1 //===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the isa<X>(), cast<X>(), dyn_cast<X>(), 10 // cast_if_present<X>(), and dyn_cast_if_present<X>() templates. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_SUPPORT_CASTING_H 15 #define LLVM_SUPPORT_CASTING_H 16 17 #include "llvm/Support/Compiler.h" 18 #include "llvm/Support/type_traits.h" 19 #include <cassert> 20 #include <memory> 21 #include <optional> 22 #include <type_traits> 23 24 namespace llvm { 25 26 //===----------------------------------------------------------------------===// 27 // simplify_type 28 //===----------------------------------------------------------------------===// 29 30 /// Define a template that can be specialized by smart pointers to reflect the 31 /// fact that they are automatically dereferenced, and are not involved with the 32 /// template selection process... the default implementation is a noop. 33 // TODO: rename this and/or replace it with other cast traits. 34 template <typename From> struct simplify_type { 35 using SimpleType = From; // The real type this represents... 36 37 // An accessor to get the real value... getSimplifiedValuesimplify_type38 static SimpleType &getSimplifiedValue(From &Val) { return Val; } 39 }; 40 41 template <typename From> struct simplify_type<const From> { 42 using NonConstSimpleType = typename simplify_type<From>::SimpleType; 43 using SimpleType = typename add_const_past_pointer<NonConstSimpleType>::type; 44 using RetType = 45 typename add_lvalue_reference_if_not_pointer<SimpleType>::type; 46 47 static RetType getSimplifiedValue(const From &Val) { 48 return simplify_type<From>::getSimplifiedValue(const_cast<From &>(Val)); 49 } 50 }; 51 52 // TODO: add this namespace once everyone is switched to using the new 53 // interface. 54 // namespace detail { 55 56 //===----------------------------------------------------------------------===// 57 // isa_impl 58 //===----------------------------------------------------------------------===// 59 60 // The core of the implementation of isa<X> is here; To and From should be 61 // the names of classes. This template can be specialized to customize the 62 // implementation of isa<> without rewriting it from scratch. 63 template <typename To, typename From, typename Enabler = void> struct isa_impl { 64 static inline bool doit(const From &Val) { return To::classof(&Val); } 65 }; 66 67 // Always allow upcasts, and perform no dynamic check for them. 68 template <typename To, typename From> 69 struct isa_impl<To, From, std::enable_if_t<std::is_base_of<To, From>::value>> { 70 static inline bool doit(const From &) { return true; } 71 }; 72 73 template <typename To, typename From> struct isa_impl_cl { 74 static inline bool doit(const From &Val) { 75 return isa_impl<To, From>::doit(Val); 76 } 77 }; 78 79 template <typename To, typename From> struct isa_impl_cl<To, const From> { 80 static inline bool doit(const From &Val) { 81 return isa_impl<To, From>::doit(Val); 82 } 83 }; 84 85 template <typename To, typename From> 86 struct isa_impl_cl<To, const std::unique_ptr<From>> { 87 static inline bool doit(const std::unique_ptr<From> &Val) { 88 assert(Val && "isa<> used on a null pointer"); 89 return isa_impl_cl<To, From>::doit(*Val); 90 } 91 }; 92 93 template <typename To, typename From> struct isa_impl_cl<To, From *> { 94 static inline bool doit(const From *Val) { 95 assert(Val && "isa<> used on a null pointer"); 96 return isa_impl<To, From>::doit(*Val); 97 } 98 }; 99 100 template <typename To, typename From> struct isa_impl_cl<To, From *const> { 101 static inline bool doit(const From *Val) { 102 assert(Val && "isa<> used on a null pointer"); 103 return isa_impl<To, From>::doit(*Val); 104 } 105 }; 106 107 template <typename To, typename From> struct isa_impl_cl<To, const From *> { 108 static inline bool doit(const From *Val) { 109 assert(Val && "isa<> used on a null pointer"); 110 return isa_impl<To, From>::doit(*Val); 111 } 112 }; 113 114 template <typename To, typename From> 115 struct isa_impl_cl<To, const From *const> { 116 static inline bool doit(const From *Val) { 117 assert(Val && "isa<> used on a null pointer"); 118 return isa_impl<To, From>::doit(*Val); 119 } 120 }; 121 122 template <typename To, typename From, typename SimpleFrom> 123 struct isa_impl_wrap { 124 // When From != SimplifiedType, we can simplify the type some more by using 125 // the simplify_type template. 