1 //===- VFABIDemangler.h - Vector Function ABI demangler ------- -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the VFABI demangling utility.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_IR_VFABIDEMANGLER_H
14 #define LLVM_IR_VFABIDEMANGLER_H
15 
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/IR/DerivedTypes.h"
18 #include "llvm/IR/Instructions.h"
19 #include "llvm/Support/Alignment.h"
20 #include "llvm/Support/TypeSize.h"
21 
22 namespace llvm {
23 
24 /// Describes the type of Parameters
25 enum class VFParamKind {
26   Vector,            // No semantic information.
27   OMP_Linear,        // declare simd linear(i)
28   OMP_LinearRef,     // declare simd linear(ref(i))
29   OMP_LinearVal,     // declare simd linear(val(i))
30   OMP_LinearUVal,    // declare simd linear(uval(i))
31   OMP_LinearPos,     // declare simd linear(i:c) uniform(c)
32   OMP_LinearValPos,  // declare simd linear(val(i:c)) uniform(c)
33   OMP_LinearRefPos,  // declare simd linear(ref(i:c)) uniform(c)
34   OMP_LinearUValPos, // declare simd linear(uval(i:c)) uniform(c)
35   OMP_Uniform,       // declare simd uniform(i)
36   GlobalPredicate,   // Global logical predicate that acts on all lanes
37                      // of the input and output mask concurrently. For
38                      // example, it is implied by the `M` token in the
39                      // Vector Function ABI mangled name.
40   Unknown
41 };
42 
43 /// Describes the type of Instruction Set Architecture
44 enum class VFISAKind {
45   AdvancedSIMD, // AArch64 Advanced SIMD (NEON)
46   SVE,          // AArch64 Scalable Vector Extension
47   SSE,          // x86 SSE
48   AVX,          // x86 AVX
49   AVX2,         // x86 AVX2
50   AVX512,       // x86 AVX512
51   LLVM,         // LLVM internal ISA for functions that are not
52   // attached to an existing ABI via name mangling.
53   Unknown // Unknown ISA
54 };
55 
56 /// Encapsulates information needed to describe a parameter.
57 ///
58 /// The description of the parameter is not linked directly to
59 /// OpenMP or any other vector function description. This structure
60 /// is extendible to handle other paradigms that describe vector
61 /// functions and their parameters.
62 struct VFParameter {
63   unsigned ParamPos;         // Parameter Position in Scalar Function.
64   VFParamKind ParamKind;     // Kind of Parameter.
65   int LinearStepOrPos = 0;   // Step or Position of the Parameter.
66   Align Alignment = Align(); // Optional alignment in bytes, defaulted to 1.
67 
68   // Comparison operator.
69   bool operator==(const VFParameter &Other) const {
70     return std::tie(ParamPos, ParamKind, LinearStepOrPos, Alignment) ==
71            std::tie(Other.ParamPos, Other.ParamKind, Other.LinearStepOrPos,
72                     Other.Alignment);
73   }
74 };
75 
76 /// Contains the information about the kind of vectorization
77 /// available.
78 ///
79 /// This object in independent on the paradigm used to
80 /// represent vector functions. in particular, it is not attached to
81 /// any target-specific ABI.
82 struct VFShape {
83   ElementCount VF;                        // Vectorization factor.
84   SmallVector<VFParameter, 8> Parameters; // List of parameter information.
85   // Comparison operator.
86   bool operator==(const VFShape &Other) const {
87     return std::tie(VF, Parameters) == std::tie(Other.VF, Other.Parameters);
88   }
89 
90   /// Update the parameter in position P.ParamPos to P.
updateParamVFShape91   void updateParam(VFParameter P) {
92     assert(P.ParamPos < Parameters.size() && "Invalid parameter position.");
93     Parameters[P.ParamPos] = P;
94     assert(hasValidParameterList() && "Invalid parameter list");
95   }
96 
97   /// Retrieve the VFShape that can be used to map a scalar function to itself,
98   /// with VF = 1.
getScalarShapeVFShape99   static VFShape getScalarShape(const FunctionType *FTy) {
100     return VFShape::get(FTy, ElementCount::getFixed(1),
101                         /*HasGlobalPredicate*/ false);
102   }
103 
104   /// Retrieve the basic vectorization shape of the function, where all
105   /// parameters are mapped to VFParamKind::Vector with \p EC lanes. Specifies
106   /// whether the function has a Global Predicate argument via \p HasGlobalPred.
getVFShape107   static VFShape get(const FunctionType *FTy, ElementCount EC,
108                      bool HasGlobalPred) {
109     SmallVector<VFParameter, 8> Parameters;
110     for (unsigned I = 0; I < FTy->getNumParams(); ++I)
111       Parameters.push_back(VFParameter({I, VFParamKind::Vector}));
112     if (HasGlobalPred)
113       Parameters.push_back(
114           VFParameter({FTy->getNumParams(), VFParamKind::GlobalPredicate}));
115 
116     return {EC, Parameters};
117   }
118   /// Validation check on the Parameters in the VFShape.
