1 //===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the generic implementation of LoopInfo used for both Loops and
10 // MachineLoops.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
15 #define LLVM_ANALYSIS_LOOPINFOIMPL_H
16
17 #include "llvm/ADT/PostOrderIterator.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/IR/Dominators.h"
22
23 namespace llvm {
24
25 //===----------------------------------------------------------------------===//
26 // APIs for simple analysis of the loop. See header notes.
27
28 /// getExitingBlocks - Return all blocks inside the loop that have successors
29 /// outside of the loop. These are the blocks _inside of the current loop_
30 /// which branch out. The returned list is always unique.
31 ///
32 template <class BlockT, class LoopT>
getExitingBlocks(SmallVectorImpl<BlockT * > & ExitingBlocks)33 void LoopBase<BlockT, LoopT>::getExitingBlocks(
34 SmallVectorImpl<BlockT *> &ExitingBlocks) const {
35 assert(!isInvalid() && "Loop not in a valid state!");
36 for (const auto BB : blocks())
37 for (auto *Succ : children<BlockT *>(BB))
38 if (!contains(Succ)) {
39 // Not in current loop? It must be an exit block.
40 ExitingBlocks.push_back(BB);
41 break;
42 }
43 }
44
45 /// getExitingBlock - If getExitingBlocks would return exactly one block,
46 /// return that block. Otherwise return null.
47 template <class BlockT, class LoopT>
getExitingBlock()48 BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
49 assert(!isInvalid() && "Loop not in a valid state!");
50 auto notInLoop = [&](BlockT *BB) { return !contains(BB); };
51 auto isExitBlock = [&](BlockT *BB, bool AllowRepeats) -> BlockT * {
52 assert(!AllowRepeats && "Unexpected parameter value.");
53 // Child not in current loop? It must be an exit block.
54 return any_of(children<BlockT *>(BB), notInLoop) ? BB : nullptr;
55 };
56
57 return find_singleton<BlockT>(blocks(), isExitBlock);
58 }
59
60 /// getExitBlocks - Return all of the successor blocks of this loop. These
61 /// are the blocks _outside of the current loop_ which are branched to.
62 ///
63 template <class BlockT, class LoopT>
getExitBlocks(SmallVectorImpl<BlockT * > & ExitBlocks)64 void LoopBase<BlockT, LoopT>::getExitBlocks(
65 SmallVectorImpl<BlockT *> &ExitBlocks) const {
66 assert(!isInvalid() && "Loop not in a valid state!");
67 for (const auto BB : blocks())
68 for (auto *Succ : children<BlockT *>(BB))
69 if (!contains(Succ))
70 // Not in current loop? It must be an exit block.
71 ExitBlocks.push_back(Succ);
72 }
73
74 /// getExitBlock - If getExitBlocks would return exactly one block,
75 /// return that block. Otherwise return null.
76 template <class BlockT, class LoopT>
getExitBlockHelper(const LoopBase<BlockT,LoopT> * L,bool Unique)77 std::pair<BlockT *, bool> getExitBlockHelper(const LoopBase<BlockT, LoopT> *L,
78 bool Unique) {
79 assert(!L->isInvalid() && "Loop not in a valid state!");
80 auto notInLoop = [&](BlockT *BB,
81 bool AllowRepeats) -> std::pair<BlockT *, bool> {
82 assert(AllowRepeats == Unique && "Unexpected parameter value.");
83 return {!L->contains(BB) ? BB : nullptr, false};
84 };
85 auto singleExitBlock = [&](BlockT *BB,
86 bool AllowRepeats) -> std::pair<BlockT *, bool> {
87 assert(AllowRepeats == Unique && "Unexpected parameter value.");
88 return find_singleton_nested<BlockT>(children<BlockT *>(BB), notInLoop,
89 AllowRepeats);
90 };
91 return find_singleton_nested<BlockT>(L->blocks(), singleExitBlock, Unique);
92 }
93
94 template <class BlockT, class LoopT>
hasNoExitBlocks()95 bool LoopBase<BlockT, LoopT>::hasNoExitBlocks() const {
96 auto RC = getExitBlockHelper(this, false);
97 if (RC.second)
98 // found multiple exit blocks
99 return false;
100 // return true if there is no exit block
101 return !RC.first;
102 }
103
104 /// getExitBlock - If getExitBlocks would return exactly one block,
105 /// return that block. Otherwise return null.
