xref: /openbsd/sys/dev/ic/lm78.c (revision d095f713)
1 /*	$OpenBSD: lm78.c,v 1.26 2022/04/08 15:02:28 naddy Exp $	*/
2 
3 /*
4  * Copyright (c) 2005, 2006 Mark Kettenis
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 #include <sys/param.h>
20 #include <sys/systm.h>
21 #include <sys/device.h>
22 #include <sys/kernel.h>
23 #include <sys/queue.h>
24 #include <sys/sensors.h>
25 
26 #include <dev/ic/lm78var.h>
27 #include <dev/isa/wbsioreg.h>
28 
29 #if defined(LMDEBUG)
30 #define DPRINTF(x)		do { printf x; } while (0)
31 #else
32 #define DPRINTF(x)
33 #endif
34 
35 /*
36  * LM78-compatible chips can typically measure voltages up to 4.096 V.
37  * To measure higher voltages the input is attenuated with (external)
38  * resistors.  Negative voltages are measured using inverting op amps
39  * and resistors.  So we have to convert the sensor values back to
40  * real voltages by applying the appropriate resistor factor.
41  */
42 #define RFACT_NONE	10000
43 #define RFACT(x, y)	(RFACT_NONE * ((x) + (y)) / (y))
44 #define NRFACT(x, y)	(-RFACT_NONE * (x) / (y))
45 
46 struct cfdriver lm_cd = {
47 	NULL, "lm", DV_DULL
48 };
49 
50 int  lm_match(struct lm_softc *);
51 int  wb_match(struct lm_softc *);
52 int  def_match(struct lm_softc *);
53 
54 void lm_setup_sensors(struct lm_softc *, const struct lm_sensor *);
55 void lm_refresh(void *);
56 
57 void lm_refresh_sensor_data(struct lm_softc *);
58 void lm_refresh_volt(struct lm_softc *, int);
59 void lm_refresh_temp(struct lm_softc *, int);
60 void lm_refresh_fanrpm(struct lm_softc *, int);
61 
62 void wb_refresh_sensor_data(struct lm_softc *);
63 void wb_w83637hf_refresh_vcore(struct lm_softc *, int);
64 void wb_refresh_nvolt(struct lm_softc *, int);
65 void wb_w83627ehf_refresh_nvolt(struct lm_softc *, int);
66 void wb_refresh_temp(struct lm_softc *, int);
67 void wb_refresh_fanrpm(struct lm_softc *, int);
68 void wb_nct6776f_refresh_fanrpm(struct lm_softc *, int);
69 void wb_w83792d_refresh_fanrpm(struct lm_softc *, int);
70 
71 void as_refresh_temp(struct lm_softc *, int);
72 
73 struct lm_chip {
74 	int (*chip_match)(struct lm_softc *);
75 };
76 
77 const struct lm_chip lm_chips[] = {
78 	{ wb_match },
79 	{ lm_match },
80 	{ def_match } /* Must be last */
81 };
82 
83 const struct lm_sensor lm78_sensors[] = {
84 	/* Voltage */
85 	{ "VCore A", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
86 	{ "VCore B", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT_NONE },
87 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
88 	{ "+5V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(68, 100) },
89 	{ "+12V", SENSOR_VOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(30, 10) },
90 	{ "-12V", SENSOR_VOLTS_DC, 0, 0x25, lm_refresh_volt, NRFACT(240, 60) },
91 	{ "-5V", SENSOR_VOLTS_DC, 0, 0x26, lm_refresh_volt, NRFACT(100, 60) },
92 
93 	/* Temperature */
94 	{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
95 
96 	/* Fans */
97 	{ "", SENSOR_FANRPM, 0, 0x28, lm_refresh_fanrpm },
98 	{ "", SENSOR_FANRPM, 0, 0x29, lm_refresh_fanrpm },
99 	{ "", SENSOR_FANRPM, 0, 0x2a, lm_refresh_fanrpm },
100 
101 	{ NULL }
102 };
103 
104 const struct lm_sensor w83627hf_sensors[] = {
105 	/* Voltage */
106 	{ "VCore A", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
107 	{ "VCore B", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT_NONE },
108 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
109 	{ "+5V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 50) },
110 	{ "+12V", SENSOR_VOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
111 	{ "-12V", SENSOR_VOLTS_DC, 0, 0x25, wb_refresh_nvolt, RFACT(232, 56) },
112 	{ "-5V", SENSOR_VOLTS_DC, 0, 0x26, wb_refresh_nvolt, RFACT(120, 56) },
113 	{ "5VSB", SENSOR_VOLTS_DC, 5, 0x50, lm_refresh_volt, RFACT(17, 33) },
114 	{ "VBAT", SENSOR_VOLTS_DC, 5, 0x51, lm_refresh_volt, RFACT_NONE },
115 
116 	/* Temperature */
117 	{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
118 	{ "", SENSOR_TEMP, 1, 0x50, wb_refresh_temp },
119 	{ "", SENSOR_TEMP, 2, 0x50, wb_refresh_temp },
120 
121 	/* Fans */
122 	{ "", SENSOR_FANRPM, 0, 0x28, wb_refresh_fanrpm },
123 	{ "", SENSOR_FANRPM, 0, 0x29, wb_refresh_fanrpm },
124 	{ "", SENSOR_FANRPM, 0, 0x2a, wb_refresh_fanrpm },
125 
126 	{ NULL }
127 };
128 
129 /*
130  * The W83627EHF can measure voltages up to 2.048 V instead of the
131  * traditional 4.096 V.  For measuring positive voltages, this can be
132  * accounted for by halving the resistor factor.  Negative voltages
133  * need special treatment, also because the reference voltage is 2.048 V
134  * instead of the traditional 3.6 V.