126 static bool doit(const From &Val) { 127 return isa_impl_wrap<To, SimpleFrom, 128 typename simplify_type<SimpleFrom>::SimpleType>:: 129 doit(simplify_type<const From>::getSimplifiedValue(Val)); 130 } 131 }; 132 133 template <typename To, typename FromTy> 134 struct isa_impl_wrap<To, FromTy, FromTy> { 135 // When From == SimpleType, we are as simple as we are going to get. 136 static bool doit(const FromTy &Val) { 137 return isa_impl_cl<To, FromTy>::doit(Val); 138 } 139 }; 140 141 //===----------------------------------------------------------------------===// 142 // cast_retty + cast_retty_impl 143 //===----------------------------------------------------------------------===// 144 145 template <class To, class From> struct cast_retty; 146 147 // Calculate what type the 'cast' function should return, based on a requested 148 // type of To and a source type of From. 149 template <class To, class From> struct cast_retty_impl { 150 using ret_type = To &; // Normal case, return Ty& 151 }; 152 template <class To, class From> struct cast_retty_impl<To, const From> { 153 using ret_type = const To &; // Normal case, return Ty& 154 }; 155 156 template <class To, class From> struct cast_retty_impl<To, From *> { 157 using ret_type = To *; // Pointer arg case, return Ty* 158 }; 159 160 template <class To, class From> struct cast_retty_impl<To, const From *> { 161 using ret_type = const To *; // Constant pointer arg case, return const Ty* 162 }; 163 164 template <class To, class From> struct cast_retty_impl<To, const From *const> { 165 using ret_type = const To *; // Constant pointer arg case, return const Ty* 166 }; 167 168 template <class To, class From> 169 struct cast_retty_impl<To, std::unique_ptr<From>> { 170 private: 171 using PointerType = typename cast_retty_impl<To, From *>::ret_type; 172 using ResultType = std::remove_pointer_t<PointerType>; 173 174 public: 175 using ret_type = std::unique_ptr<ResultType>; 176 }; 177 178 template <class To, class From, class SimpleFrom> struct cast_retty_wrap { 179 // When the simplified type and the from type are not the same, use the type 180 // simplifier to reduce the type, then reuse cast_retty_impl to get the 181 // resultant type. 182 using ret_type = typename cast_retty<To, SimpleFrom>::ret_type; 183 }; 184 185 template <class To, class FromTy> struct cast_retty_wrap<To, FromTy, FromTy> { 186 // When the simplified type is equal to the from type, use it directly. 187 using ret_type = typename cast_retty_impl<To, FromTy>::ret_type; 188 }; 189 190 template <class To, class From> struct cast_retty { 191 using ret_type = typename cast_retty_wrap< 192 To, From, typename simplify_type<From>::SimpleType>::ret_type; 193 }; 194 195 //===----------------------------------------------------------------------===// 196 // cast_convert_val 197 //===----------------------------------------------------------------------===// 198 199 // Ensure the non-simple values are converted using the simplify_type template 200 // that may be specialized by smart pointers... 201 // 202 template <class To, class From, class SimpleFrom> struct cast_convert_val { 203 // This is not a simple type, use the template to simplify it... 204 static typename cast_retty<To, From>::ret_type doit(const From &Val) { 205 return cast_convert_val<To, SimpleFrom, 206 typename simplify_type<SimpleFrom>::SimpleType>:: 207 doit(simplify_type<From>::getSimplifiedValue(const_cast<From &>(Val))); 208 } 209 }; 210 211 template <class To, class FromTy> struct cast_convert_val<To, FromTy, FromTy> { 212 // If it's a reference, switch to a pointer to do the cast and then deref it. 213 static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) { 214 return *(std::remove_reference_t<typename cast_retty<To, FromTy>::ret_type> 215 *)&const_cast<FromTy &>(Val); 216 } 217 }; 218 219 template <class To, class FromTy> 220 struct cast_convert_val<To, FromTy *, FromTy *> { 221 // If it's a pointer, we can use c-style casting directly. 