xref: /openbsd/lib/libc/time/localtime.c (revision 17f67a8b)
1 /*	$OpenBSD: localtime.c,v 1.66 2024/04/04 02:20:01 millert Exp $ */
2 /*
3 ** This file is in the public domain, so clarified as of
4 ** 1996-06-05 by Arthur David Olson.
5 */
6 
7 /*
8 ** Leap second handling from Bradley White.
9 ** POSIX-style TZ environment variable handling from Guy Harris.
10 */
11 
12 #include <ctype.h>
13 #include <errno.h>
14 #include <fcntl.h>
15 #include <stdint.h>
16 #include <stdlib.h>
17 #include <string.h>
18 #include <unistd.h>
19 
20 #include "private.h"
21 #include "tzfile.h"
22 #include "thread_private.h"
23 
24 #ifndef TZ_ABBR_MAX_LEN
25 #define TZ_ABBR_MAX_LEN	16
26 #endif /* !defined TZ_ABBR_MAX_LEN */
27 
28 #ifndef TZ_ABBR_CHAR_SET
29 #define TZ_ABBR_CHAR_SET \
30 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
31 #endif /* !defined TZ_ABBR_CHAR_SET */
32 
33 #ifndef TZ_ABBR_ERR_CHAR
34 #define TZ_ABBR_ERR_CHAR	'_'
35 #endif /* !defined TZ_ABBR_ERR_CHAR */
36 
37 #ifndef WILDABBR
38 /*
39 ** Someone might make incorrect use of a time zone abbreviation:
40 **	1.	They might reference tzname[0] before calling tzset (explicitly
41 **		or implicitly).
42 **	2.	They might reference tzname[1] before calling tzset (explicitly
43 **		or implicitly).
44 **	3.	They might reference tzname[1] after setting to a time zone
45 **		in which Daylight Saving Time is never observed.
46 **	4.	They might reference tzname[0] after setting to a time zone
47 **		in which Standard Time is never observed.
48 **	5.	They might reference tm.tm_zone after calling offtime.
49 ** What's best to do in the above cases is open to debate;
50 ** for now, we just set things up so that in any of the five cases
51 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
52 ** string "tzname[0] used before set", and similarly for the other cases.
53 ** And another: initialize tzname[0] to "ERA", with an explanation in the
54 ** manual page of what this "time zone abbreviation" means (doing this so
55 ** that tzname[0] has the "normal" length of three characters).
56 */
57 #define WILDABBR	"   "
58 #endif /* !defined WILDABBR */
59 
60 static char		wildabbr[] = WILDABBR;
61 
62 static const char	gmt[] = "GMT";
63 
64 /*
65 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
66 ** We default to US rules as of 1999-08-17.
67 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
68 ** implementation dependent; for historical reasons, US rules are a
69 ** common default.
70 */
71 #ifndef TZDEFRULESTRING
72 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
73 #endif /* !defined TZDEFDST */
74 
75 struct ttinfo {				/* time type information */
76 	long		tt_gmtoff;	/* UTC offset in seconds */
77 	int		tt_isdst;	/* used to set tm_isdst */
78 	int		tt_abbrind;	/* abbreviation list index */
79 	int		tt_ttisstd;	/* TRUE if transition is std time */
80 	int		tt_ttisgmt;	/* TRUE if transition is UTC */
81 };
82 
83 struct lsinfo {				/* leap second information */
84 	time_t		ls_trans;	/* transition time */
85 	long		ls_corr;	/* correction to apply */
86 };
87 
88 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
89 
90 #ifdef TZNAME_MAX
91 #define MY_TZNAME_MAX	TZNAME_MAX
92 #endif /* defined TZNAME_MAX */
93 #ifndef TZNAME_MAX
94 #define MY_TZNAME_MAX	255
95 #endif /* !defined TZNAME_MAX */
96 
97 struct state {
98 	int		leapcnt;
99 	int		timecnt;
100 	int		typecnt;
101 	int		charcnt;
102 	int		goback;
103 	int		goahead;
104 	time_t		ats[TZ_MAX_TIMES];
105 	unsigned char	types[TZ_MAX_TIMES];
106 	struct ttinfo	ttis[TZ_MAX_TYPES];
107 	char		chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
108 			    (2 * (MY_TZNAME_MAX + 1)))];
109 	struct lsinfo	lsis[TZ_MAX_LEAPS];
110 };
111 
112 struct rule {
113 	int		r_type;		/* type of rule--see below */
114 	int		r_day;		/* day number of rule */
115 	int		r_week;		/* week number of rule */
116 	int		r_mon;		/* month number of rule */
117 	long		r_time;		/* transition time of rule */
118 };
119 
120 #define JULIAN_DAY		0	/* Jn - Julian day */
121 #define DAY_OF_YEAR		1	/* n - day of year */
122 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
123 
124 /*
125 ** Prototypes for static functions.
126 */
127 
128 static long		detzcode(const char * codep);
129 static time_t		detzcode64(const char * codep);
130 static int		differ_by_repeat(time_t t1, time_t t0);
131 static const char *	getzname(const char * strp);
132 static const char *	getqzname(const char * strp, const int delim);
133 static const char *	getnum(const char * strp, int * nump, int min,
134 				int max);
135 static const char *	getsecs(const char * strp, long * secsp);
136 static const char *	getoffset(const char * strp, long * offsetp);
137 static const char *	getrule(const char * strp, struct rule * rulep);
138 static void		gmtload(struct state * sp);
139 static struct tm *	gmtsub(const time_t * timep, long offset,
140 				struct tm * tmp);
141 static struct tm *	localsub(const time_t * timep, long offset,
142 				struct tm * tmp);
143 static int		increment_overflow(int * number, int delta);
144 static int		leaps_thru_end_of(int y);
145 static int		long_increment_overflow(long * number, int delta);
146 static int		long_normalize_overflow(long * tensptr,
147 				int * unitsptr, int base);
148 static int		normalize_overflow(int * tensptr, int * unitsptr,
149 				int base);
150 static void		settzname(void);
151 static time_t		time1(struct tm * tmp,
152 				struct tm * (*funcp)(const time_t *,
153 				long, struct tm *),
154 				long offset);
155 static time_t		time2(struct tm *tmp,
156 				struct tm * (*funcp)(const time_t *,
157 				long, struct tm*),
158 				long offset, int * okayp);
159 static time_t		time2sub(struct tm *tmp,
160 				struct tm * (*funcp)(const time_t *,
161 				long, struct tm*),
162 				long offset, int * okayp, int do_norm_secs);
163 static struct tm *	timesub(const time_t * timep, long offset,
164 				const struct state * sp, struct tm * tmp);
165 static int		tmcomp(const struct tm * atmp,
166 				const struct tm * btmp);
167 static time_t		transtime(time_t janfirst, int year,
168 				const struct rule * rulep, long offset);
169 static int		typesequiv(const struct state * sp, int a, int b);
170 static int		tzload(const char * name, struct state * sp,
171 				int doextend);
172 static int		tzparse(const char * name, struct state * sp,
173 				int lastditch);
174 
175 #ifdef STD_INSPIRED
176 struct tm	*offtime(const time_t *, long);
177 time_t		time2posix(time_t);
178 time_t		posix2time(time_t);
179 PROTO_DEPRECATED(offtime);
180 PROTO_DEPRECATED(time2posix);
181 PROTO_DEPRECATED(posix2time);
182 #endif
183 
184 static struct state *	lclptr;
185 static struct state *	gmtptr;
186 
187 
188 #ifndef TZ_STRLEN_MAX
189 #define TZ_STRLEN_MAX 255
190 #endif /* !defined TZ_STRLEN_MAX */
191 
192 static int		lcl_is_set;
193 static int		gmt_is_set;
194 _THREAD_PRIVATE_MUTEX(lcl);
195 _THREAD_PRIVATE_MUTEX(gmt);
196 
197 char *			tzname[2] = {
198 	wildabbr,
199 	wildabbr
200 };
201 #if 0
202 DEF_WEAK(tzname);
203 #endif
204 
205 /*
206 ** Section 4.12.3 of X3.159-1989 requires that
207 **	Except for the strftime function, these functions [asctime,
208 **	ctime, gmtime, localtime] return values in one of two static
209 **	objects: a broken-down time structure and an array of char.
210 ** Thanks to Paul Eggert for noting this.
