1 //===- CFG.h ----------------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This file provides various utilities for inspecting and working with the
11 /// control flow graph in LLVM IR. This includes generic facilities for
12 /// iterating successors and predecessors of basic blocks, the successors of
13 /// specific terminator instructions, etc. It also defines specializations of
14 /// GraphTraits that allow Function and BasicBlock graphs to be treated as
15 /// proper graphs for generic algorithms.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #ifndef LLVM_IR_CFG_H
20 #define LLVM_IR_CFG_H
21 
22 #include "llvm/ADT/GraphTraits.h"
23 #include "llvm/ADT/iterator.h"
24 #include "llvm/ADT/iterator_range.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/Value.h"
28 #include <cassert>
29 #include <cstddef>
30 #include <iterator>
31 
32 namespace llvm {
33 
34 class Instruction;
35 class Use;
36 
37 //===----------------------------------------------------------------------===//
38 // BasicBlock pred_iterator definition
39 //===----------------------------------------------------------------------===//
40 
41 template <class Ptr, class USE_iterator> // Predecessor Iterator
42 class PredIterator {
43 public:
44   using iterator_category = std::forward_iterator_tag;
45   using value_type = Ptr;
46   using difference_type = std::ptrdiff_t;
47   using pointer = Ptr *;
48   using reference = Ptr *;
49 
50 protected:
51   using Self = PredIterator<Ptr, USE_iterator>;
52   USE_iterator It;
53 
advancePastNonTerminators()54   inline void advancePastNonTerminators() {
55     // Loop to ignore non-terminator uses (for example BlockAddresses).
56     while (!It.atEnd()) {
57       if (auto *Inst = dyn_cast<Instruction>(*It))
58         if (Inst->isTerminator())
59           break;
60 
61       ++It;
62     }
63   }
64 
65 public:
66   PredIterator() = default;
PredIterator(Ptr * bb)67   explicit inline PredIterator(Ptr *bb) : It(bb->user_begin()) {
68     advancePastNonTerminators();
69   }
PredIterator(Ptr * bb,bool)70   inline PredIterator(Ptr *bb, bool) : It(bb->user_end()) {}
71 
72   inline bool operator==(const Self& x) const { return It == x.It; }
73   inline bool operator!=(const Self& x) const { return !operator==(x); }
74 
75   inline reference operator*() const {
76     assert(!It.atEnd() && "pred_iterator out of range!");
77     return cast<Instruction>(*It)->getParent();
78   }
79   inline pointer *operator->() const { return &operator*(); }
80 
81   inline Self& operator++() {   // Preincrement
82     assert(!It.atEnd() && "pred_iterator out of range!");
83     ++It; advancePastNonTerminators();
84     return *this;
85   }
86 
87   inline Self operator++(int) { // Postincrement
88     Self tmp = *this; ++*this; return tmp;
89   }
90 
91   /// getOperandNo - Return the operand number in the predecessor's
92   /// terminator of the successor.
getOperandNo()93   unsigned getOperandNo() const {
94     return It.getOperandNo();
95   }
96 
97   /// getUse - Return the operand Use in the predecessor's terminator
98   /// of the successor.
getUse()99   Use &getUse() const {
100     return It.getUse();
101   }
102 };
103 
104 using pred_iterator = PredIterator<BasicBlock, Value::user_iterator>;
105 using const_pred_iterator =
106     PredIterator<const BasicBlock, Value::const_user_iterator>;
107 using pred_range = iterator_range<pred_iterator>;
108 using const_pred_range = iterator_range<const_pred_iterator>;
109 
pred_begin(BasicBlock * BB)110 inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); }
pred_begin(const BasicBlock * BB)111 inline const_pred_iterator pred_begin(const BasicBlock *BB) {
112   return const_pred_iterator(BB);
113 }
pred_end(BasicBlock * BB)114 inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);}
pred_end(const BasicBlock * BB)115 inline const_pred_iterator pred_end(const BasicBlock *BB) {
116   return const_pred_iterator(BB, true);
117 }
pred_empty(const BasicBlock * BB)118 inline bool pred_empty(const BasicBlock *BB) {
119   return pred_begin(BB) == pred_end(BB);
120 }
121 /// Get the number of predecessors of \p BB. This is a linear time operation.
