSize) {
141     Base::grow_pod(getFirstEl(), MinSize, TSize);
142   }
143 
144   /// Return true if this is a smallvector which has not had dynamic
145   /// memory allocated for it.
isSmall()146   bool isSmall() const { return this->BeginX == getFirstEl(); }
147 
148   /// Put this vector in a state of being small.
resetToSmall()149   void resetToSmall() {
150     this->BeginX = getFirstEl();
151     this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect.
152   }
153 
154   /// Return true if V is an internal reference to the given range.
isReferenceToRange(const void * V,const void * First,const void * Last)155   bool isReferenceToRange(const void *V, const void *First, const void *Last) const {
156     // Use std::less to avoid UB.
157     std::less<> LessThan;
158     return !LessThan(V, First) && LessThan(V, Last);
159   }
160 
161   /// Return true if V is an internal reference to this vector.
isReferenceToStorage(const void * V)162   bool isReferenceToStorage(const void *V) const {
163     return isReferenceToRange(V, this->begin(), this->end());
164   }
165 
166   /// Return true if First and Last form a valid (possibly empty) range in this
167   /// vector's storage.
isRangeInStorage(const void * First,const void * Last)168   bool isRangeInStorage(const void *First, const void *Last) const {
169     // Use std::less to avoid UB.
170     std::less<> LessThan;
171     return !LessThan(First, this->begin()) && !LessThan(Last, First) &&
172            !LessThan(this->end(), Last);
173   }
174 
175   /// Return true unless Elt will be invalidated by resizing the vector to
176   /// NewSize.
isSafeToReferenceAfterResize(const void * Elt,size_t NewSize)177   bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize) {
178     // Past the end.
179     if (LLVM_LIKELY(!isReferenceToStorage(Elt)))
180       return true;
181 
182     // Return false if Elt will be destroyed by shrinking.
183     if (NewSize <= this->size())
184       return Elt < this->begin() + NewSize;
185 
186     // Return false if we need to grow.
187     return NewSize <= this->capacity();
188   }
189 
190   /// Check whether Elt will be invalidated by resizing the vector to NewSize.
assertSafeToReferenceAfterResize(const void * Elt,size_t NewSize)191   void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize) {
192     assert(isSafeToReferenceAfterResize(Elt, NewSize) &&
193            "Attempting to reference an element of the vector in an operation "
194            "that invalidates it");
195   }
196 
197   /// Check whether Elt will be invalidated by increasing the size of the
198   /// vector by N.
199   void assertSafeToAdd(const void *Elt, size_t N = 1) {
200     this->assertSafeToReferenceAfterResize(Elt, this->size() + N);
201   }
202 
203   /// Check whether any part of the range will be invalidated by clearing.
assertSafeToReferenceAfterClear(const T * From,const T * To)204   void assertSafeToReferenceAfterClear(const T *From, const T *To) {
205     if (From == To)
206       return;
207     this->assertSafeToReferenceAfterResize(From, 0);
208     this->assertSafeToReferenceAfterResize(To - 1, 0);
209   }
210   template <
211       class ItTy,
212       std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value,
213                        bool> = false>
assertSafeToReferenceAfterClear(ItTy,ItTy)214   void assertSafeToReferenceAfterClear(ItTy, ItTy) {}
215 
216   /// Check whether any part of the range will be invalidated by growing.
assertSafeToAddRange(const T * From,const T * To)217   void assertSafeToAddRange(const T *From, const T *To) {
218     if (From == To)
219       return;
220     this->assertSafeToAdd(From, To - From);
221     this->assertSafeToAdd(To - 1, To - From);
222   }
223   template <
224       class ItTy,
225       std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value,
226                        bool> = false>
assertSafeToAddRange(ItTy,ItTy)227   void assertSafeToAddRange(ItTy, ItTy) {}
228 
229   /// Reserve enough space to add one element, and return the updated element
230   /// pointer in case it was a reference to the storage.
231   template <class U>
reserveForParamAndGetAddressImpl(U * This,const T & Elt,size_t N)232   static const T *reserveForParamAndGetAddressImpl(U *This, const T &Elt,
233                                                    size_t N) {
234     size_t NewSize = This->size() + N;
235     if (LLVM_LIKELY(NewSize <= This->capacity()))
236       return &Elt;
237 
238     bool ReferencesStorage = false;
239     int64_t Index = -1;
240     if (!U::TakesParamByValue) {
241       if (LLVM_UNLIKELY(This->isReferenceToStorage(&Elt))) {
242         ReferencesStorage = true;
243         Index = &Elt - This->begin();
244       }
245     }
246     This->grow(NewSize);
247     return ReferencesStorage ? This->begin() + Index : &Elt;
248   }
249 
250 public:
251   using size_type = size_t;
252   using difference_type = ptrdiff_t;
253   using value_type = T;
254   using iterator = T *;
255   using const_iterator = const T *;
256 
257   using const_reverse_iterator = std::reverse_iterator<const_iterator>;
258   using reverse_iterator = std::reverse_iterator<iterator>;
259 
260   using reference = T &;
261   using const_reference = const T &;
262   using pointer = T *;
263   using const_pointer = const T *;
264 
265   using Base::capacity;
266   using Base::empty;
267   using Base::size;
268 
269   // forward iterator creation methods.
begin()270   iterator begin() { return (iterator)this->BeginX; }
begin()271   const_iterator begin() const { return (const_iterator)this->BeginX; }
end()272   iterator end() { return begin() + size(); }
end()273   const_iterator end() const { return begin() + size(); }
274 
275   // reverse iterator creation methods.
rbegin()276   reverse_iterator rbegin()            { return reverse_iterator(end()); }
rbegin()277   const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
rend()278   reverse_iterator rend()              { return reverse_iterator(begin()); }
rend()279   const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
280 
size_in_bytes()281   size_type size_in_bytes() const { return size() * sizeof(T); }
max_size()282   size_type max_size() const {
283     return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T));
284   }
285 
capacity_in_bytes()286   size_t capacity_in_bytes() const { return capacity() * sizeof(T); }
287 
288   /// Return a pointer to the vector's buffer, even if empty().
