1 //==- llvm/CodeGen/MachineDominators.h - Machine Dom Calculation -*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines classes mirroring those in llvm/Analysis/Dominators.h,
10 // but for target-specific code rather than target-independent IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CODEGEN_MACHINEDOMINATORS_H
15 #define LLVM_CODEGEN_MACHINEDOMINATORS_H
16 
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/Support/GenericDomTree.h"
23 #include "llvm/Support/GenericDomTreeConstruction.h"
24 #include <cassert>
25 #include <memory>
26 
27 namespace llvm {
28 
29 template <>
addRoot(MachineBasicBlock * MBB)30 inline void DominatorTreeBase<MachineBasicBlock, false>::addRoot(
31     MachineBasicBlock *MBB) {
32   this->Roots.push_back(MBB);
33 }
34 
35 extern template class DomTreeNodeBase<MachineBasicBlock>;
36 extern template class DominatorTreeBase<MachineBasicBlock, false>; // DomTree
37 extern template class DominatorTreeBase<MachineBasicBlock, true>; // PostDomTree
38 
39 using MachineDomTreeNode = DomTreeNodeBase<MachineBasicBlock>;
40 
41 //===-------------------------------------
42 /// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
43 /// compute a normal dominator tree.
44 ///
45 class MachineDominatorTree : public MachineFunctionPass {
46   using DomTreeT = DomTreeBase<MachineBasicBlock>;
47 
48   /// Helper structure used to hold all the basic blocks
49   /// involved in the split of a critical edge.
50   struct CriticalEdge {
51     MachineBasicBlock *FromBB;
52     MachineBasicBlock *ToBB;
53     MachineBasicBlock *NewBB;
54   };
55 
56   /// Pile up all the critical edges to be split.
57   /// The splitting of a critical edge is local and thus, it is possible
58   /// to apply several of those changes at the same time.
59   mutable SmallVector<CriticalEdge, 32> CriticalEdgesToSplit;
60 
61   /// Remember all the basic blocks that are inserted during
62   /// edge splitting.
63   /// Invariant: NewBBs == all the basic blocks contained in the NewBB
64   /// field of all the elements of CriticalEdgesToSplit.
65   /// I.e., forall elt in CriticalEdgesToSplit, it exists BB in NewBBs
66   /// such as BB == elt.NewBB.
67   mutable SmallSet<MachineBasicBlock *, 32> NewBBs;
68 
69   /// The DominatorTreeBase that is used to compute a normal dominator tree.
70   std::unique_ptr<DomTreeT> DT;
71 
72   /// Apply all the recorded critical edges to the DT.
73   /// This updates the underlying DT information in a way that uses
74   /// the fast query path of DT as much as possible.
75   ///
76   /// \post CriticalEdgesToSplit.empty().
77   void applySplitCriticalEdges() const;
78 
79 public:
80   static char ID; // Pass ID, replacement for typeid
81 
82   MachineDominatorTree();
MachineDominatorTree(MachineFunction & MF)83   explicit MachineDominatorTree(MachineFunction &MF) : MachineFunctionPass(ID) {
84     calculate(MF);
85   }
86 
getBase()87   DomTreeT &getBase() {
88     if (!DT) DT.reset(new DomTreeT());
89     applySplitCriticalEdges();
90     return *DT;
91   }
92 
93   void getAnalysisUsage(AnalysisUsage &AU) const override;
94 
getRoot()95   MachineBasicBlock *getRoot() const {
96     applySplitCriticalEdges();
97     return DT->getRoot();
98   }
99 
getRootNode()100   MachineDomTreeNode *getRootNode() const {
101     applySplitCriticalEdges();
102     return DT->getRootNode();
103   }
104 
105   bool runOnMachineFunction(MachineFunction &F) override;
106 
107   void calculate(MachineFunction &F);
108 
dominates(const MachineDomTreeNode * A,const MachineDomTreeNode * B)109   bool dominates(const MachineDomTreeNode *A,
110                  const MachineDomTreeNode *B) const {
111     applySplitCriticalEdges();
112     return DT->dominates(A, B);
113   }
114 
dominates(const MachineBasicBlock * A,const MachineBasicBlock * B)115   bool dominates(const MachineBasicBlock *A, const MachineBasicBlock *B) const {
116     applySplitCriticalEdges();
117     return DT->dominates(A, B);
118   }
119 
120   // dominates - Return true if A dominates B. This performs the
121   // special checks necessary if A and B are in the same basic block.