106 template <class BlockT, class LoopT>
getExitBlock()107 BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
108 return getExitBlockHelper(this, false).first;
109 }
110
111 template <class BlockT, class LoopT>
hasDedicatedExits()112 bool LoopBase<BlockT, LoopT>::hasDedicatedExits() const {
113 // Each predecessor of each exit block of a normal loop is contained
114 // within the loop.
115 SmallVector<BlockT *, 4> UniqueExitBlocks;
116 getUniqueExitBlocks(UniqueExitBlocks);
117 for (BlockT *EB : UniqueExitBlocks)
118 for (BlockT *Predecessor : children<Inverse<BlockT *>>(EB))
119 if (!contains(Predecessor))
120 return false;
121 // All the requirements are met.
122 return true;
123 }
124
125 // Helper function to get unique loop exits. Pred is a predicate pointing to
126 // BasicBlocks in a loop which should be considered to find loop exits.
127 template <class BlockT, class LoopT, typename PredicateT>
getUniqueExitBlocksHelper(const LoopT * L,SmallVectorImpl<BlockT * > & ExitBlocks,PredicateT Pred)128 void getUniqueExitBlocksHelper(const LoopT *L,
129 SmallVectorImpl<BlockT *> &ExitBlocks,
130 PredicateT Pred) {
131 assert(!L->isInvalid() && "Loop not in a valid state!");
132 SmallPtrSet<BlockT *, 32> Visited;
133 auto Filtered = make_filter_range(L->blocks(), Pred);
134 for (BlockT *BB : Filtered)
135 for (BlockT *Successor : children<BlockT *>(BB))
136 if (!L->contains(Successor))
137 if (Visited.insert(Successor).second)
138 ExitBlocks.push_back(Successor);
139 }
140
141 template <class BlockT, class LoopT>
getUniqueExitBlocks(SmallVectorImpl<BlockT * > & ExitBlocks)142 void LoopBase<BlockT, LoopT>::getUniqueExitBlocks(
143 SmallVectorImpl<BlockT *> &ExitBlocks) const {
144 getUniqueExitBlocksHelper(this, ExitBlocks,
145 [](const BlockT *BB) { return true; });
146 }
147
148 template <class BlockT, class LoopT>
getUniqueNonLatchExitBlocks(SmallVectorImpl<BlockT * > & ExitBlocks)149 void LoopBase<BlockT, LoopT>::getUniqueNonLatchExitBlocks(
150 SmallVectorImpl<BlockT *> &ExitBlocks) const {
151 const BlockT *Latch = getLoopLatch();
152 assert(Latch && "Latch block must exists");
153 getUniqueExitBlocksHelper(this, ExitBlocks,
154 [Latch](const BlockT *BB) { return BB != Latch; });
155 }
156
157 template <class BlockT, class LoopT>
getUniqueExitBlock()158 BlockT *LoopBase<BlockT, LoopT>::getUniqueExitBlock() const {
159 return getExitBlockHelper(this, true).first;
160 }
161
162 /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
163 template <class BlockT, class LoopT>
getExitEdges(SmallVectorImpl<Edge> & ExitEdges)164 void LoopBase<BlockT, LoopT>::getExitEdges(
165 SmallVectorImpl<Edge> &ExitEdges) const {
166 assert(!isInvalid() && "Loop not in a valid state!");
167 for (const auto BB : blocks())
168 for (auto *Succ : children<BlockT *>(BB))
169 if (!contains(Succ))
170 // Not in current loop? It must be an exit block.
171 ExitEdges.emplace_back(BB, Succ);
172 }
173
174 /// getLoopPreheader - If there is a preheader for this loop, return it. A
175 /// loop has a preheader if there is only one edge to the header of the loop
176 /// from outside of the loop and it is legal to hoist instructions into the
177 /// predecessor. If this is the case, the block branching to the header of the
178 /// loop is the preheader node.
179 ///
180 /// This method returns null if there is no preheader for the loop.