data()289   pointer data() { return pointer(begin()); }
290   /// Return a pointer to the vector's buffer, even if empty().
data()291   const_pointer data() const { return const_pointer(begin()); }
292 
293   reference operator[](size_type idx) {
294     assert(idx < size());
295     return begin()[idx];
296   }
297   const_reference operator[](size_type idx) const {
298     assert(idx < size());
299     return begin()[idx];
300   }
301 
front()302   reference front() {
303     assert(!empty());
304     return begin()[0];
305   }
front()306   const_reference front() const {
307     assert(!empty());
308     return begin()[0];
309   }
310 
back()311   reference back() {
312     assert(!empty());
313     return end()[-1];
314   }
back()315   const_reference back() const {
316     assert(!empty());
317     return end()[-1];
318   }
319 };
320 
321 /// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put
322 /// method implementations that are designed to work with non-trivial T's.
323 ///
324 /// We approximate is_trivially_copyable with trivial move/copy construction and
325 /// trivial destruction. While the standard doesn't specify that you're allowed
326 /// copy these types with memcpy, there is no way for the type to observe this.
327 /// This catches the important case of std::pair<POD, POD>, which is not
328 /// trivially assignable.
329 template <typename T, bool = (is_trivially_copy_constructible<T>::value) &&
330                              (is_trivially_move_constructible<T>::value) &&
331                              std::is_trivially_destructible<T>::value>
332 class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
333   friend class SmallVectorTemplateCommon<T>;
334 
335 protected:
336   static constexpr bool TakesParamByValue = false;
337   using ValueParamT = const T &;
338 
SmallVectorTemplateBase(size_t Size)339   SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
340 
destroy_range(T * S,T * E)341   static void destroy_range(T *S, T *E) {
342     while (S != E) {
343       --E;
344       E->~T();
345     }
346   }
347 
348   /// Move the range [I, E) into the uninitialized memory starting with "Dest",
349   /// constructing elements as needed.
350   template<typename It1, typename It2>
uninitialized_move(It1 I,It1 E,It2 Dest)351   static void uninitialized_move(It1 I, It1 E, It2 Dest) {
352     std::uninitialized_move(I, E, Dest);
353   }
354 
355   /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
356   /// constructing elements as needed.
357   template<typename It1, typename It2>
uninitialized_copy(It1 I,It1 E,It2 Dest)358   static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
359     std::uninitialized_copy(I, E, Dest);
360   }
361 
362   /// Grow the allocated memory (without initializing new elements), doubling
363   /// the size of the allocated memory. Guarantees space for at least one more
364   /// element, or MinSize more elements if specified.
365   void grow(size_t MinSize = 0);
366 
367   /// Create a new allocation big enough for \p MinSize and pass back its size
368   /// in \p NewCapacity. This is the first section of \a grow().
369   T *mallocForGrow(size_t MinSize, size_t &NewCapacity);
370 
371   /// Move existing elements over to the new allocation \p NewElts, the middle
372   /// section of \a grow().
373   void moveElementsForGrow(T *NewElts);
374 
375   /// Transfer ownership of the allocation, finishing up \a grow().
376   void takeAllocationForGrow(T *NewElts, size_t NewCapacity);
377 
378   /// Reserve enough space to add one element, and return the updated element
379   /// pointer in case it was a reference to the storage.
380   const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) {
381     return this->reserveForParamAndGetAddressImpl(this, Elt, N);
382   }
383 
384   /// Reserve enough space to add one element, and return the updated element
385   /// pointer in case it was a reference to the storage.
386   T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) {
387     return const_cast<T *>(
388         this->reserveForParamAndGetAddressImpl(this, Elt, N));
389   }
390 
forward_value_param(T && V)391   static T &&forward_value_param(T &&V) { return std::move(V); }
forward_value_param(const T & V)392   static const T &forward_value_param(const T &V) { return V; }
393 
growAndAssign(size_t NumElts,const T & Elt)394   void growAndAssign(size_t NumElts, const T &Elt) {
395     // Grow manually in case Elt is an internal reference.
396     size_t NewCapacity;
397     T *NewElts = mallocForGrow(NumElts, NewCapacity);
398     std::uninitialized_fill_n(NewElts, NumElts, Elt);
399     this->destroy_range(this->begin(), this->end());
400     takeAllocationForGrow(NewElts, NewCapacity);
401     this->set_size(NumElts);
402   }
403 
growAndEmplaceBack(ArgTypes &&...Args)404   template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) {
405     // Grow manually in case one of Args is an internal reference.
406     size_t NewCapacity;
407     T *NewElts = mallocForGrow(0, NewCapacity);
408     ::new ((void *)(NewElts + this->size())) T(std::forward<ArgTypes>(Args)...);
409     moveElementsForGrow(NewElts);
410     takeAllocationForGrow(NewElts, NewCapacity);
411     this->set_size(this->size() + 1);
412     return this->back();
413   }
414 
415 public:
push_back(const T & Elt)416   void push_back(const T &Elt) {
417     const T *EltPtr = reserveForParamAndGetAddress(Elt);
418     ::new ((void *)this->end()) T(*EltPtr);
419     this->set_size(this->size() + 1);
420   }
421 
push_back(T && Elt)422   void push_back(T &&Elt) {
423     T *EltPtr = reserveForParamAndGetAddress(Elt);
424     ::new ((void *)this->end()) T(::std::move(*EltPtr));
425     this->set_size(this->size() + 1);
426   }
427 
pop_back()428   void pop_back() {
429     this->set_size(this->size() - 1);
430     this->end()->~T();
431   }
432 };
433 
434 // Define this out-of-line to dissuade the C++ compiler from inlining it.