222 static typename cast_retty<To, FromTy *>::ret_type doit(const FromTy *Val) { 223 return (typename cast_retty<To, FromTy *>::ret_type) const_cast<FromTy *>( 224 Val); 225 } 226 }; 227 228 //===----------------------------------------------------------------------===// 229 // is_simple_type 230 //===----------------------------------------------------------------------===// 231 232 template <class X> struct is_simple_type { 233 static const bool value = 234 std::is_same<X, typename simplify_type<X>::SimpleType>::value; 235 }; 236 237 // } // namespace detail 238 239 //===----------------------------------------------------------------------===// 240 // CastIsPossible 241 //===----------------------------------------------------------------------===// 242 243 /// This struct provides a way to check if a given cast is possible. It provides 244 /// a static function called isPossible that is used to check if a cast can be 245 /// performed. It should be overridden like this: 246 /// 247 /// template<> struct CastIsPossible<foo, bar> { 248 /// static inline bool isPossible(const bar &b) { 249 /// return bar.isFoo(); 250 /// } 251 /// }; 252 template <typename To, typename From, typename Enable = void> 253 struct CastIsPossible { 254 static inline bool isPossible(const From &f) { 255 return isa_impl_wrap< 256 To, const From, 257 typename simplify_type<const From>::SimpleType>::doit(f); 258 } 259 }; 260 261 // Needed for optional unwrapping. This could be implemented with isa_impl, but 262 // we want to implement things in the new method and move old implementations 263 // over. In fact, some of the isa_impl templates should be moved over to 264 // CastIsPossible. 265 template <typename To, typename From> 266 struct CastIsPossible<To, std::optional<From>> { 267 static inline bool isPossible(const std::optional<From> &f) { 268 assert(f && "CastIsPossible::isPossible called on a nullopt!"); 269 return isa_impl_wrap< 270 To, const From, 271 typename simplify_type<const From>::SimpleType>::doit(*f); 272 } 273 }; 274 275 /// Upcasting (from derived to base) and casting from a type to itself should 276 /// always be possible. 277 template <typename To, typename From> 278 struct CastIsPossible<To, From, 279 std::enable_if_t<std::is_base_of<To, From>::value>> { 280 static inline bool isPossible(const From &f) { return true; } 281 }; 282 283 //===----------------------------------------------------------------------===// 284 // Cast traits 285 //===----------------------------------------------------------------------===// 286 287 /// All of these cast traits are meant to be implementations for useful casts 288 /// that users may want to use that are outside the standard behavior. An 289 /// example of how to use a special cast called `CastTrait` is: 290 /// 291 /// template<> struct CastInfo<foo, bar> : public CastTrait<foo, bar> {}; 292 /// 293 /// Essentially, if your use case falls directly into one of the use cases 294 /// supported by a given cast trait, simply inherit your special CastInfo 295 /// directly from one of these to avoid having to reimplement the boilerplate 296 /// `isPossible/castFailed/doCast/doCastIfPossible`. A cast trait can also 297 /// provide a subset of those functions. 298 299 /// This cast trait just provides castFailed for the specified `To` type to make 300 /// CastInfo specializations more declarative. In order to use this, the target 301 /// result type must be `To` and `To` must be constructible from `nullptr`. 302 template <typename To> struct NullableValueCastFailed { 303 static To castFailed() { return To(nullptr); } 304 }; 305 306 /// This cast trait just provides the default implementation of doCastIfPossible 307 /// to make CastInfo specializations more declarative. The `Derived` template 308 /// parameter *must* be provided for forwarding castFailed and doCast. 