211 */
212 
213 static struct tm	tm;
214 
215 long			timezone = 0;
216 int			daylight = 0;
217 
218 static long
detzcode(const char * codep)219 detzcode(const char *codep)
220 {
221 	long	result;
222 	int	i;
223 
224 	result = (codep[0] & 0x80) ? ~0L : 0;
225 	for (i = 0; i < 4; ++i)
226 		result = (result << 8) | (codep[i] & 0xff);
227 	return result;
228 }
229 
230 static time_t
detzcode64(const char * codep)231 detzcode64(const char *codep)
232 {
233 	time_t	result;
234 	int	i;
235 
236 	result = (codep[0] & 0x80) ?  (~(int_fast64_t) 0) : 0;
237 	for (i = 0; i < 8; ++i)
238 		result = result * 256 + (codep[i] & 0xff);
239 	return result;
240 }
241 
242 static void
settzname(void)243 settzname(void)
244 {
245 	struct state * const	sp = lclptr;
246 	int			i;
247 
248 	tzname[0] = wildabbr;
249 	tzname[1] = wildabbr;
250 	daylight = 0;
251 	timezone = 0;
252 	if (sp == NULL) {
253 		tzname[0] = tzname[1] = (char *)gmt;
254 		return;
255 	}
256 	/*
257 	** And to get the latest zone names into tzname. . .
258 	*/
259 	for (i = 0; i < sp->timecnt; ++i) {
260 		const struct ttinfo *ttisp = &sp->ttis[sp->types[i]];
261 
262 		tzname[ttisp->tt_isdst] = &sp->chars[ttisp->tt_abbrind];
263 		if (ttisp->tt_isdst)
264 			daylight = 1;
265 		if (!ttisp->tt_isdst)
266 			timezone = -(ttisp->tt_gmtoff);
267 	}
268 	/*
269 	** Finally, scrub the abbreviations.
270 	** First, replace bogus characters.
271 	*/
272 	for (i = 0; i < sp->charcnt; ++i) {
273 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
274 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
275 	}
276 	/*
277 	** Second, truncate long abbreviations.
278 	*/
279 	for (i = 0; i < sp->typecnt; ++i) {
280 		const struct ttinfo *ttisp = &sp->ttis[i];
281 		char *cp = &sp->chars[ttisp->tt_abbrind];
282 
283 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
284 		    strcmp(cp, GRANDPARENTED) != 0)
285 			*(cp + TZ_ABBR_MAX_LEN) = '\0';
286 	}
287 }
288 
289 static int
differ_by_repeat(time_t t1,time_t t0)290 differ_by_repeat(time_t t1, time_t t0)
291 {
292 	if (TYPE_BIT(time_t) - 1 < SECSPERREPEAT_BITS)
293 		return 0;
294 	return (int64_t)t1 - t0 == SECSPERREPEAT;
295 }
296 
297 static int
tzpath_ok(const char * name)298 tzpath_ok(const char *name)
299 {
300 	/* Reject absolute paths that don't start with TZDIR.  */
301 	if (name[0] == '/' && (strncmp(name, TZDIR, sizeof(TZDIR) - 1) != 0 ||
302 	    name[sizeof(TZDIR) - 1] != '/'))
303 		return 0;
304 
305 	/* Reject paths that contain "../". */
306 	if (strstr(name, "../") != NULL)
307 		return 0;
308 
309 	return 1;
310 }
311 
312 static int
open_tzfile(const char * name)313 open_tzfile(const char *name)
314 {
315 	char fullname[PATH_MAX];
316 	int i;
317 
318 	if (name != NULL) {
319 		/*
320 		 * POSIX section 8 says that names starting with a ':' are
321 		 * "implementation-defined".  We treat them as timezone paths.
322 		 */
323 		if (name[0] == ':')
324 			name++;
325 
326 		/*
327 		 * Ignore absolute paths that don't start with TZDIR
328 		 * or that contain "../".
329 		 */
330 		if (!tzpath_ok(name))
331 			name = NULL;
332 	}
333 
334 	if (name == NULL) {
335 		name = TZDEFAULT;
336 	} else if (name[0] != '/') {
337 		/* Time zone data path is relative to TZDIR. */
338 		i = snprintf(fullname, sizeof(fullname), "%s/%s", TZDIR, name);
339 		if (i < 0 || i >= sizeof(fullname)) {
340 			errno = ENAMETOOLONG;
341 			return -1;
342 		}
343 		name = fullname;
344 	}
345 
346 	return open(name, O_RDONLY);
347 }
348 
349 static int
tzload(const char * name,struct state * sp,int doextend)350 tzload(const char *name, struct state *sp, int doextend)
351 {
352 	const char *		p;
353 	int			i;
354 	int			fid;
355 	int			stored;
356 	int			nread;
357 	typedef union {
358 		struct tzhead	tzhead;
359 		char		buf[2 * sizeof(struct tzhead) +
360 				    2 * sizeof *sp +
361 				    4 * TZ_MAX_TIMES];
362 	} u_t;
363 	u_t *			up;
364 
365 	up = calloc(1, sizeof *up);
366 	if (up == NULL)
367 		return -1;
368 
369 	sp->goback = sp->goahead = FALSE;
370 
371 	if ((fid = open_tzfile(name)) == -1) {
372 		/* Could be a POSIX section 8-style TZ string. */
373 		goto oops;
374 	}
375 
376 	nread = read(fid, up->buf, sizeof up->buf);
377 	if (close(fid) == -1 || nread <= 0)
378 		goto oops;
379 	for (stored = 4; stored <= 8; stored *= 2) {
380 		int		ttisstdcnt;
381 		int		ttisgmtcnt;
382 
383 		ttisstdcnt = (int) detzcode(up->tzhead.tzh_ttisstdcnt);
384 		ttisgmtcnt = (int) detzcode(up->tzhead.tzh_ttisgmtcnt);
385 		sp->leapcnt = (int) detzcode(up->tzhead.tzh_leapcnt);
386 		sp->timecnt = (int) detzcode(up->tzhead.tzh_timecnt);
387 		sp->typecnt = (int) detzcode(up->tzhead.tzh_typecnt);
388 		sp->charcnt = (int) detzcode(up->tzhead.tzh_charcnt);
389 		p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt;
390 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
391 		    sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
392 		    sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
393 		    sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
394 		    (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
395 		    (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
396 			goto oops;
397 		if (nread - (p - up->buf) <
398 		    sp->timecnt * stored +		/* ats */
399 		    sp->timecnt +			/* types */
400 		    sp->typecnt * 6 +		/* ttinfos */
401 		    sp->charcnt +			/* chars */
402 		    sp->leapcnt * (stored + 4) +	/* lsinfos */
403 		    ttisstdcnt +			/* ttisstds */
404 		    ttisgmtcnt)			/* ttisgmts */
405 			goto oops;
406 		for (i = 0; i < sp->timecnt; ++i) {
407 			sp->ats[i] = (stored == 4) ?
408 			    detzcode(p) : detzcode64(p);
409 			p += stored;
410 		}
411 		for (i = 0; i < sp->timecnt; ++i) {
412 			sp->types[i] = (unsigned char) *p++;
413 			if (sp->types[i] >= sp->typecnt)
414 				goto oops;
415 		}
416 		for (i = 0; i < sp->typecnt; ++i) {
417 			struct ttinfo *	ttisp;
418 
419 			ttisp = &sp->ttis[i];
420 			ttisp->tt_gmtoff = detzcode(p);
421 			p += 4;
422 			ttisp->tt_isdst = (unsigned char) *p++;
423 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
424 				goto oops;
425 			ttisp->tt_abbrind = (unsigned char) *p++;
426 			if (ttisp->tt_abbrind < 0 ||
427 			    ttisp->tt_abbrind > sp->charcnt)
428 				goto oops;
429 		}
430 		for (i = 0; i < sp->charcnt; ++i)
431 			sp->chars[i] = *p++;
432 		sp->chars[i] = '\0';	/* ensure '\0' at end */
433 		for (i = 0; i < sp->leapcnt; ++i) {
434 			struct lsinfo *	lsisp;
435 
436 			lsisp = &sp->lsis[i];
437 			lsisp->ls_trans = (stored == 4) ?
438 			    detzcode(p) : detzcode64(p);
439 			p += stored;
440 			lsisp->ls_corr = detzcode(p);
441 			p += 4;
442 		}
443 		for (i = 0; i < sp->typecnt; ++i) {
444 			struct ttinfo *	ttisp;
445 
446 			ttisp = &sp->ttis[i];
447 			if (ttisstdcnt == 0)
448 				ttisp->tt_ttisstd = FALSE;
449 			else {
450 				ttisp->tt_ttisstd = *p++;
451 				if (ttisp->tt_ttisstd != TRUE &&
452 				    ttisp->tt_ttisstd != FALSE)
453 					goto oops;
454 			}
455 		}
456 		for (i = 0; i < sp->typecnt; ++i) {
457 			struct ttinfo *	ttisp;
458 
459 			ttisp = &sp->ttis[i];
460 			if (ttisgmtcnt == 0)
461 				ttisp->tt_ttisgmt = FALSE;
462 			else {
463 				ttisp->tt_ttisgmt = *p++;
464 				if (ttisp->tt_ttisgmt != TRUE &&
465 				    ttisp->tt_ttisgmt != FALSE)
466 					goto oops;
467 			}
468 		}
469 		/*
470 		** Out-of-sort ats should mean we're running on a
471 		** signed time_t system but using a data file with
472 		** unsigned values (or vice versa).
