1 //===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// @file
10 /// This file contains the declarations for the subclasses of Constant,
11 /// which represent the different flavors of constant values that live in LLVM.
12 /// Note that Constants are immutable (once created they never change) and are
13 /// fully shared by structural equivalence.  This means that two structurally
14 /// equivalent constants will always have the same address.  Constants are
15 /// created on demand as needed and never deleted: thus clients don't have to
16 /// worry about the lifetime of the objects.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLVM_IR_CONSTANTS_H
21 #define LLVM_IR_CONSTANTS_H
22 
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/OperandTraits.h"
32 #include "llvm/IR/User.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/Compiler.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include <cassert>
38 #include <cstddef>
39 #include <cstdint>
40 #include <optional>
41 
42 namespace llvm {
43 
44 template <class ConstantClass> struct ConstantAggrKeyType;
45 
46 /// Base class for constants with no operands.
47 ///
48 /// These constants have no operands; they represent their data directly.
49 /// Since they can be in use by unrelated modules (and are never based on
50 /// GlobalValues), it never makes sense to RAUW them.
51 class ConstantData : public Constant {
52   friend class Constant;
53 
handleOperandChangeImpl(Value * From,Value * To)54   Value *handleOperandChangeImpl(Value *From, Value *To) {
55     llvm_unreachable("Constant data does not have operands!");
56   }
57 
58 protected:
ConstantData(Type * Ty,ValueTy VT)59   explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, nullptr, 0) {}
60 
new(size_t S)61   void *operator new(size_t S) { return User::operator new(S, 0); }
62 
63 public:
delete(void * Ptr)64   void operator delete(void *Ptr) { User::operator delete(Ptr); }
65 
66   ConstantData(const ConstantData &) = delete;
67 
68   /// Methods to support type inquiry through isa, cast, and dyn_cast.
classof(const Value * V)69   static bool classof(const Value *V) {
70     return V->getValueID() >= ConstantDataFirstVal &&
71            V->getValueID() <= ConstantDataLastVal;
72   }
73 };
74 
75 //===----------------------------------------------------------------------===//
76 /// This is the shared class of boolean and integer constants. This class
77 /// represents both boolean and integral constants.
78 /// Class for constant integers.
79 class ConstantInt final : public ConstantData {
80   friend class Constant;
81 
82   APInt Val;
83 
84   ConstantInt(IntegerType *Ty, const APInt &V);
85 
86   void destroyConstantImpl();
87 
88 public:
89   ConstantInt(const ConstantInt &) = delete;
90 
91   static ConstantInt *getTrue(LLVMContext &Context);
92   static ConstantInt *getFalse(LLVMContext &Context);
93   static ConstantInt *getBool(LLVMContext &Context, bool V);
94   static Constant *getTrue(Type *Ty);
95   static Constant *getFalse(Type *Ty);
96   static Constant *getBool(Type *Ty, bool V);
97 
98   /// If Ty is a vector type, return a Constant with a splat of the given
99   /// value. Otherwise return a ConstantInt for the given value.
100   static Constant *get(Type *Ty, uint64_t V, bool IsSigned = false);
101 
102   /// Return a ConstantInt with the specified integer value for the specified
103   /// type. If the type is wider than 64 bits, the value will be zero-extended
104   /// to fit the type, unless IsSigned is true, in which case the value will
105   /// be interpreted as a 64-bit signed integer and sign-extended to fit
106   /// the type.
107   /// Get a ConstantInt for a specific value.
108   static ConstantInt *get(IntegerType *Ty, uint64_t V, bool IsSigned = false);
109 
110   /// Return a ConstantInt with the specified value for the specified type. The
111   /// value V will be canonicalized to a an unsigned APInt. Accessing it with
112   /// either getSExtValue() or getZExtValue() will yield a correctly sized and
113   /// signed value for the type Ty.
114   /// Get a ConstantInt for a specific signed value.
getSigned(IntegerType * Ty,int64_t V)115   static ConstantInt *getSigned(IntegerType *Ty, int64_t V) {
116     return get(Ty, V, true);
117   }
getSigned(Type * Ty,int64_t V)118   static Constant *getSigned(Type *Ty, int64_t V) {
119     return get(Ty, V, true);
120   }
121 
122   /// Return a ConstantInt with the specified value and an implied Type. The
123   /// type is the integer type that corresponds to the bit width of the value.
124   static ConstantInt *get(LLVMContext &Context, const APInt &V);
125 
126   /// Return a ConstantInt constructed from the string strStart with the given
127   /// radix.
128   static ConstantInt *get(IntegerType *Ty, StringRef Str, uint8_t Radix);
129 
130   /// If Ty is a vector type, return a Constant with a splat of the given
131   /// value. Otherwise return a ConstantInt for the given value.
132   static Constant *get(Type *Ty, const APInt &V);
133 
134   /// Return the constant as an APInt value reference. This allows clients to
135   /// obtain a full-precision copy of the value.
136   /// Return the constant's value.
getValue()137   inline const APInt &getValue() const { return Val; }
138 
139   /// getBitWidth - Return the bitwidth of this constant.
getBitWidth()140   unsigned getBitWidth() const { return Val.getBitWidth(); }
141 
142   /// Return the constant as a 64-bit unsigned integer value after it
143   /// has been zero extended as appropriate for the type of this constant. Note
144   /// that this method can assert if the value does not fit in 64 bits.
145   /// Return the zero extended value.
getZExtValue()146   inline uint64_t getZExtValue() const { return Val.getZExtValue(); }
147 
148   /// Return the constant as a 64-bit integer value after it has been sign
149   /// extended as appropriate for the type of this constant. Note that
150   /// this method can assert if the value does not fit in 64 bits.
151   /// Return the sign extended value.
getSExtValue()152   inline int64_t getSExtValue() const { return Val.getSExtValue(); }
153 
154   /// Return the constant as an llvm::MaybeAlign.
155   /// Note that this method can assert if the value does not fit in 64 bits or
156   /// is not a power of two.
getMaybeAlignValue()157   inline MaybeAlign getMaybeAlignValue() const {
158     return MaybeAlign(getZExtValue());
159   }
160 
161   /// Return the constant as an llvm::Align, interpreting `0` as `Align(1)`.
162   /// Note that this method can assert if the value does not fit in 64 bits or
163   /// is not a power of two.
getAlignValue()164   inline Align getAlignValue() const {
165     return getMaybeAlignValue().valueOrOne();
166   }
167 
168   /// A helper method that can be used to determine if the constant contained
169   /// within is equal to a constant.  This only works for very small values,
170   /// because this is all that can be represented with all types.
171   /// Determine if this constant's value is same as an unsigned char.
equalsInt(uint64_t V)172   bool equalsInt(uint64_t V) const { return Val == V; }
173 
174   /// Variant of the getType() method to always return an IntegerType, which
175   /// reduces the amount of casting needed in parts of the compiler.
getIntegerType()176   inline IntegerType *getIntegerType() const {
177     return cast<IntegerType>(Value::getType());
178   }
179 
180   /// This static method returns true if the type Ty is big enough to
181   /// represent the value V. This can be used to avoid having the get method
182   /// assert when V is larger than Ty can represent. Note that there are two
183   /// versions of this method, one for unsigned and one for signed integers.