309 template <typename To, typename From, typename Derived> 310 struct DefaultDoCastIfPossible { 311 static To doCastIfPossible(From f) { 312 if (!Derived::isPossible(f)) 313 return Derived::castFailed(); 314 return Derived::doCast(f); 315 } 316 }; 317 318 namespace detail { 319 /// A helper to derive the type to use with `Self` for cast traits, when the 320 /// provided CRTP derived type is allowed to be void. 321 template <typename OptionalDerived, typename Default> 322 using SelfType = std::conditional_t<std::is_same<OptionalDerived, void>::value, 323 Default, OptionalDerived>; 324 } // namespace detail 325 326 /// This cast trait provides casting for the specific case of casting to a 327 /// value-typed object from a pointer-typed object. Note that `To` must be 328 /// nullable/constructible from a pointer to `From` to use this cast. 329 template <typename To, typename From, typename Derived = void> 330 struct ValueFromPointerCast 331 : public CastIsPossible<To, From *>, 332 public NullableValueCastFailed<To>, 333 public DefaultDoCastIfPossible< 334 To, From *, 335 detail::SelfType<Derived, ValueFromPointerCast<To, From>>> { 336 static inline To doCast(From *f) { return To(f); } 337 }; 338 339 /// This cast trait provides std::unique_ptr casting. It has the semantics of 340 /// moving the contents of the input unique_ptr into the output unique_ptr 341 /// during the cast. It's also a good example of how to implement a move-only 342 /// cast. 343 template <typename To, typename From, typename Derived = void> 344 struct UniquePtrCast : public CastIsPossible<To, From *> { 345 using Self = detail::SelfType<Derived, UniquePtrCast<To, From>>; 346 using CastResultType = std::unique_ptr< 347 std::remove_reference_t<typename cast_retty<To, From>::ret_type>>; 348 349 static inline CastResultType doCast(std::unique_ptr<From> &&f) { 350 return CastResultType((typename CastResultType::element_type *)f.release()); 351 } 352 353 static inline CastResultType castFailed() { return CastResultType(nullptr); } 354 355 static inline CastResultType doCastIfPossible(std::unique_ptr<From> &&f) { 356 if (!Self::isPossible(f)) 357 return castFailed(); 358 return doCast(f); 359 } 360 }; 361 362 /// This cast trait provides std::optional<T> casting. This means that if you 363 /// have a value type, you can cast it to another value type and have dyn_cast 364 /// return an std::optional<T>. 365 template <typename To, typename From, typename Derived = void> 366 struct OptionalValueCast 367 : public CastIsPossible<To, From>, 368 public DefaultDoCastIfPossible< 369 std::optional<To>, From, 370 detail::SelfType<Derived, OptionalValueCast<To, From>>> { 371 static inline std::optional<To> castFailed() { return std::optional<To>{}; } 372 373 static inline std::optional<To> doCast(const From &f) { return To(f); } 374 }; 375 376 /// Provides a cast trait that strips `const` from types to make it easier to 377 /// implement a const-version of a non-const cast. It just removes boilerplate 378 /// and reduces the amount of code you as the user need to implement. You can 379 /// use it like this: 380 /// 381 /// template<> struct CastInfo<foo, bar> { 382 /// ...verbose implementation... 383 /// }; 384 /// 385 /// template<> struct CastInfo<foo, const bar> : public 386 /// ConstStrippingForwardingCast<foo, const bar, CastInfo<foo, bar>> {}; 387 /// 388 template <typename To, typename From, typename ForwardTo> 389 struct ConstStrippingForwardingCast { 390 // Remove the pointer if it exists, then we can get rid of consts/volatiles. 