dominates(const MachineInstr * A,const MachineInstr * B)122   bool dominates(const MachineInstr *A, const MachineInstr *B) const {
123     applySplitCriticalEdges();
124     const MachineBasicBlock *BBA = A->getParent(), *BBB = B->getParent();
125     if (BBA != BBB) return DT->dominates(BBA, BBB);
126 
127     // Loop through the basic block until we find A or B.
128     MachineBasicBlock::const_iterator I = BBA->begin();
129     for (; &*I != A && &*I != B; ++I)
130       /*empty*/ ;
131 
132     return &*I == A;
133   }
134 
properlyDominates(const MachineDomTreeNode * A,const MachineDomTreeNode * B)135   bool properlyDominates(const MachineDomTreeNode *A,
136                          const MachineDomTreeNode *B) const {
137     applySplitCriticalEdges();
138     return DT->properlyDominates(A, B);
139   }
140 
properlyDominates(const MachineBasicBlock * A,const MachineBasicBlock * B)141   bool properlyDominates(const MachineBasicBlock *A,
142                          const MachineBasicBlock *B) const {
143     applySplitCriticalEdges();
144     return DT->properlyDominates(A, B);
145   }
146 
147   /// findNearestCommonDominator - Find nearest common dominator basic block
148   /// for basic block A and B. If there is no such block then return NULL.
findNearestCommonDominator(MachineBasicBlock * A,MachineBasicBlock * B)149   MachineBasicBlock *findNearestCommonDominator(MachineBasicBlock *A,
150                                                 MachineBasicBlock *B) {
151     applySplitCriticalEdges();
152     return DT->findNearestCommonDominator(A, B);
153   }
154 
155   MachineDomTreeNode *operator[](MachineBasicBlock *BB) const {
156     applySplitCriticalEdges();
157     return DT->getNode(BB);
158   }
159 
160   /// getNode - return the (Post)DominatorTree node for the specified basic
161   /// block.  This is the same as using operator[] on this class.
162   ///
getNode(MachineBasicBlock * BB)163   MachineDomTreeNode *getNode(MachineBasicBlock *BB) const {
164     applySplitCriticalEdges();
165     return DT->getNode(BB);
166   }
167 
168   /// addNewBlock - Add a new node to the dominator tree information.  This
169   /// creates a new node as a child of DomBB dominator node,linking it into
170   /// the children list of the immediate dominator.
addNewBlock(MachineBasicBlock * BB,MachineBasicBlock * DomBB)171   MachineDomTreeNode *addNewBlock(MachineBasicBlock *BB,
172                                   MachineBasicBlock *DomBB) {
173     applySplitCriticalEdges();
174     return DT->addNewBlock(BB, DomBB);
175   }
176 
177   /// changeImmediateDominator - This method is used to update the dominator
178   /// tree information when a node's immediate dominator changes.
179   ///
changeImmediateDominator(MachineBasicBlock * N,MachineBasicBlock * NewIDom)180   void changeImmediateDominator(MachineBasicBlock *N,
181                                 MachineBasicBlock *NewIDom) {
182     applySplitCriticalEdges();
183     DT->changeImmediateDominator(N, NewIDom);
184   }
185 
changeImmediateDominator(MachineDomTreeNode * N,MachineDomTreeNode * NewIDom)186   void changeImmediateDominator(MachineDomTreeNode *N,
187                                 MachineDomTreeNode *NewIDom) {
188     applySplitCriticalEdges();
189     DT->changeImmediateDominator(N, NewIDom);
190   }
191 
192   /// eraseNode - Removes a node from  the dominator tree. Block must not
193   /// dominate any other blocks. Removes node from its immediate dominator's
194   /// children list. Deletes dominator node associated with basic block BB.