181 ///
182 template <class BlockT, class LoopT>
getLoopPreheader()183 BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
184 assert(!isInvalid() && "Loop not in a valid state!");
185 // Keep track of nodes outside the loop branching to the header...
186 BlockT *Out = getLoopPredecessor();
187 if (!Out)
188 return nullptr;
189
190 // Make sure we are allowed to hoist instructions into the predecessor.
191 if (!Out->isLegalToHoistInto())
192 return nullptr;
193
194 // Make sure there is only one exit out of the preheader.
195 typedef GraphTraits<BlockT *> BlockTraits;
196 typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
197 ++SI;
198 if (SI != BlockTraits::child_end(Out))
199 return nullptr; // Multiple exits from the block, must not be a preheader.
200
201 // The predecessor has exactly one successor, so it is a preheader.
202 return Out;
203 }
204
205 /// getLoopPredecessor - If the given loop's header has exactly one unique
206 /// predecessor outside the loop, return it. Otherwise return null.
207 /// This is less strict that the loop "preheader" concept, which requires
208 /// the predecessor to have exactly one successor.
209 ///
210 template <class BlockT, class LoopT>
getLoopPredecessor()211 BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
212 assert(!isInvalid() && "Loop not in a valid state!");
213 // Keep track of nodes outside the loop branching to the header...
214 BlockT *Out = nullptr;
215
216 // Loop over the predecessors of the header node...
217 BlockT *Header = getHeader();
218 for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
219 if (!contains(Pred)) { // If the block is not in the loop...
220 if (Out && Out != Pred)
221 return nullptr; // Multiple predecessors outside the loop
222 Out = Pred;
223 }
224 }
225
226 return Out;
227 }
228
229 /// getLoopLatch - If there is a single latch block for this loop, return it.
230 /// A latch block is a block that contains a branch back to the header.
231 template <class BlockT, class LoopT>
getLoopLatch()232 BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
233 assert(!isInvalid() && "Loop not in a valid state!");
234 BlockT *Header = getHeader();
235 BlockT *Latch = nullptr;
236 for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
237 if (contains(Pred)) {
238 if (Latch)
239 return nullptr;
240 Latch = Pred;
241 }
242 }
243
244 return Latch;
245 }
246
247 //===----------------------------------------------------------------------===//
248 // APIs for updating loop information after changing the CFG
249 //
250
251 /// addBasicBlockToLoop - This method is used by other analyses to update loop
252 /// information. NewBB is set to be a new member of the current loop.
253 /// Because of this, it is added as a member of all parent loops, and is added
254 /// to the specified LoopInfo object as being in the current basic block. It
255 /// is not valid to replace the loop header with this method.
256 ///
257 template <class BlockT, class LoopT>
addBasicBlockToLoop(BlockT * NewBB,LoopInfoBase<BlockT,LoopT> & LIB)258 void LoopBase<BlockT, LoopT>::addBasicBlockToLoop(
259 BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
260 assert(!isInvalid() && "Loop not in a valid state!");
261 #ifndef NDEBUG
262 if (!Blocks.empty()) {
263 auto SameHeader = LIB[getHeader()];
264 assert(contains(SameHeader) && getHeader() == SameHeader->getHeader() &&
265 "Incorrect LI specified for this loop!");
266 }
267 #endif
268 assert(NewBB && "Cannot add a null basic block to the loop!");
269 assert(!LIB[NewBB] && "BasicBlock already in the loop!");
270
271 LoopT *L = static_cast<LoopT *>(this);
272
273 // Add the loop mapping to the LoopInfo object...
274 LIB.BBMap[NewBB] = L;
275
276 // Add the basic block to this loop and all parent loops...
277 while (L) {
278 L->addBlockEntry(NewBB);
279 L = L->getParentLoop();
280 }
281 }
282
283 /// replaceChildLoopWith - This is used when splitting loops up. It replaces
284 /// the OldChild entry in our children list with NewChild, and updates the
285 /// parent pointer of OldChild to be null and the NewChild to be this loop.
286 /// This updates the loop depth of the new child.