391 using DecayedFrom = std::remove_cv_t<std::remove_pointer_t<From>>; 392 // Now if it's a pointer, add it back. Otherwise, we want a ref. 393 using NonConstFrom = std::conditional_t<std::is_pointer<From>::value, 394 DecayedFrom *, DecayedFrom &>; 395 396 static inline bool isPossible(const From &f) { 397 return ForwardTo::isPossible(const_cast<NonConstFrom>(f)); 398 } 399 400 static inline decltype(auto) castFailed() { return ForwardTo::castFailed(); } 401 402 static inline decltype(auto) doCast(const From &f) { 403 return ForwardTo::doCast(const_cast<NonConstFrom>(f)); 404 } 405 406 static inline decltype(auto) doCastIfPossible(const From &f) { 407 return ForwardTo::doCastIfPossible(const_cast<NonConstFrom>(f)); 408 } 409 }; 410 411 /// Provides a cast trait that uses a defined pointer to pointer cast as a base 412 /// for reference-to-reference casts. Note that it does not provide castFailed 413 /// and doCastIfPossible because a pointer-to-pointer cast would likely just 414 /// return `nullptr` which could cause nullptr dereference. You can use it like 415 /// this: 416 /// 417 /// template <> struct CastInfo<foo, bar *> { ... verbose implementation... }; 418 /// 419 /// template <> 420 /// struct CastInfo<foo, bar> 421 /// : public ForwardToPointerCast<foo, bar, CastInfo<foo, bar *>> {}; 422 /// 423 template <typename To, typename From, typename ForwardTo> 424 struct ForwardToPointerCast { 425 static inline bool isPossible(const From &f) { 426 return ForwardTo::isPossible(&f); 427 } 428 429 static inline decltype(auto) doCast(const From &f) { 430 return *ForwardTo::doCast(&f); 431 } 432 }; 433 434 //===----------------------------------------------------------------------===// 435 // CastInfo 436 //===----------------------------------------------------------------------===// 437 438 /// This struct provides a method for customizing the way a cast is performed. 439 /// It inherits from CastIsPossible, to support the case of declaring many 440 /// CastIsPossible specializations without having to specialize the full 441 /// CastInfo. 442 /// 443 /// In order to specialize different behaviors, specify different functions in 444 /// your CastInfo specialization. 445 /// For isa<> customization, provide: 446 /// 447 /// `static bool isPossible(const From &f)` 448 /// 449 /// For cast<> customization, provide: 450 /// 451 /// `static To doCast(const From &f)` 452 /// 453 /// For dyn_cast<> and the *_if_present<> variants' customization, provide: 454 /// 455 /// `static To castFailed()` and `static To doCastIfPossible(const From &f)` 456 /// 457 /// Your specialization might look something like this: 458 /// 459 /// template<> struct CastInfo<foo, bar> : public CastIsPossible<foo, bar> { 460 /// static inline foo doCast(const bar &b) { 461 /// return foo(const_cast<bar &>(b)); 462 /// } 463 /// static inline foo castFailed() { return foo(); } 464 /// static inline foo doCastIfPossible(const bar &b) { 465 /// if (!CastInfo<foo, bar>::isPossible(b)) 466 /// return castFailed(); 467 /// return doCast(b); 468 /// } 469 /// }; 470 471 // The default implementations of CastInfo don't use cast traits for now because 472 // we need to specify types all over the place due to the current expected 473 // casting behavior and the way cast_retty works. New use cases can and should 474 // take advantage of the cast traits whenever possible! 475 476 template <typename To, typename From, typename Enable = void> 477 struct CastInfo : public CastIsPossible<To, From> { 478 using Self = CastInfo<To, From, Enable>; 479 480 using CastReturnType = typename cast_retty<To, From>::ret_type; 481 482 static inline CastReturnType doCast(const From &f) { 483 return cast_convert_val< 484 To, From, 485 typename simplify_type<From>::SimpleType>::doit(const_cast<From &>(f)); 486 } 487 488 // This assumes that you can construct the cast return type from `nullptr`. 489 // This is largely to support legacy use cases - if you don't want this 490 // behavior you should specialize CastInfo for your use case. 491 static inline CastReturnType castFailed() { return CastReturnType(nullptr); } 492 493 static inline CastReturnType doCastIfPossible(const From &f) { 494 if (!Self::isPossible(f)) 495 return castFailed(); 496 return doCast(f); 497 } 498 }; 499 500 /// This struct provides an overload for CastInfo where From has simplify_type 501 /// defined. This simply forwards to the appropriate CastInfo with the 502 /// simplified type/value, so you don't have to implement both. 503 template <typename To, typename From> 504 