473 		*/
474 		for (i = 0; i < sp->timecnt - 2; ++i)
475 			if (sp->ats[i] > sp->ats[i + 1]) {
476 				++i;
477 				/*
478 				** Ignore the end (easy).
479 				*/
480 				sp->timecnt = i;
481 				break;
482 			}
483 		/*
484 		** If this is an old file, we're done.
485 		*/
486 		if (up->tzhead.tzh_version[0] == '\0')
487 			break;
488 		nread -= p - up->buf;
489 		for (i = 0; i < nread; ++i)
490 			up->buf[i] = p[i];
491 		/*
492 		** If this is a narrow integer time_t system, we're done.
493 		*/
494 		if (stored >= sizeof(time_t))
495 			break;
496 	}
497 	if (doextend && nread > 2 &&
498 	    up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
499 	    sp->typecnt + 2 <= TZ_MAX_TYPES) {
500 		struct state	ts;
501 		int	result;
502 
503 		up->buf[nread - 1] = '\0';
504 		result = tzparse(&up->buf[1], &ts, FALSE);
505 		if (result == 0 && ts.typecnt == 2 &&
506 		    sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
507 			for (i = 0; i < 2; ++i)
508 				ts.ttis[i].tt_abbrind +=
509 				    sp->charcnt;
510 			for (i = 0; i < ts.charcnt; ++i)
511 				sp->chars[sp->charcnt++] =
512 				    ts.chars[i];
513 			i = 0;
514 			while (i < ts.timecnt &&
515 			    ts.ats[i] <=
516 			    sp->ats[sp->timecnt - 1])
517 				++i;
518 			while (i < ts.timecnt &&
519 			    sp->timecnt < TZ_MAX_TIMES) {
520 				sp->ats[sp->timecnt] =
521 				    ts.ats[i];
522 				sp->types[sp->timecnt] =
523 				    sp->typecnt +
524 				    ts.types[i];
525 				++sp->timecnt;
526 				++i;
527 			}
528 			sp->ttis[sp->typecnt++] = ts.ttis[0];
529 			sp->ttis[sp->typecnt++] = ts.ttis[1];
530 		}
531 	}
532 	if (sp->timecnt > 1) {
533 		for (i = 1; i < sp->timecnt; ++i) {
534 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
535 			    differ_by_repeat(sp->ats[i], sp->ats[0])) {
536 				sp->goback = TRUE;
537 				break;
538 			}
539 		}
540 		for (i = sp->timecnt - 2; i >= 0; --i) {
541 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
542 			    sp->types[i]) &&
543 			    differ_by_repeat(sp->ats[sp->timecnt - 1],
544 			    sp->ats[i])) {
545 				sp->goahead = TRUE;
546 				break;
547 			}
548 		}
549 	}
550 	free(up);
551 	return 0;
552 oops:
553 	free(up);
554 	return -1;
555 }
556 
557 static int
typesequiv(const struct state * sp,int a,int b)558 typesequiv(const struct state *sp, int a, int b)
559 {
560 	int	result;
561 
562 	if (sp == NULL ||
563 	    a < 0 || a >= sp->typecnt ||
564 	    b < 0 || b >= sp->typecnt)
565 		result = FALSE;
566 	else {
567 		const struct ttinfo *	ap = &sp->ttis[a];
568 		const struct ttinfo *	bp = &sp->ttis[b];
569 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
570 		    ap->tt_isdst == bp->tt_isdst &&
571 		    ap->tt_ttisstd == bp->tt_ttisstd &&
572 		    ap->tt_ttisgmt == bp->tt_ttisgmt &&
573 		    strcmp(&sp->chars[ap->tt_abbrind],
574 		    &sp->chars[bp->tt_abbrind]) == 0;
575 	}
576 	return result;
577 }
578 
579 static const int	mon_lengths[2][MONSPERYEAR] = {
580 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
581 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
582 };
583 
584 static const int	year_lengths[2] = {
585 	DAYSPERNYEAR, DAYSPERLYEAR
586 };
587 
588 /*
589 ** Given a pointer into a time zone string, scan until a character that is not
590 ** a valid character in a zone name is found. Return a pointer to that
591 ** character.
592 */
593 
594 static const char *
getzname(const char * strp)595 getzname(const char *strp)
596 {
597 	char	c;
598 
599 	while ((c = *strp) != '\0' && !isdigit((unsigned char)c) && c != ',' && c != '-' &&
600 	    c != '+')
601 		++strp;
602 	return strp;
603 }
604 
605 /*
606 ** Given a pointer into an extended time zone string, scan until the ending
607 ** delimiter of the zone name is located. Return a pointer to the delimiter.
608 **
609 ** As with getzname above, the legal character set is actually quite
610 ** restricted, with other characters producing undefined results.
611 ** We don't do any checking here; checking is done later in common-case code.
612 */
613 
614 static const char *
getqzname(const char * strp,const int delim)615 getqzname(const char *strp, const int delim)
616 {
617 	int	c;
618 
619 	while ((c = *strp) != '\0' && c != delim)
620 		++strp;
621 	return strp;
622 }
623 
624 /*
625 ** Given a pointer into a time zone string, extract a number from that string.
626 ** Check that the number is within a specified range; if it is not, return
627 ** NULL.
628 ** Otherwise, return a pointer to the first character not part of the number.
629 */
630 
631 static const char *
getnum(const char * strp,int * nump,int min,int max)632 getnum(const char *strp, int *nump, int min, int max)
633 {
634 	char	c;
635 	int	num;
636 
637 	if (strp == NULL || !isdigit((unsigned char)(c = *strp)))
638 		return NULL;
639 	num = 0;
640 	do {
641 		num = num * 10 + (c - '0');
642 		if (num > max)
643 			return NULL;	/* illegal value */
644 		c = *++strp;
645 	} while (isdigit((unsigned char)c));
646 	if (num < min)
647 		return NULL;		/* illegal value */
648 	*nump = num;
649 	return strp;
650 }
651 
652 /*
653 ** Given a pointer into a time zone string, extract a number of seconds,
654 ** in hh[:mm[:ss]] form, from the string.
655 ** If any error occurs, return NULL.
656 ** Otherwise, return a pointer to the first character not part of the number
657 ** of seconds.
658 */
659 
660 static const char *
getsecs(const char * strp,long * secsp)661 getsecs(const char *strp, long *secsp)
662 {
663 	int	num;
664 
665 	/*
666 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
667 	** "M10.4.6/26", which does not conform to Posix,
668 	** but which specifies the equivalent of
669 	** ``02:00 on the first Sunday on or after 23 Oct''.
670 	*/
671 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
672 	if (strp == NULL)
673 		return NULL;
674 	*secsp = num * (long) SECSPERHOUR;
675 	if (*strp == ':') {
676 		++strp;
677 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
678 		if (strp == NULL)
679 			return NULL;
680 		*secsp += num * SECSPERMIN;
681 		if (*strp == ':') {
682 			++strp;
683 			/* `SECSPERMIN' allows for leap seconds. */
684 			strp = getnum(strp, &num, 0, SECSPERMIN);
685 			if (strp == NULL)
686 				return NULL;
687 			*secsp += num;
688 		}
689 	}
690 	return strp;
691 }
692 
693 /*
694 ** Given a pointer into a time zone string, extract an offset, in
695 ** [+-]hh[:mm[:ss]] form, from the string.
696 ** If any error occurs, return NULL.
697 ** Otherwise, return a pointer to the first character not part of the time.
698 */
699 
700 static const char *
getoffset(const char * strp,long * offsetp)701 getoffset(const char *strp, long *offsetp)
702 {
703 	int	neg = 0;
704 
705 	if (*strp == '-') {
706 		neg = 1;
707 		++strp;
708 	} else if (*strp == '+')
709 		++strp;
710 	strp = getsecs(strp, offsetp);
711 	if (strp == NULL)
712 		return NULL;		/* illegal time */
713 	if (neg)
714 		*offsetp = -*offsetp;
715 	return strp;
716 }
717 
718 /*
719 ** Given a pointer into a time zone string, extract a rule in the form
720 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
721 ** If a valid rule is not found, return NULL.
722 ** Otherwise, return a pointer to the first character not part of the rule.
723 */
724 
725 static const char *
getrule(const char * strp,struct rule * rulep)726 getrule(const char *strp, struct rule *rulep)
727 {
728 	if (*strp == 'J') {
729 		/*
730 		** Julian day.
731 		*/
732 		rulep->r_type = JULIAN_DAY;
733 		++strp;
734 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
735 	} else if (*strp == 'M') {
736 		/*
737 		** Month, week, day.
738 		*/
739 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
740 		++strp;
741 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
742 		if (strp == NULL)
743 			return NULL;
744 		if (*strp++ != '.')
745 			return NULL;
746 		strp = getnum(strp, &rulep->r_week, 1, 5);
747 		if (strp == NULL)
748 			return NULL;
749 		if (*strp++ != '.')
