1 //===- llvm/MC/MCInstrAnalysis.h - InstrDesc target hooks -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the MCInstrAnalysis class which the MCTargetDescs can
10 // derive from to give additional information to MC.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_MC_MCINSTRANALYSIS_H
15 #define LLVM_MC_MCINSTRANALYSIS_H
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/MC/MCInst.h"
19 #include "llvm/MC/MCInstrDesc.h"
20 #include "llvm/MC/MCInstrInfo.h"
21 #include "llvm/MC/MCRegisterInfo.h"
22 #include <cstdint>
23 #include <vector>
24 
25 namespace llvm {
26 
27 class MCRegisterInfo;
28 class Triple;
29 
30 class MCInstrAnalysis {
31 protected:
32   friend class Target;
33 
34   const MCInstrInfo *Info;
35 
36 public:
MCInstrAnalysis(const MCInstrInfo * Info)37   MCInstrAnalysis(const MCInstrInfo *Info) : Info(Info) {}
38   virtual ~MCInstrAnalysis() = default;
39 
40   /// Clear the internal state. See updateState for more information.
resetState()41   virtual void resetState() {}
42 
43   /// Update internal state with \p Inst at \p Addr.
44   ///
45   /// For some types of analyses, inspecting a single instruction is not
46   /// sufficient. Some examples are auipc/jalr pairs on RISC-V or adrp/ldr pairs
47   /// on AArch64. To support inspecting multiple instructions, targets may keep
48   /// track of an internal state while analysing instructions. Clients should
49   /// call updateState for every instruction which allows later calls to one of
50   /// the analysis functions to take previous instructions into account.
51   /// Whenever state becomes irrelevant (e.g., when starting to disassemble a
52   /// new function), clients should call resetState to clear it.
updateState(const MCInst & Inst,uint64_t Addr)53   virtual void updateState(const MCInst &Inst, uint64_t Addr) {}
54 
isBranch(const MCInst & Inst)55   virtual bool isBranch(const MCInst &Inst) const {
56     return Info->get(Inst.getOpcode()).isBranch();
57   }
58 
isConditionalBranch(const MCInst & Inst)59   virtual bool isConditionalBranch(const MCInst &Inst) const {
60     return Info->get(Inst.getOpcode()).isConditionalBranch();
61   }
62 
isUnconditionalBranch(const MCInst & Inst)63   virtual bool isUnconditionalBranch(const MCInst &Inst) const {
64     return Info->get(Inst.getOpcode()).isUnconditionalBranch();
65   }
66 
isIndirectBranch(const MCInst & Inst)67   virtual bool isIndirectBranch(const MCInst &Inst) const {
68     return Info->get(Inst.getOpcode()).isIndirectBranch();
69   }
70 
isCall(const MCInst & Inst)71   virtual bool isCall(const MCInst &Inst) const {
72     return Info->get(Inst.getOpcode()).isCall();
73   }
74 
isReturn(const MCInst & Inst)75   virtual bool isReturn(const MCInst &Inst) const {
76     return Info->get(Inst.getOpcode()).isReturn();
77   }
78 
isTerminator(const MCInst & Inst)79   virtual bool isTerminator(const MCInst &Inst) const {
80     return Info->get(Inst.getOpcode()).isTerminator();
81   }
82 
mayAffectControlFlow(const MCInst & Inst,const MCRegisterInfo & MCRI)83   virtual bool mayAffectControlFlow(const MCInst &Inst,
84                                     const MCRegisterInfo &MCRI) const {
85     if (isBranch(Inst) || isCall(Inst) || isReturn(Inst) ||
86         isIndirectBranch(Inst))
87       return true;
88     unsigned PC = MCRI.getProgramCounter();
89     if (PC == 0)
90       return false;
91     return Info->get(Inst.getOpcode()).hasDefOfPhysReg(Inst, PC, MCRI);
92   }
93 
94   /// Returns true if at least one of the register writes performed by
95   /// \param Inst implicitly clears the upper portion of all super-registers.
96   ///
97   /// Example: on X86-64, a write to EAX implicitly clears the upper half of
98   /// RAX. Also (still on x86) an XMM write perfomed by an AVX 128-bit
99   /// instruction implicitly clears the upper portion of the correspondent
100   /// YMM register.
101   ///
102   /// This method also updates an APInt which is used as mask of register
103   /// writes. There is one bit for every explicit/implicit write performed by
104   /// the instruction. If a write implicitly clears its super-registers, then
105   /// the corresponding bit is set (vic. the corresponding bit is cleared).
106   ///
107   /// The first bits in the APint are related to explicit writes. The remaining
108   /// bits are related to implicit writes. The sequence of writes follows the
109   /// machine operand sequence. For implicit writes, the sequence is defined by
110   /// the MCInstrDesc.