122 /// Use \ref BasicBlock::hasNPredecessors() or hasNPredecessorsOrMore if able.
pred_size(const BasicBlock * BB)123 inline unsigned pred_size(const BasicBlock *BB) {
124   return std::distance(pred_begin(BB), pred_end(BB));
125 }
predecessors(BasicBlock * BB)126 inline pred_range predecessors(BasicBlock *BB) {
127   return pred_range(pred_begin(BB), pred_end(BB));
128 }
predecessors(const BasicBlock * BB)129 inline const_pred_range predecessors(const BasicBlock *BB) {
130   return const_pred_range(pred_begin(BB), pred_end(BB));
131 }
132 
133 //===----------------------------------------------------------------------===//
134 // Instruction and BasicBlock succ_iterator helpers
135 //===----------------------------------------------------------------------===//
136 
137 template <class InstructionT, class BlockT>
138 class SuccIterator
139     : public iterator_facade_base<SuccIterator<InstructionT, BlockT>,
140                                   std::random_access_iterator_tag, BlockT, int,
141                                   BlockT *, BlockT *> {
142 public:
143   using difference_type = int;
144   using pointer = BlockT *;
145   using reference = BlockT *;
146 
147 private:
148   InstructionT *Inst;
149   int Idx;
150   using Self = SuccIterator<InstructionT, BlockT>;
151 
index_is_valid(int Idx)152   inline bool index_is_valid(int Idx) {
153     // Note that we specially support the index of zero being valid even in the
154     // face of a null instruction.
155     return Idx >= 0 && (Idx == 0 || Idx <= (int)Inst->getNumSuccessors());
156   }
157 
158   /// Proxy object to allow write access in operator[]
159   class SuccessorProxy {
160     Self It;
161 
162   public:
SuccessorProxy(const Self & It)163     explicit SuccessorProxy(const Self &It) : It(It) {}
164 
165     SuccessorProxy(const SuccessorProxy &) = default;
166 
167     SuccessorProxy &operator=(SuccessorProxy RHS) {
168       *this = reference(RHS);
169       return *this;
170     }
171 
172     SuccessorProxy &operator=(reference RHS) {
173       It.Inst->setSuccessor(It.Idx, RHS);
174       return *this;
175     }
176 
reference()177     operator reference() const { return *It; }
178   };
179 
180 public:
181   // begin iterator
SuccIterator(InstructionT * Inst)182   explicit inline SuccIterator(InstructionT *Inst) : Inst(Inst), Idx(0) {}
183   // end iterator
SuccIterator(InstructionT * Inst,bool)184   inline SuccIterator(InstructionT *Inst, bool) : Inst(Inst) {
185     if (Inst)
186       Idx = Inst->getNumSuccessors();
187     else
188       // Inst == NULL happens, if a basic block is not fully constructed and
189       // consequently getTerminator() returns NULL. In this case we construct
190       // a SuccIterator which describes a basic block that has zero
191       // successors.
192       // Defining SuccIterator for incomplete and malformed CFGs is especially
193       // useful for debugging.
194       Idx = 0;
195   }
196 
197   /// This is used to interface between code that wants to
198   /// operate on terminator instructions directly.
getSuccessorIndex()199   int getSuccessorIndex() const { return Idx; }
200 
201   inline bool operator==(const Self &x) const { return Idx == x.Idx; }
202 
203   inline BlockT *operator*() const { return Inst->getSuccessor(Idx); }
204 
205   // We use the basic block pointer directly for operator->.
206   inline BlockT *operator->() const { return operator*(); }
207 
208   inline bool operator<(const Self &RHS) const {
209     assert(Inst == RHS.Inst && "Cannot compare iterators of different blocks!");
210     return Idx < RHS.Idx;
211   }
212 
213   int operator-(const Self &RHS) const {
214     assert(Inst == RHS.Inst && "Cannot compare iterators of different blocks!");
215     return Idx - RHS.Idx;
216   }
217 
218   inline Self &operator+=(int RHS) {
219     int NewIdx = Idx + RHS;
220     assert(index_is_valid(NewIdx) && "Iterator index out of bound");
221     Idx = NewIdx;
222     return *this;
223   }
224 
225   inline Self &operator-=(int RHS) { return operator+=(-RHS); }
226 
227   // Specially implement the [] operation using a proxy object to support
228   // assignment.