119   bool hasValidParameterList() const;
120 };
121 
122 /// Holds the VFShape for a specific scalar to vector function mapping.
123 struct VFInfo {
124   VFShape Shape;          /// Classification of the vector function.
125   std::string ScalarName; /// Scalar Function Name.
126   std::string VectorName; /// Vector Function Name associated to this VFInfo.
127   VFISAKind ISA;          /// Instruction Set Architecture.
128 
129   /// Returns the index of the first parameter with the kind 'GlobalPredicate',
130   /// if any exist.
getParamIndexForOptionalMaskVFInfo131   std::optional<unsigned> getParamIndexForOptionalMask() const {
132     unsigned ParamCount = Shape.Parameters.size();
133     for (unsigned i = 0; i < ParamCount; ++i)
134       if (Shape.Parameters[i].ParamKind == VFParamKind::GlobalPredicate)
135         return i;
136 
137     return std::nullopt;
138   }
139 
140   /// Returns true if at least one of the operands to the vectorized function
141   /// has the kind 'GlobalPredicate'.
isMaskedVFInfo142   bool isMasked() const { return getParamIndexForOptionalMask().has_value(); }
143 };
144 
145 namespace VFABI {
146 /// LLVM Internal VFABI ISA token for vector functions.
147 static constexpr char const *_LLVM_ = "_LLVM_";
148 /// Prefix for internal name redirection for vector function that
149 /// tells the compiler to scalarize the call using the scalar name
150 /// of the function. For example, a mangled name like
151 /// `_ZGV_LLVM_N2v_foo(_LLVM_Scalarize_foo)` would tell the
152 /// vectorizer to vectorize the scalar call `foo`, and to scalarize
153 /// it once vectorization is done.
154 static constexpr char const *_LLVM_Scalarize_ = "_LLVM_Scalarize_";
155 
156 /// Function to construct a VFInfo out of a mangled names in the
157 /// following format:
158 ///
159 /// <VFABI_name>{(<redirection>)}
160 ///
161 /// where <VFABI_name> is the name of the vector function, mangled according
162 /// to the rules described in the Vector Function ABI of the target vector
163 /// extension (or <isa> from now on). The <VFABI_name> is in the following
164 /// format:
165 ///
166 /// _ZGV<isa><mask><vlen><parameters>_<scalarname>[(<redirection>)]
167 ///
168 /// This methods support demangling rules for the following <isa>:
169 ///
170 /// * AArch64: https://developer.arm.com/docs/101129/latest
171 ///
172 /// * x86 (libmvec): https://sourceware.org/glibc/wiki/libmvec and
173 ///  https://sourceware.org/glibc/wiki/libmvec?action=AttachFile&do=view&target=VectorABI.txt
174 ///
175 /// \param MangledName -> input string in the format
176 /// _ZGV<isa><mask><vlen><parameters>_<scalarname>[(<redirection>)].
177 /// \param FTy -> FunctionType of the scalar function which we're trying to find
178 /// a vectorized variant for. This is required to determine the vectorization
179 /// factor for scalable vectors, since the mangled name doesn't encode that;
180 /// it needs to be derived from the widest element types of vector arguments
181 /// or return values.
182 std::optional<VFInfo> tryDemangleForVFABI(StringRef MangledName,
183                                           const FunctionType *FTy);
184 
185 /// Retrieve the `VFParamKind` from a string token.
186 VFParamKind getVFParamKindFromString(const StringRef Token);
187 
188 // Name of the attribute where the variant mappings are stored.
189 static constexpr char const *MappingsAttrName = "vector-function-abi-variant";
190 
191 /// Populates a set of strings representing the Vector Function ABI variants
192 /// associated to the CallInst CI. If the CI does not contain the
193 /// vector-function-abi-variant attribute, we return without populating
194 /// VariantMappings, i.e. callers of getVectorVariantNames need not check for
195 /// the presence of the attribute (see InjectTLIMappings).
196 void getVectorVariantNames(const CallInst &CI,
197                            SmallVectorImpl<std::string> &VariantMappings);
198 
199 /// Constructs a FunctionType by applying vector function information to the
200 /// type of a matching scalar function.
201 /// \param Info gets the vectorization factor (VF) and the VFParamKind of the
202 /// parameters.
203 /// \param ScalarFTy gets the Type information of parameters, as it is not
204 /// stored in \p Info.
205 /// \returns a pointer to a newly created vector FunctionType
206 FunctionType *createFunctionType(const VFInfo &Info,
207                                  const FunctionType *ScalarFTy);
208 
209 /// Overwrite the Vector Function ABI variants attribute with the names provide
210 /// in \p VariantMappings.
211 void setVectorVariantNames(CallInst *CI, ArrayRef<std::string> VariantMappings);
212 
213 } // end namespace VFABI
214 
215 } // namespace llvm
216 
217 #endif // LLVM_IR_VFABIDEMANGLER_H
218