184   /// Although ConstantInt canonicalizes everything to an unsigned integer,
185   /// the signed version avoids callers having to convert a signed quantity
186   /// to the appropriate unsigned type before calling the method.
187   /// @returns true if V is a valid value for type Ty
188   /// Determine if the value is in range for the given type.
189   static bool isValueValidForType(Type *Ty, uint64_t V);
190   static bool isValueValidForType(Type *Ty, int64_t V);
191 
isNegative()192   bool isNegative() const { return Val.isNegative(); }
193 
194   /// This is just a convenience method to make client code smaller for a
195   /// common code. It also correctly performs the comparison without the
196   /// potential for an assertion from getZExtValue().
isZero()197   bool isZero() const { return Val.isZero(); }
198 
199   /// This is just a convenience method to make client code smaller for a
200   /// common case. It also correctly performs the comparison without the
201   /// potential for an assertion from getZExtValue().
202   /// Determine if the value is one.
isOne()203   bool isOne() const { return Val.isOne(); }
204 
205   /// This function will return true iff every bit in this constant is set
206   /// to true.
207   /// @returns true iff this constant's bits are all set to true.
208   /// Determine if the value is all ones.
isMinusOne()209   bool isMinusOne() const { return Val.isAllOnes(); }
210 
211   /// This function will return true iff this constant represents the largest
212   /// value that may be represented by the constant's type.
213   /// @returns true iff this is the largest value that may be represented
214   /// by this type.
215   /// Determine if the value is maximal.
isMaxValue(bool IsSigned)216   bool isMaxValue(bool IsSigned) const {
217     if (IsSigned)
218       return Val.isMaxSignedValue();
219     else
220       return Val.isMaxValue();
221   }
222 
223   /// This function will return true iff this constant represents the smallest
224   /// value that may be represented by this constant's type.
225   /// @returns true if this is the smallest value that may be represented by
226   /// this type.
227   /// Determine if the value is minimal.
isMinValue(bool IsSigned)228   bool isMinValue(bool IsSigned) const {
229     if (IsSigned)
230       return Val.isMinSignedValue();
231     else
232       return Val.isMinValue();
233   }
234 
235   /// This function will return true iff this constant represents a value with
236   /// active bits bigger than 64 bits or a value greater than the given uint64_t
237   /// value.
238   /// @returns true iff this constant is greater or equal to the given number.
239   /// Determine if the value is greater or equal to the given number.
uge(uint64_t Num)240   bool uge(uint64_t Num) const { return Val.uge(Num); }
241 
242   /// getLimitedValue - If the value is smaller than the specified limit,
243   /// return it, otherwise return the limit value.  This causes the value
244   /// to saturate to the limit.
245   /// @returns the min of the value of the constant and the specified value
246   /// Get the constant's value with a saturation limit
247   uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
248     return Val.getLimitedValue(Limit);
249   }
250 
251   /// Methods to support type inquiry through isa, cast, and dyn_cast.
classof(const Value * V)252   static bool classof(const Value *V) {
253     return V->getValueID() == ConstantIntVal;
254   }
255 };
256 
257 //===----------------------------------------------------------------------===//
258 /// ConstantFP - Floating Point Values [float, double]
259 ///
260 class ConstantFP final : public ConstantData {
261   friend class Constant;
262 
263   APFloat Val;
264 
265   ConstantFP(Type *Ty, const APFloat &V);
266 
267   void destroyConstantImpl();
268 
269 public:
270   ConstantFP(const ConstantFP &) = delete;
271 
272   /// This returns a ConstantFP, or a vector containing a splat of a ConstantFP,
273   /// for the specified value in the specified type. This should only be used
274   /// for simple constant values like 2.0/1.0 etc, that are known-valid both as
275   /// host double and as the target format.
276   static Constant *get(Type *Ty, double V);
277 
278   /// If Ty is a vector type, return a Constant with a splat of the given
279   /// value. Otherwise return a ConstantFP for the given value.
280   static Constant *get(Type *Ty, const APFloat &V);
281 
282   static Constant *get(Type *Ty, StringRef Str);
283   static ConstantFP *get(LLVMContext &Context, const APFloat &V);
284   static Constant *getNaN(Type *Ty, bool Negative = false,
285                           uint64_t Payload = 0);
286   static Constant *getQNaN(Type *Ty, bool Negative = false,
287                            APInt *Payload = nullptr);
288   static Constant *getSNaN(Type *Ty, bool Negative = false,
289                            APInt *Payload = nullptr);
290   static Constant *getZero(Type *Ty, bool Negative = false);
getNegativeZero(Type * Ty)291   static Constant *getNegativeZero(Type *Ty) { return getZero(Ty, true); }
292   static Constant *getInfinity(Type *Ty, bool Negative = false);
293 
294   /// Return true if Ty is big enough to represent V.
295   static bool isValueValidForType(Type *Ty, const APFloat &V);
getValueAPF()296   inline const APFloat &getValueAPF() const { return Val; }
getValue()297   inline const APFloat &getValue() const { return Val; }
298 
299   /// Return true if the value is positive or negative zero.
isZero()300   bool isZero() const { return Val.isZero(); }
301 
302   /// Return true if the sign bit is set.
isNegative()303   bool isNegative() const { return Val.isNegative(); }
304 
305   /// Return true if the value is infinity
isInfinity()306   bool isInfinity() const { return Val.isInfinity(); }
307 
308   /// Return true if the value is a NaN.
isNaN()309   bool isNaN() const { return Val.isNaN(); }
310 
311   /// We don't rely on operator== working on double values, as it returns true
312   /// for things that are clearly not equal, like -0.0 and 0.0.
313   /// As such, this method can be used to do an exact bit-for-bit comparison of
314   /// two floating point values.  The version with a double operand is retained
315   /// because it's so convenient to write isExactlyValue(2.0), but please use
316   /// it only for simple constants.
317   bool isExactlyValue(const APFloat &V) const;
318 
isExactlyValue(double V)319   bool isExactlyValue(double V) const {
320     bool ignored;
321     APFloat FV(V);
322     FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
323     return isExactlyValue(FV);
324   }
325 
326   /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const Value * V)327   static bool classof(const Value *V) {
328     return V->getValueID() == ConstantFPVal;
329   }
330 };
331 
332 //===----------------------------------------------------------------------===//
333 /// All zero aggregate value
334 ///
335 class ConstantAggregateZero final : public ConstantData {
336   friend class Constant;
337 
ConstantAggregateZero(Type * Ty)338   explicit ConstantAggregateZero(Type *Ty)
339       : ConstantData(Ty, ConstantAggregateZeroVal) {}
340 
341   void destroyConstantImpl();
342 
343 public:
344   ConstantAggregateZero(const ConstantAggregateZero &) = delete;
345 
346   static ConstantAggregateZero *get(Type *Ty);
347 
348   /// If this CAZ has array or vector type, return a zero with the right element
349   /// type.