750 			return NULL;
751 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
752 	} else if (isdigit((unsigned char)*strp)) {
753 		/*
754 		** Day of year.
755 		*/
756 		rulep->r_type = DAY_OF_YEAR;
757 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
758 	} else
759 		return NULL;		/* invalid format */
760 	if (strp == NULL)
761 		return NULL;
762 	if (*strp == '/') {
763 		/*
764 		** Time specified.
765 		*/
766 		++strp;
767 		strp = getsecs(strp, &rulep->r_time);
768 	} else
769 		rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
770 	return strp;
771 }
772 
773 /*
774 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
775 ** year, a rule, and the offset from UTC at the time that rule takes effect,
776 ** calculate the Epoch-relative time that rule takes effect.
777 */
778 
779 static time_t
transtime(time_t janfirst,int year,const struct rule * rulep,long offset)780 transtime(time_t janfirst, int year, const struct rule *rulep, long offset)
781 {
782 	int	leapyear;
783 	time_t	value;
784 	int	i;
785 	int		d, m1, yy0, yy1, yy2, dow;
786 
787 	value = 0;
788 	leapyear = isleap(year);
789 	switch (rulep->r_type) {
790 
791 	case JULIAN_DAY:
792 		/*
793 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
794 		** years.
795 		** In non-leap years, or if the day number is 59 or less, just
796 		** add SECSPERDAY times the day number-1 to the time of
797 		** January 1, midnight, to get the day.
798 		*/
799 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
800 		if (leapyear && rulep->r_day >= 60)
801 			value += SECSPERDAY;
802 		break;
803 
804 	case DAY_OF_YEAR:
805 		/*
806 		** n - day of year.
807 		** Just add SECSPERDAY times the day number to the time of
808 		** January 1, midnight, to get the day.
809 		*/
810 		value = janfirst + rulep->r_day * SECSPERDAY;
811 		break;
812 
813 	case MONTH_NTH_DAY_OF_WEEK:
814 		/*
815 		** Mm.n.d - nth "dth day" of month m.
816 		*/
817 		value = janfirst;
818 		for (i = 0; i < rulep->r_mon - 1; ++i)
819 			value += mon_lengths[leapyear][i] * SECSPERDAY;
820 
821 		/*
822 		** Use Zeller's Congruence to get day-of-week of first day of
823 		** month.
824 		*/
825 		m1 = (rulep->r_mon + 9) % 12 + 1;
826 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
827 		yy1 = yy0 / 100;
828 		yy2 = yy0 % 100;
829 		dow = ((26 * m1 - 2) / 10 +
830 		    1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
831 		if (dow < 0)
832 			dow += DAYSPERWEEK;
833 
834 		/*
835 		** "dow" is the day-of-week of the first day of the month. Get
836 		** the day-of-month (zero-origin) of the first "dow" day of the
837 		** month.
838 		*/
839 		d = rulep->r_day - dow;
840 		if (d < 0)
841 			d += DAYSPERWEEK;
842 		for (i = 1; i < rulep->r_week; ++i) {
843 			if (d + DAYSPERWEEK >=
844 			    mon_lengths[leapyear][rulep->r_mon - 1])
845 				break;
846 			d += DAYSPERWEEK;
847 		}
848 
849 		/*
850 		** "d" is the day-of-month (zero-origin) of the day we want.
851 		*/
852 		value += d * SECSPERDAY;
853 		break;
854 	}
855 
856 	/*
857 	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
858 	** question. To get the Epoch-relative time of the specified local
859 	** time on that day, add the transition time and the current offset
860 	** from UTC.
861 	*/
862 	return value + rulep->r_time + offset;
863 }
864 
865 /*
866 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
867 ** appropriate.
868 */
869 
870 static int
tzparse(const char * name,struct state * sp,int lastditch)871 tzparse(const char *name, struct state *sp, int lastditch)
872 {
873 	const char *			stdname;
874 	const char *			dstname;
875 	size_t				stdlen;
876 	size_t				dstlen;
877 	long				stdoffset;
878 	long				dstoffset;
879 	time_t *		atp;
880 	unsigned char *	typep;
881 	char *			cp;
882 	int			load_result;
883 	static struct ttinfo		zttinfo;
884 
885 	dstname = NULL;
886 	stdname = name;
887 	if (lastditch) {
888 		stdlen = strlen(name);	/* length of standard zone name */
889 		name += stdlen;
890 		if (stdlen >= sizeof sp->chars)
891 			stdlen = (sizeof sp->chars) - 1;
892 		stdoffset = 0;
893 	} else {
894 		if (*name == '<') {
895 			name++;
896 			stdname = name;
897 			name = getqzname(name, '>');
898 			if (*name != '>')
899 				return (-1);
900 			stdlen = name - stdname;
901 			name++;
902 		} else {
903 			name = getzname(name);
904 			stdlen = name - stdname;
905 		}
906 		if (*name == '\0')
907 			return -1;
908 		name = getoffset(name, &stdoffset);
909 		if (name == NULL)
910 			return -1;
911 	}
912 	load_result = tzload(TZDEFRULES, sp, FALSE);
913 	if (load_result != 0)
914 		sp->leapcnt = 0;		/* so, we're off a little */
915 	if (*name != '\0') {
916 		if (*name == '<') {
917 			dstname = ++name;
918 			name = getqzname(name, '>');
919 			if (*name != '>')
920 				return -1;
921 			dstlen = name - dstname;
922 			name++;
923 		} else {
924 			dstname = name;
925 			name = getzname(name);
926 			dstlen = name - dstname; /* length of DST zone name */
927 		}
928 		if (*name != '\0' && *name != ',' && *name != ';') {
929 			name = getoffset(name, &dstoffset);
930 			if (name == NULL)
931 				return -1;
932 		} else
933 			dstoffset = stdoffset - SECSPERHOUR;
934 		if (*name == '\0' && load_result != 0)
935 			name = TZDEFRULESTRING;
936 		if (*name == ',' || *name == ';') {
937 			struct rule	start;
938 			struct rule	end;
939 			int		year;
940 			time_t		janfirst;
941 			time_t		starttime;
942 			time_t		endtime;
943 
944 			++name;
945 			if ((name = getrule(name, &start)) == NULL)
946 				return -1;
947 			if (*name++ != ',')
948 				return -1;
949 			if ((name = getrule(name, &end)) == NULL)
950 				return -1;
951 			if (*name != '\0')
952 				return -1;
953 			sp->typecnt = 2;	/* standard time and DST */
954 			/*
955 			** Two transitions per year, from EPOCH_YEAR forward.
956 			*/
957 			sp->ttis[0] = sp->ttis[1] = zttinfo;
958 			sp->ttis[0].tt_gmtoff = -dstoffset;
959 			sp->ttis[0].tt_isdst = 1;
960 			sp->ttis[0].tt_abbrind = stdlen + 1;
961 			sp->ttis[1].tt_gmtoff = -stdoffset;
962 			sp->ttis[1].tt_isdst = 0;
963 			sp->ttis[1].tt_abbrind = 0;
964 			atp = sp->ats;
965 			typep = sp->types;
966 			janfirst = 0;
967 			sp->timecnt = 0;
968 			for (year = EPOCH_YEAR;
969 			    sp->timecnt + 2 <= TZ_MAX_TIMES;
970 			    ++year) {
971 			    	time_t	newfirst;
972 
973 				starttime = transtime(janfirst, year, &start,
974 				    stdoffset);
975 				endtime = transtime(janfirst, year, &end,
976 				    dstoffset);
977 				if (starttime > endtime) {
978 					*atp++ = endtime;
979 					*typep++ = 1;	/* DST ends */
980 					*atp++ = starttime;
981 					*typep++ = 0;	/* DST begins */
982 				} else {
983 					*atp++ = starttime;
984 					*typep++ = 0;	/* DST begins */
985 					*atp++ = endtime;
986 					*typep++ = 1;	/* DST ends */
987 				}
988 				sp->timecnt += 2;
989 				newfirst = janfirst;
990 				newfirst += year_lengths[isleap(year)] *
991 				    SECSPERDAY;
992 				if (newfirst <= janfirst)
993 					break;
994 				janfirst = newfirst;
995 			}
996 		} else {
997 			long	theirstdoffset;
998 			long	theirdstoffset;
999 			long	theiroffset;
1000 			int	isdst;
1001 			int	i;
1002 			int	j;
1003 
1004 			if (*name != '\0')
1005 				return -1;
1006 			/*
1007 			** Initial values of theirstdoffset and theirdstoffset.
1008 			*/
1009 			theirstdoffset = 0;
1010 			for (i = 0; i < sp->timecnt; ++i) {
1011 				j = sp->types[i];
1012 				if (!sp->ttis[j].tt_isdst) {
1013 					theirstdoffset =
1014 						-sp->ttis[j].tt_gmtoff;
1015 					break;
1016 				}
1017 			}
1018 			theirdstoffset = 0;
1019 			for (i = 0; i < sp->timecnt; ++i) {
1020 				j = sp->types[i];
1021 				if (sp->ttis[j].tt_isdst) {
1022 					theirdstoffset =
1023 						-sp->ttis[j].tt_gmtoff;
1024 					break;
1025 				}
1026 			}
1027 			/*
1028 			** Initially we're assumed to be in standard time.