287 template <class BlockT, class LoopT>
replaceChildLoopWith(LoopT * OldChild,LoopT * NewChild)288 void LoopBase<BlockT, LoopT>::replaceChildLoopWith(LoopT *OldChild,
289 LoopT *NewChild) {
290 assert(!isInvalid() && "Loop not in a valid state!");
291 assert(OldChild->ParentLoop == this && "This loop is already broken!");
292 assert(!NewChild->ParentLoop && "NewChild already has a parent!");
293 typename std::vector<LoopT *>::iterator I = find(SubLoops, OldChild);
294 assert(I != SubLoops.end() && "OldChild not in loop!");
295 *I = NewChild;
296 OldChild->ParentLoop = nullptr;
297 NewChild->ParentLoop = static_cast<LoopT *>(this);
298 }
299
300 /// verifyLoop - Verify loop structure
301 template <class BlockT, class LoopT>
verifyLoop()302 void LoopBase<BlockT, LoopT>::verifyLoop() const {
303 assert(!isInvalid() && "Loop not in a valid state!");
304 #ifndef NDEBUG
305 assert(!Blocks.empty() && "Loop header is missing");
306
307 // Setup for using a depth-first iterator to visit every block in the loop.
308 SmallVector<BlockT *, 8> ExitBBs;
309 getExitBlocks(ExitBBs);
310 df_iterator_default_set<BlockT *> VisitSet;
311 VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
312
313 // Keep track of the BBs visited.
314 SmallPtrSet<BlockT *, 8> VisitedBBs;
315
316 // Check the individual blocks.
317 for (BlockT *BB : depth_first_ext(getHeader(), VisitSet)) {
318 assert(std::any_of(GraphTraits<BlockT *>::child_begin(BB),
319 GraphTraits<BlockT *>::child_end(BB),
320 [&](BlockT *B) { return contains(B); }) &&
321 "Loop block has no in-loop successors!");
322
323 assert(std::any_of(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
324 GraphTraits<Inverse<BlockT *>>::child_end(BB),
325 [&](BlockT *B) { return contains(B); }) &&
326 "Loop block has no in-loop predecessors!");
327
328 SmallVector<BlockT *, 2> OutsideLoopPreds;
329 for (BlockT *B :
330 llvm::make_range(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
331 GraphTraits<Inverse<BlockT *>>::child_end(BB)))
332 if (!contains(B))
333 OutsideLoopPreds.push_back(B);
334
335 if (BB == getHeader()) {
336 assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
337 } else if (!OutsideLoopPreds.empty()) {
338 // A non-header loop shouldn't be reachable from outside the loop,
339 // though it is permitted if the predecessor is not itself actually
340 // reachable.
341 BlockT *EntryBB = &BB->getParent()->front();
342 for (BlockT *CB : depth_first(EntryBB))
343 for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
344 assert(CB != OutsideLoopPreds[i] &&
345 "Loop has multiple entry points!");
346 }
347 assert(BB != &getHeader()->getParent()->front() &&
348 "Loop contains function entry block!");
349
350 VisitedBBs.insert(BB);
351 }
352
353 if (VisitedBBs.size() != getNumBlocks()) {
354 dbgs() << "The following blocks are unreachable in the loop: ";
355 for (auto *BB : Blocks) {
356 if (!VisitedBBs.count(BB)) {
357 dbgs() << *BB << "\n";
358 }
359 }
360 assert(false && "Unreachable block in loop");
361 }
362
363 // Check the subloops.
364 for (iterator I = begin(), E = end(); I != E; ++I)
365 // Each block in each subloop should be contained within this loop.
366 for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
367 BI != BE; ++BI) {
368 assert(contains(*BI) &&
369 "Loop does not contain all the blocks of a subloop!");
370 }
371
372 // Check the parent loop pointer.
373 if (ParentLoop) {
374 assert(is_contained(*ParentLoop, this) &&
375 "Loop is not a subloop of its parent!");
376 }
377 #endif
378 }
379
380 /// verifyLoop - Verify loop structure of this loop and all nested loops.
381 template <class BlockT, class LoopT>
verifyLoopNest(DenseSet<const LoopT * > * Loops)382 void LoopBase<BlockT, LoopT>::verifyLoopNest(
383 DenseSet<const LoopT *> *Loops) const {
384 assert(!isInvalid() && "Loop not in a valid state!");
385 Loops->insert(static_cast<const LoopT *>(this));
386 // Verify this loop.