350   Constant *getSequentialElement() const;
351 
352   /// If this CAZ has struct type, return a zero with the right element type for
353   /// the specified element.
354   Constant *getStructElement(unsigned Elt) const;
355 
356   /// Return a zero of the right value for the specified GEP index if we can,
357   /// otherwise return null (e.g. if C is a ConstantExpr).
358   Constant *getElementValue(Constant *C) const;
359 
360   /// Return a zero of the right value for the specified GEP index.
361   Constant *getElementValue(unsigned Idx) const;
362 
363   /// Return the number of elements in the array, vector, or struct.
364   ElementCount getElementCount() const;
365 
366   /// Methods for support type inquiry through isa, cast, and dyn_cast:
367   ///
classof(const Value * V)368   static bool classof(const Value *V) {
369     return V->getValueID() == ConstantAggregateZeroVal;
370   }
371 };
372 
373 /// Base class for aggregate constants (with operands).
374 ///
375 /// These constants are aggregates of other constants, which are stored as
376 /// operands.
377 ///
378 /// Subclasses are \a ConstantStruct, \a ConstantArray, and \a
379 /// ConstantVector.
380 ///
381 /// \note Some subclasses of \a ConstantData are semantically aggregates --
382 /// such as \a ConstantDataArray -- but are not subclasses of this because they
383 /// use operands.
384 class ConstantAggregate : public Constant {
385 protected:
386   ConstantAggregate(Type *T, ValueTy VT, ArrayRef<Constant *> V);
387 
388 public:
389   /// Transparently provide more efficient getOperand methods.
390   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
391 
392   /// Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const Value * V)393   static bool classof(const Value *V) {
394     return V->getValueID() >= ConstantAggregateFirstVal &&
395            V->getValueID() <= ConstantAggregateLastVal;
396   }
397 };
398 
399 template <>
400 struct OperandTraits<ConstantAggregate>
401     : public VariadicOperandTraits<ConstantAggregate> {};
402 
403 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant)
404 
405 //===----------------------------------------------------------------------===//
406 /// ConstantArray - Constant Array Declarations
407 ///
408 class ConstantArray final : public ConstantAggregate {
409   friend struct ConstantAggrKeyType<ConstantArray>;
410   friend class Constant;
411 
412   ConstantArray(ArrayType *T, ArrayRef<Constant *> Val);
413 
414   void destroyConstantImpl();
415   Value *handleOperandChangeImpl(Value *From, Value *To);
416 
417 public:
418   // ConstantArray accessors
419   static Constant *get(ArrayType *T, ArrayRef<Constant *> V);
420 
421 private:
422   static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V);
423 
424 public:
425   /// Specialize the getType() method to always return an ArrayType,
426   /// which reduces the amount of casting needed in parts of the compiler.
427   inline ArrayType *getType() const {
428     return cast<ArrayType>(Value::getType());
429   }
430 
431   /// Methods for support type inquiry through isa, cast, and dyn_cast:
432   static bool classof(const Value *V) {
433     return V->getValueID() == ConstantArrayVal;
434   }
435 };
436 
437 //===----------------------------------------------------------------------===//
438 // Constant Struct Declarations
439 //
440 class ConstantStruct final : public ConstantAggregate {
441   friend struct ConstantAggrKeyType<ConstantStruct>;
442   friend class Constant;
443 
444   ConstantStruct(StructType *T, ArrayRef<Constant *> Val);
445 
446   void destroyConstantImpl();
447   Value *handleOperandChangeImpl(Value *From, Value *To);
448 
449 public:
450   // ConstantStruct accessors
451   static Constant *get(StructType *T, ArrayRef<Constant *> V);
452 
453   template <typename... Csts>
454   static std::enable_if_t<are_base_of<Constant, Csts...>::value, Constant *>
455   get(StructType *T, Csts *...Vs) {
456     return get(T, ArrayRef<Constant *>({Vs...}));
457   }
458 
459   /// Return an anonymous struct that has the specified elements.
460   /// If the struct is possibly empty, then you must specify a context.
461   static Constant *getAnon(ArrayRef<Constant *> V, bool Packed = false) {
462     return get(getTypeForElements(V, Packed), V);
463   }
464   static Constant *getAnon(LLVMContext &Ctx, ArrayRef<Constant *> V,
465                            bool Packed = false) {
466     return get(getTypeForElements(Ctx, V, Packed), V);
467   }
468 
469   /// Return an anonymous struct type to use for a constant with the specified
470   /// set of elements. The list must not be empty.
471   static StructType *getTypeForElements(ArrayRef<Constant *> V,
472                                         bool Packed = false);
473   /// This version of the method allows an empty list.
474   static StructType *getTypeForElements(LLVMContext &Ctx,
475                                         ArrayRef<Constant *> V,
476                                         bool Packed = false);
477 
478   /// Specialization - reduce amount of casting.
479   inline StructType *getType() const {
480     return cast<StructType>(Value::getType());
481   }
482 
483   /// Methods for support type inquiry through isa, cast, and dyn_cast:
484   static bool classof(const Value *V) {
485     return V->getValueID() == ConstantStructVal;
486   }
487 };
488 
489 //===----------------------------------------------------------------------===//
490 /// Constant Vector Declarations
491 ///
492 class ConstantVector final : public ConstantAggregate {
493   friend struct ConstantAggrKeyType<ConstantVector>;
494   friend class Constant;
495 
496   ConstantVector(VectorType *T, ArrayRef<Constant *> Val);
497 
498   void destroyConstantImpl();
499   Value *handleOperandChangeImpl(Value *From, Value *To);
500 
501 public:
502   // ConstantVector accessors
503   static Constant *get(ArrayRef<Constant *> V);
504 
505 private:
506   static Constant *getImpl(ArrayRef<Constant *> V);
507 
508 public:
509   /// Return a ConstantVector with the specified constant in each element.
510   /// Note that this might not return an instance of ConstantVector
511   static Constant *getSplat(ElementCount EC, Constant *Elt);
512 
513   /// Specialize the getType() method to always return a FixedVectorType,
514   /// which reduces the amount of casting needed in parts of the compiler.
515   inline FixedVectorType *getType() const {
516     return cast<FixedVectorType>(Value::getType());
517   }
518 
519   /// If all elements of the vector constant have the same value, return that
520   /// value. Otherwise, return nullptr. Ignore undefined elements by setting
521   /// AllowUndefs to true.
522   Constant *getSplatValue(bool AllowUndefs = false) const;
523 
524   /// Methods for support type inquiry through isa, cast, and dyn_cast:
525   static bool classof(const Value *V) {
526     return V->getValueID() == ConstantVectorVal;
527   }
528 };
529 
530 //===----------------------------------------------------------------------===//
531 /// A constant pointer value that points to null
532 ///
533 class ConstantPointerNull final : public ConstantData {
534   friend class Constant;
535 
536   explicit ConstantPointerNull(PointerType *T)
537       : ConstantData(T, Value::ConstantPointerNullVal) {}
538 
539   void destroyConstantImpl();
540 
541 public:
542   ConstantPointerNull(const ConstantPointerNull &) = delete;
543 
544   /// Static factory methods - Return objects of the specified value
545   static ConstantPointerNull *get(PointerType *T);
546 
547   /// Specialize the getType() method to always return an PointerType,
548   /// which reduces the amount of casting needed in parts of the compiler.