135  */
136 const struct lm_sensor w83627ehf_sensors[] = {
137 	/* Voltage */
138 	{ "VCore", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE / 2},
139 	{ "+12V", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT(56, 10) / 2 },
140 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT(34, 34) / 2 },
141 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 34) / 2 },
142 	{ "-12V", SENSOR_VOLTS_DC, 0, 0x24, wb_w83627ehf_refresh_nvolt },
143 	{ "", SENSOR_VOLTS_DC, 0, 0x25, lm_refresh_volt, RFACT_NONE / 2 },
144 	{ "", SENSOR_VOLTS_DC, 0, 0x26, lm_refresh_volt, RFACT_NONE / 2 },
145 	{ "3.3VSB", SENSOR_VOLTS_DC, 5, 0x50, lm_refresh_volt, RFACT(34, 34) / 2 },
146 	{ "VBAT", SENSOR_VOLTS_DC, 5, 0x51, lm_refresh_volt, RFACT_NONE / 2 },
147 	{ "", SENSOR_VOLTS_DC, 5, 0x52, lm_refresh_volt, RFACT_NONE / 2 },
148 
149 	/* Temperature */
150 	{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
151 	{ "", SENSOR_TEMP, 1, 0x50, wb_refresh_temp },
152 	{ "", SENSOR_TEMP, 2, 0x50, wb_refresh_temp },
153 
154 	/* Fans */
155 	{ "", SENSOR_FANRPM, 0, 0x28, wb_refresh_fanrpm },
156 	{ "", SENSOR_FANRPM, 0, 0x29, wb_refresh_fanrpm },
157 	{ "", SENSOR_FANRPM, 0, 0x2a, wb_refresh_fanrpm },
158 
159 	{ NULL }
160 };
161 
162 /*
163  * w83627dhg is almost identical to w83627ehf, except that
164  * it has 9 instead of 10 voltage sensors
165  */
166 const struct lm_sensor w83627dhg_sensors[] = {
167 	/* Voltage */
168 	{ "VCore", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE / 2},
169 	{ "+12V", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT(56, 10) / 2 },
170 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT(34, 34) / 2 },
171 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 34) / 2 },
172 	{ "-12V", SENSOR_VOLTS_DC, 0, 0x24, wb_w83627ehf_refresh_nvolt },
173 	{ "", SENSOR_VOLTS_DC, 0, 0x25, lm_refresh_volt, RFACT_NONE / 2 },
174 	{ "", SENSOR_VOLTS_DC, 0, 0x26, lm_refresh_volt, RFACT_NONE / 2 },
175 	{ "3.3VSB", SENSOR_VOLTS_DC, 5, 0x50, lm_refresh_volt, RFACT(34, 34) / 2 },
176 	{ "VBAT", SENSOR_VOLTS_DC, 5, 0x51, lm_refresh_volt, RFACT_NONE / 2 },
177 
178 	/* Temperature */
179 	{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
180 	{ "", SENSOR_TEMP, 1, 0x50, wb_refresh_temp },
181 	{ "", SENSOR_TEMP, 2, 0x50, wb_refresh_temp },
182 
183 	/* Fans */
184 	{ "", SENSOR_FANRPM, 0, 0x28, wb_refresh_fanrpm },
185 	{ "", SENSOR_FANRPM, 0, 0x29, wb_refresh_fanrpm },
186 	{ "", SENSOR_FANRPM, 0, 0x2a, wb_refresh_fanrpm },
187 
188 	{ NULL }
189 };
190 
191 const struct lm_sensor nct6776f_sensors[] = {
192 	/* Voltage */
193 	{ "VCore", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE / 2},
194 	{ "+12V", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT(56, 10) / 2 },
195 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT(34, 34) / 2 },
196 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 34) / 2 },
197 	{ "-12V", SENSOR_VOLTS_DC, 0, 0x24, wb_w83627ehf_refresh_nvolt },
198 	{ "", SENSOR_VOLTS_DC, 0, 0x25, lm_refresh_volt, RFACT_NONE / 2 },
199 	{ "", SENSOR_VOLTS_DC, 0, 0x26, lm_refresh_volt, RFACT_NONE / 2 },
200 	{ "3.3VSB", SENSOR_VOLTS_DC, 5, 0x50, lm_refresh_volt, RFACT(34, 34) / 2 },
201 	{ "VBAT", SENSOR_VOLTS_DC, 5, 0x51, lm_refresh_volt, RFACT_NONE / 2 },
202 
203 	/* Temperature */
204 	{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
205 	{ "", SENSOR_TEMP, 1, 0x50, wb_refresh_temp },
206 	{ "", SENSOR_TEMP, 2, 0x50, wb_refresh_temp },
207 
208 	/* Fans */
209 	{ "", SENSOR_FANRPM, 6, 0x56, wb_nct6776f_refresh_fanrpm },
210 	{ "", SENSOR_FANRPM, 6, 0x58, wb_nct6776f_refresh_fanrpm },
211 	{ "", SENSOR_FANRPM, 6, 0x5a, wb_nct6776f_refresh_fanrpm },
212 	{ "", SENSOR_FANRPM, 6, 0x5c, wb_nct6776f_refresh_fanrpm },
213 	{ "", SENSOR_FANRPM, 6, 0x5e, wb_nct6776f_refresh_fanrpm },
214 
215 	{ NULL }
216 };
217 
218 /* NCT6779D */
219 const struct lm_sensor nct6779d_sensors[] = {
220 	/* Voltage */
221 	{ "VCore", SENSOR_VOLTS_DC, 4, 0x80, lm_refresh_volt, RFACT_NONE },
