1\name{ghtMode} 2 3 4\alias{ghtMode} 5 6 7\title{Generalized Hyperbolic Student-t Mode} 8 9 10\description{ 11 12 Computes the mode of the generalized hyperbolic 13 Student-t distribution. 14 15} 16 17 18\usage{ 19ghtMode(beta = 0.1, delta = 1, mu = 0, nu = 10) 20} 21 22 23\arguments{ 24 25 \item{beta, delta, mu}{ 26 numeric values. 27 \code{beta} is the skewness parameter in the range \code{(0, alpha)}; 28 \code{delta} is the scale parameter, must be zero or positive; 29 \code{mu} is the location parameter, by default 0. 30 These are the parameters in the first parameterization. 31 } 32 \item{nu}{ 33 a numeric value, the number of degrees of freedom. 34 Note, \code{alpha} takes the limit of \code{abs(beta)}, 35 and \code{lambda=-nu/2}. 36 } 37 38} 39 40 41\value{ 42 43 returns the mode for the generalized hyperbolic Student-t 44 distribution. A numeric value. 45 46} 47 48 49 50\references{ 51Atkinson, A.C. (1982); 52 \emph{The simulation of generalized inverse Gaussian and hyperbolic 53 random variables}, 54 SIAM J. Sci. Stat. Comput. 3, 502--515. 55 56Barndorff-Nielsen O. (1977); 57 \emph{Exponentially decreasing distributions for the logarithm of 58 particle size}, 59 Proc. Roy. Soc. Lond., A353, 401--419. 60 61Barndorff-Nielsen O., Blaesild, P. (1983); 62 \emph{Hyperbolic distributions. In Encyclopedia of Statistical 63 Sciences}, 64 Eds., Johnson N.L., Kotz S. and Read C.B., 65 Vol. 3, pp. 700--707. New York: Wiley. 66 67Raible S. (2000); 68 \emph{Levy Processes in Finance: Theory, Numerics and Empirical Facts}, 69 PhD Thesis, University of Freiburg, Germany, 161 pages. 70} 71 72 73\examples{ 74## ghtMode - 75 ghtMode() 76} 77 78 79\keyword{distribution} 80 81