eraseNode(MachineBasicBlock * BB)195   void eraseNode(MachineBasicBlock *BB) {
196     applySplitCriticalEdges();
197     DT->eraseNode(BB);
198   }
199 
200   /// splitBlock - BB is split and now it has one successor. Update dominator
201   /// tree to reflect this change.
splitBlock(MachineBasicBlock * NewBB)202   void splitBlock(MachineBasicBlock* NewBB) {
203     applySplitCriticalEdges();
204     DT->splitBlock(NewBB);
205   }
206 
207   /// isReachableFromEntry - Return true if A is dominated by the entry
208   /// block of the function containing it.
isReachableFromEntry(const MachineBasicBlock * A)209   bool isReachableFromEntry(const MachineBasicBlock *A) {
210     applySplitCriticalEdges();
211     return DT->isReachableFromEntry(A);
212   }
213 
214   void releaseMemory() override;
215 
216   void verifyAnalysis() const override;
217 
218   void print(raw_ostream &OS, const Module*) const override;
219 
220   /// Record that the critical edge (FromBB, ToBB) has been
221   /// split with NewBB.
222   /// This is best to use this method instead of directly update the
223   /// underlying information, because this helps mitigating the
224   /// number of time the DT information is invalidated.
225   ///
226   /// \note Do not use this method with regular edges.
227   ///
228   /// \note To benefit from the compile time improvement incurred by this
229   /// method, the users of this method have to limit the queries to the DT
230   /// interface between two edges splitting. In other words, they have to
231   /// pack the splitting of critical edges as much as possible.
recordSplitCriticalEdge(MachineBasicBlock * FromBB,MachineBasicBlock * ToBB,MachineBasicBlock * NewBB)232   void recordSplitCriticalEdge(MachineBasicBlock *FromBB,
233                               MachineBasicBlock *ToBB,
234                               MachineBasicBlock *NewBB) {
235     bool Inserted = NewBBs.insert(NewBB).second;
236     (void)Inserted;
237     assert(Inserted &&
238            "A basic block inserted via edge splitting cannot appear twice");
239     CriticalEdgesToSplit.push_back({FromBB, ToBB, NewBB});
240   }
241 };
242 
243 //===-------------------------------------
244 /// DominatorTree GraphTraits specialization so the DominatorTree can be
245 /// iterable by generic graph iterators.
246 ///
247 
248 template <class Node, class ChildIterator>
249 struct MachineDomTreeGraphTraitsBase {
250   using NodeRef = Node *;
251   using ChildIteratorType = ChildIterator;
252 
getEntryNodeMachineDomTreeGraphTraitsBase253   static NodeRef getEntryNode(NodeRef N) { return N; }
child_beginMachineDomTreeGraphTraitsBase254   static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
child_endMachineDomTreeGraphTraitsBase255   static ChildIteratorType child_end(NodeRef N) { return N->end(); }
256 };
257 
258 template <class T> struct GraphTraits;
259 
260 template <>
261 struct GraphTraits<MachineDomTreeNode *>
262     : public MachineDomTreeGraphTraitsBase<MachineDomTreeNode,
263                                            MachineDomTreeNode::const_iterator> {
264 };
265 
266 template <>
267 struct GraphTraits<const MachineDomTreeNode *>
268     : public MachineDomTreeGraphTraitsBase<const MachineDomTreeNode,
269                                            MachineDomTreeNode::const_iterator> {
270 };
271 
272 template <> struct GraphTraits<MachineDominatorTree*>
273   : public GraphTraits<MachineDomTreeNode *> {
274   static NodeRef getEntryNode(MachineDominatorTree *DT) {
275     return DT->getRootNode();
276   }
277 };
278 
279 } // end namespace llvm
280 
281 #endif // LLVM_CODEGEN_MACHINEDOMINATORS_H
282