435 template <typename T, bool TriviallyCopyable>
grow(size_t MinSize)436 void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) {
437   size_t NewCapacity;
438   T *NewElts = mallocForGrow(MinSize, NewCapacity);
439   moveElementsForGrow(NewElts);
440   takeAllocationForGrow(NewElts, NewCapacity);
441 }
442 
443 template <typename T, bool TriviallyCopyable>
mallocForGrow(size_t MinSize,size_t & NewCapacity)444 T *SmallVectorTemplateBase<T, TriviallyCopyable>::mallocForGrow(
445     size_t MinSize, size_t &NewCapacity) {
446   return static_cast<T *>(
447       SmallVectorBase<SmallVectorSizeType<T>>::mallocForGrow(
448           this->getFirstEl(), MinSize, sizeof(T), NewCapacity));
449 }
450 
451 // Define this out-of-line to dissuade the C++ compiler from inlining it.
452 template <typename T, bool TriviallyCopyable>
moveElementsForGrow(T * NewElts)453 void SmallVectorTemplateBase<T, TriviallyCopyable>::moveElementsForGrow(
454     T *NewElts) {
455   // Move the elements over.
456   this->uninitialized_move(this->begin(), this->end(), NewElts);
457 
458   // Destroy the original elements.
459   destroy_range(this->begin(), this->end());
460 }
461 
462 // Define this out-of-line to dissuade the C++ compiler from inlining it.
463 template <typename T, bool TriviallyCopyable>
takeAllocationForGrow(T * NewElts,size_t NewCapacity)464 void SmallVectorTemplateBase<T, TriviallyCopyable>::takeAllocationForGrow(
465     T *NewElts, size_t NewCapacity) {
466   // If this wasn't grown from the inline copy, deallocate the old space.
467   if (!this->isSmall())
468     free(this->begin());
469 
470   this->BeginX = NewElts;
471   this->Capacity = NewCapacity;
472 }
473 
474 /// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put
475 /// method implementations that are designed to work with trivially copyable
476 /// T's. This allows using memcpy in place of copy/move construction and
477 /// skipping destruction.
478 template <typename T>
479 class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
480   friend class SmallVectorTemplateCommon<T>;
481 
482 protected:
483   /// True if it's cheap enough to take parameters by value. Doing so avoids
484   /// overhead related to mitigations for reference invalidation.
485   static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *);
486 
487   /// Either const T& or T, depending on whether it's cheap enough to take
488   /// parameters by value.
489   using ValueParamT = std::conditional_t<TakesParamByValue, T, const T &>;
490 
SmallVectorTemplateBase(size_t Size)491   SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
492 
493   // No need to do a destroy loop for POD's.
destroy_range(T *,T *)494   static void destroy_range(T *, T *) {}
495 
496   /// Move the range [I, E) onto the uninitialized memory
497   /// starting with "Dest", constructing elements into it as needed.
498   template<typename It1, typename It2>
uninitialized_move(It1 I,It1 E,It2 Dest)499   static void uninitialized_move(It1 I, It1 E, It2 Dest) {
500     // Just do a copy.
501     uninitialized_copy(I, E, Dest);
502   }
503 
504   /// Copy the range [I, E) onto the uninitialized memory
505   /// starting with "Dest", constructing elements into it as needed.
506   template<typename It1, typename It2>
uninitialized_copy(It1 I,It1 E,It2 Dest)507   static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
508     // Arbitrary iterator types; just use the basic implementation.
509     std::uninitialized_copy(I, E, Dest);
510   }
511 
512   /// Copy the range [I, E) onto the uninitialized memory
513   /// starting with "Dest", constructing elements into it as needed.
514   template <typename T1, typename T2>
515   static void uninitialized_copy(
516       T1 *I, T1 *E, T2 *Dest,
517       std::enable_if_t<std::is_same<std::remove_const_t<T1>, T2>::value> * =
518           nullptr) {
519     // Use memcpy for PODs iterated by pointers (which includes SmallVector
520     // iterators): std::uninitialized_copy optimizes to memmove, but we can
521     // use memcpy here. Note that I and E are iterators and thus might be
522     // invalid for memcpy if they are equal.
523     if (I != E)
524       memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T));
525   }
526 
527   /// Double the size of the allocated memory, guaranteeing space for at
528   /// least one more element or MinSize if specified.
529   void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); }
530 
531   /// Reserve enough space to add one element, and return the updated element
532   /// pointer in case it was a reference to the storage.
533   const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) {
534     return this->reserveForParamAndGetAddressImpl(this, Elt, N);
535   }
536 
537   /// Reserve enough space to add one element, and return the updated element
538   /// pointer in case it was a reference to the storage.
539   T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) {
540     return const_cast<T *>(
541         this->reserveForParamAndGetAddressImpl(this, Elt, N));
542   }
543 
544   /// Copy \p V or return a reference, depending on \a ValueParamT.
forward_value_param(ValueParamT V)545   static ValueParamT forward_value_param(ValueParamT V) { return V; }
546 
growAndAssign(size_t NumElts,T Elt)547   void growAndAssign(size_t NumElts, T Elt) {
548     // Elt has been copied in case it's an internal reference, side-stepping
549     // reference invalidation problems without losing the realloc optimization.
550     this->set_size(0);
551     this->grow(NumElts);
552     std::uninitialized_fill_n(this->begin(), NumElts, Elt);
553     this->set_size(NumElts);
554   }
555 
growAndEmplaceBack(ArgTypes &&...Args)556   template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) {
557     // Use push_back with a copy in case Args has an internal reference,
558     // side-stepping reference invalidation problems without losing the realloc
559     // optimization.