387 verifyLoop();
388 // Verify the subloops.
389 for (iterator I = begin(), E = end(); I != E; ++I)
390 (*I)->verifyLoopNest(Loops);
391 }
392
393 template <class BlockT, class LoopT>
print(raw_ostream & OS,bool Verbose,bool PrintNested,unsigned Depth)394 void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, bool Verbose,
395 bool PrintNested, unsigned Depth) const {
396 OS.indent(Depth * 2);
397 if (static_cast<const LoopT *>(this)->isAnnotatedParallel())
398 OS << "Parallel ";
399 OS << "Loop at depth " << getLoopDepth() << " containing: ";
400
401 BlockT *H = getHeader();
402 for (unsigned i = 0; i < getBlocks().size(); ++i) {
403 BlockT *BB = getBlocks()[i];
404 if (!Verbose) {
405 if (i)
406 OS << ",";
407 BB->printAsOperand(OS, false);
408 } else
409 OS << "\n";
410
411 if (BB == H)
412 OS << "<header>";
413 if (isLoopLatch(BB))
414 OS << "<latch>";
415 if (isLoopExiting(BB))
416 OS << "<exiting>";
417 if (Verbose)
418 BB->print(OS);
419 }
420
421 if (PrintNested) {
422 OS << "\n";
423
424 for (iterator I = begin(), E = end(); I != E; ++I)
425 (*I)->print(OS, /*Verbose*/ false, PrintNested, Depth + 2);
426 }
427 }
428
429 //===----------------------------------------------------------------------===//
430 /// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
431 /// result does / not depend on use list (block predecessor) order.
432 ///
433
434 /// Discover a subloop with the specified backedges such that: All blocks within
435 /// this loop are mapped to this loop or a subloop. And all subloops within this
436 /// loop have their parent loop set to this loop or a subloop.
437 template <class BlockT, class LoopT>
discoverAndMapSubloop(LoopT * L,ArrayRef<BlockT * > Backedges,LoopInfoBase<BlockT,LoopT> * LI,const DomTreeBase<BlockT> & DomTree)438 static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT *> Backedges,
439 LoopInfoBase<BlockT, LoopT> *LI,
440 const DomTreeBase<BlockT> &DomTree) {
441 typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
442
443 unsigned NumBlocks = 0;
444 unsigned NumSubloops = 0;
445
446 // Perform a backward CFG traversal using a worklist.
447 std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
448 while (!ReverseCFGWorklist.empty()) {
449 BlockT *PredBB = ReverseCFGWorklist.back();
450 ReverseCFGWorklist.pop_back();
451
452 LoopT *Subloop = LI->getLoopFor(PredBB);
453 if (!Subloop) {
454 if (!DomTree.isReachableFromEntry(PredBB))
455 continue;
456
457 // This is an undiscovered block. Map it to the current loop.
458 LI->changeLoopFor(PredBB, L);
459 ++NumBlocks;
460 if (PredBB == L->getHeader())
461 continue;
462 // Push all block predecessors on the worklist.
463 ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
464 InvBlockTraits::child_begin(PredBB),
465 InvBlockTraits::child_end(PredBB));
466 } else {
467 // This is a discovered block. Find its outermost discovered loop.
468 Subloop = Subloop->getOutermostLoop();
469
470 // If it is already discovered to be a subloop of this loop, continue.
471 if (Subloop == L)
472 continue;
473
474 // Discover a subloop of this loop.
475 Subloop->setParentLoop(L);
476 ++NumSubloops;
477 NumBlocks += Subloop->getBlocksVector().capacity();
478 PredBB = Subloop->getHeader();
479 // Continue traversal along predecessors that are not loop-back edges from
480 // within this subloop tree itself. Note that a predecessor may directly
481 // reach another subloop that is not yet discovered to be a subloop of
482 // this loop, which we must traverse.
483 for (const auto Pred : children<Inverse<BlockT *>>(PredBB)) {
484 if (LI->getLoopFor(Pred) != Subloop)
485 ReverseCFGWorklist.push_back(Pred);
486 }
487 }
488 }
489 L->getSubLoopsVector().reserve(NumSubloops);
490 L->reserveBlocks(NumBlocks);
491 }
492
493 /// Populate all loop data in a stable order during a single forward DFS.