222 	{ "VIN1", SENSOR_VOLTS_DC, 4, 0x81, lm_refresh_volt, RFACT(56, 10) / 2 },
223 	{ "AVCC", SENSOR_VOLTS_DC, 4, 0x82, lm_refresh_volt, RFACT(34, 34) / 2 },
224 	{ "+3.3V", SENSOR_VOLTS_DC, 4, 0x83, lm_refresh_volt, RFACT(34, 34) / 2 },
225 	{ "VIN0", SENSOR_VOLTS_DC, 4, 0x84, lm_refresh_volt, RFACT(48600, 10000) },
226 	{ "VIN8", SENSOR_VOLTS_DC, 4, 0x85, lm_refresh_volt, RFACT_NONE / 2 },
227 	{ "VIN4", SENSOR_VOLTS_DC, 4, 0x86, lm_refresh_volt, RFACT_NONE / 2 },
228 	{ "+3.3VSB", SENSOR_VOLTS_DC, 4, 0x87, lm_refresh_volt, RFACT(34, 34) / 2 },
229 	{ "VBAT", SENSOR_VOLTS_DC, 4, 0x88, lm_refresh_volt, RFACT_NONE },
230 	{ "VTT", SENSOR_VOLTS_DC, 4, 0x89, lm_refresh_volt, RFACT_NONE },
231 	{ "VIN5", SENSOR_VOLTS_DC, 4, 0x8a, lm_refresh_volt, RFACT_NONE / 2 },
232 	{ "VIN6", SENSOR_VOLTS_DC, 4, 0x8b, lm_refresh_volt, RFACT_NONE / 2 },
233 	{ "VIN2", SENSOR_VOLTS_DC, 4, 0x8c, lm_refresh_volt, RFACT_NONE },
234 	{ "VIN3", SENSOR_VOLTS_DC, 4, 0x8d, lm_refresh_volt, RFACT(14414, 10000) },
235 	{ "VIN7", SENSOR_VOLTS_DC, 4, 0x8e, lm_refresh_volt, RFACT_NONE / 2 },
236 
237 	/* Temperature */
238 	{ "MB Temperature", SENSOR_TEMP, 4, 0x90, lm_refresh_temp, 0 },
239 	{ "CPU Temperature", SENSOR_TEMP, 4, 0x91, wb_refresh_temp, 0 },
240 	{ "Aux Temp0", SENSOR_TEMP, 4, 0x92, wb_refresh_temp, 0 },
241 	{ "Aux Temp1", SENSOR_TEMP, 4, 0x93, wb_refresh_temp, 0 },
242 	{ "Aux Temp2", SENSOR_TEMP, 4, 0x94, wb_refresh_temp, 0 },
243 	{ "Aux Temp3", SENSOR_TEMP, 4, 0x95, wb_refresh_temp, 0 },
244 
245 	/* Fans */
246 	{ "System Fan", SENSOR_FANRPM, 4, 0xc0, wb_nct6776f_refresh_fanrpm, 0 },
247 	{ "CPU Fan", SENSOR_FANRPM, 4, 0xc2, wb_nct6776f_refresh_fanrpm, 0 },
248 	{ "Aux Fan0", SENSOR_FANRPM, 4, 0xc4, wb_nct6776f_refresh_fanrpm, 0 },
249 	{ "Aux Fan1", SENSOR_FANRPM, 4, 0xc6, wb_nct6776f_refresh_fanrpm, 0 },
250 	{ "Aux Fan2", SENSOR_FANRPM, 4, 0xc8, wb_nct6776f_refresh_fanrpm, 0 },
251 
252 	{  NULL }
253 };
254 
255 const struct lm_sensor w83637hf_sensors[] = {
256 	/* Voltage */
257 	{ "VCore", SENSOR_VOLTS_DC, 0, 0x20, wb_w83637hf_refresh_vcore },
258 	{ "+12V", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT(28, 10) },
259 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
260 	{ "+5V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 51) },
261 	{ "-12V", SENSOR_VOLTS_DC, 0, 0x24, wb_refresh_nvolt, RFACT(232, 56) },
262 	{ "5VSB", SENSOR_VOLTS_DC, 5, 0x50, lm_refresh_volt, RFACT(34, 51) },
263 	{ "VBAT", SENSOR_VOLTS_DC, 5, 0x51, lm_refresh_volt, RFACT_NONE },
264 
265 	/* Temperature */
266 	{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
267 	{ "", SENSOR_TEMP, 1, 0x50, wb_refresh_temp },
268 	{ "", SENSOR_TEMP, 2, 0x50, wb_refresh_temp },
269 
270 	/* Fans */
271 	{ "", SENSOR_FANRPM, 0, 0x28, wb_refresh_fanrpm },
272 	{ "", SENSOR_FANRPM, 0, 0x29, wb_refresh_fanrpm },
273 	{ "", SENSOR_FANRPM, 0, 0x2a, wb_refresh_fanrpm },
274 
275 	{ NULL }
276 };
277 
278 const struct lm_sensor w83697hf_sensors[] = {
279 	/* Voltage */
280 	{ "VCore", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
281 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
282 	{ "+5V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 50) },
283 	{ "+12V", SENSOR_VOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
284 	{ "-12V", SENSOR_VOLTS_DC, 0, 0x25, wb_refresh_nvolt, RFACT(232, 56) },
285 	{ "-5V", SENSOR_VOLTS_DC, 0, 0x26, wb_refresh_nvolt, RFACT(120, 56) },
286 	{ "5VSB", SENSOR_VOLTS_DC, 5, 0x50, lm_refresh_volt, RFACT(17, 33) },
287 	{ "VBAT", SENSOR_VOLTS_DC, 5, 0x51, lm_refresh_volt, RFACT_NONE },
288 
289 	/* Temperature */
290 	{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
291 	{ "", SENSOR_TEMP, 1, 0x50, wb_refresh_temp },
292 
293 	/* Fans */
294 	{ "", SENSOR_FANRPM, 0, 0x28, wb_refresh_fanrpm },
295 	{ "", SENSOR_FANRPM, 0, 0x29, wb_refresh_fanrpm },
296 
297 	{ NULL }
298 };
299 
300 /*
301  * The datasheet doesn't mention the (internal) resistors used for the
302  * +5V, but using the values from the W83782D datasheets seems to
303  * provide sensible results.