560     push_back(T(std::forward<ArgTypes>(Args)...));
561     return this->back();
562   }
563 
564 public:
push_back(ValueParamT Elt)565   void push_back(ValueParamT Elt) {
566     const T *EltPtr = reserveForParamAndGetAddress(Elt);
567     memcpy(reinterpret_cast<void *>(this->end()), EltPtr, sizeof(T));
568     this->set_size(this->size() + 1);
569   }
570 
pop_back()571   void pop_back() { this->set_size(this->size() - 1); }
572 };
573 
574 /// This class consists of common code factored out of the SmallVector class to
575 /// reduce code duplication based on the SmallVector 'N' template parameter.
576 template <typename T>
577 class SmallVectorImpl : public SmallVectorTemplateBase<T> {
578   using SuperClass = SmallVectorTemplateBase<T>;
579 
580 public:
581   using iterator = typename SuperClass::iterator;
582   using const_iterator = typename SuperClass::const_iterator;
583   using reference = typename SuperClass::reference;
584   using size_type = typename SuperClass::size_type;
585 
586 protected:
587   using SmallVectorTemplateBase<T>::TakesParamByValue;
588   using ValueParamT = typename SuperClass::ValueParamT;
589 
590   // Default ctor - Initialize to empty.
SmallVectorImpl(unsigned N)591   explicit SmallVectorImpl(unsigned N)
592       : SmallVectorTemplateBase<T>(N) {}
593 
assignRemote(SmallVectorImpl && RHS)594   void assignRemote(SmallVectorImpl &&RHS) {
595     this->destroy_range(this->begin(), this->end());
596     if (!this->isSmall())
597       free(this->begin());
598     this->BeginX = RHS.BeginX;
599     this->Size = RHS.Size;
600     this->Capacity = RHS.Capacity;
601     RHS.resetToSmall();
602   }
603 
604 public:
605   SmallVectorImpl(const SmallVectorImpl &) = delete;
606 
~SmallVectorImpl()607   ~SmallVectorImpl() {
608     // Subclass has already destructed this vector's elements.
609     // If this wasn't grown from the inline copy, deallocate the old space.
610     if (!this->isSmall())
611       free(this->begin());
612   }
613 
clear()614   void clear() {
615     this->destroy_range(this->begin(), this->end());
616     this->Size = 0;
617   }
618 
619 private:
620   // Make set_size() private to avoid misuse in subclasses.
621   using SuperClass::set_size;
622 
resizeImpl(size_type N)623   template <bool ForOverwrite> void resizeImpl(size_type N) {
624     if (N == this->size())
625       return;
626 
627     if (N < this->size()) {
628       this->truncate(N);
629       return;
630     }
631 
632     this->reserve(N);
633     for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
634       if (ForOverwrite)
635         new (&*I) T;
636       else
637         new (&*I) T();
638     this->set_size(N);
639   }
640 
641 public:
resize(size_type N)642   void resize(size_type N) { resizeImpl<false>(N); }
643 
644   /// Like resize, but \ref T is POD, the new values won't be initialized.
resize_for_overwrite(size_type N)645   void resize_for_overwrite(size_type N) { resizeImpl<true>(N); }
646 
647   /// Like resize, but requires that \p N is less than \a size().
truncate(size_type N)648   void truncate(size_type N) {
649     assert(this->size() >= N && "Cannot increase size with truncate");
650     this->destroy_range(this->begin() + N, this->end());
651     this->set_size(N);
652   }
653 
resize(size_type N,ValueParamT NV)654   void resize(size_type N, ValueParamT NV) {
655     if (N == this->size())
656       return;
657 
658     if (N < this->size()) {
659       this->truncate(N);
660       return;
661     }
662 
663     // N > this->size(). Defer to append.
664     this->append(N - this->size(), NV);
665   }
666 
reserve(size_type N)667   void reserve(size_type N) {
668     if (this->capacity() < N)
669       this->grow(N);
670   }
671 
pop_back_n(size_type NumItems)672   void pop_back_n(size_type NumItems) {
673     assert(this->size() >= NumItems);
674     truncate(this->size() - NumItems);
675   }
676 
pop_back_val()677   [[nodiscard]] T pop_back_val() {
678     T Result = ::std::move(this->back());
679     this->pop_back();
680     return Result;
681   }
682 
683   void swap(SmallVectorImpl &RHS);
684 
685   /// Add the specified range to the end of the SmallVector.
686   template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>>
append(ItTy in_start,ItTy in_end)687   void append(ItTy in_start, ItTy in_end) {
688     this->assertSafeToAddRange(in_start, in_end);
689     size_type NumInputs = std::distance(in_start, in_end);
690     this->reserve(this->size() + NumInputs);
691     this->uninitialized_copy(in_start, in_end, this->end());
692     this->set_size(this->size() + NumInputs);
693   }
694 
695   /// Append \p NumInputs copies of \p Elt to the end.
append(size_type NumInputs,ValueParamT Elt)696   void append(size_type NumInputs, ValueParamT Elt) {
697     const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs);
698     std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr);
699     this->set_size(this->size() + NumInputs);
700   }
701 
append(std::initializer_list<T> IL)702   void append(std::initializer_list<T> IL) {
703     append(IL.begin(), IL.end());
704   }
705 
append(const SmallVectorImpl & RHS)706   void append(const SmallVectorImpl &RHS) { append(RHS.begin(), RHS.end()); }
707 
assign(size_type NumElts,ValueParamT Elt)708   void assign(size_type NumElts, ValueParamT Elt) {
709     // Note that Elt could be an internal reference.
710     if (NumElts > this->capacity()) {
711       this->growAndAssign(NumElts, Elt);
712       return;
713     }
714 
715     // Assign over existing elements.
716     std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt);
717     if (NumElts > this->size())
718       std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt);
719     else if (NumElts < this->size())
720       this->destroy_range(this->begin() + NumElts, this->end());
721     this->set_size(NumElts);
722   }
723 
724   // FIXME: Consider assigning over existing elements, rather than clearing &
725   // re-initializing them - for all assign(...) variants.