494 template <class BlockT, class LoopT> class PopulateLoopsDFS {
495 typedef GraphTraits<BlockT *> BlockTraits;
496 typedef typename BlockTraits::ChildIteratorType SuccIterTy;
497
498 LoopInfoBase<BlockT, LoopT> *LI;
499
500 public:
PopulateLoopsDFS(LoopInfoBase<BlockT,LoopT> * li)501 PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li) : LI(li) {}
502
503 void traverse(BlockT *EntryBlock);
504
505 protected:
506 void insertIntoLoop(BlockT *Block);
507 };
508
509 /// Top-level driver for the forward DFS within the loop.
510 template <class BlockT, class LoopT>
traverse(BlockT * EntryBlock)511 void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
512 for (BlockT *BB : post_order(EntryBlock))
513 insertIntoLoop(BB);
514 }
515
516 /// Add a single Block to its ancestor loops in PostOrder. If the block is a
517 /// subloop header, add the subloop to its parent in PostOrder, then reverse the
518 /// Block and Subloop vectors of the now complete subloop to achieve RPO.
519 template <class BlockT, class LoopT>
insertIntoLoop(BlockT * Block)520 void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
521 LoopT *Subloop = LI->getLoopFor(Block);
522 if (Subloop && Block == Subloop->getHeader()) {
523 // We reach this point once per subloop after processing all the blocks in
524 // the subloop.
525 if (!Subloop->isOutermost())
526 Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
527 else
528 LI->addTopLevelLoop(Subloop);
529
530 // For convenience, Blocks and Subloops are inserted in postorder. Reverse
531 // the lists, except for the loop header, which is always at the beginning.
532 Subloop->reverseBlock(1);
533 std::reverse(Subloop->getSubLoopsVector().begin(),
534 Subloop->getSubLoopsVector().end());
535
536 Subloop = Subloop->getParentLoop();
537 }
538 for (; Subloop; Subloop = Subloop->getParentLoop())
539 Subloop->addBlockEntry(Block);
540 }
541
542 /// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
543 /// interleaved with backward CFG traversals within each subloop
544 /// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
545 /// this part of the algorithm is linear in the number of CFG edges. Subloop and
546 /// Block vectors are then populated during a single forward CFG traversal
547 /// (PopulateLoopDFS).
548 ///
549 /// During the two CFG traversals each block is seen three times:
550 /// 1) Discovered and mapped by a reverse CFG traversal.
551 /// 2) Visited during a forward DFS CFG traversal.
552 /// 3) Reverse-inserted in the loop in postorder following forward DFS.
553 ///
554 /// The Block vectors are inclusive, so step 3 requires loop-depth number of
555 /// insertions per block.
556 template <class BlockT, class LoopT>
analyze(const DomTreeBase<BlockT> & DomTree)557 void LoopInfoBase<BlockT, LoopT>::analyze(const DomTreeBase<BlockT> &DomTree) {
558 // Postorder traversal of the dominator tree.
559 const DomTreeNodeBase<BlockT> *DomRoot = DomTree.getRootNode();
560 for (auto DomNode : post_order(DomRoot)) {
561
562 BlockT *Header = DomNode->getBlock();
563 SmallVector<BlockT *, 4> Backedges;
564
565 // Check each predecessor of the potential loop header.
566 for (const auto Backedge : children<Inverse<BlockT *>>(Header)) {
567 // If Header dominates predBB, this is a new loop. Collect the backedges.
568 if (DomTree.dominates(Header, Backedge) &&
569 DomTree.isReachableFromEntry(Backedge)) {
570 Backedges.push_back(Backedge);
571 }
572 }
573 // Perform a backward CFG traversal to discover and map blocks in this loop.
574 if (!Backedges.empty()) {
575 LoopT *L = AllocateLoop(Header);
576 discoverAndMapSubloop(L, ArrayRef<BlockT *>(Backedges), this, DomTree);
577 }
578 }
579 // Perform a single forward CFG traversal to populate block and subloop
580 // vectors for all loops.