304  */
305 const struct lm_sensor w83781d_sensors[] = {
306 	/* Voltage */
307 	{ "VCore A", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
308 	{ "VCore B", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT_NONE },
309 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
310 	{ "+5V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 50) },
311 	{ "+12V", SENSOR_VOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
312 	{ "-12V", SENSOR_VOLTS_DC, 0, 0x25, lm_refresh_volt, NRFACT(2100, 604) },
313 	{ "-5V", SENSOR_VOLTS_DC, 0, 0x26, lm_refresh_volt, NRFACT(909, 604) },
314 
315 	/* Temperature */
316 	{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
317 	{ "", SENSOR_TEMP, 1, 0x50, wb_refresh_temp },
318 	{ "", SENSOR_TEMP, 2, 0x50, wb_refresh_temp },
319 
320 	/* Fans */
321 	{ "", SENSOR_FANRPM, 0, 0x28, lm_refresh_fanrpm },
322 	{ "", SENSOR_FANRPM, 0, 0x29, lm_refresh_fanrpm },
323 	{ "", SENSOR_FANRPM, 0, 0x2a, lm_refresh_fanrpm },
324 
325 	{ NULL }
326 };
327 
328 const struct lm_sensor w83782d_sensors[] = {
329 	/* Voltage */
330 	{ "VCore", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
331 	{ "VINR0", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT_NONE },
332 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
333 	{ "+5V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 50) },
334 	{ "+12V", SENSOR_VOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
335 	{ "-12V", SENSOR_VOLTS_DC, 0, 0x25, wb_refresh_nvolt, RFACT(232, 56) },
336 	{ "-5V", SENSOR_VOLTS_DC, 0, 0x26, wb_refresh_nvolt, RFACT(120, 56) },
337 	{ "5VSB", SENSOR_VOLTS_DC, 5, 0x50, lm_refresh_volt, RFACT(17, 33) },
338 	{ "VBAT", SENSOR_VOLTS_DC, 5, 0x51, lm_refresh_volt, RFACT_NONE },
339 
340 	/* Temperature */
341 	{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
342 	{ "", SENSOR_TEMP, 1, 0x50, wb_refresh_temp },
343 	{ "", SENSOR_TEMP, 2, 0x50, wb_refresh_temp },
344 
345 	/* Fans */
346 	{ "", SENSOR_FANRPM, 0, 0x28, wb_refresh_fanrpm },
347 	{ "", SENSOR_FANRPM, 0, 0x29, wb_refresh_fanrpm },
348 	{ "", SENSOR_FANRPM, 0, 0x2a, wb_refresh_fanrpm },
349 
350 	{ NULL }
351 };
352 
353 const struct lm_sensor w83783s_sensors[] = {
354 	/* Voltage */
355 	{ "VCore", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
356 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
357 	{ "+5V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 50) },
358 	{ "+12V", SENSOR_VOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
359 	{ "-12V", SENSOR_VOLTS_DC, 0, 0x25, wb_refresh_nvolt, RFACT(232, 56) },
360 	{ "-5V", SENSOR_VOLTS_DC, 0, 0x26, wb_refresh_nvolt, RFACT(120, 56) },
361 
362 	/* Temperature */
363 	{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
364 	{ "", SENSOR_TEMP, 1, 0x50, wb_refresh_temp },
365 
366 	/* Fans */
367 	{ "", SENSOR_FANRPM, 0, 0x28, wb_refresh_fanrpm },
368 	{ "", SENSOR_FANRPM, 0, 0x29, wb_refresh_fanrpm },
369 	{ "", SENSOR_FANRPM, 0, 0x2a, wb_refresh_fanrpm },
370 
371 	{ NULL }
372 };
373 
374 const struct lm_sensor w83791d_sensors[] = {
375 	/* Voltage */
376 	{ "VCore", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, 10000 },
377 	{ "VINR0", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, 10000 },
378 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, 10000 },
379 	{ "+5V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 50) },
380 	{ "+12V", SENSOR_VOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
381 	{ "-12V", SENSOR_VOLTS_DC, 0, 0x25, wb_refresh_nvolt, RFACT(232, 56) },
382 	{ "-5V", SENSOR_VOLTS_DC, 0, 0x26, wb_refresh_nvolt, RFACT(120, 56) },
383 	{ "5VSB", SENSOR_VOLTS_DC, 0, 0xb0, lm_refresh_volt, RFACT(17, 33) },
384 	{ "VBAT", SENSOR_VOLTS_DC, 0, 0xb1, lm_refresh_volt, RFACT_NONE },
385 	{ "VINR1", SENSOR_VOLTS_DC, 0, 0xb2, lm_refresh_volt, RFACT_NONE },
386 
387 	/* Temperature */
388 	{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
389 	{ "", SENSOR_TEMP, 0, 0xc0, wb_refresh_temp },
390 	{ "", SENSOR_TEMP, 0, 0xc8, wb_refresh_temp },
391 
392 	/* Fans */
393 	{ "", SENSOR_FANRPM, 0, 0x28, wb_refresh_fanrpm },
394 	{ "", SENSOR_FANRPM, 0, 0x29, wb_refresh_fanrpm },
395 	{ "", SENSOR_FANRPM, 0, 0x2a, wb_refresh_fanrpm },
396 	{ "", SENSOR_FANRPM, 0, 0xba, wb_refresh_fanrpm },
397 	{ "", SENSOR_FANRPM, 0, 0xbb, wb_refresh_fanrpm },
398 
399 	{ NULL }
400 };
401 
402 const struct lm_sensor w83792d_sensors[] = {
403 	/* Voltage */
404 	{ "VCore A", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
405 	{ "VCore B", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT_NONE },
406 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
407 	{ "-5V", SENSOR_VOLTS_DC, 0, 0x23, wb_refresh_nvolt, RFACT(120, 56) },
408 	{ "+12V", SENSOR_VOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
409 	{ "-12V", SENSOR_VOLTS_DC, 0, 0x25, wb_refresh_nvolt, RFACT(232, 56) },