549   inline PointerType *getType() const {
550     return cast<PointerType>(Value::getType());
551   }
552 
553   /// Methods for support type inquiry through isa, cast, and dyn_cast:
554   static bool classof(const Value *V) {
555     return V->getValueID() == ConstantPointerNullVal;
556   }
557 };
558 
559 //===----------------------------------------------------------------------===//
560 /// ConstantDataSequential - A vector or array constant whose element type is a
561 /// simple 1/2/4/8-byte integer or half/bfloat/float/double, and whose elements
562 /// are just simple data values (i.e. ConstantInt/ConstantFP).  This Constant
563 /// node has no operands because it stores all of the elements of the constant
564 /// as densely packed data, instead of as Value*'s.
565 ///
566 /// This is the common base class of ConstantDataArray and ConstantDataVector.
567 ///
568 class ConstantDataSequential : public ConstantData {
569   friend class LLVMContextImpl;
570   friend class Constant;
571 
572   /// A pointer to the bytes underlying this constant (which is owned by the
573   /// uniquing StringMap).
574   const char *DataElements;
575 
576   /// This forms a link list of ConstantDataSequential nodes that have
577   /// the same value but different type.  For example, 0,0,0,1 could be a 4
578   /// element array of i8, or a 1-element array of i32.  They'll both end up in
579   /// the same StringMap bucket, linked up.
580   std::unique_ptr<ConstantDataSequential> Next;
581 
582   void destroyConstantImpl();
583 
584 protected:
585   explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data)
586       : ConstantData(ty, VT), DataElements(Data) {}
587 
588   static Constant *getImpl(StringRef Bytes, Type *Ty);
589 
590 public:
591   ConstantDataSequential(const ConstantDataSequential &) = delete;
592 
593   /// Return true if a ConstantDataSequential can be formed with a vector or
594   /// array of the specified element type.
595   /// ConstantDataArray only works with normal float and int types that are
596   /// stored densely in memory, not with things like i42 or x86_f80.
597   static bool isElementTypeCompatible(Type *Ty);
598 
599   /// If this is a sequential container of integers (of any size), return the
600   /// specified element in the low bits of a uint64_t.
601   uint64_t getElementAsInteger(unsigned i) const;
602 
603   /// If this is a sequential container of integers (of any size), return the
604   /// specified element as an APInt.
605   APInt getElementAsAPInt(unsigned i) const;
606 
607   /// If this is a sequential container of floating point type, return the
608   /// specified element as an APFloat.
609   APFloat getElementAsAPFloat(unsigned i) const;
610 
611   /// If this is an sequential container of floats, return the specified element
612   /// as a float.
613   float getElementAsFloat(unsigned i) const;
614 
615   /// If this is an sequential container of doubles, return the specified
616   /// element as a double.
617   double getElementAsDouble(unsigned i) const;
618 
619   /// Return a Constant for a specified index's element.
620   /// Note that this has to compute a new constant to return, so it isn't as
621   /// efficient as getElementAsInteger/Float/Double.
622   Constant *getElementAsConstant(unsigned i) const;
623 
624   /// Return the element type of the array/vector.
625   Type *getElementType() const;
626 
627   /// Return the number of elements in the array or vector.
628   unsigned getNumElements() const;
629 
630   /// Return the size (in bytes) of each element in the array/vector.
631   /// The size of the elements is known to be a multiple of one byte.
632   uint64_t getElementByteSize() const;
633 
634   /// This method returns true if this is an array of \p CharSize integers.
635   bool isString(unsigned CharSize = 8) const;
636 
637   /// This method returns true if the array "isString", ends with a null byte,
638   /// and does not contains any other null bytes.
639   bool isCString() const;
640 
641   /// If this array is isString(), then this method returns the array as a
642   /// StringRef. Otherwise, it asserts out.
643   StringRef getAsString() const {
644     assert(isString() && "Not a string");
645     return getRawDataValues();
646   }
647 
648   /// If this array is isCString(), then this method returns the array (without
649   /// the trailing null byte) as a StringRef. Otherwise, it asserts out.
650   StringRef getAsCString() const {
651     assert(isCString() && "Isn't a C string");
652     StringRef Str = getAsString();
653     return Str.substr(0, Str.size() - 1);
654   }
655 
656   /// Return the raw, underlying, bytes of this data. Note that this is an
657   /// extremely tricky thing to work with, as it exposes the host endianness of
658   /// the data elements.
659   StringRef getRawDataValues() const;
660 
661   /// Methods for support type inquiry through isa, cast, and dyn_cast:
662   static bool classof(const Value *V) {
663     return V->getValueID() == ConstantDataArrayVal ||
664            V->getValueID() == ConstantDataVectorVal;
665   }
666 
667 private:
668   const char *getElementPointer(unsigned Elt) const;
669 };
670 
671 //===----------------------------------------------------------------------===//
672 /// An array constant whose element type is a simple 1/2/4/8-byte integer or
673 /// float/double, and whose elements are just simple data values
674 /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
675 /// stores all of the elements of the constant as densely packed data, instead
676 /// of as Value*'s.
677 class ConstantDataArray final : public ConstantDataSequential {
678   friend class ConstantDataSequential;
679 
680   explicit ConstantDataArray(Type *ty, const char *Data)
681       : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {}
682 
683 public:
684   ConstantDataArray(const ConstantDataArray &) = delete;
685 
686   /// get() constructor - Return a constant with array type with an element
687   /// count and element type matching the ArrayRef passed in.  Note that this
688   /// can return a ConstantAggregateZero object.
689   template <typename ElementTy>
690   static Constant *get(LLVMContext &Context, ArrayRef<ElementTy> Elts) {
691     const char *Data = reinterpret_cast<const char *>(Elts.data());
692     return getRaw(StringRef(Data, Elts.size() * sizeof(ElementTy)), Elts.size(),
693                   Type::getScalarTy<ElementTy>(Context));
694   }
695 
696   /// get() constructor - ArrayTy needs to be compatible with
697   /// ArrayRef<ElementTy>. Calls get(LLVMContext, ArrayRef<ElementTy>).
698   template <typename ArrayTy>
699   static Constant *get(LLVMContext &Context, ArrayTy &Elts) {
700     return ConstantDataArray::get(Context, ArrayRef(Elts));
701   }
702 
703   /// getRaw() constructor - Return a constant with array type with an element
704   /// count and element type matching the NumElements and ElementTy parameters
705   /// passed in. Note that this can return a ConstantAggregateZero object.
706   /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is
707   /// the buffer containing the elements. Be careful to make sure Data uses the
708   /// right endianness, the buffer will be used as-is.