229   inline SuccessorProxy operator[](int Offset) {
230     Self TmpIt = *this;
231     TmpIt += Offset;
232     return SuccessorProxy(TmpIt);
233   }
234 
235   /// Get the source BlockT of this iterator.
getSource()236   inline BlockT *getSource() {
237     assert(Inst && "Source not available, if basic block was malformed");
238     return Inst->getParent();
239   }
240 };
241 
242 using succ_iterator = SuccIterator<Instruction, BasicBlock>;
243 using const_succ_iterator = SuccIterator<const Instruction, const BasicBlock>;
244 using succ_range = iterator_range<succ_iterator>;
245 using const_succ_range = iterator_range<const_succ_iterator>;
246 
succ_begin(Instruction * I)247 inline succ_iterator succ_begin(Instruction *I) { return succ_iterator(I); }
succ_begin(const Instruction * I)248 inline const_succ_iterator succ_begin(const Instruction *I) {
249   return const_succ_iterator(I);
250 }
succ_end(Instruction * I)251 inline succ_iterator succ_end(Instruction *I) { return succ_iterator(I, true); }
succ_end(const Instruction * I)252 inline const_succ_iterator succ_end(const Instruction *I) {
253   return const_succ_iterator(I, true);
254 }
succ_empty(const Instruction * I)255 inline bool succ_empty(const Instruction *I) {
256   return succ_begin(I) == succ_end(I);
257 }
succ_size(const Instruction * I)258 inline unsigned succ_size(const Instruction *I) {
259   return std::distance(succ_begin(I), succ_end(I));
260 }
successors(Instruction * I)261 inline succ_range successors(Instruction *I) {
262   return succ_range(succ_begin(I), succ_end(I));
263 }
successors(const Instruction * I)264 inline const_succ_range successors(const Instruction *I) {
265   return const_succ_range(succ_begin(I), succ_end(I));
266 }
267 
succ_begin(BasicBlock * BB)268 inline succ_iterator succ_begin(BasicBlock *BB) {
269   return succ_iterator(BB->getTerminator());
270 }
succ_begin(const BasicBlock * BB)271 inline const_succ_iterator succ_begin(const BasicBlock *BB) {
272   return const_succ_iterator(BB->getTerminator());
273 }
succ_end(BasicBlock * BB)274 inline succ_iterator succ_end(BasicBlock *BB) {
275   return succ_iterator(BB->getTerminator(), true);
276 }
succ_end(const BasicBlock * BB)277 inline const_succ_iterator succ_end(const BasicBlock *BB) {
278   return const_succ_iterator(BB->getTerminator(), true);
279 }
succ_empty(const BasicBlock * BB)280 inline bool succ_empty(const BasicBlock *BB) {
281   return succ_begin(BB) == succ_end(BB);
282 }
succ_size(const BasicBlock * BB)283 inline unsigned succ_size(const BasicBlock *BB) {
284   return std::distance(succ_begin(BB), succ_end(BB));
285 }
successors(BasicBlock * BB)286 inline succ_range successors(BasicBlock *BB) {
287   return succ_range(succ_begin(BB), succ_end(BB));
288 }
successors(const BasicBlock * BB)289 inline const_succ_range successors(const BasicBlock *BB) {
290   return const_succ_range(succ_begin(BB), succ_end(BB));
291 }
292 
293 //===--------------------------------------------------------------------===//
294 // GraphTraits specializations for basic block graphs (CFGs)
295 //===--------------------------------------------------------------------===//
296 
297 // Provide specializations of GraphTraits to be able to treat a function as a
298 // graph of basic blocks...