726 
727   template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>>
assign(ItTy in_start,ItTy in_end)728   void assign(ItTy in_start, ItTy in_end) {
729     this->assertSafeToReferenceAfterClear(in_start, in_end);
730     clear();
731     append(in_start, in_end);
732   }
733 
assign(std::initializer_list<T> IL)734   void assign(std::initializer_list<T> IL) {
735     clear();
736     append(IL);
737   }
738 
assign(const SmallVectorImpl & RHS)739   void assign(const SmallVectorImpl &RHS) { assign(RHS.begin(), RHS.end()); }
740 
erase(const_iterator CI)741   iterator erase(const_iterator CI) {
742     // Just cast away constness because this is a non-const member function.
743     iterator I = const_cast<iterator>(CI);
744 
745     assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds.");
746 
747     iterator N = I;
748     // Shift all elts down one.
749     std::move(I+1, this->end(), I);
750     // Drop the last elt.
751     this->pop_back();
752     return(N);
753   }
754 
erase(const_iterator CS,const_iterator CE)755   iterator erase(const_iterator CS, const_iterator CE) {
756     // Just cast away constness because this is a non-const member function.
757     iterator S = const_cast<iterator>(CS);
758     iterator E = const_cast<iterator>(CE);
759 
760     assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds.");
761 
762     iterator N = S;
763     // Shift all elts down.
764     iterator I = std::move(E, this->end(), S);
765     // Drop the last elts.
766     this->destroy_range(I, this->end());
767     this->set_size(I - this->begin());
768     return(N);
769   }
770 
771 private:
insert_one_impl(iterator I,ArgType && Elt)772   template <class ArgType> iterator insert_one_impl(iterator I, ArgType &&Elt) {
773     // Callers ensure that ArgType is derived from T.
774     static_assert(
775         std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>,
776                      T>::value,
777         "ArgType must be derived from T!");
778 
779     if (I == this->end()) {  // Important special case for empty vector.
780       this->push_back(::std::forward<ArgType>(Elt));
781       return this->end()-1;
782     }
783 
784     assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
785 
786     // Grow if necessary.
787     size_t Index = I - this->begin();
788     std::remove_reference_t<ArgType> *EltPtr =
789         this->reserveForParamAndGetAddress(Elt);
790     I = this->begin() + Index;
791 
792     ::new ((void*) this->end()) T(::std::move(this->back()));
793     // Push everything else over.
794     std::move_backward(I, this->end()-1, this->end());
795     this->set_size(this->size() + 1);
796 
797     // If we just moved the element we're inserting, be sure to update
798     // the reference (never happens if TakesParamByValue).
799     static_assert(!TakesParamByValue || std::is_same<ArgType, T>::value,
800                   "ArgType must be 'T' when taking by value!");
801     if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end()))
802       ++EltPtr;
803 
804     *I = ::std::forward<ArgType>(*EltPtr);
805     return I;
806   }
807 
808 public:
insert(iterator I,T && Elt)809   iterator insert(iterator I, T &&Elt) {
810     return insert_one_impl(I, this->forward_value_param(std::move(Elt)));
811   }
812 
insert(iterator I,const T & Elt)813   iterator insert(iterator I, const T &Elt) {
814     return insert_one_impl(I, this->forward_value_param(Elt));
815   }
816 
insert(iterator I,size_type NumToInsert,ValueParamT Elt)817   iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) {
818     // Convert iterator to elt# to avoid invalidating iterator when we reserve()
819     size_t InsertElt = I - this->begin();
820 
821     if (I == this->end()) {  // Important special case for empty vector.
822       append(NumToInsert, Elt);
823       return this->begin()+InsertElt;
824     }
825 
826     assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
827 
828     // Ensure there is enough space, and get the (maybe updated) address of
829     // Elt.
830     const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert);
831 
832     // Uninvalidate the iterator.
833     I = this->begin()+InsertElt;
834 
835     // If there are more elements between the insertion point and the end of the
836     // range than there are being inserted, we can use a simple approach to
837     // insertion.  Since we already reserved space, we know that this won't
838     // reallocate the vector.
839     if (size_t(this->end()-I) >= NumToInsert) {
840       T *OldEnd = this->end();
841       append(std::move_iterator<iterator>(this->end() - NumToInsert),
842              std::move_iterator<iterator>(this->end()));
843 
844       // Copy the existing elements that get replaced.
845       std::move_backward(I, OldEnd-NumToInsert, OldEnd);
846 
847       // If we just moved the element we're inserting, be sure to update
848       // the reference (never happens if TakesParamByValue).
849       if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
850         EltPtr += NumToInsert;
851 
852       std::fill_n(I, NumToInsert, *EltPtr);
853       return I;
854     }
855 
856     // Otherwise, we're inserting more elements than exist already, and we're
857     // not inserting at the end.
858 
859     // Move over the elements that we're about to overwrite.
860     T *OldEnd = this->end();
861     this->set_size(this->size() + NumToInsert);
862     size_t NumOverwritten = OldEnd-I;
863     this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
864 
865     // If we just moved the element we're inserting, be sure to update
866     // the reference (never happens if TakesParamByValue).
867     if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end())
868       EltPtr += NumToInsert;
869 
870     // Replace the overwritten part.
871     std::fill_n(I, NumOverwritten, *EltPtr);
872 
873     // Insert the non-overwritten middle part.
874     std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr);
875     return I;
876   }
877 
878   template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>>
insert(iterator I,ItTy From,ItTy To)879   iterator insert(iterator I, ItTy From, ItTy To) {
880     // Convert iterator to elt# to avoid invalidating iterator when we reserve()
881     size_t InsertElt = I - this->begin();
882 
883     if (I == this->end()) {  // Important special case for empty vector.
884       append(From, To);
885       return this->begin()+InsertElt;
886     }
887 
888     assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.");
889 
890     // Check that the reserve that follows doesn't invalidate the iterators.