709   static Constant *getRaw(StringRef Data, uint64_t NumElements,
710                           Type *ElementTy) {
711     Type *Ty = ArrayType::get(ElementTy, NumElements);
712     return getImpl(Data, Ty);
713   }
714 
715   /// getFP() constructors - Return a constant of array type with a float
716   /// element type taken from argument `ElementType', and count taken from
717   /// argument `Elts'.  The amount of bits of the contained type must match the
718   /// number of bits of the type contained in the passed in ArrayRef.
719   /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
720   /// that this can return a ConstantAggregateZero object.
721   static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts);
722   static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts);
723   static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts);
724 
725   /// This method constructs a CDS and initializes it with a text string.
726   /// The default behavior (AddNull==true) causes a null terminator to
727   /// be placed at the end of the array (increasing the length of the string by
728   /// one more than the StringRef would normally indicate.  Pass AddNull=false
729   /// to disable this behavior.
730   static Constant *getString(LLVMContext &Context, StringRef Initializer,
731                              bool AddNull = true);
732 
733   /// Specialize the getType() method to always return an ArrayType,
734   /// which reduces the amount of casting needed in parts of the compiler.
735   inline ArrayType *getType() const {
736     return cast<ArrayType>(Value::getType());
737   }
738 
739   /// Methods for support type inquiry through isa, cast, and dyn_cast:
740   static bool classof(const Value *V) {
741     return V->getValueID() == ConstantDataArrayVal;
742   }
743 };
744 
745 //===----------------------------------------------------------------------===//
746 /// A vector constant whose element type is a simple 1/2/4/8-byte integer or
747 /// float/double, and whose elements are just simple data values
748 /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
749 /// stores all of the elements of the constant as densely packed data, instead
750 /// of as Value*'s.
751 class ConstantDataVector final : public ConstantDataSequential {
752   friend class ConstantDataSequential;
753 
754   explicit ConstantDataVector(Type *ty, const char *Data)
755       : ConstantDataSequential(ty, ConstantDataVectorVal, Data),
756         IsSplatSet(false) {}
757   // Cache whether or not the constant is a splat.
758   mutable bool IsSplatSet : 1;
759   mutable bool IsSplat : 1;
760   bool isSplatData() const;
761 
762 public:
763   ConstantDataVector(const ConstantDataVector &) = delete;
764 
765   /// get() constructors - Return a constant with vector type with an element
766   /// count and element type matching the ArrayRef passed in.  Note that this
767   /// can return a ConstantAggregateZero object.
768   static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
769   static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
770   static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
771   static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
772   static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
773   static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
774 
775   /// getRaw() constructor - Return a constant with vector type with an element
776   /// count and element type matching the NumElements and ElementTy parameters
777   /// passed in. Note that this can return a ConstantAggregateZero object.
778   /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is
779   /// the buffer containing the elements. Be careful to make sure Data uses the
780   /// right endianness, the buffer will be used as-is.
781   static Constant *getRaw(StringRef Data, uint64_t NumElements,
782                           Type *ElementTy) {
783     Type *Ty = VectorType::get(ElementTy, ElementCount::getFixed(NumElements));
784     return getImpl(Data, Ty);
785   }
786 
787   /// getFP() constructors - Return a constant of vector type with a float
788   /// element type taken from argument `ElementType', and count taken from
789   /// argument `Elts'.  The amount of bits of the contained type must match the
790   /// number of bits of the type contained in the passed in ArrayRef.
791   /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
792   /// that this can return a ConstantAggregateZero object.
793   static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts);
794   static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts);
795   static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts);
796 
797   /// Return a ConstantVector with the specified constant in each element.
798   /// The specified constant has to be a of a compatible type (i8/i16/
799   /// i32/i64/half/bfloat/float/double) and must be a ConstantFP or ConstantInt.
800   static Constant *getSplat(unsigned NumElts, Constant *Elt);
801 
802   /// Returns true if this is a splat constant, meaning that all elements have
803   /// the same value.
804   bool isSplat() const;
805 
806   /// If this is a splat constant, meaning that all of the elements have the
807   /// same value, return that value. Otherwise return NULL.
808   Constant *getSplatValue() const;
809 
810   /// Specialize the getType() method to always return a FixedVectorType,
811   /// which reduces the amount of casting needed in parts of the compiler.
812   inline FixedVectorType *getType() const {
813     return cast<FixedVectorType>(Value::getType());
814   }
815 
816   /// Methods for support type inquiry through isa, cast, and dyn_cast:
817   static bool classof(const Value *V) {
818     return V->getValueID() == ConstantDataVectorVal;
819   }
820 };
821 
822 //===----------------------------------------------------------------------===//
823 /// A constant token which is empty
824 ///
825 class ConstantTokenNone final : public ConstantData {
826   friend class Constant;
827 
828   explicit ConstantTokenNone(LLVMContext &Context)
829       : ConstantData(Type::getTokenTy(Context), ConstantTokenNoneVal) {}
830 
831   void destroyConstantImpl();
832 
833 public:
834   ConstantTokenNone(const ConstantTokenNone &) = delete;
835 
836   /// Return the ConstantTokenNone.
837   static ConstantTokenNone *get(LLVMContext &Context);
838 
839   /// Methods to support type inquiry through isa, cast, and dyn_cast.
840   static bool classof(const Value *V) {
841     return V->getValueID() == ConstantTokenNoneVal;
842   }
843 };
844 
845 /// A constant target extension type default initializer
846 class ConstantTargetNone final : public ConstantData {
847   friend class Constant;
848 
849   explicit ConstantTargetNone(TargetExtType *T)
850       : ConstantData(T, Value::ConstantTargetNoneVal) {}
851 
852   void destroyConstantImpl();
853 
854 public:
855   ConstantTargetNone(const ConstantTargetNone &) = delete;
856 
857   /// Static factory methods - Return objects of the specified value.
858   static ConstantTargetNone *get(TargetExtType *T);
859 
860   /// Specialize the getType() method to always return an TargetExtType,
861   /// which reduces the amount of casting needed in parts of the compiler.
862   inline TargetExtType *getType() const {
863     return cast<TargetExtType>(Value::getType());
864   }
865 
866   /// Methods for support type inquiry through isa, cast, and dyn_cast.
867   static bool classof(const Value *V) {
868     return V->getValueID() == ConstantTargetNoneVal;
869   }
870 };
871 
872 /// The address of a basic block.
873 ///
874 class BlockAddress final : public Constant {
875   friend class Constant;
876 
877   BlockAddress(Function *F, BasicBlock *BB);
878 
879   void *operator new(size_t S) { return User::operator new(S, 2); }
880 
881   void destroyConstantImpl();
882   Value *handleOperandChangeImpl(Value *From, Value *To);
883 
884 public:
885   void operator delete(void *Ptr) { User::operator delete(Ptr); }
886 
887   /// Return a BlockAddress for the specified function and basic block.
888   static BlockAddress *get(Function *F, BasicBlock *BB);
889 
890   /// Return a BlockAddress for the specified basic block.  The basic
891   /// block must be embedded into a function.
892   static BlockAddress *get(BasicBlock *BB);
893 
894   /// Lookup an existing \c BlockAddress constant for the given BasicBlock.
895   ///
896   /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress.
897   static BlockAddress *lookup(const BasicBlock *BB);
898 
899   /// Transparently provide more efficient getOperand methods.