410 	{ "+5V", SENSOR_VOLTS_DC, 0, 0x26, lm_refresh_volt, RFACT(34, 50) },
411 	{ "5VSB", SENSOR_VOLTS_DC, 0, 0xb0, lm_refresh_volt, RFACT(17, 33) },
412 	{ "VBAT", SENSOR_VOLTS_DC, 0, 0xb1, lm_refresh_volt, RFACT_NONE },
413 
414 	/* Temperature */
415 	{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
416 	{ "", SENSOR_TEMP, 0, 0xc0, wb_refresh_temp },
417 	{ "", SENSOR_TEMP, 0, 0xc8, wb_refresh_temp },
418 
419 	/* Fans */
420 	{ "", SENSOR_FANRPM, 0, 0x28, wb_w83792d_refresh_fanrpm },
421 	{ "", SENSOR_FANRPM, 0, 0x29, wb_w83792d_refresh_fanrpm },
422 	{ "", SENSOR_FANRPM, 0, 0x2a, wb_w83792d_refresh_fanrpm },
423 	{ "", SENSOR_FANRPM, 0, 0xb8, wb_w83792d_refresh_fanrpm },
424 	{ "", SENSOR_FANRPM, 0, 0xb9, wb_w83792d_refresh_fanrpm },
425 	{ "", SENSOR_FANRPM, 0, 0xba, wb_w83792d_refresh_fanrpm },
426 	{ "", SENSOR_FANRPM, 0, 0xbe, wb_w83792d_refresh_fanrpm },
427 
428 	{ NULL }
429 };
430 
431 const struct lm_sensor as99127f_sensors[] = {
432 	/* Voltage */
433 	{ "VCore A", SENSOR_VOLTS_DC, 0, 0x20, lm_refresh_volt, RFACT_NONE },
434 	{ "VCore B", SENSOR_VOLTS_DC, 0, 0x21, lm_refresh_volt, RFACT_NONE },
435 	{ "+3.3V", SENSOR_VOLTS_DC, 0, 0x22, lm_refresh_volt, RFACT_NONE },
436 	{ "+5V", SENSOR_VOLTS_DC, 0, 0x23, lm_refresh_volt, RFACT(34, 50) },
437 	{ "+12V", SENSOR_VOLTS_DC, 0, 0x24, lm_refresh_volt, RFACT(28, 10) },
438 	{ "-12V", SENSOR_VOLTS_DC, 0, 0x25, wb_refresh_nvolt, RFACT(232, 56) },
439 	{ "-5V", SENSOR_VOLTS_DC, 0, 0x26, wb_refresh_nvolt, RFACT(120, 56) },
440 
441 	/* Temperature */
442 	{ "", SENSOR_TEMP, 0, 0x27, lm_refresh_temp },
443 	{ "", SENSOR_TEMP, 1, 0x50, as_refresh_temp },
444 	{ "", SENSOR_TEMP, 2, 0x50, as_refresh_temp },
445 
446 	/* Fans */
447 	{ "", SENSOR_FANRPM, 0, 0x28, lm_refresh_fanrpm },
448 	{ "", SENSOR_FANRPM, 0, 0x29, lm_refresh_fanrpm },
449 	{ "", SENSOR_FANRPM, 0, 0x2a, lm_refresh_fanrpm },
450 
451 	{ NULL }
452 };
453 
454 void
lm_attach(struct lm_softc * sc)455 lm_attach(struct lm_softc *sc)
456 {
457 	u_int i, config;
458 
459 	for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
460 		if (lm_chips[i].chip_match(sc))
461 			break;
462 
463 	/* No point in doing anything if we don't have any sensors. */
464 	if (sc->numsensors == 0)
465 		return;
466 
467 	sc->sensortask = sensor_task_register(sc, lm_refresh, 5);
468 	if (sc->sensortask == NULL) {
469 		printf("%s: unable to register update task\n",
470 		    sc->sc_dev.dv_xname);
471 		return;
472 	}
473 
474 	/* Start the monitoring loop */
475 	config = sc->lm_readreg(sc, LM_CONFIG);
476 	sc->lm_writereg(sc, LM_CONFIG, config | 0x01);
477 
478 	/* Add sensors */
479 	for (i = 0; i < sc->numsensors; ++i)
480 		sensor_attach(&sc->sensordev, &sc->sensors[i]);
481 	sensordev_install(&sc->sensordev);
482 }
483 
484 int
lm_match(struct lm_softc * sc)485 lm_match(struct lm_softc *sc)
486 {
487 	int chipid;
488 
489 	/* See if we have an LM78 or LM79. */
490 	chipid = sc->lm_readreg(sc, LM_CHIPID) & LM_CHIPID_MASK;
491 	switch(chipid) {
492 	case LM_CHIPID_LM78:
493 		printf(": LM78\n");
494 		break;
495 	case LM_CHIPID_LM78J:
496 		printf(": LM78J\n");
497 		break;
498 	case LM_CHIPID_LM79:
499 		printf(": LM79\n");
500 		break;
501 	case LM_CHIPID_LM81:
502 		printf(": LM81\n");
503 		break;
504 	default:
505 		return 0;
506 	}
507 
508 	lm_setup_sensors(sc, lm78_sensors);
509 	sc->refresh_sensor_data = lm_refresh_sensor_data;
510 	return 1;
511 }
512 
513 int
def_match(struct lm_softc * sc)514 def_match(struct lm_softc *sc)
515 {
516 	int chipid;
517 
518 	chipid = sc->lm_readreg(sc, LM_CHIPID) & LM_CHIPID_MASK;
519 	printf(": unknown chip (ID %d)\n", chipid);
520 
521 	lm_setup_sensors(sc, lm78_sensors);
522 	sc->refresh_sensor_data = lm_refresh_sensor_data;
523 	return 1;
524 }
525 
526 int
wb_match(struct lm_softc * sc)527 wb_match(struct lm_softc *sc)
528 {
529 	int banksel, vendid, devid;
530 
531 	/* Read vendor ID */
532 	banksel = sc->lm_readreg(sc, WB_BANKSEL);
533 	sc->lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
534 	vendid = sc->lm_readreg(sc, WB_VENDID) << 8;
535 	sc->lm_writereg(sc, WB_BANKSEL, 0);
536 	vendid |= sc->lm_readreg(sc, WB_VENDID);
537 	sc->lm_writereg(sc, WB_BANKSEL, banksel);
538 	DPRINTF((" winbond vend id 0x%x\n", vendid));
539 	if (vendid != WB_VENDID_WINBOND && vendid != WB_VENDID_ASUS)
540 		return 0;
541 
542 	/* Read device/chip ID */
543 	sc->lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
544 	devid = sc->lm_readreg(sc, LM_CHIPID);
545 	sc->chipid = sc->lm_readreg(sc, WB_BANK0_CHIPID);
546 	sc->lm_writereg(sc, WB_BANKSEL, banksel);
547 	DPRINTF((" winbond chip id 0x%x\n", sc->chipid));
548 	switch(sc->chipid) {
549 	case WB_CHIPID_W83627HF:
550 		printf(": W83627HF\n");
551 		lm_setup_sensors(sc, w83627hf_sensors);
552 		break;
553 	case WB_CHIPID_W83627THF:
554 		printf(": W83627THF\n");