struct CastInfo<To, From, std::enable_if_t<!is_simple_type<From>::value>> { 505 using Self = CastInfo<To, From>; 506 using SimpleFrom = typename simplify_type<From>::SimpleType; 507 using SimplifiedSelf = CastInfo<To, SimpleFrom>; 508 509 static inline bool isPossible(From &f) { 510 return SimplifiedSelf::isPossible( 511 simplify_type<From>::getSimplifiedValue(f)); 512 } 513 514 static inline decltype(auto) doCast(From &f) { 515 return SimplifiedSelf::doCast(simplify_type<From>::getSimplifiedValue(f)); 516 } 517 518 static inline decltype(auto) castFailed() { 519 return SimplifiedSelf::castFailed(); 520 } 521 522 static inline decltype(auto) doCastIfPossible(From &f) { 523 return SimplifiedSelf::doCastIfPossible( 524 simplify_type<From>::getSimplifiedValue(f)); 525 } 526 }; 527 528 //===----------------------------------------------------------------------===// 529 // Pre-specialized CastInfo 530 //===----------------------------------------------------------------------===// 531 532 /// Provide a CastInfo specialized for std::unique_ptr. 533 template <typename To, typename From> 534 struct CastInfo<To, std::unique_ptr<From>> : public UniquePtrCast<To, From> {}; 535 536 /// Provide a CastInfo specialized for std::optional<From>. It's assumed that if 537 /// the input is std::optional<From> that the output can be std::optional<To>. 538 /// If that's not the case, specialize CastInfo for your use case. 539 template <typename To, typename From> 540 struct CastInfo<To, std::optional<From>> : public OptionalValueCast<To, From> { 541 }; 542 543 /// isa<X> - Return true if the parameter to the template is an instance of one 544 /// of the template type arguments. Used like this: 545 /// 546 /// if (isa<Type>(myVal)) { ... } 547 /// if (isa<Type0, Type1, Type2>(myVal)) { ... } 548 template <typename To, typename From> 549 [[nodiscard]] inline bool isa(const From &Val) { 550 return CastInfo<To, const From>::isPossible(Val); 551 } 552 553 template <typename First, typename Second, typename... Rest, typename From> 554 [[nodiscard]] inline bool isa(const From &Val) { 555 return isa<First>(Val) || isa<Second, Rest...>(Val); 556 } 557 558 /// cast<X> - Return the argument parameter cast to the specified type. This 559 /// casting operator asserts that the type is correct, so it does not return 560 /// null on failure. It does not allow a null argument (use cast_if_present for 561 /// that). It is typically used like this: 562 /// 563 /// cast<Instruction>(myVal)->getParent() 564 565 template <typename To, typename From> 566 [[nodiscard]] inline decltype(auto) cast(const From &Val) { 567 assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!"); 568 return CastInfo<To, const From>::doCast(Val); 569 } 570 571 template <typename To, typename From> 572 [[nodiscard]] inline decltype(auto) cast(From &Val) { 573 assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!"); 574 return CastInfo<To, From>::doCast(Val); 575 } 576 577 template <typename To, typename From> 578 [[nodiscard]] inline decltype(auto) cast(From *Val) { 579 assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!"); 580 return CastInfo<To, From *>::doCast(Val); 581 } 582 583 template <typename To, typename From> 584 [[nodiscard]] inline decltype(auto) cast(std::unique_ptr<From> &&Val) { 585 assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!"); 586 return CastInfo<To, std::unique_ptr<From>>::doCast(std::move(Val)); 587 } 588 589 //===----------------------------------------------------------------------===// 590 // ValueIsPresent 591 //===----------------------------------------------------------------------===// 592 593 template <typename T> 594 constexpr bool IsNullable = 595 std::is_pointer_v<T> || std::is_constructible_v<T, std::nullptr_t>; 596 597 /// ValueIsPresent provides a way to check if a value is, well, present. For 598 /// pointers, this is the equivalent of checking against nullptr, for Optionals 599 /// this is the equivalent of checking hasValue(). It also provides a method for 600 /// unwrapping a value (think calling .value() on an optional). 