1029 			*/
1030 			isdst = FALSE;
1031 			theiroffset = theirstdoffset;
1032 			/*
1033 			** Now juggle transition times and types
1034 			** tracking offsets as you do.
1035 			*/
1036 			for (i = 0; i < sp->timecnt; ++i) {
1037 				j = sp->types[i];
1038 				sp->types[i] = sp->ttis[j].tt_isdst;
1039 				if (sp->ttis[j].tt_ttisgmt) {
1040 					/* No adjustment to transition time */
1041 				} else {
1042 					/*
1043 					** If summer time is in effect, and the
1044 					** transition time was not specified as
1045 					** standard time, add the summer time
1046 					** offset to the transition time;
1047 					** otherwise, add the standard time
1048 					** offset to the transition time.
1049 					*/
1050 					/*
1051 					** Transitions from DST to DDST
1052 					** will effectively disappear since
1053 					** POSIX provides for only one DST
1054 					** offset.
1055 					*/
1056 					if (isdst && !sp->ttis[j].tt_ttisstd) {
1057 						sp->ats[i] += dstoffset -
1058 						    theirdstoffset;
1059 					} else {
1060 						sp->ats[i] += stdoffset -
1061 						    theirstdoffset;
1062 					}
1063 				}
1064 				theiroffset = -sp->ttis[j].tt_gmtoff;
1065 				if (sp->ttis[j].tt_isdst)
1066 					theirdstoffset = theiroffset;
1067 				else
1068 					theirstdoffset = theiroffset;
1069 			}
1070 			/*
1071 			** Finally, fill in ttis.
1072 			*/
1073 			sp->ttis[0] = sp->ttis[1] = zttinfo;
1074 			sp->ttis[0].tt_gmtoff = -stdoffset;
1075 			sp->ttis[0].tt_isdst = FALSE;
1076 			sp->ttis[0].tt_abbrind = 0;
1077 			sp->ttis[1].tt_gmtoff = -dstoffset;
1078 			sp->ttis[1].tt_isdst = TRUE;
1079 			sp->ttis[1].tt_abbrind = stdlen + 1;
1080 			sp->typecnt = 2;
1081 		}
1082 	} else {
1083 		dstlen = 0;
1084 		sp->typecnt = 1;		/* only standard time */
1085 		sp->timecnt = 0;
1086 		sp->ttis[0] = zttinfo;
1087 		sp->ttis[0].tt_gmtoff = -stdoffset;
1088 		sp->ttis[0].tt_isdst = 0;
1089 		sp->ttis[0].tt_abbrind = 0;
1090 	}
1091 	sp->charcnt = stdlen + 1;
1092 	if (dstlen != 0)
1093 		sp->charcnt += dstlen + 1;
1094 	if ((size_t) sp->charcnt > sizeof sp->chars)
1095 		return -1;
1096 	cp = sp->chars;
1097 	strlcpy(cp, stdname, stdlen + 1);
1098 	cp += stdlen + 1;
1099 	if (dstlen != 0) {
1100 		strlcpy(cp, dstname, dstlen + 1);
1101 	}
1102 	return 0;
1103 }
1104 
1105 static void
gmtload(struct state * sp)1106 gmtload(struct state *sp)
1107 {
1108 	if (tzload(gmt, sp, TRUE) != 0)
1109 		(void) tzparse(gmt, sp, TRUE);
1110 }
1111 
1112 static void
tzsetwall_basic(void)1113 tzsetwall_basic(void)
1114 {
1115 	if (lcl_is_set < 0)
1116 		return;
1117 	lcl_is_set = -1;
1118 
1119 	if (lclptr == NULL) {
1120 		lclptr = calloc(1, sizeof *lclptr);
1121 		if (lclptr == NULL) {
1122 			settzname();	/* all we can do */
1123 			return;
1124 		}
1125 	}
1126 	if (tzload(NULL, lclptr, TRUE) != 0)
1127 		gmtload(lclptr);
1128 	settzname();
1129 }
1130 
1131 #ifndef STD_INSPIRED
1132 /*
1133 ** A non-static declaration of tzsetwall in a system header file
1134 ** may cause a warning about this upcoming static declaration...
1135 */
1136 static
1137 #endif /* !defined STD_INSPIRED */
1138 void
tzsetwall(void)1139 tzsetwall(void)
1140 {
1141 	_THREAD_PRIVATE_MUTEX_LOCK(lcl);
1142 	tzsetwall_basic();
1143 	_THREAD_PRIVATE_MUTEX_UNLOCK(lcl);
1144 }
1145 
1146 static void
tzset_basic(void)1147 tzset_basic(void)
1148 {
1149 	static char	lcl_TZname[TZ_STRLEN_MAX + 1];
1150 	const char *	name;
1151 
1152 	name = getenv("TZ");
1153 	if (name == NULL) {
1154 		tzsetwall_basic();
1155 		return;
1156 	}
1157 
1158 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1159 		return;
1160 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
1161 	if (lcl_is_set)
1162 		strlcpy(lcl_TZname, name, sizeof lcl_TZname);
1163 
1164 	/* Ignore TZ for setuid/setgid processes. */
1165 	if (issetugid())
1166 		name = TZDEFAULT;
1167 
1168 	if (lclptr == NULL) {
1169 		lclptr = calloc(1, sizeof *lclptr);
1170 		if (lclptr == NULL) {
1171 			settzname();	/* all we can do */
1172 			return;
1173 		}
1174 	}
1175 	if (*name == '\0') {
1176 		/*
1177 		** User wants it fast rather than right.
1178 		*/
1179 		lclptr->leapcnt = 0;		/* so, we're off a little */
1180 		lclptr->timecnt = 0;
1181 		lclptr->typecnt = 0;
1182 		lclptr->ttis[0].tt_isdst = 0;
1183 		lclptr->ttis[0].tt_gmtoff = 0;
1184 		lclptr->ttis[0].tt_abbrind = 0;
1185 		strlcpy(lclptr->chars, gmt, sizeof lclptr->chars);
1186 	} else if (tzload(name, lclptr, TRUE) != 0) {
1187 		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1188 			gmtload(lclptr);
1189 	}
1190 	settzname();
1191 }
1192 
1193 void
tzset(void)1194 tzset(void)
1195 {
1196 	_THREAD_PRIVATE_MUTEX_LOCK(lcl);
1197 	tzset_basic();
1198 	_THREAD_PRIVATE_MUTEX_UNLOCK(lcl);
1199 }
1200 DEF_WEAK(tzset);
1201 
1202 /*
1203 ** The easy way to behave "as if no library function calls" localtime
1204 ** is to not call it--so we drop its guts into "localsub", which can be
1205 ** freely called. (And no, the PANS doesn't require the above behavior--
1206 ** but it *is* desirable.)
1207 **
1208 ** The unused offset argument is for the benefit of mktime variants.
1209 */
1210 
1211 static struct tm *
localsub(const time_t * timep,long offset,struct tm * tmp)1212 localsub(const time_t *timep, long offset, struct tm *tmp)
1213 {
1214 	struct state *		sp;
1215 	const struct ttinfo *	ttisp;
1216 	int			i;
1217 	struct tm *		result;
1218 	const time_t			t = *timep;
1219 
1220 	sp = lclptr;
1221 	if (sp == NULL)
1222 		return gmtsub(timep, offset, tmp);
1223 	if ((sp->goback && t < sp->ats[0]) ||
1224 	    (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1225 		time_t			newt = t;
1226 		time_t		seconds;
1227 		time_t		tcycles;
1228 		int_fast64_t	icycles;
1229 
1230 		if (t < sp->ats[0])
1231 			seconds = sp->ats[0] - t;
1232 		else
1233 			seconds = t - sp->ats[sp->timecnt - 1];
1234 		--seconds;
1235 		tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
1236 		++tcycles;
1237 		icycles = tcycles;
1238 		if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
1239 			return NULL;
1240 		seconds = icycles;
1241 		seconds *= YEARSPERREPEAT;
1242 		seconds *= AVGSECSPERYEAR;
1243 		if (t < sp->ats[0])
1244 			newt += seconds;
1245 		else
1246 			newt -= seconds;
1247 		if (newt < sp->ats[0] ||
1248 		    newt > sp->ats[sp->timecnt - 1])
1249 			return NULL;	/* "cannot happen" */
1250 		result = localsub(&newt, offset, tmp);
1251 		if (result == tmp) {
1252 			time_t	newy;
1253 
1254 			newy = tmp->tm_year;
1255 			if (t < sp->ats[0])
1256 				newy -= icycles * YEARSPERREPEAT;
1257 			else
1258 				newy += icycles * YEARSPERREPEAT;
1259 			tmp->tm_year = newy;
1260 			if (tmp->tm_year != newy)
1261 				return NULL;
1262 		}
1263 		return result;
1264 	}
1265 	if (sp->timecnt == 0 || t < sp->ats[0]) {
1266 		i = 0;
1267 		while (sp->ttis[i].tt_isdst) {
1268 			if (++i >= sp->typecnt) {
1269 				i = 0;
1270 				break;
1271 			}
1272 		}
1273 	} else {
1274 		int	lo = 1;
1275 		int	hi = sp->timecnt;
1276 
1277 		while (lo < hi) {
1278 			int	mid = (lo + hi) >> 1;
1279 
1280 			if (t < sp->ats[mid])
1281 				hi = mid;
1282 			else
1283 				lo = mid + 1;
1284 		}
1285 		i = (int) sp->types[lo - 1];
1286 	}
1287 	ttisp = &sp->ttis[i];
1288 	/*
1289 	** To get (wrong) behavior that's compatible with System V Release 2.0
1290 	** you'd replace the statement below with
1291 	**	t += ttisp->tt_gmtoff;
1292 	**	timesub(&t, 0L, sp, tmp);
1293 	*/
1294 	result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1295 	tmp->tm_isdst = ttisp->tt_isdst;
1296 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1297 	tmp->tm_zone = &sp->chars[ttisp->tt_abbrind];
1298 	return result;
1299 }
1300 
1301 /*
1302 ** Re-entrant version of localtime.