900   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
901 
902   Function *getFunction() const { return (Function *)Op<0>().get(); }
903   BasicBlock *getBasicBlock() const { return (BasicBlock *)Op<1>().get(); }
904 
905   /// Methods for support type inquiry through isa, cast, and dyn_cast:
906   static bool classof(const Value *V) {
907     return V->getValueID() == BlockAddressVal;
908   }
909 };
910 
911 template <>
912 struct OperandTraits<BlockAddress>
913     : public FixedNumOperandTraits<BlockAddress, 2> {};
914 
915 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)
916 
917 /// Wrapper for a function that represents a value that
918 /// functionally represents the original function. This can be a function,
919 /// global alias to a function, or an ifunc.
920 class DSOLocalEquivalent final : public Constant {
921   friend class Constant;
922 
923   DSOLocalEquivalent(GlobalValue *GV);
924 
925   void *operator new(size_t S) { return User::operator new(S, 1); }
926 
927   void destroyConstantImpl();
928   Value *handleOperandChangeImpl(Value *From, Value *To);
929 
930 public:
931   void operator delete(void *Ptr) { User::operator delete(Ptr); }
932 
933   /// Return a DSOLocalEquivalent for the specified global value.
934   static DSOLocalEquivalent *get(GlobalValue *GV);
935 
936   /// Transparently provide more efficient getOperand methods.
937   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
938 
939   GlobalValue *getGlobalValue() const {
940     return cast<GlobalValue>(Op<0>().get());
941   }
942 
943   /// Methods for support type inquiry through isa, cast, and dyn_cast:
944   static bool classof(const Value *V) {
945     return V->getValueID() == DSOLocalEquivalentVal;
946   }
947 };
948 
949 template <>
950 struct OperandTraits<DSOLocalEquivalent>
951     : public FixedNumOperandTraits<DSOLocalEquivalent, 1> {};
952 
953 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(DSOLocalEquivalent, Value)
954 
955 /// Wrapper for a value that won't be replaced with a CFI jump table
956 /// pointer in LowerTypeTestsModule.
957 class NoCFIValue final : public Constant {
958   friend class Constant;
959 
960   NoCFIValue(GlobalValue *GV);
961 
962   void *operator new(size_t S) { return User::operator new(S, 1); }
963 
964   void destroyConstantImpl();
965   Value *handleOperandChangeImpl(Value *From, Value *To);
966 
967 public:
968   /// Return a NoCFIValue for the specified function.
969   static NoCFIValue *get(GlobalValue *GV);
970 
971   /// Transparently provide more efficient getOperand methods.
972   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
973 
974   GlobalValue *getGlobalValue() const {
975     return cast<GlobalValue>(Op<0>().get());
976   }
977 
978   /// NoCFIValue is always a pointer.
979   PointerType *getType() const {
980     return cast<PointerType>(Value::getType());
981   }
982 
983   /// Methods for support type inquiry through isa, cast, and dyn_cast:
984   static bool classof(const Value *V) {
985     return V->getValueID() == NoCFIValueVal;
986   }
987 };
988 
989 template <>
990 struct OperandTraits<NoCFIValue> : public FixedNumOperandTraits<NoCFIValue, 1> {
991 };
992 
993 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(NoCFIValue, Value)
994 
995 //===----------------------------------------------------------------------===//
996 /// A constant value that is initialized with an expression using
997 /// other constant values.
998 ///
999 /// This class uses the standard Instruction opcodes to define the various
1000 /// constant expressions.  The Opcode field for the ConstantExpr class is
1001 /// maintained in the Value::SubclassData field.
1002 class ConstantExpr : public Constant {
1003   friend struct ConstantExprKeyType;
1004   friend class Constant;
1005 
1006   void destroyConstantImpl();
1007   Value *handleOperandChangeImpl(Value *From, Value *To);
1008 
1009 protected:
1010   ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
1011       : Constant(ty, ConstantExprVal, Ops, NumOps) {
1012     // Operation type (an Instruction opcode) is stored as the SubclassData.
1013     setValueSubclassData(Opcode);
1014   }
1015 
1016   ~ConstantExpr() = default;
1017 
1018 public:
1019   // Static methods to construct a ConstantExpr of different kinds.  Note that
1020   // these methods may return a object that is not an instance of the
1021   // ConstantExpr class, because they will attempt to fold the constant
1022   // expression into something simpler if possible.
1023 
1024   /// getAlignOf constant expr - computes the alignment of a type in a target
1025   /// independent way (Note: the return type is an i64).
1026   static Constant *getAlignOf(Type *Ty);
1027 
1028   /// getSizeOf constant expr - computes the (alloc) size of a type (in
1029   /// address-units, not bits) in a target independent way (Note: the return
1030   /// type is an i64).
1031   ///
1032   static Constant *getSizeOf(Type *Ty);
1033 
1034   static Constant *getNeg(Constant *C, bool HasNUW = false,
1035                           bool HasNSW = false);
1036   static Constant *getNot(Constant *C);
1037   static Constant *getAdd(Constant *C1, Constant *C2, bool HasNUW = false,
1038                           bool HasNSW = false);
1039   static Constant *getSub(Constant *C1, Constant *C2, bool HasNUW = false,
1040                           bool HasNSW = false);
1041   static Constant *getMul(Constant *C1, Constant *C2, bool HasNUW = false,
1042                           bool HasNSW = false);
1043   static Constant *getXor(Constant *C1, Constant *C2);
1044   static Constant *getShl(Constant *C1, Constant *C2, bool HasNUW = false,
1045                           bool HasNSW = false);
1046   static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1047   static Constant *getPtrToInt(Constant *C, Type *Ty,
1048                                bool OnlyIfReduced = false);
1049   static Constant *getIntToPtr(Constant *C, Type *Ty,
1050                                bool OnlyIfReduced = false);
1051   static Constant *getBitCast(Constant *C, Type *Ty,
1052                               bool OnlyIfReduced = false);
1053   static Constant *getAddrSpaceCast(Constant *C, Type *Ty,
1054                                     bool OnlyIfReduced = false);
1055 
1056   static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); }
1057   static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); }
1058 
1059   static Constant *getNSWAdd(Constant *C1, Constant *C2) {
1060     return getAdd(C1, C2, false, true);
1061   }
1062 
1063   static Constant *getNUWAdd(Constant *C1, Constant *C2) {
1064     return getAdd(C1, C2, true, false);
1065   }
1066 
1067   static Constant *getNSWSub(Constant *C1, Constant *C2) {
1068     return getSub(C1, C2, false, true);
1069   }
1070 
1071   static Constant *getNUWSub(Constant *C1, Constant *C2) {
1072     return getSub(C1, C2, true, false);
1073   }
1074 
1075   static Constant *getNSWMul(Constant *C1, Constant *C2) {
1076     return getMul(C1, C2, false, true);
1077   }
1078 
1079   static Constant *getNUWMul(Constant *C1, Constant *C2) {
1080     return getMul(C1, C2, true, false);
1081   }
1082 
1083   static Constant *getNSWShl(Constant *C1, Constant *C2) {
1084     return getShl(C1, C2, false, true);
1085   }
1086 
1087   static Constant *getNUWShl(Constant *C1, Constant *C2) {
1088     return getShl(C1, C2, true, false);
1089   }
1090 
1091   /// If C is a scalar/fixed width vector of known powers of 2, then this
1092   /// function returns a new scalar/fixed width vector obtained from logBase2
1093   /// of C. Undef vector elements are set to zero.