555 		lm_setup_sensors(sc, w83637hf_sensors);
556 		break;
557 	case WB_CHIPID_W83627EHF_A:
558 		printf(": W83627EHF-A\n");
559 		lm_setup_sensors(sc, w83627ehf_sensors);
560 		break;
561 	case WB_CHIPID_W83627EHF:
562 		printf(": W83627EHF\n");
563 		lm_setup_sensors(sc, w83627ehf_sensors);
564 		break;
565 	case WB_CHIPID_W83627DHG:
566 		switch (sc->sioid) {
567 		case WBSIO_ID_NCT6775F:
568 			printf(": NCT6775F\n");
569 			lm_setup_sensors(sc, nct6776f_sensors);
570 			break;
571 		case WBSIO_ID_NCT6776F:
572 			printf(": NCT6776F\n");
573 			lm_setup_sensors(sc, nct6776f_sensors);
574 			break;
575 		case WBSIO_ID_NCT5104D:
576 			printf(": NCT5104D\n");
577 			lm_setup_sensors(sc, nct6776f_sensors);
578 			break;
579 		case WBSIO_ID_NCT6779D:
580 			printf(": NCT6779D\n");
581 			lm_setup_sensors(sc, nct6779d_sensors);
582 			break;
583 		case WBSIO_ID_NCT6791D:
584 			printf(": NCT6791D\n");
585 			lm_setup_sensors(sc, nct6779d_sensors);
586 			break;
587 		case WBSIO_ID_NCT6792D:
588 			printf(": NCT6792D\n");
589 			lm_setup_sensors(sc, nct6779d_sensors);
590 			break;
591 		case WBSIO_ID_NCT6793D:
592 			printf(": NCT6793D\n");
593 			lm_setup_sensors(sc, nct6779d_sensors);
594 			break;
595 		case WBSIO_ID_NCT6795D:
596 			printf(": NCT6795D\n");
597 			lm_setup_sensors(sc, nct6779d_sensors);
598 			break;
599 		default:
600 			printf(": W83627DHG\n");
601 			lm_setup_sensors(sc, w83627dhg_sensors);
602 		}
603 		break;
604 	case WB_CHIPID_W83637HF:
605 		printf(": W83637HF\n");
606 		sc->lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
607 		if (sc->lm_readreg(sc, WB_BANK0_CONFIG) & WB_CONFIG_VMR9)
608 			sc->vrm9 = 1;
609 		sc->lm_writereg(sc, WB_BANKSEL, banksel);
610 		lm_setup_sensors(sc, w83637hf_sensors);
611 		break;
612 	case WB_CHIPID_W83697HF:
613 		printf(": W83697HF\n");
614 		lm_setup_sensors(sc, w83697hf_sensors);
615 		break;
616 	case WB_CHIPID_W83781D:
617 	case WB_CHIPID_W83781D_2:
618 		printf(": W83781D\n");
619 		lm_setup_sensors(sc, w83781d_sensors);
620 		break;
621 	case WB_CHIPID_W83782D:
622 		printf(": W83782D\n");
623 		lm_setup_sensors(sc, w83782d_sensors);
624 		break;
625 	case WB_CHIPID_W83783S:
626 		printf(": W83783S\n");
627 		lm_setup_sensors(sc, w83783s_sensors);
628 		break;
629 	case WB_CHIPID_W83791D:
630 		printf(": W83791D\n");
631 		lm_setup_sensors(sc, w83791d_sensors);
632 		break;
633 	case WB_CHIPID_W83791SD:
634 		printf(": W83791SD\n");
635 		break;
636 	case WB_CHIPID_W83792D:
637 		if (devid >= 0x10 && devid <= 0x29)
638 			printf(": W83792D rev %c\n", 'A' + devid - 0x10);
639 		else
640 			printf(": W83792D rev 0x%x\n", devid);
641 		lm_setup_sensors(sc, w83792d_sensors);
642 		break;
643 	case WB_CHIPID_AS99127F:
644 		if (vendid == WB_VENDID_ASUS) {
645 			printf(": AS99127F\n");
646 			lm_setup_sensors(sc, w83781d_sensors);
647 		} else {
648 			printf(": AS99127F rev 2\n");
649 			lm_setup_sensors(sc, as99127f_sensors);
650 		}
651 		break;
652 	default:
653 		printf(": unknown Winbond chip (ID 0x%x)\n", sc->chipid);
654 		/* Handle as a standard LM78. */
655 		lm_setup_sensors(sc, lm78_sensors);
656 		sc->refresh_sensor_data = lm_refresh_sensor_data;
657 		return 1;
658 	}
659 
660 	sc->refresh_sensor_data = wb_refresh_sensor_data;
661 	return 1;
662 }
663 
664 void
lm_setup_sensors(struct lm_softc * sc,const struct lm_sensor * sensors)665 lm_setup_sensors(struct lm_softc *sc, const struct lm_sensor *sensors)
666 {
667 	int i;
668 
669 	strlcpy(sc->sensordev.xname, sc->sc_dev.dv_xname,
670 	    sizeof(sc->sensordev.xname));
671 
672 	for (i = 0; sensors[i].desc; i++) {
673 		sc->sensors[i].type = sensors[i].type;
674 		strlcpy(sc->sensors[i].desc, sensors[i].desc,
675 		    sizeof(sc->sensors[i].desc));
676 		sc->numsensors++;
677 	}
678 	sc->lm_sensors = sensors;
679 }
680 
681 void
lm_refresh(void * arg)682 lm_refresh(void *arg)
683 {
684 	struct lm_softc *sc = arg;
685 
686 	sc->refresh_sensor_data(sc);
687 }
688 
689 void
lm_refresh_sensor_data(struct lm_softc * sc)690 lm_refresh_sensor_data(struct lm_softc *sc)
691 {
692 	int i;
693 
694 	for (i = 0; i < sc->numsensors; i++)
695 		sc->lm_sensors[i].refresh(sc, i);
696 }
697 
698 void
lm_refresh_volt(struct lm_softc * sc,int n)699 lm_refresh_volt(struct lm_softc *sc, int n)
700 {
701 	struct ksensor *sensor = &sc->sensors[n];
702 	int data;
703 
704 	data = sc->lm_readreg(sc, sc->lm_sensors[n].reg);
705 	sensor->value = (data << 4);
706 	sensor->value *= sc->lm_sensors[n].rfact;
707 	sensor->value /= 10;
708 }
709 
710 void
lm_refresh_temp(struct lm_softc * sc,int n)711 lm_refresh_temp(struct lm_softc *sc, int n)
712 {
713 	struct ksensor *sensor = &sc->sensors[n];
714 	int sdata;
715 
716 	/*
717 	 * The data sheet suggests that the range of the temperature
718 	 * sensor is between -55 degC and +125 degC.