891     this->assertSafeToAddRange(From, To);
892 
893     size_t NumToInsert = std::distance(From, To);
894 
895     // Ensure there is enough space.
896     reserve(this->size() + NumToInsert);
897 
898     // Uninvalidate the iterator.
899     I = this->begin()+InsertElt;
900 
901     // If there are more elements between the insertion point and the end of the
902     // range than there are being inserted, we can use a simple approach to
903     // insertion.  Since we already reserved space, we know that this won't
904     // reallocate the vector.
905     if (size_t(this->end()-I) >= NumToInsert) {
906       T *OldEnd = this->end();
907       append(std::move_iterator<iterator>(this->end() - NumToInsert),
908              std::move_iterator<iterator>(this->end()));
909 
910       // Copy the existing elements that get replaced.
911       std::move_backward(I, OldEnd-NumToInsert, OldEnd);
912 
913       std::copy(From, To, I);
914       return I;
915     }
916 
917     // Otherwise, we're inserting more elements than exist already, and we're
918     // not inserting at the end.
919 
920     // Move over the elements that we're about to overwrite.
921     T *OldEnd = this->end();
922     this->set_size(this->size() + NumToInsert);
923     size_t NumOverwritten = OldEnd-I;
924     this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
925 
926     // Replace the overwritten part.
927     for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
928       *J = *From;
929       ++J; ++From;
930     }
931 
932     // Insert the non-overwritten middle part.
933     this->uninitialized_copy(From, To, OldEnd);
934     return I;
935   }
936 
insert(iterator I,std::initializer_list<T> IL)937   void insert(iterator I, std::initializer_list<T> IL) {
938     insert(I, IL.begin(), IL.end());
939   }
940 
emplace_back(ArgTypes &&...Args)941   template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) {
942     if (LLVM_UNLIKELY(this->size() >= this->capacity()))
943       return this->growAndEmplaceBack(std::forward<ArgTypes>(Args)...);
944 
945     ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...);
946     this->set_size(this->size() + 1);
947     return this->back();
948   }
949 
950   SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
951 
952   SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
953 
954   bool operator==(const SmallVectorImpl &RHS) const {
955     if (this->size() != RHS.size()) return false;
956     return std::equal(this->begin(), this->end(), RHS.begin());
957   }
958   bool operator!=(const SmallVectorImpl &RHS) const {
959     return !(*this == RHS);
960   }
961 
962   bool operator<(const SmallVectorImpl &RHS) const {
963     return std::lexicographical_compare(this->begin(), this->end(),
964                                         RHS.begin(), RHS.end());
965   }
966   bool operator>(const SmallVectorImpl &RHS) const { return RHS < *this; }
967   bool operator<=(const SmallVectorImpl &RHS) const { return !(*this > RHS); }
968   bool operator>=(const SmallVectorImpl &RHS) const { return !(*this < RHS); }
969 };
970 
971 template <typename T>
swap(SmallVectorImpl<T> & RHS)972 void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
973   if (this == &RHS) return;
974 
975   // We can only avoid copying elements if neither vector is small.
976   if (!this->isSmall() && !RHS.isSmall()) {
977     std::swap(this->BeginX, RHS.BeginX);
978     std::swap(this->Size, RHS.Size);
979     std::swap(this->Capacity, RHS.Capacity);
980     return;
981   }
982   this->reserve(RHS.size());
983   RHS.reserve(this->size());
984 
985   // Swap the shared elements.
986   size_t NumShared = this->size();
987   if (NumShared > RHS.size()) NumShared = RHS.size();
988   for (size_type i = 0; i != NumShared; ++i)
989     std::swap((*this)[i], RHS[i]);
990 
991   // Copy over the extra elts.
992   if (this->size() > RHS.size()) {
993     size_t EltDiff = this->size() - RHS.size();
994     this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
995     RHS.set_size(RHS.size() + EltDiff);
996     this->destroy_range(this->begin()+NumShared, this->end());
997     this->set_size(NumShared);
998   } else if (RHS.size() > this->size()) {
999     size_t EltDiff = RHS.size() - this->size();
1000     this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
1001     this->set_size(this->size() + EltDiff);
1002     this->destroy_range(RHS.begin()+NumShared, RHS.end());
1003     RHS.set_size(NumShared);
1004   }
1005 }
1006 
1007 template <typename T>
1008 SmallVectorImpl<T> &SmallVectorImpl<T>::
1009   operator=(const SmallVectorImpl<T> &RHS) {
1010   // Avoid self-assignment.
1011   if (this == &RHS) return *this;
1012 
1013   // If we already have sufficient space, assign the common elements, then
1014   // destroy any excess.
1015   size_t RHSSize = RHS.size();
1016   size_t CurSize = this->size();
1017   if (CurSize >= RHSSize) {
1018     // Assign common elements.
1019     iterator NewEnd;
1020     if (RHSSize)
1021       NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
1022     else
1023       NewEnd = this->begin();
1024 
1025     // Destroy excess elements.
1026     this->destroy_range(NewEnd, this->end());
1027 
1028     // Trim.
1029     this->set_size(RHSSize);
1030     return *this;
1031   }
1032 
1033   // If we have to grow to have enough elements, destroy the current elements.
1034   // This allows us to avoid copying them during the grow.
1035   // FIXME: don't do this if they're efficiently moveable.
1036   if (this->capacity() < RHSSize) {
1037     // Destroy current elements.
1038     this->clear();
1039     CurSize = 0;
1040     this->grow(RHSSize);
1041   } else if (CurSize) {
1042     // Otherwise, use assignment for the already-constructed elements.
1043     std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
1044   }
1045 
1046   // Copy construct the new elements in place.
1047   this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
1048                            this->begin()+CurSize);
1049 
1050   // Set end.
1051   this->set_size(RHSSize);
1052   return *this;
1053 }
1054 
1055 template <typename T>
1056 SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
1057   // Avoid self-assignment.