299 
300 template <> struct GraphTraits<BasicBlock*> {
301   using NodeRef = BasicBlock *;
302   using ChildIteratorType = succ_iterator;
303 
304   static NodeRef getEntryNode(BasicBlock *BB) { return BB; }
305   static ChildIteratorType child_begin(NodeRef N) { return succ_begin(N); }
306   static ChildIteratorType child_end(NodeRef N) { return succ_end(N); }
307 };
308 
309 template <> struct GraphTraits<const BasicBlock*> {
310   using NodeRef = const BasicBlock *;
311   using ChildIteratorType = const_succ_iterator;
312 
313   static NodeRef getEntryNode(const BasicBlock *BB) { return BB; }
314 
315   static ChildIteratorType child_begin(NodeRef N) { return succ_begin(N); }
316   static ChildIteratorType child_end(NodeRef N) { return succ_end(N); }
317 };
318 
319 // Provide specializations of GraphTraits to be able to treat a function as a
320 // graph of basic blocks... and to walk it in inverse order.  Inverse order for
321 // a function is considered to be when traversing the predecessor edges of a BB
322 // instead of the successor edges.
323 //
324 template <> struct GraphTraits<Inverse<BasicBlock*>> {
325   using NodeRef = BasicBlock *;
326   using ChildIteratorType = pred_iterator;
327 
328   static NodeRef getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; }
329   static ChildIteratorType child_begin(NodeRef N) { return pred_begin(N); }
330   static ChildIteratorType child_end(NodeRef N) { return pred_end(N); }
331 };
332 
333 template <> struct GraphTraits<Inverse<const BasicBlock*>> {
334   using NodeRef = const BasicBlock *;
335   using ChildIteratorType = const_pred_iterator;
336 
337   static NodeRef getEntryNode(Inverse<const BasicBlock *> G) { return G.Graph; }
338   static ChildIteratorType child_begin(NodeRef N) { return pred_begin(N); }
339   static ChildIteratorType child_end(NodeRef N) { return pred_end(N); }
340 };
341 
342 //===--------------------------------------------------------------------===//
343 // GraphTraits specializations for function basic block graphs (CFGs)
344 //===--------------------------------------------------------------------===//
345 
346 // Provide specializations of GraphTraits to be able to treat a function as a
347 // graph of basic blocks... these are the same as the basic block iterators,
348 // except that the root node is implicitly the first node of the function.
349 //
350 template <> struct GraphTraits<Function*> : public GraphTraits<BasicBlock*> {
351   static NodeRef getEntryNode(Function *F) { return &F->getEntryBlock(); }
352 
353   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
354   using nodes_iterator = pointer_iterator<Function::iterator>;
355 
356   static nodes_iterator nodes_begin(Function *F) {
357     return nodes_iterator(F->begin());
358   }
359 
360   static nodes_iterator nodes_end(Function *F) {
361     return nodes_iterator(F->end());
362   }
363 
364   static size_t size(Function *F) { return F->size(); }
365 };
366 template <> struct GraphTraits<const Function*> :
367   public GraphTraits<const BasicBlock*> {
368   static NodeRef getEntryNode(const Function *F) { return &F->getEntryBlock(); }
369 
370   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
371   using nodes_iterator = pointer_iterator<Function::const_iterator>;
372 
373   static nodes_iterator nodes_begin(const Function *F) {
374     return nodes_iterator(F->begin());
375   }
376 
377   static nodes_iterator nodes_end(const Function *F) {
378     return nodes_iterator(F->end());
379   }
380 
381   static size_t size(const Function *F) { return F->size(); }
382 };
383 
384 // Provide specializations of GraphTraits to be able to treat a function as a
385 // graph of basic blocks... and to walk it in inverse order.  Inverse order for
386 // a function is considered to be when traversing the predecessor edges of a BB
387 // instead of the successor edges.
388 //
389 template <> struct GraphTraits<Inverse<Function*>> :
390   public GraphTraits<Inverse<BasicBlock*>> {
391   static NodeRef getEntryNode(Inverse<Function *> G) {
392     return &G.Graph->getEntryBlock();
393   }
394 };
395 template <> struct GraphTraits<Inverse<const Function*>> :
396   public GraphTraits<Inverse<const BasicBlock*>> {
397   static NodeRef getEntryNode(Inverse<const Function *> G) {
398     return &G.Graph->getEntryBlock();
399   }
400 };
401 
402 } // end namespace llvm
403 
404 #endif // LLVM_IR_CFG_H
405