601 602 // Generic values can't *not* be present. 603 template <typename T, typename Enable = void> struct ValueIsPresent { 604 using UnwrappedType = T; 605 static inline bool isPresent(const T &t) { return true; } 606 static inline decltype(auto) unwrapValue(T &t) { return t; } 607 }; 608 609 // Optional provides its own way to check if something is present. 610 template <typename T> struct ValueIsPresent<std::optional<T>> { 611 using UnwrappedType = T; 612 static inline bool isPresent(const std::optional<T> &t) { 613 return t.has_value(); 614 } 615 static inline decltype(auto) unwrapValue(std::optional<T> &t) { return *t; } 616 }; 617 618 // If something is "nullable" then we just compare it to nullptr to see if it 619 // exists. 620 template <typename T> 621 struct ValueIsPresent<T, std::enable_if_t<IsNullable<T>>> { 622 using UnwrappedType = T; 623 static inline bool isPresent(const T &t) { return t != T(nullptr); } 624 static inline decltype(auto) unwrapValue(T &t) { return t; } 625 }; 626 627 namespace detail { 628 // Convenience function we can use to check if a value is present. Because of 629 // simplify_type, we have to call it on the simplified type for now. 630 template <typename T> inline bool isPresent(const T &t) { 631 return ValueIsPresent<typename simplify_type<T>::SimpleType>::isPresent( 632 simplify_type<T>::getSimplifiedValue(const_cast<T &>(t))); 633 } 634 635 // Convenience function we can use to unwrap a value. 636 template <typename T> inline decltype(auto) unwrapValue(T &t) { 637 return ValueIsPresent<T>::unwrapValue(t); 638 } 639 } // namespace detail 640 641 /// dyn_cast<X> - Return the argument parameter cast to the specified type. This 642 /// casting operator returns null if the argument is of the wrong type, so it 643 /// can be used to test for a type as well as cast if successful. The value 644 /// passed in must be present, if not, use dyn_cast_if_present. This should be 645 /// used in the context of an if statement like this: 646 /// 647 /// if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... } 648 649 template <typename To, typename From> 650 [[nodiscard]] inline decltype(auto) dyn_cast(const From &Val) { 651 assert(detail::isPresent(Val) && "dyn_cast on a non-existent value"); 652 return CastInfo<To, const From>::doCastIfPossible(Val); 653 } 654 655 template <typename To, typename From> 656 [[nodiscard]] inline decltype(auto) dyn_cast(From &Val) { 657 assert(detail::isPresent(Val) && "dyn_cast on a non-existent value"); 658 return CastInfo<To, From>::doCastIfPossible(Val); 659 } 660 661 template <typename To, typename From> 662 [[nodiscard]] inline decltype(auto) dyn_cast(From *Val) { 663 assert(detail::isPresent(Val) && "dyn_cast on a non-existent value"); 664 return CastInfo<To, From *>::doCastIfPossible(Val); 665 } 666 667 template <typename To, typename From> 668 [[nodiscard]] inline decltype(auto) dyn_cast(std::unique_ptr<From> &&Val) { 669 assert(detail::isPresent(Val) && "dyn_cast on a non-existent value"); 670 return CastInfo<To, std::unique_ptr<From>>::doCastIfPossible( 671 std::forward<std::unique_ptr<From> &&>(Val)); 672 } 673 674 /// isa_and_present<X> - Functionally identical to isa, except that a null value 675 /// is accepted. 676 template <typename... X, class Y> 677 [[nodiscard]] inline bool isa_and_present(const Y &Val) { 678 if (!detail::isPresent(Val)) 679 return false; 680 return isa<X...>(Val); 681 } 682 683 template <typename... X, class Y> 684 [[nodiscard]] inline bool isa_and_nonnull(const Y &Val) { 685 return isa_and_present<X...>(Val); 686 } 687 688 /// cast_if_present<X> - Functionally identical to cast, except that a null 689 /// value is accepted. 