1058   if (this == &RHS) return *this;
1059 
1060   // If the RHS isn't small, clear this vector and then steal its buffer.
1061   if (!RHS.isSmall()) {
1062     this->assignRemote(std::move(RHS));
1063     return *this;
1064   }
1065 
1066   // If we already have sufficient space, assign the common elements, then
1067   // destroy any excess.
1068   size_t RHSSize = RHS.size();
1069   size_t CurSize = this->size();
1070   if (CurSize >= RHSSize) {
1071     // Assign common elements.
1072     iterator NewEnd = this->begin();
1073     if (RHSSize)
1074       NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);
1075 
1076     // Destroy excess elements and trim the bounds.
1077     this->destroy_range(NewEnd, this->end());
1078     this->set_size(RHSSize);
1079 
1080     // Clear the RHS.
1081     RHS.clear();
1082 
1083     return *this;
1084   }
1085 
1086   // If we have to grow to have enough elements, destroy the current elements.
1087   // This allows us to avoid copying them during the grow.
1088   // FIXME: this may not actually make any sense if we can efficiently move
1089   // elements.
1090   if (this->capacity() < RHSSize) {
1091     // Destroy current elements.
1092     this->clear();
1093     CurSize = 0;
1094     this->grow(RHSSize);
1095   } else if (CurSize) {
1096     // Otherwise, use assignment for the already-constructed elements.
1097     std::move(RHS.begin(), RHS.begin()+CurSize, this->begin());
1098   }
1099 
1100   // Move-construct the new elements in place.
1101   this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
1102                            this->begin()+CurSize);
1103 
1104   // Set end.
1105   this->set_size(RHSSize);
1106 
1107   RHS.clear();
1108   return *this;
1109 }
1110 
1111 /// Storage for the SmallVector elements.  This is specialized for the N=0 case
1112 /// to avoid allocating unnecessary storage.
1113 template <typename T, unsigned N>
1114 struct SmallVectorStorage {
1115   alignas(T) char InlineElts[N * sizeof(T)];
1116 };
1117 
1118 /// We need the storage to be properly aligned even for small-size of 0 so that
1119 /// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is
1120 /// well-defined.
alignas(T)1121 template <typename T> struct alignas(T) SmallVectorStorage<T, 0> {};
1122 
1123 /// Forward declaration of SmallVector so that
1124 /// calculateSmallVectorDefaultInlinedElements can reference
1125 /// `sizeof(SmallVector<T, 0>)`.
1126 template <typename T, unsigned N> class LLVM_GSL_OWNER SmallVector;
1127 
1128 /// Helper class for calculating the default number of inline elements for
1129 /// `SmallVector<T>`.
1130 ///
1131 /// This should be migrated to a constexpr function when our minimum
1132 /// compiler support is enough for multi-statement constexpr functions.
1133 template <typename T> struct CalculateSmallVectorDefaultInlinedElements {
1134   // Parameter controlling the default number of inlined elements
1135   // for `SmallVector<T>`.
1136   //
1137   // The default number of inlined elements ensures that
1138   // 1. There is at least one inlined element.
1139   // 2. `sizeof(SmallVector<T>) <= kPreferredSmallVectorSizeof` unless
1140   // it contradicts 1.
1141   static constexpr size_t kPreferredSmallVectorSizeof = 64;
1142 
1143   // static_assert that sizeof(T) is not "too big".
1144   //
1145   // Because our policy guarantees at least one inlined element, it is possible
1146   // for an arbitrarily large inlined element to allocate an arbitrarily large
1147   // amount of inline storage. We generally consider it an antipattern for a
1148   // SmallVector to allocate an excessive amount of inline storage, so we want
1149   // to call attention to these cases and make sure that users are making an
1150   // intentional decision if they request a lot of inline storage.
1151   //
1152   // We want this assertion to trigger in pathological cases, but otherwise
1153   // not be too easy to hit. To accomplish that, the cutoff is actually somewhat
1154   // larger than kPreferredSmallVectorSizeof (otherwise,
1155   // `SmallVector<SmallVector<T>>` would be one easy way to trip it, and that
1156   // pattern seems useful in practice).
1157   //
1158   // One wrinkle is that this assertion is in theory non-portable, since
1159   // sizeof(T) is in general platform-dependent. However, we don't expect this
1160   // to be much of an issue, because most LLVM development happens on 64-bit
1161   // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for
1162   // 32-bit hosts, dodging the issue. The reverse situation, where development
1163   // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a
1164   // 64-bit host, is expected to be very rare.
1165   static_assert(
1166       sizeof(T) <= 256,
1167       "You are trying to use a default number of inlined elements for "
1168       "`SmallVector<T>` but `sizeof(T)` is really big! Please use an "
1169       "explicit number of inlined elements with `SmallVector<T, N>` to make "
1170       "sure you really want that much inline storage.");
1171 
1172   // Discount the size of the header itself when calculating the maximum inline
1173   // bytes.
1174   static constexpr size_t PreferredInlineBytes =
1175       kPreferredSmallVectorSizeof - sizeof(SmallVector<T, 0>);
1176   static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T);
1177   static constexpr size_t value =
1178       NumElementsThatFit == 0 ? 1 : NumElementsThatFit;
1179 };
1180 
1181 /// This is a 'vector' (really, a variable-sized array), optimized
1182 /// for the case when the array is small.  It contains some number of elements
1183 /// in-place, which allows it to avoid heap allocation when the actual number of
1184 /// elements is below that threshold.  This allows normal "small" cases to be
1185 /// fast without losing generality for large inputs.
1186 ///
1187 /// \note
1188 /// In the absence of a well-motivated choice for the number of inlined
1189 /// elements \p N, it is recommended to use \c SmallVector<T> (that is,
1190 /// omitting the \p N). This will choose a default number of inlined elements
1191 /// reasonable for allocation on the stack (for example, trying to keep \c
1192 /// sizeof(SmallVector<T>) around 64 bytes).