1303 */
1304 
1305 struct tm *
localtime_r(const time_t * timep,struct tm * p_tm)1306 localtime_r(const time_t *timep, struct tm *p_tm)
1307 {
1308 	_THREAD_PRIVATE_MUTEX_LOCK(lcl);
1309 	tzset_basic();
1310 	p_tm = localsub(timep, 0L, p_tm);
1311 	_THREAD_PRIVATE_MUTEX_UNLOCK(lcl);
1312 	return p_tm;
1313 }
1314 DEF_WEAK(localtime_r);
1315 
1316 struct tm *
localtime(const time_t * timep)1317 localtime(const time_t *timep)
1318 {
1319 	_THREAD_PRIVATE_KEY(localtime);
1320 	struct tm * p_tm = (struct tm*)_THREAD_PRIVATE(localtime, tm, NULL);
1321 
1322 	if (p_tm == NULL)
1323 		return NULL;
1324 	return localtime_r(timep, p_tm);
1325 }
1326 DEF_STRONG(localtime);
1327 
1328 /*
1329 ** gmtsub is to gmtime as localsub is to localtime.
1330 */
1331 
1332 static struct tm *
gmtsub(const time_t * timep,long offset,struct tm * tmp)1333 gmtsub(const time_t *timep, long offset, struct tm *tmp)
1334 {
1335 	struct tm *	result;
1336 
1337 	_THREAD_PRIVATE_MUTEX_LOCK(gmt);
1338 	if (!gmt_is_set) {
1339 		gmt_is_set = TRUE;
1340 		gmtptr = calloc(1, sizeof(*gmtptr));
1341 		if (gmtptr != NULL)
1342 			gmtload(gmtptr);
1343 	}
1344 	_THREAD_PRIVATE_MUTEX_UNLOCK(gmt);
1345 	result = timesub(timep, offset, gmtptr, tmp);
1346 	/*
1347 	** Could get fancy here and deliver something such as
1348 	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1349 	** but this is no time for a treasure hunt.
1350 	*/
1351 	if (offset != 0)
1352 		tmp->tm_zone = wildabbr;
1353 	else {
1354 		if (gmtptr == NULL)
1355 			tmp->tm_zone = (char *)gmt;
1356 		else
1357 			tmp->tm_zone = gmtptr->chars;
1358 	}
1359 	return result;
1360 }
1361 
1362 /*
1363 ** Re-entrant version of gmtime.
1364 */
1365 
1366 struct tm *
gmtime_r(const time_t * timep,struct tm * p_tm)1367 gmtime_r(const time_t *timep, struct tm *p_tm)
1368 {
1369 	return gmtsub(timep, 0L, p_tm);
1370 }
1371 DEF_WEAK(gmtime_r);
1372 
1373 struct tm *
gmtime(const time_t * timep)1374 gmtime(const time_t *timep)
1375 {
1376 	_THREAD_PRIVATE_KEY(gmtime);
1377 	struct tm * p_tm = (struct tm*) _THREAD_PRIVATE(gmtime, tm, NULL);
1378 
1379 	if (p_tm == NULL)
1380 		return NULL;
1381 	return gmtime_r(timep, p_tm);
1382 
1383 }
1384 DEF_WEAK(gmtime);
1385 
1386 #ifdef STD_INSPIRED
1387 
1388 struct tm *
offtime(const time_t * timep,long offset)1389 offtime(const time_t *timep, long offset)
1390 {
1391 	return gmtsub(timep, offset, &tm);
1392 }
1393 
1394 #endif /* defined STD_INSPIRED */
1395 
1396 /*
1397 ** Return the number of leap years through the end of the given year
1398 ** where, to make the math easy, the answer for year zero is defined as zero.
1399 */
1400 
1401 static int
leaps_thru_end_of(int y)1402 leaps_thru_end_of(int y)
1403 {
1404 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1405 		-(leaps_thru_end_of(-(y + 1)) + 1);
1406 }
1407 
1408 static struct tm *
timesub(const time_t * timep,long offset,const struct state * sp,struct tm * tmp)1409 timesub(const time_t *timep, long offset, const struct state *sp, struct tm *tmp)
1410 {
1411 	const struct lsinfo *	lp;
1412 	time_t			tdays;
1413 	int			idays;	/* unsigned would be so 2003 */
1414 	long			rem;
1415 	int			y;
1416 	const int *		ip;
1417 	long			corr;
1418 	int			hit;
1419 	int			i;
1420 	long			seconds;
1421 
1422 	corr = 0;
1423 	hit = 0;
1424 	i = (sp == NULL) ? 0 : sp->leapcnt;
1425 	while (--i >= 0) {
1426 		lp = &sp->lsis[i];
1427 		if (*timep >= lp->ls_trans) {
1428 			if (*timep == lp->ls_trans) {
1429 				hit = ((i == 0 && lp->ls_corr > 0) ||
1430 				    lp->ls_corr > sp->lsis[i - 1].ls_corr);
1431 				if (hit) {
1432 					while (i > 0 &&
1433 					    sp->lsis[i].ls_trans ==
1434 					    sp->lsis[i - 1].ls_trans + 1 &&
1435 					    sp->lsis[i].ls_corr ==
1436 					    sp->lsis[i - 1].ls_corr + 1) {
1437 						++hit;
1438 						--i;
1439 					}
1440 				}
1441 			}
1442 			corr = lp->ls_corr;
1443 			break;
1444 		}
1445 	}
1446 	y = EPOCH_YEAR;
1447 	tdays = *timep / SECSPERDAY;
1448 	rem = *timep - tdays * SECSPERDAY;
1449 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1450 		int		newy;
1451 		time_t	tdelta;
1452 		int	idelta;
1453 		int	leapdays;
1454 
1455 		tdelta = tdays / DAYSPERLYEAR;
1456 		idelta = tdelta;
1457 		if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
1458 			return NULL;
1459 		if (idelta == 0)
1460 			idelta = (tdays < 0) ? -1 : 1;
1461 		newy = y;
1462 		if (increment_overflow(&newy, idelta))
1463 			return NULL;
1464 		leapdays = leaps_thru_end_of(newy - 1) -
1465 			leaps_thru_end_of(y - 1);
1466 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1467 		tdays -= leapdays;
1468 		y = newy;
1469 	}
1470 
1471 	seconds = tdays * SECSPERDAY + 0.5;
1472 	tdays = seconds / SECSPERDAY;
1473 	rem += seconds - tdays * SECSPERDAY;
1474 
1475 	/*
1476 	** Given the range, we can now fearlessly cast...
1477 	*/
1478 	idays = tdays;
1479 	rem += offset - corr;
1480 	while (rem < 0) {
1481 		rem += SECSPERDAY;
1482 		--idays;
1483 	}
1484 	while (rem >= SECSPERDAY) {
1485 		rem -= SECSPERDAY;
1486 		++idays;
1487 	}
1488 	while (idays < 0) {
1489 		if (increment_overflow(&y, -1))
1490 			return NULL;
1491 		idays += year_lengths[isleap(y)];
1492 	}
1493 	while (idays >= year_lengths[isleap(y)]) {
1494 		idays -= year_lengths[isleap(y)];
1495 		if (increment_overflow(&y, 1))
1496 			return NULL;
1497 	}
1498 	tmp->tm_year = y;
1499 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1500 		return NULL;
1501 	tmp->tm_yday = idays;
1502 	/*
1503 	** The "extra" mods below avoid overflow problems.