690 template <class X, class Y> 691 [[nodiscard]] inline auto cast_if_present(const Y &Val) { 692 if (!detail::isPresent(Val)) 693 return CastInfo<X, const Y>::castFailed(); 694 assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!"); 695 return cast<X>(detail::unwrapValue(Val)); 696 } 697 698 template <class X, class Y> [[nodiscard]] inline auto cast_if_present(Y &Val) { 699 if (!detail::isPresent(Val)) 700 return CastInfo<X, Y>::castFailed(); 701 assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!"); 702 return cast<X>(detail::unwrapValue(Val)); 703 } 704 705 template <class X, class Y> [[nodiscard]] inline auto cast_if_present(Y *Val) { 706 if (!detail::isPresent(Val)) 707 return CastInfo<X, Y *>::castFailed(); 708 assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!"); 709 return cast<X>(detail::unwrapValue(Val)); 710 } 711 712 template <class X, class Y> 713 [[nodiscard]] inline auto cast_if_present(std::unique_ptr<Y> &&Val) { 714 if (!detail::isPresent(Val)) 715 return UniquePtrCast<X, Y>::castFailed(); 716 return UniquePtrCast<X, Y>::doCast(std::move(Val)); 717 } 718 719 // Provide a forwarding from cast_or_null to cast_if_present for current 720 // users. This is deprecated and will be removed in a future patch, use 721 // cast_if_present instead. 722 template <class X, class Y> auto cast_or_null(const Y &Val) { 723 return cast_if_present<X>(Val); 724 } 725 726 template <class X, class Y> auto cast_or_null(Y &Val) { 727 return cast_if_present<X>(Val); 728 } 729 730 template <class X, class Y> auto cast_or_null(Y *Val) { 731 return cast_if_present<X>(Val); 732 } 733 734 template <class X, class Y> auto cast_or_null(std::unique_ptr<Y> &&Val) { 735 return cast_if_present<X>(std::move(Val)); 736 } 737 738 /// dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a 739 /// null (or none in the case of optionals) value is accepted. 740 template <class X, class Y> auto dyn_cast_if_present(const Y &Val) { 741 if (!detail::isPresent(Val)) 742 return CastInfo<X, const Y>::castFailed(); 743 return CastInfo<X, const Y>::doCastIfPossible(detail::unwrapValue(Val)); 744 } 745 746 template <class X, class Y> auto dyn_cast_if_present(Y &Val) { 747 if (!detail::isPresent(Val)) 748 return CastInfo<X, Y>::castFailed(); 749 return CastInfo<X, Y>::doCastIfPossible(detail::unwrapValue(Val)); 750 } 751 752 template <class X, class Y> auto dyn_cast_if_present(Y *Val) { 753 if (!detail::isPresent(Val)) 754 return CastInfo<X, Y *>::castFailed(); 755 return CastInfo<X, Y *>::doCastIfPossible(detail::unwrapValue(Val)); 756 } 757 758 // Forwards to dyn_cast_if_present to avoid breaking current users. This is 759 // deprecated and will be removed in a future patch, use 760 // cast_if_present instead. 761 template <class X, class Y> auto dyn_cast_or_null(const Y &Val) { 762 return dyn_cast_if_present<X>(Val); 763 } 764 765 template <class X, class Y> auto dyn_cast_or_null(Y &Val) { 766 return dyn_cast_if_present<X>(Val); 767 } 768 769 template <class X, class Y> auto dyn_cast_or_null(Y *Val) { 770 return dyn_cast_if_present<X>(Val); 771 } 772 773 /// unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>, 774 /// taking ownership of the input pointer iff isa<X>(Val) is true. If the 775 /// cast is successful, From refers to nullptr on exit and the casted value 776 /// is returned. If the cast is unsuccessful, the function returns nullptr 777 /// and From is unchanged. 778 template <class X, class Y> 779 [[nodiscard]] inline typename CastInfo<X, std::unique_ptr<Y>>::CastResultType 780 unique_dyn_cast(std::unique_ptr<Y> &Val) { 781 if (!isa<X>(Val)) 782 return nullptr; 783 return cast<X>(std::move(Val)); 784 } 785 786 template <class X, class Y> 787 [[nodiscard]] inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val) { 788 return unique_dyn_cast<X, Y>(Val); 789 } 790 791 // unique_dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast, 792 // except that a null value is accepted. 793 template <class X, class Y> 794 [[nodiscard]] inline typename CastInfo<X, std::unique_ptr<Y>>::CastResultType 795 unique_dyn_cast_or_null(std::unique_ptr<Y> &Val) { 796 if (!Val) 797 return nullptr; 798 return unique_dyn_cast<X, Y>(Val); 799 } 800 801 template <class X, class Y> 802 [[nodiscard]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val) { 803 return unique_dyn_cast_or_null<X, Y>(Val); 804 } 805 806 } // end namespace llvm 807 808 #endif // LLVM_SUPPORT_CASTING_H 809