581 PopulateLoopsDFS<BlockT, LoopT> DFS(this);
582 DFS.traverse(DomRoot->getBlock());
583 }
584
585 template <class BlockT, class LoopT>
586 SmallVector<LoopT *, 4>
getLoopsInPreorder()587 LoopInfoBase<BlockT, LoopT>::getLoopsInPreorder() const {
588 SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
589 // The outer-most loop actually goes into the result in the same relative
590 // order as we walk it. But LoopInfo stores the top level loops in reverse
591 // program order so for here we reverse it to get forward program order.
592 // FIXME: If we change the order of LoopInfo we will want to remove the
593 // reverse here.
594 for (LoopT *RootL : reverse(*this)) {
595 auto PreOrderLoopsInRootL = RootL->getLoopsInPreorder();
596 PreOrderLoops.append(PreOrderLoopsInRootL.begin(),
597 PreOrderLoopsInRootL.end());
598 }
599
600 return PreOrderLoops;
601 }
602
603 template <class BlockT, class LoopT>
604 SmallVector<LoopT *, 4>
getLoopsInReverseSiblingPreorder()605 LoopInfoBase<BlockT, LoopT>::getLoopsInReverseSiblingPreorder() const {
606 SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
607 // The outer-most loop actually goes into the result in the same relative
608 // order as we walk it. LoopInfo stores the top level loops in reverse
609 // program order so we walk in order here.
610 // FIXME: If we change the order of LoopInfo we will want to add a reverse
611 // here.
612 for (LoopT *RootL : *this) {
613 assert(PreOrderWorklist.empty() &&
614 "Must start with an empty preorder walk worklist.");
615 PreOrderWorklist.push_back(RootL);
616 do {
617 LoopT *L = PreOrderWorklist.pop_back_val();
618 // Sub-loops are stored in forward program order, but will process the
619 // worklist backwards so we can just append them in order.
620 PreOrderWorklist.append(L->begin(), L->end());
621 PreOrderLoops.push_back(L);
622 } while (!PreOrderWorklist.empty());
623 }
624
625 return PreOrderLoops;
626 }
627
628 // Debugging
629 template <class BlockT, class LoopT>
print(raw_ostream & OS)630 void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
631 for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
632 TopLevelLoops[i]->print(OS);
633 #if 0
634 for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
635 E = BBMap.end(); I != E; ++I)
636 OS << "BB '" << I->first->getName() << "' level = "
637 << I->second->getLoopDepth() << "\n";
638 #endif
639 }
640
641 template <typename T>
compareVectors(std::vector<T> & BB1,std::vector<T> & BB2)642 bool compareVectors(std::vector<T> &BB1, std::vector<T> &BB2) {
643 llvm::sort(BB1);
644 llvm::sort(BB2);
645 return BB1 == BB2;
646 }
647
648 template <class BlockT, class LoopT>
addInnerLoopsToHeadersMap(DenseMap<BlockT *,const LoopT * > & LoopHeaders,const LoopInfoBase<BlockT,LoopT> & LI,const LoopT & L)649 void addInnerLoopsToHeadersMap(DenseMap<BlockT *, const LoopT *> &LoopHeaders,
650 const LoopInfoBase<BlockT, LoopT> &LI,
651 const LoopT &L) {
652 LoopHeaders[L.getHeader()] = &L;
653 for (LoopT *SL : L)
654 addInnerLoopsToHeadersMap(LoopHeaders, LI, *SL);
655 }
656
657 #ifndef NDEBUG
658 template <class BlockT, class LoopT>
compareLoops(const LoopT * L,const LoopT * OtherL,DenseMap<BlockT *,const LoopT * > & OtherLoopHeaders)659 static void compareLoops(const LoopT *L, const LoopT *OtherL,
660 DenseMap<BlockT *, const LoopT *> &OtherLoopHeaders) {
661 BlockT *H = L->getHeader();
662 BlockT *OtherH = OtherL->getHeader();
663 assert(H == OtherH &&
664 "Mismatched headers even though found in the same map entry!");