1504 	*/
1505 	tmp->tm_wday = EPOCH_WDAY +
1506 	    ((y - EPOCH_YEAR) % DAYSPERWEEK) *
1507 	    (DAYSPERNYEAR % DAYSPERWEEK) +
1508 	    leaps_thru_end_of(y - 1) -
1509 	    leaps_thru_end_of(EPOCH_YEAR - 1) +
1510 	    idays;
1511 	tmp->tm_wday %= DAYSPERWEEK;
1512 	if (tmp->tm_wday < 0)
1513 		tmp->tm_wday += DAYSPERWEEK;
1514 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
1515 	rem %= SECSPERHOUR;
1516 	tmp->tm_min = (int) (rem / SECSPERMIN);
1517 	/*
1518 	** A positive leap second requires a special
1519 	** representation. This uses "... ??:59:60" et seq.
1520 	*/
1521 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1522 	ip = mon_lengths[isleap(y)];
1523 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1524 		idays -= ip[tmp->tm_mon];
1525 	tmp->tm_mday = (int) (idays + 1);
1526 	tmp->tm_isdst = 0;
1527 	tmp->tm_gmtoff = offset;
1528 	return tmp;
1529 }
1530 
1531 char *
ctime(const time_t * timep)1532 ctime(const time_t *timep)
1533 {
1534 /*
1535 ** Section 4.12.3.2 of X3.159-1989 requires that
1536 **	The ctime function converts the calendar time pointed to by timer
1537 **	to local time in the form of a string. It is equivalent to
1538 **		asctime(localtime(timer))
1539 */
1540 	return asctime(localtime(timep));
1541 }
1542 
1543 char *
ctime_r(const time_t * timep,char * buf)1544 ctime_r(const time_t *timep, char *buf)
1545 {
1546 	struct tm	mytm;
1547 
1548 	return asctime_r(localtime_r(timep, &mytm), buf);
1549 }
1550 
1551 /*
1552 ** Adapted from code provided by Robert Elz, who writes:
1553 **	The "best" way to do mktime I think is based on an idea of Bob
1554 **	Kridle's (so its said...) from a long time ago.
1555 **	It does a binary search of the time_t space. Since time_t's are
1556 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
1557 **	would still be very reasonable).
1558 */
1559 
1560 #ifndef WRONG
1561 #define WRONG	(-1)
1562 #endif /* !defined WRONG */
1563 
1564 /*
1565 ** Normalize logic courtesy Paul Eggert.
1566 */
1567 
1568 static int
increment_overflow(int * ip,int j)1569 increment_overflow(int *ip, int j)
1570 {
1571 	int const	i = *ip;
1572 
1573 	/*
1574 	** If i >= 0 there can only be overflow if i + j > INT_MAX
1575 	** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
1576 	** If i < 0 there can only be overflow if i + j < INT_MIN
1577 	** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
1578 	*/
1579 	if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
1580 		return TRUE;
1581 	*ip += j;
1582 	return FALSE;
1583 }
1584 
1585 static int
long_increment_overflow(long * lp,int m)1586 long_increment_overflow(long *lp, int m)
1587 {
1588 	long const	l = *lp;
1589 
1590 	if ((l >= 0) ? (m > LONG_MAX - l) : (m < LONG_MIN - l))
1591 		return TRUE;
1592 	*lp += m;
1593 	return FALSE;
1594 }
1595 
1596 static int
normalize_overflow(int * tensptr,int * unitsptr,int base)1597 normalize_overflow(int *tensptr, int *unitsptr, int base)
1598 {
1599 	int	tensdelta;
1600 
1601 	tensdelta = (*unitsptr >= 0) ?
1602 	    (*unitsptr / base) :
1603 	    (-1 - (-1 - *unitsptr) / base);
1604 	*unitsptr -= tensdelta * base;
1605 	return increment_overflow(tensptr, tensdelta);
1606 }
1607 
1608 static int
long_normalize_overflow(long * tensptr,int * unitsptr,int base)1609 long_normalize_overflow(long *tensptr, int *unitsptr, int base)
1610 {
1611 	int	tensdelta;
1612 
1613 	tensdelta = (*unitsptr >= 0) ?
1614 	    (*unitsptr / base) :
1615 	    (-1 - (-1 - *unitsptr) / base);
1616 	*unitsptr -= tensdelta * base;
1617 	return long_increment_overflow(tensptr, tensdelta);
1618 }
1619 
1620 static int
tmcomp(const struct tm * atmp,const struct tm * btmp)1621 tmcomp(const struct tm *atmp, const struct tm *btmp)
1622 {
1623 	int	result;
1624 
1625 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1626 	    (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1627 	    (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1628 	    (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1629 	    (result = (atmp->tm_min - btmp->tm_min)) == 0)
1630 		result = atmp->tm_sec - btmp->tm_sec;
1631 	return result;
1632 }
1633 
1634 static time_t
time2sub(struct tm * tmp,struct tm * (* funcp)(const time_t *,long,struct tm *),long offset,int * okayp,int do_norm_secs)1635 time2sub(struct tm *tmp, struct tm *(*funcp)(const time_t *, long, struct tm *),
1636     long offset, int *okayp, int do_norm_secs)
1637 {
1638 	const struct state *	sp;
1639 	int			dir;
1640 	int			i, j;
1641 	int			saved_seconds;
1642 	long			li;
1643 	time_t			lo;
1644 	time_t			hi;
1645 	long			y;
1646 	time_t			newt;
1647 	time_t			t;
1648 	struct tm		yourtm, mytm;
1649 
1650 	*okayp = FALSE;
1651 	yourtm = *tmp;
1652 	if (do_norm_secs) {
1653 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1654 			SECSPERMIN))
1655 				return WRONG;
1656 	}
1657 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1658 		return WRONG;
1659 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1660 		return WRONG;
1661 	y = yourtm.tm_year;
1662 	if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
1663 		return WRONG;
1664 	/*
1665 	** Turn y into an actual year number for now.
1666 	** It is converted back to an offset from TM_YEAR_BASE later.
1667 	*/
1668 	if (long_increment_overflow(&y, TM_YEAR_BASE))
1669 		return WRONG;
1670 	while (yourtm.tm_mday <= 0) {
1671 		if (long_increment_overflow(&y, -1))
1672 			return WRONG;
1673 		li = y + (1 < yourtm.tm_mon);
1674 		yourtm.tm_mday += year_lengths[isleap(li)];
1675 	}
1676 	while (yourtm.tm_mday > DAYSPERLYEAR) {
1677 		li = y + (1 < yourtm.tm_mon);
1678 		yourtm.tm_mday -= year_lengths[isleap(li)];
1679 		if (long_increment_overflow(&y, 1))
1680 			return WRONG;
1681 	}
1682 	for ( ; ; ) {
1683 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
1684 		if (yourtm.tm_mday <= i)
1685 			break;
1686 		yourtm.tm_mday -= i;
1687 		if (++yourtm.tm_mon >= MONSPERYEAR) {
1688 			yourtm.tm_mon = 0;
1689 			if (long_increment_overflow(&y, 1))
1690 				return WRONG;
1691 		}
1692 	}
1693 	if (long_increment_overflow(&y, -TM_YEAR_BASE))
1694 		return WRONG;
1695 	yourtm.tm_year = y;
1696 	if (yourtm.tm_year != y)
1697 		return WRONG;
1698 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1699 		saved_seconds = 0;
1700 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1701 		/*
1702 		** We can't set tm_sec to 0, because that might push the
1703 		** time below the minimum representable time.
1704 		** Set tm_sec to 59 instead.
1705 		** This assumes that the minimum representable time is
1706 		** not in the same minute that a leap second was deleted from,
1707 		** which is a safer assumption than using 58 would be.
1708 		*/
1709 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1710 			return WRONG;
1711 		saved_seconds = yourtm.tm_sec;
1712 		yourtm.tm_sec = SECSPERMIN - 1;
1713 	} else {
1714 		saved_seconds = yourtm.tm_sec;
1715 		yourtm.tm_sec = 0;
1716 	}
1717 	/*
1718 	** Do a binary search (this works whatever time_t's type is).
1719 	*/
1720 	lo = 1;
1721 	for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1722 		lo *= 2;
1723 	hi = -(lo + 1);
1724 	for ( ; ; ) {
1725 		t = lo / 2 + hi / 2;
1726 		if (t < lo)
1727 			t = lo;
1728 		else if (t > hi)
1729 			t = hi;
1730 		if ((*funcp)(&t, offset, &mytm) == NULL) {
1731 			/*
1732 			** Assume that t is too extreme to be represented in
1733 			** a struct tm; arrange things so that it is less
1734 			** extreme on the next pass.