1193 ///
1194 /// \warning This does not attempt to be exception safe.
1195 ///
1196 /// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h
1197 template <typename T,
1198           unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value>
1199 class LLVM_GSL_OWNER SmallVector : public SmallVectorImpl<T>,
1200                                    SmallVectorStorage<T, N> {
1201 public:
SmallVector()1202   SmallVector() : SmallVectorImpl<T>(N) {}
1203 
~SmallVector()1204   ~SmallVector() {
1205     // Destroy the constructed elements in the vector.
1206     this->destroy_range(this->begin(), this->end());
1207   }
1208 
1209   explicit SmallVector(size_t Size, const T &Value = T())
1210     : SmallVectorImpl<T>(N) {
1211     this->assign(Size, Value);
1212   }
1213 
1214   template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>>
SmallVector(ItTy S,ItTy E)1215   SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
1216     this->append(S, E);
1217   }
1218 
1219   template <typename RangeTy>
SmallVector(const iterator_range<RangeTy> & R)1220   explicit SmallVector(const iterator_range<RangeTy> &R)
1221       : SmallVectorImpl<T>(N) {
1222     this->append(R.begin(), R.end());
1223   }
1224 
SmallVector(std::initializer_list<T> IL)1225   SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) {
1226     this->append(IL);
1227   }
1228 
1229   template <typename U,
1230             typename = std::enable_if_t<std::is_convertible<U, T>::value>>
SmallVector(ArrayRef<U> A)1231   explicit SmallVector(ArrayRef<U> A) : SmallVectorImpl<T>(N) {
1232     this->append(A.begin(), A.end());
1233   }
1234 
SmallVector(const SmallVector & RHS)1235   SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
1236     if (!RHS.empty())
1237       SmallVectorImpl<T>::operator=(RHS);
1238   }
1239 
1240   SmallVector &operator=(const SmallVector &RHS) {
1241     SmallVectorImpl<T>::operator=(RHS);
1242     return *this;
1243   }
1244 
SmallVector(SmallVector && RHS)1245   SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
1246     if (!RHS.empty())
1247       SmallVectorImpl<T>::operator=(::std::move(RHS));
1248   }
1249 
SmallVector(SmallVectorImpl<T> && RHS)1250   SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) {
1251     if (!RHS.empty())
1252       SmallVectorImpl<T>::operator=(::std::move(RHS));
1253   }
1254 
1255   SmallVector &operator=(SmallVector &&RHS) {
1256     if (N) {
1257       SmallVectorImpl<T>::operator=(::std::move(RHS));
1258       return *this;
1259     }
1260     // SmallVectorImpl<T>::operator= does not leverage N==0. Optimize the
1261     // case.
1262     if (this == &RHS)
1263       return *this;
1264     if (RHS.empty()) {
1265       this->destroy_range(this->begin(), this->end());
1266       this->Size = 0;
1267     } else {
1268       this->assignRemote(std::move(RHS));
1269     }
1270     return *this;
1271   }
1272 
1273   SmallVector &operator=(SmallVectorImpl<T> &&RHS) {
1274     SmallVectorImpl<T>::operator=(::std::move(RHS));
1275     return *this;
1276   }
1277 
1278   SmallVector &operator=(std::initializer_list<T> IL) {
1279     this->assign(IL);
1280     return *this;
1281   }
1282 };
1283 
1284 template <typename T, unsigned N>
capacity_in_bytes(const SmallVector<T,N> & X)1285 inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
1286   return X.capacity_in_bytes();
1287 }
1288 
1289 template <typename RangeType>
1290 using ValueTypeFromRangeType =
1291     std::remove_const_t<std::remove_reference_t<decltype(*std::begin(
1292         std::declval<RangeType &>()))>>;
1293 
1294 /// Given a range of type R, iterate the entire range and return a
1295 /// SmallVector with elements of the vector.  This is useful, for example,
1296 /// when you want to iterate a range and then sort the results.
1297 template <unsigned Size, typename R>
to_vector(R && Range)1298 SmallVector<ValueTypeFromRangeType<R>, Size> to_vector(R &&Range) {
1299   return {std::begin(Range), std::end(Range)};
1300 }
1301 template <typename R>
to_vector(R && Range)1302 SmallVector<ValueTypeFromRangeType<R>> to_vector(R &&Range) {
1303   return {std::begin(Range), std::end(Range)};
1304 }
1305 
1306 template <typename Out, unsigned Size, typename R>
to_vector_of(R && Range)1307 SmallVector<Out, Size> to_vector_of(R &&Range) {
1308   return {std::begin(Range), std::end(Range)};
1309 }
1310 
to_vector_of(R && Range)1311 template <typename Out, typename R> SmallVector<Out> to_vector_of(R &&Range) {
1312   return {std::begin(Range), std::end(Range)};
1313 }
1314 
1315 // Explicit instantiations
1316 extern template class llvm::SmallVectorBase<uint32_t>;
1317 #if SIZE_MAX > UINT32_MAX
1318 extern template class llvm::SmallVectorBase<uint64_t>;
1319 #endif
1320 
1321 } // end namespace llvm
1322 
1323 namespace std {
1324 
1325   /// Implement std::swap in terms of SmallVector swap.
1326   template<typename T>
1327   inline void
swap(llvm::SmallVectorImpl<T> & LHS,llvm::SmallVectorImpl<T> & RHS)1328   swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
1329     LHS.swap(RHS);
1330   }
1331 
1332   /// Implement std::swap in terms of SmallVector swap.
1333   template<typename T, unsigned N>
1334   inline void
swap(llvm::SmallVector<T,N> & LHS,llvm::SmallVector<T,N> & RHS)1335   swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
1336     LHS.swap(RHS);
1337   }
1338 
1339 } // end namespace std
1340 
1341 #endif // LLVM_ADT_SMALLVECTOR_H
1342