665
666 assert(L->getLoopDepth() == OtherL->getLoopDepth() &&
667 "Mismatched loop depth!");
668 const LoopT *ParentL = L, *OtherParentL = OtherL;
669 do {
670 assert(ParentL->getHeader() == OtherParentL->getHeader() &&
671 "Mismatched parent loop headers!");
672 ParentL = ParentL->getParentLoop();
673 OtherParentL = OtherParentL->getParentLoop();
674 } while (ParentL);
675
676 for (const LoopT *SubL : *L) {
677 BlockT *SubH = SubL->getHeader();
678 const LoopT *OtherSubL = OtherLoopHeaders.lookup(SubH);
679 assert(OtherSubL && "Inner loop is missing in computed loop info!");
680 OtherLoopHeaders.erase(SubH);
681 compareLoops(SubL, OtherSubL, OtherLoopHeaders);
682 }
683
684 std::vector<BlockT *> BBs = L->getBlocks();
685 std::vector<BlockT *> OtherBBs = OtherL->getBlocks();
686 assert(compareVectors(BBs, OtherBBs) &&
687 "Mismatched basic blocks in the loops!");
688
689 const SmallPtrSetImpl<const BlockT *> &BlocksSet = L->getBlocksSet();
690 const SmallPtrSetImpl<const BlockT *> &OtherBlocksSet =
691 OtherL->getBlocksSet();
692 assert(BlocksSet.size() == OtherBlocksSet.size() &&
693 llvm::set_is_subset(BlocksSet, OtherBlocksSet) &&
694 "Mismatched basic blocks in BlocksSets!");
695 }
696 #endif
697
698 template <class BlockT, class LoopT>
verify(const DomTreeBase<BlockT> & DomTree)699 void LoopInfoBase<BlockT, LoopT>::verify(
700 const DomTreeBase<BlockT> &DomTree) const {
701 DenseSet<const LoopT *> Loops;
702 for (iterator I = begin(), E = end(); I != E; ++I) {
703 assert((*I)->isOutermost() && "Top-level loop has a parent!");
704 (*I)->verifyLoopNest(&Loops);
705 }
706
707 // Verify that blocks are mapped to valid loops.
708 #ifndef NDEBUG
709 for (auto &Entry : BBMap) {
710 const BlockT *BB = Entry.first;
711 LoopT *L = Entry.second;
712 assert(Loops.count(L) && "orphaned loop");
713 assert(L->contains(BB) && "orphaned block");
714 for (LoopT *ChildLoop : *L)
715 assert(!ChildLoop->contains(BB) &&
716 "BBMap should point to the innermost loop containing BB");
717 }
718
719 // Recompute LoopInfo to verify loops structure.
720 LoopInfoBase<BlockT, LoopT> OtherLI;
721 OtherLI.analyze(DomTree);
722
723 // Build a map we can use to move from our LI to the computed one. This
724 // allows us to ignore the particular order in any layer of the loop forest
725 // while still comparing the structure.
726 DenseMap<BlockT *, const LoopT *> OtherLoopHeaders;
727 for (LoopT *L : OtherLI)
728 addInnerLoopsToHeadersMap(OtherLoopHeaders, OtherLI, *L);
729
730 // Walk the top level loops and ensure there is a corresponding top-level
731 // loop in the computed version and then recursively compare those loop
732 // nests.
733 for (LoopT *L : *this) {
734 BlockT *Header = L->getHeader();
735 const LoopT *OtherL = OtherLoopHeaders.lookup(Header);
736 assert(OtherL && "Top level loop is missing in computed loop info!");
737 // Now that we've matched this loop, erase its header from the map.
738 OtherLoopHeaders.erase(Header);
739 // And recursively compare these loops.
740 compareLoops(L, OtherL, OtherLoopHeaders);
741 }
742
743 // Any remaining entries in the map are loops which were found when computing
744 // a fresh LoopInfo but not present in the current one.
745 if (!OtherLoopHeaders.empty()) {
746 for (const auto &HeaderAndLoop : OtherLoopHeaders)
747 dbgs() << "Found new loop: " << *HeaderAndLoop.second << "\n";
748 llvm_unreachable("Found new loops when recomputing LoopInfo!");
749 }
750 #endif
751 }
752
753 } // End llvm namespace
754
755 #endif
756