1735 			*/
1736 			dir = (t > 0) ? 1 : -1;
1737 		} else
1738 			dir = tmcomp(&mytm, &yourtm);
1739 		if (dir != 0) {
1740 			if (t == lo) {
1741 				++t;
1742 				if (t <= lo)
1743 					return WRONG;
1744 				++lo;
1745 			} else if (t == hi) {
1746 				--t;
1747 				if (t >= hi)
1748 					return WRONG;
1749 				--hi;
1750 			}
1751 			if (lo > hi)
1752 				return WRONG;
1753 			if (dir > 0)
1754 				hi = t;
1755 			else
1756 				lo = t;
1757 			continue;
1758 		}
1759 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1760 			break;
1761 		/*
1762 		** Right time, wrong type.
1763 		** Hunt for right time, right type.
1764 		** It's okay to guess wrong since the guess
1765 		** gets checked.
1766 		*/
1767 		sp = (const struct state *)
1768 		    ((funcp == localsub) ? lclptr : gmtptr);
1769 		if (sp == NULL)
1770 			return WRONG;
1771 		for (i = sp->typecnt - 1; i >= 0; --i) {
1772 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1773 				continue;
1774 			for (j = sp->typecnt - 1; j >= 0; --j) {
1775 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1776 					continue;
1777 				newt = t + sp->ttis[j].tt_gmtoff -
1778 					sp->ttis[i].tt_gmtoff;
1779 				if ((*funcp)(&newt, offset, &mytm) == NULL)
1780 					continue;
1781 				if (tmcomp(&mytm, &yourtm) != 0)
1782 					continue;
1783 				if (mytm.tm_isdst != yourtm.tm_isdst)
1784 					continue;
1785 				/*
1786 				** We have a match.
1787 				*/
1788 				t = newt;
1789 				goto label;
1790 			}
1791 		}
1792 		return WRONG;
1793 	}
1794 label:
1795 	newt = t + saved_seconds;
1796 	if ((newt < t) != (saved_seconds < 0))
1797 		return WRONG;
1798 	t = newt;
1799 	if ((*funcp)(&t, offset, tmp))
1800 		*okayp = TRUE;
1801 	return t;
1802 }
1803 
1804 static time_t
time2(struct tm * tmp,struct tm * (* funcp)(const time_t *,long,struct tm *),long offset,int * okayp)1805 time2(struct tm *tmp, struct tm * (*funcp)(const time_t *, long, struct tm *),
1806     long offset, int *okayp)
1807 {
1808 	time_t	t;
1809 
1810 	/*
1811 	** First try without normalization of seconds
1812 	** (in case tm_sec contains a value associated with a leap second).
1813 	** If that fails, try with normalization of seconds.
1814 	*/
1815 	t = time2sub(tmp, funcp, offset, okayp, FALSE);
1816 	return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1817 }
1818 
1819 static time_t
time1(struct tm * tmp,struct tm * (* funcp)(const time_t *,long,struct tm *),long offset)1820 time1(struct tm *tmp, struct tm * (*funcp)(const time_t *, long, struct tm *),
1821     long offset)
1822 {
1823 	time_t			t;
1824 	const struct state *	sp;
1825 	int			samei, otheri;
1826 	int			sameind, otherind;
1827 	int			i;
1828 	int			nseen;
1829 	int			seen[TZ_MAX_TYPES];
1830 	int			types[TZ_MAX_TYPES];
1831 	int			okay;
1832 
1833 	if (tmp == NULL) {
1834 		errno = EINVAL;
1835 		return WRONG;
1836 	}
1837 	if (tmp->tm_isdst > 1)
1838 		tmp->tm_isdst = 1;
1839 	t = time2(tmp, funcp, offset, &okay);
1840 #ifdef PCTS
1841 	/*
1842 	** PCTS code courtesy Grant Sullivan.
1843 	*/
1844 	if (okay)
1845 		return t;
1846 	if (tmp->tm_isdst < 0)
1847 		tmp->tm_isdst = 0;	/* reset to std and try again */
1848 #endif /* defined PCTS */
1849 #ifndef PCTS
1850 	if (okay || tmp->tm_isdst < 0)
1851 		return t;
1852 #endif /* !defined PCTS */
1853 	/*
1854 	** We're supposed to assume that somebody took a time of one type
1855 	** and did some math on it that yielded a "struct tm" that's bad.
1856 	** We try to divine the type they started from and adjust to the
1857 	** type they need.
1858 	*/
1859 	sp = (const struct state *) ((funcp == localsub) ?  lclptr : gmtptr);
1860 	if (sp == NULL)
1861 		return WRONG;
1862 	for (i = 0; i < sp->typecnt; ++i)
1863 		seen[i] = FALSE;
1864 	nseen = 0;
1865 	for (i = sp->timecnt - 1; i >= 0; --i) {
1866 		if (!seen[sp->types[i]]) {
1867 			seen[sp->types[i]] = TRUE;
1868 			types[nseen++] = sp->types[i];
1869 		}
1870 	}
1871 	for (sameind = 0; sameind < nseen; ++sameind) {
1872 		samei = types[sameind];
1873 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1874 			continue;
1875 		for (otherind = 0; otherind < nseen; ++otherind) {
1876 			otheri = types[otherind];
1877 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1878 				continue;
1879 			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1880 			    sp->ttis[samei].tt_gmtoff;
1881 			tmp->tm_isdst = !tmp->tm_isdst;
1882 			t = time2(tmp, funcp, offset, &okay);
1883 			if (okay)
1884 				return t;
1885 			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1886 			    sp->ttis[samei].tt_gmtoff;
1887 			tmp->tm_isdst = !tmp->tm_isdst;
1888 		}
1889 	}
1890 	return WRONG;
1891 }
1892 
1893 time_t
mktime(struct tm * tmp)1894 mktime(struct tm *tmp)
1895 {
1896 	time_t ret;
1897 
1898 	_THREAD_PRIVATE_MUTEX_LOCK(lcl);
1899 	tzset_basic();
1900 	ret = time1(tmp, localsub, 0L);
1901 	_THREAD_PRIVATE_MUTEX_UNLOCK(lcl);
1902 	return ret;
1903 }
1904 DEF_STRONG(mktime);
1905 
1906 #ifdef STD_INSPIRED
1907 
1908 time_t
timelocal(struct tm * tmp)1909 timelocal(struct tm *tmp)
1910 {
1911 	if (tmp != NULL)
1912 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
1913 	return mktime(tmp);
1914 }
1915 
1916 time_t
timegm(struct tm * tmp)1917 timegm(struct tm *tmp)
1918 {
1919 	if (tmp != NULL)
1920 		tmp->tm_isdst = 0;
1921 	return time1(tmp, gmtsub, 0L);
1922 }
1923 
1924 time_t
timeoff(struct tm * tmp,long offset)1925 timeoff(struct tm *tmp, long offset)
1926 {
1927 	if (tmp != NULL)
1928 		tmp->tm_isdst = 0;
1929 	return time1(tmp, gmtsub, offset);
1930 }
1931 
1932 #endif /* defined STD_INSPIRED */
1933 
1934 /*
1935 ** XXX--is the below the right way to conditionalize??
1936 */
1937 
1938 #ifdef STD_INSPIRED
1939 
1940 /*
1941 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1942 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
1943 ** is not the case if we are accounting for leap seconds.
1944 ** So, we provide the following conversion routines for use
1945 ** when exchanging timestamps with POSIX conforming systems.
1946 */
1947 
1948 static long
leapcorr(time_t * timep)1949 leapcorr(time_t *timep)
1950 {
1951 	struct state *		sp;
1952 	struct lsinfo *	lp;
1953 	int			i;
1954 
1955 	sp = lclptr;
1956 	i = sp->leapcnt;
1957 	while (--i >= 0) {
1958 		lp = &sp->lsis[i];
1959 		if (*timep >= lp->ls_trans)
1960 			return lp->ls_corr;
1961 	}
1962 	return 0;
1963 }
1964 
1965 time_t
time2posix(time_t t)1966 time2posix(time_t t)
1967 {
1968 	tzset();
1969 	return t - leapcorr(&t);
1970 }
1971 
1972 time_t
posix2time(time_t t)1973 posix2time(time_t t)
1974 {
1975 	time_t	x;
1976 	time_t	y;
1977 
1978 	tzset();
1979 	/*
1980 	** For a positive leap second hit, the result
1981 	** is not unique. For a negative leap second
1982 	** hit, the corresponding time doesn't exist,
1983 	** so we return an adjacent second.
1984 	*/
1985 	x = t + leapcorr(&t);
1986 	y = x - leapcorr(&x);
1987 	if (y < t) {
1988 		do {
1989 			x++;
1990 			y = x - leapcorr(&x);
1991 		} while (y < t);
1992 		if (t != y)
1993 			return x - 1;
1994 	} else if (y > t) {
1995 		do {
1996 			--x;
1997 			y = x - leapcorr(&x);
1998 		} while (y > t);
1999 		if (t != y)
2000 			return x + 1;
2001 	}
2002 	return x;
2003 }
2004 
2005 #endif /* defined STD_INSPIRED */
2006