1094   /// Return a null pointer otherwise.
1095   static Constant *getExactLogBase2(Constant *C);
1096 
1097   /// Return the identity constant for a binary opcode.
1098   /// If the binop is not commutative, callers can acquire the operand 1
1099   /// identity constant by setting AllowRHSConstant to true. For example, any
1100   /// shift has a zero identity constant for operand 1: X shift 0 = X. If this
1101   /// is a fadd/fsub operation and we don't care about signed zeros, then
1102   /// setting NSZ to true returns the identity +0.0 instead of -0.0. Return
1103   /// nullptr if the operator does not have an identity constant.
1104   static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty,
1105                                     bool AllowRHSConstant = false,
1106                                     bool NSZ = false);
1107 
1108   static Constant *getIntrinsicIdentity(Intrinsic::ID, Type *Ty);
1109 
1110   /// Return the identity constant for a binary or intrinsic Instruction.
1111   /// The identity constant C is defined as X op C = X and C op X = X where C
1112   /// and X are the first two operands, and the operation is commutative.
1113   static Constant *getIdentity(Instruction *I, Type *Ty,
1114                                bool AllowRHSConstant = false, bool NSZ = false);
1115 
1116   /// Return the absorbing element for the given binary
1117   /// operation, i.e. a constant C such that X op C = C and C op X = C for
1118   /// every X.  For example, this returns zero for integer multiplication.
1119   /// It returns null if the operator doesn't have an absorbing element.
1120   static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty);
1121 
1122   /// Transparently provide more efficient getOperand methods.
1123   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
1124 
1125   /// Convenience function for getting a Cast operation.
1126   ///
1127   /// \param ops The opcode for the conversion
1128   /// \param C  The constant to be converted
1129   /// \param Ty The type to which the constant is converted
1130   /// \param OnlyIfReduced see \a getWithOperands() docs.
1131   static Constant *getCast(unsigned ops, Constant *C, Type *Ty,
1132                            bool OnlyIfReduced = false);
1133 
1134   // Create a Trunc or BitCast cast constant expression
1135   static Constant *
1136   getTruncOrBitCast(Constant *C, ///< The constant to trunc or bitcast
1137                     Type *Ty     ///< The type to trunc or bitcast C to
1138   );
1139 
1140   /// Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant
1141   /// expression.
1142   static Constant *
1143   getPointerCast(Constant *C, ///< The pointer value to be casted (operand 0)
1144                  Type *Ty     ///< The type to which cast should be made
1145   );
1146 
1147   /// Create a BitCast or AddrSpaceCast for a pointer type depending on
1148   /// the address space.
1149   static Constant *getPointerBitCastOrAddrSpaceCast(
1150       Constant *C, ///< The constant to addrspacecast or bitcast
1151       Type *Ty     ///< The type to bitcast or addrspacecast C to
1152   );
1153 
1154   /// Return true if this is a convert constant expression
1155   bool isCast() const;
1156 
1157   /// Return true if this is a compare constant expression
1158   bool isCompare() const;
1159 
1160   /// get - Return a binary or shift operator constant expression,
1161   /// folding if possible.
1162   ///
1163   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1164   static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
1165                        unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr);
1166 
1167   /// Return an ICmp or FCmp comparison operator constant expression.
1168   ///
1169   /// \param OnlyIfReduced see \a getWithOperands() docs.
1170   static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2,
1171                               bool OnlyIfReduced = false);
1172 
1173   /// get* - Return some common constants without having to
1174   /// specify the full Instruction::OPCODE identifier.
1175   ///
1176   static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS,
1177                            bool OnlyIfReduced = false);
1178   static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS,
1179                            bool OnlyIfReduced = false);
1180 
1181   /// Getelementptr form.  Value* is only accepted for convenience;
1182   /// all elements must be Constants.
1183   ///
1184   /// \param InRangeIndex the inrange index if present or std::nullopt.
1185   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1186   static Constant *
1187   getGetElementPtr(Type *Ty, Constant *C, ArrayRef<Constant *> IdxList,
1188                    bool InBounds = false,
1189                    std::optional<unsigned> InRangeIndex = std::nullopt,
1190                    Type *OnlyIfReducedTy = nullptr) {
1191     return getGetElementPtr(
1192         Ty, C, ArrayRef((Value *const *)IdxList.data(), IdxList.size()),
1193         InBounds, InRangeIndex, OnlyIfReducedTy);
1194   }
1195   static Constant *
1196   getGetElementPtr(Type *Ty, Constant *C, Constant *Idx, bool InBounds = false,
1197                    std::optional<unsigned> InRangeIndex = std::nullopt,
1198                    Type *OnlyIfReducedTy = nullptr) {
1199     // This form of the function only exists to avoid ambiguous overload
1200     // warnings about whether to convert Idx to ArrayRef<Constant *> or
1201     // ArrayRef<Value *>.
1202     return getGetElementPtr(Ty, C, cast<Value>(Idx), InBounds, InRangeIndex,
1203                             OnlyIfReducedTy);
1204   }
1205   static Constant *
1206   getGetElementPtr(Type *Ty, Constant *C, ArrayRef<Value *> IdxList,
1207                    bool InBounds = false,
1208                    std::optional<unsigned> InRangeIndex = std::nullopt,
1209                    Type *OnlyIfReducedTy = nullptr);
1210 
1211   /// Create an "inbounds" getelementptr. See the documentation for the
1212   /// "inbounds" flag in LangRef.html for details.
1213   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1214                                             ArrayRef<Constant *> IdxList) {
1215     return getGetElementPtr(Ty, C, IdxList, true);
1216   }
1217   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1218                                             Constant *Idx) {
1219     // This form of the function only exists to avoid ambiguous overload
1220     // warnings about whether to convert Idx to ArrayRef<Constant *> or
1221     // ArrayRef<Value *>.
1222     return getGetElementPtr(Ty, C, Idx, true);
1223   }
1224   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1225                                             ArrayRef<Value *> IdxList) {
1226     return getGetElementPtr(Ty, C, IdxList, true);
1227   }
1228 
1229   static Constant *getExtractElement(Constant *Vec, Constant *Idx,
1230                                      Type *OnlyIfReducedTy = nullptr);
1231   static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx,
1232                                     Type *OnlyIfReducedTy = nullptr);
1233   static Constant *getShuffleVector(Constant *V1, Constant *V2,
1234                                     ArrayRef<int> Mask,
1235                                     Type *OnlyIfReducedTy = nullptr);
1236 
1237   /// Return the opcode at the root of this constant expression
1238   unsigned getOpcode() const { return getSubclassDataFromValue(); }
1239 
1240   /// Return the ICMP or FCMP predicate value. Assert if this is not an ICMP or
1241   /// FCMP constant expression.