111   ///
112   /// The assumption is that the bit-width of the APInt is correctly set by
113   /// the caller. The default implementation conservatively assumes that none of
114   /// the writes clears the upper portion of a super-register.
115   virtual bool clearsSuperRegisters(const MCRegisterInfo &MRI,
116                                     const MCInst &Inst,
117                                     APInt &Writes) const;
118 
119   /// Returns true if MI is a dependency breaking zero-idiom for the given
120   /// subtarget.
121   ///
122   /// Mask is used to identify input operands that have their dependency
123   /// broken. Each bit of the mask is associated with a specific input operand.
124   /// Bits associated with explicit input operands are laid out first in the
125   /// mask; implicit operands come after explicit operands.
126   ///
127   /// Dependencies are broken only for operands that have their corresponding bit
128   /// set. Operands that have their bit cleared, or that don't have a
129   /// corresponding bit in the mask don't have their dependency broken.  Note
130   /// that Mask may not be big enough to describe all operands.  The assumption
131   /// for operands that don't have a correspondent bit in the mask is that those
132   /// are still data dependent.
133   ///
134   /// The only exception to the rule is for when Mask has all zeroes.
135   /// A zero mask means: dependencies are broken for all explicit register
136   /// operands.
isZeroIdiom(const MCInst & MI,APInt & Mask,unsigned CPUID)137   virtual bool isZeroIdiom(const MCInst &MI, APInt &Mask,
138                            unsigned CPUID) const {
139     return false;
140   }
141 
142   /// Returns true if MI is a dependency breaking instruction for the
143   /// subtarget associated with CPUID .
144   ///
145   /// The value computed by a dependency breaking instruction is not dependent
146   /// on the inputs. An example of dependency breaking instruction on X86 is
147   /// `XOR %eax, %eax`.
148   ///
149   /// If MI is a dependency breaking instruction for subtarget CPUID, then Mask
150   /// can be inspected to identify independent operands.
151   ///
152   /// Essentially, each bit of the mask corresponds to an input operand.
153   /// Explicit operands are laid out first in the mask; implicit operands follow
154   /// explicit operands. Bits are set for operands that are independent.
155   ///
156   /// Note that the number of bits in Mask may not be equivalent to the sum of
157   /// explicit and implicit operands in MI. Operands that don't have a
158   /// corresponding bit in Mask are assumed "not independente".
159   ///
160   /// The only exception is for when Mask is all zeroes. That means: explicit
161   /// input operands of MI are independent.
isDependencyBreaking(const MCInst & MI,APInt & Mask,unsigned CPUID)162   virtual bool isDependencyBreaking(const MCInst &MI, APInt &Mask,
163                                     unsigned CPUID) const {
164     return isZeroIdiom(MI, Mask, CPUID);
165   }
166 
167   /// Returns true if MI is a candidate for move elimination.
168   ///
169   /// Different subtargets may apply different constraints to optimizable
170   /// register moves. For example, on most X86 subtargets, a candidate for move
171   /// elimination cannot specify the same register for both source and
172   /// destination.
isOptimizableRegisterMove(const MCInst & MI,unsigned CPUID)173   virtual bool isOptimizableRegisterMove(const MCInst &MI,
174                                          unsigned CPUID) const {
175     return false;
176   }
177 
178   /// Given a branch instruction try to get the address the branch
179   /// targets. Return true on success, and the address in Target.
180   virtual bool
181   evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size,
182                  uint64_t &Target) const;
183 
184   /// Given an instruction tries to get the address of a memory operand. Returns
185   /// the address on success.
186   virtual std::optional<uint64_t>
187   evaluateMemoryOperandAddress(const MCInst &Inst, const MCSubtargetInfo *STI,
188                                uint64_t Addr, uint64_t Size) const;
189 
190   /// Given an instruction with a memory operand that could require relocation,
191   /// returns the offset within the instruction of that relocation.
192   virtual std::optional<uint64_t>
193   getMemoryOperandRelocationOffset(const MCInst &Inst, uint64_t Size) const;
194 
195   /// Returns (PLT virtual address, GOT virtual address) pairs for PLT entries.
196   virtual std::vector<std::pair<uint64_t, uint64_t>>
findPltEntries(uint64_t PltSectionVA,ArrayRef<uint8_t> PltContents,const Triple & TargetTriple)197   findPltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
198                  const Triple &TargetTriple) const {
199     return {};
200   }
201 };
202 
203 } // end namespace llvm
204 
205 #endif // LLVM_MC_MCINSTRANALYSIS_H
206