719 	 */
720 	sdata = sc->lm_readreg(sc, sc->lm_sensors[n].reg);
721 	if (sdata > 0x7d && sdata < 0xc9) {
722 		sensor->flags |= SENSOR_FINVALID;
723 		sensor->value = 0;
724 	} else {
725 		if (sdata & 0x80)
726 			sdata -= 0x100;
727 		sensor->flags &= ~SENSOR_FINVALID;
728 		sensor->value = sdata * 1000000 + 273150000;
729 	}
730 }
731 
732 void
lm_refresh_fanrpm(struct lm_softc * sc,int n)733 lm_refresh_fanrpm(struct lm_softc *sc, int n)
734 {
735 	struct ksensor *sensor = &sc->sensors[n];
736 	int data, divisor = 1;
737 
738 	/*
739 	 * We might get more accurate fan readings by adjusting the
740 	 * divisor, but that might interfere with APM or other SMM
741 	 * BIOS code reading the fan speeds.
742 	 */
743 
744 	/* FAN3 has a fixed fan divisor. */
745 	if (sc->lm_sensors[n].reg == LM_FAN1 ||
746 	    sc->lm_sensors[n].reg == LM_FAN2) {
747 		data = sc->lm_readreg(sc, LM_VIDFAN);
748 		if (sc->lm_sensors[n].reg == LM_FAN1)
749 			divisor = (data >> 4) & 0x03;
750 		else
751 			divisor = (data >> 6) & 0x03;
752 	}
753 
754 	data = sc->lm_readreg(sc, sc->lm_sensors[n].reg);
755 	if (data == 0xff || data == 0x00) {
756 		sensor->flags |= SENSOR_FINVALID;
757 		sensor->value = 0;
758 	} else {
759 		sensor->flags &= ~SENSOR_FINVALID;
760 		sensor->value = 1350000 / (data << divisor);
761 	}
762 }
763 
764 void
wb_refresh_sensor_data(struct lm_softc * sc)765 wb_refresh_sensor_data(struct lm_softc *sc)
766 {
767 	int banksel, bank, i;
768 
769 	/*
770 	 * Properly save and restore bank selection register.
771 	 */
772 
773 	banksel = bank = sc->lm_readreg(sc, WB_BANKSEL);
774 	for (i = 0; i < sc->numsensors; i++) {
775 		if (bank != sc->lm_sensors[i].bank) {
776 			bank = sc->lm_sensors[i].bank;
777 			sc->lm_writereg(sc, WB_BANKSEL, bank);
778 		}
779 		sc->lm_sensors[i].refresh(sc, i);
780 	}
781 	sc->lm_writereg(sc, WB_BANKSEL, banksel);
782 }
783 
784 void
wb_w83637hf_refresh_vcore(struct lm_softc * sc,int n)785 wb_w83637hf_refresh_vcore(struct lm_softc *sc, int n)
786 {
787 	struct ksensor *sensor = &sc->sensors[n];
788 	int data;
789 
790 	data = sc->lm_readreg(sc, sc->lm_sensors[n].reg);
791 
792 	/*
793 	 * Depending on the voltage detection method,
794 	 * one of the following formulas is used:
795 	 *	VRM8 method: value = raw * 0.016V
796 	 *	VRM9 method: value = raw * 0.00488V + 0.70V
797 	 */
798 	if (sc->vrm9)
799 		sensor->value = (data * 4880) + 700000;
800 	else
801 		sensor->value = (data * 16000);
802 }
803 
804 void
wb_refresh_nvolt(struct lm_softc * sc,int n)805 wb_refresh_nvolt(struct lm_softc *sc, int n)
806 {
807 	struct ksensor *sensor = &sc->sensors[n];
808 	int data;
809 
810 	data = sc->lm_readreg(sc, sc->lm_sensors[n].reg);
811 	sensor->value = ((data << 4) - WB_VREF);
812 	sensor->value *= sc->lm_sensors[n].rfact;
813 	sensor->value /= 10;
814 	sensor->value += WB_VREF * 1000;
815 }
816 
817 void
wb_w83627ehf_refresh_nvolt(struct lm_softc * sc,int n)818 wb_w83627ehf_refresh_nvolt(struct lm_softc *sc, int n)
819 {
820 	struct ksensor *sensor = &sc->sensors[n];
821 	int data;
822 
823 	data = sc->lm_readreg(sc, sc->lm_sensors[n].reg);
824 	sensor->value = ((data << 3) - WB_W83627EHF_VREF);
825 	sensor->value *= RFACT(232, 10);
826 	sensor->value /= 10;
827 	sensor->value += WB_W83627EHF_VREF * 1000;
828 }
829 
830 void
wb_refresh_temp(struct lm_softc * sc,int n)831 wb_refresh_temp(struct lm_softc *sc, int n)
832 {
833 	struct ksensor *sensor = &sc->sensors[n];
834 	int sdata;
835 
836 	/*
837 	 * The data sheet suggests that the range of the temperature
838 	 * sensor is between -55 degC and +125 degC.  However, values
839 	 * around -48 degC seem to be a very common bogus values.
840 	 * Since such values are unreasonably low, we use -45 degC for
841 	 * the lower limit instead.