1242   unsigned getPredicate() const;
1243 
1244   /// Assert that this is a shufflevector and return the mask. See class
1245   /// ShuffleVectorInst for a description of the mask representation.
1246   ArrayRef<int> getShuffleMask() const;
1247 
1248   /// Assert that this is a shufflevector and return the mask.
1249   ///
1250   /// TODO: This is a temporary hack until we update the bitcode format for
1251   /// shufflevector.
1252   Constant *getShuffleMaskForBitcode() const;
1253 
1254   /// Return a string representation for an opcode.
1255   const char *getOpcodeName() const;
1256 
1257   /// This returns the current constant expression with the operands replaced
1258   /// with the specified values. The specified array must have the same number
1259   /// of operands as our current one.
1260   Constant *getWithOperands(ArrayRef<Constant *> Ops) const {
1261     return getWithOperands(Ops, getType());
1262   }
1263 
1264   /// Get the current expression with the operands replaced.
1265   ///
1266   /// Return the current constant expression with the operands replaced with \c
1267   /// Ops and the type with \c Ty.  The new operands must have the same number
1268   /// as the current ones.
1269   ///
1270   /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something
1271   /// gets constant-folded, the type changes, or the expression is otherwise
1272   /// canonicalized.  This parameter should almost always be \c false.
1273   Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1274                             bool OnlyIfReduced = false,
1275                             Type *SrcTy = nullptr) const;
1276 
1277   /// Returns an Instruction which implements the same operation as this
1278   /// ConstantExpr. If \p InsertBefore is not null, the new instruction is
1279   /// inserted before it, otherwise it is not inserted into any basic block.
1280   ///
1281   /// A better approach to this could be to have a constructor for Instruction
1282   /// which would take a ConstantExpr parameter, but that would have spread
1283   /// implementation details of ConstantExpr outside of Constants.cpp, which
1284   /// would make it harder to remove ConstantExprs altogether.
1285   Instruction *getAsInstruction(Instruction *InsertBefore = nullptr) const;
1286 
1287   /// Whether creating a constant expression for this binary operator is
1288   /// desirable.
1289   static bool isDesirableBinOp(unsigned Opcode);
1290 
1291   /// Whether creating a constant expression for this binary operator is
1292   /// supported.
1293   static bool isSupportedBinOp(unsigned Opcode);
1294 
1295   /// Whether creating a constant expression for this cast is desirable.
1296   static bool isDesirableCastOp(unsigned Opcode);
1297 
1298   /// Whether creating a constant expression for this cast is supported.
1299   static bool isSupportedCastOp(unsigned Opcode);
1300 
1301   /// Whether creating a constant expression for this getelementptr type is
1302   /// supported.
1303   static bool isSupportedGetElementPtr(const Type *SrcElemTy) {
1304     return !SrcElemTy->isScalableTy();
1305   }
1306 
1307   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1308   static bool classof(const Value *V) {
1309     return V->getValueID() == ConstantExprVal;
1310   }
1311 
1312 private:
1313   // Shadow Value::setValueSubclassData with a private forwarding method so that
1314   // subclasses cannot accidentally use it.
1315   void setValueSubclassData(unsigned short D) {
1316     Value::setValueSubclassData(D);
1317   }
1318 };
1319 
1320 template <>
1321 struct OperandTraits<ConstantExpr>
1322     : public VariadicOperandTraits<ConstantExpr, 1> {};
1323 
1324 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)
1325 
1326 //===----------------------------------------------------------------------===//
1327 /// 'undef' values are things that do not have specified contents.
1328 /// These are used for a variety of purposes, including global variable
1329 /// initializers and operands to instructions.  'undef' values can occur with
1330 /// any first-class type.
1331 ///
1332 /// Undef values aren't exactly constants; if they have multiple uses, they
1333 /// can appear to have different bit patterns at each use. See
1334 /// LangRef.html#undefvalues for details.
1335 ///
1336 class UndefValue : public ConstantData {
1337   friend class Constant;
1338 
1339   explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {}
1340 
1341   void destroyConstantImpl();
1342 
1343 protected:
1344   explicit UndefValue(Type *T, ValueTy vty) : ConstantData(T, vty) {}
1345 
1346 public:
1347   UndefValue(const UndefValue &) = delete;
1348 
1349   /// Static factory methods - Return an 'undef' object of the specified type.
1350   static UndefValue *get(Type *T);
1351 
1352   /// If this Undef has array or vector type, return a undef with the right
1353   /// element type.
1354   UndefValue *getSequentialElement() const;
1355 
1356   /// If this undef has struct type, return a undef with the right element type
1357   /// for the specified element.
1358   UndefValue *getStructElement(unsigned Elt) const;
1359 
1360   /// Return an undef of the right value for the specified GEP index if we can,
1361   /// otherwise return null (e.g. if C is a ConstantExpr).
1362   UndefValue *getElementValue(Constant *C) const;
1363 
1364   /// Return an undef of the right value for the specified GEP index.
1365   UndefValue *getElementValue(unsigned Idx) const;
1366 
1367   /// Return the number of elements in the array, vector, or struct.
1368   unsigned getNumElements() const;
1369 
1370   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1371   static bool classof(const Value *V) {
1372     return V->getValueID() == UndefValueVal ||
1373            V->getValueID() == PoisonValueVal;
1374   }
1375 };
1376 
1377 //===----------------------------------------------------------------------===//
1378 /// In order to facilitate speculative execution, many instructions do not
1379 /// invoke immediate undefined behavior when provided with illegal operands,
1380 /// and return a poison value instead.
1381 ///
1382 /// see LangRef.html#poisonvalues for details.
1383 ///
1384 class PoisonValue final : public UndefValue {
1385   friend class Constant;
1386 
1387   explicit PoisonValue(Type *T) : UndefValue(T, PoisonValueVal) {}
1388 
1389   void destroyConstantImpl();
1390 
1391 public:
1392   PoisonValue(const PoisonValue &) = delete;
1393 
1394   /// Static factory methods - Return an 'poison' object of the specified type.
1395   static PoisonValue *get(Type *T);
1396 
1397   /// If this poison has array or vector type, return a poison with the right
1398   /// element type.
1399   PoisonValue *getSequentialElement() const;
1400 
1401   /// If this poison has struct type, return a poison with the right element
1402   /// type for the specified element.
1403   PoisonValue *getStructElement(unsigned Elt) const;
1404 
1405   /// Return an poison of the right value for the specified GEP index if we can,
1406   /// otherwise return null (e.g. if C is a ConstantExpr).
1407   PoisonValue *getElementValue(Constant *C) const;
1408 
1409   /// Return an poison of the right value for the specified GEP index.
1410   PoisonValue *getElementValue(unsigned Idx) const;
1411 
1412   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1413   static bool classof(const Value *V) {
1414     return V->getValueID() == PoisonValueVal;
1415   }
1416 };
1417 
1418 } // end namespace llvm
1419 
1420 #endif // LLVM_IR_CONSTANTS_H
1421