842 	 */
843 	sdata = sc->lm_readreg(sc, sc->lm_sensors[n].reg) << 1;
844 	sdata += sc->lm_readreg(sc, sc->lm_sensors[n].reg + 1) >> 7;
845 	if (sdata > 0x0fa && sdata < 0x1a6) {
846 		sensor->flags |= SENSOR_FINVALID;
847 		sensor->value = 0;
848 	} else {
849 		if (sdata & 0x100)
850 			sdata -= 0x200;
851 		sensor->flags &= ~SENSOR_FINVALID;
852 		sensor->value = sdata * 500000 + 273150000;
853 	}
854 }
855 
856 void
wb_refresh_fanrpm(struct lm_softc * sc,int n)857 wb_refresh_fanrpm(struct lm_softc *sc, int n)
858 {
859 	struct ksensor *sensor = &sc->sensors[n];
860 	int fan, data, divisor = 0;
861 
862 	/*
863 	 * This is madness; the fan divisor bits are scattered all
864 	 * over the place.
865 	 */
866 
867 	if (sc->lm_sensors[n].reg == LM_FAN1 ||
868 	    sc->lm_sensors[n].reg == LM_FAN2 ||
869 	    sc->lm_sensors[n].reg == LM_FAN3) {
870 		data = sc->lm_readreg(sc, WB_BANK0_VBAT);
871 		fan = (sc->lm_sensors[n].reg - LM_FAN1);
872 		if ((data >> 5) & (1 << fan))
873 			divisor |= 0x04;
874 	}
875 
876 	if (sc->lm_sensors[n].reg == LM_FAN1 ||
877 	    sc->lm_sensors[n].reg == LM_FAN2) {
878 		data = sc->lm_readreg(sc, LM_VIDFAN);
879 		if (sc->lm_sensors[n].reg == LM_FAN1)
880 			divisor |= (data >> 4) & 0x03;
881 		else
882 			divisor |= (data >> 6) & 0x03;
883 	} else if (sc->lm_sensors[n].reg == LM_FAN3) {
884 		data = sc->lm_readreg(sc, WB_PIN);
885 		divisor |= (data >> 6) & 0x03;
886 	} else if (sc->lm_sensors[n].reg == WB_BANK0_FAN4 ||
887 		   sc->lm_sensors[n].reg == WB_BANK0_FAN5) {
888 		data = sc->lm_readreg(sc, WB_BANK0_FAN45);
889 		if (sc->lm_sensors[n].reg == WB_BANK0_FAN4)
890 			divisor |= (data >> 0) & 0x07;
891 		else
892 			divisor |= (data >> 4) & 0x07;
893 	}
894 
895 	data = sc->lm_readreg(sc, sc->lm_sensors[n].reg);
896 	if (data == 0xff || data == 0x00) {
897 		sensor->flags |= SENSOR_FINVALID;
898 		sensor->value = 0;
899 	} else {
900 		sensor->flags &= ~SENSOR_FINVALID;
901 		sensor->value = 1350000 / (data << divisor);
902 	}
903 }
904 
905 void
wb_nct6776f_refresh_fanrpm(struct lm_softc * sc,int n)906 wb_nct6776f_refresh_fanrpm(struct lm_softc *sc, int n)
907 {
908 	struct ksensor *sensor = &sc->sensors[n];
909 	int datah, datal;
910 
911 	datah = sc->lm_readreg(sc, sc->lm_sensors[n].reg);
912 	datal = sc->lm_readreg(sc, sc->lm_sensors[n].reg + 1);
913 
914 	if (datah == 0xff) {
915 		sensor->flags |= SENSOR_FINVALID;
916 		sensor->value = 0;
917 	} else {
918 		sensor->flags &= ~SENSOR_FINVALID;
919 		sensor->value = (datah << 8) | datal;
920 	}
921 }
922 
923 void
wb_w83792d_refresh_fanrpm(struct lm_softc * sc,int n)924 wb_w83792d_refresh_fanrpm(struct lm_softc *sc, int n)
925 {
926 	struct ksensor *sensor = &sc->sensors[n];
927 	int reg, shift, data, divisor = 1;
928 
929 	switch (sc->lm_sensors[n].reg) {
930 	case 0x28:
931 		reg = 0x47; shift = 0;
932 		break;
933 	case 0x29:
934 		reg = 0x47; shift = 4;
935 		break;
936 	case 0x2a:
937 		reg = 0x5b; shift = 0;
938 		break;
939 	case 0xb8:
940 		reg = 0x5b; shift = 4;
941 		break;
942 	case 0xb9:
943 		reg = 0x5c; shift = 0;
944 		break;
945 	case 0xba:
946 		reg = 0x5c; shift = 4;
947 		break;
948 	case 0xbe:
949 		reg = 0x9e; shift = 0;
950 		break;
951 	default:
952 		reg = 0;
953 		break;
954 	}
955 
956 	data = sc->lm_readreg(sc, sc->lm_sensors[n].reg);
957 	if (data == 0xff || data == 0x00) {
958 		sensor->flags |= SENSOR_FINVALID;
959 		sensor->value = 0;
960 	} else {
961 		if (reg != 0)
962 			divisor = (sc->lm_readreg(sc, reg) >> shift) & 0x7;
963 		sensor->flags &= ~SENSOR_FINVALID;
964 		sensor->value = 1350000 / (data << divisor);
965 	}
966 }
967 
968 void
as_refresh_temp(struct lm_softc * sc,int n)969 as_refresh_temp(struct lm_softc *sc, int n)
970 {
971 	struct ksensor *sensor = &sc->sensors[n];
972 	int sdata;
973 
974 	/*
975 	 * It seems a shorted temperature diode produces an all-ones
976 	 * bit pattern.
977 	 */
978 	sdata = sc->lm_readreg(sc, sc->lm_sensors[n].reg) << 1;
979 	sdata += sc->lm_readreg(sc, sc->lm_sensors[n].reg + 1) >> 7;
980 	if (sdata == 0x1ff) {
981 		sensor->flags |= SENSOR_FINVALID;
982 		sensor->value = 0;
983 	} else {
984 		if (sdata & 0x100)
985 			sdata -= 0x200;
986 		sensor->flags &= ~SENSOR_FINVALID;
987 		sensor->value = sdata * 500000 + 273150000;
988 	}
989 }
990