1 /* mpn_mullo_n -- multiply two n-limb numbers and return the low n limbs
2    of their products.
3 
4    Contributed to the GNU project by Torbjorn Granlund and Marco Bodrato.
5 
6    THIS IS (FOR NOW) AN INTERNAL FUNCTION.  IT IS ONLY SAFE TO REACH THIS
7    FUNCTION THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST GUARANTEED
8    THAT IT'LL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
9 
10 Copyright 2004, 2005, 2009, 2010, 2012 Free Software Foundation, Inc.
11 
12 This file is part of the GNU MP Library.
13 
14 The GNU MP Library is free software; you can redistribute it and/or modify
15 it under the terms of either:
16 
17   * the GNU Lesser General Public License as published by the Free
18     Software Foundation; either version 3 of the License, or (at your
19     option) any later version.
20 
21 or
22 
23   * the GNU General Public License as published by the Free Software
24     Foundation; either version 2 of the License, or (at your option) any
25     later version.
26 
27 or both in parallel, as here.
28 
29 The GNU MP Library is distributed in the hope that it will be useful, but
30 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
31 or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
32 for more details.
33 
34 You should have received copies of the GNU General Public License and the
35 GNU Lesser General Public License along with the GNU MP Library.  If not,
36 see https://www.gnu.org/licenses/.  */
37 
38 #include "gmp-impl.h"
39 
40 
41 #if TUNE_PROGRAM_BUILD || WANT_FAT_BINARY
42 #define MAYBE_range_basecase 1
43 #define MAYBE_range_toom22   1
44 #else
45 #define MAYBE_range_basecase                                           \
46   ((MULLO_DC_THRESHOLD == 0 ? MULLO_BASECASE_THRESHOLD : MULLO_DC_THRESHOLD) < MUL_TOOM22_THRESHOLD*36/(36-11))
47 #define MAYBE_range_toom22                                             \
48   ((MULLO_DC_THRESHOLD == 0 ? MULLO_BASECASE_THRESHOLD : MULLO_DC_THRESHOLD) < MUL_TOOM33_THRESHOLD*36/(36-11) )
49 #endif
50 
51 /*  THINK: The DC strategy uses different constants in different Toom's
52 	 ranges. Something smoother?
53 */
54 
55 /*
56   Compute the least significant half of the product {xy,n}*{yp,n}, or
57   formally {rp,n} = {xy,n}*{yp,n} Mod (B^n).
58 
59   Above the given threshold, the Divide and Conquer strategy is used.
60   The operands are split in two, and a full product plus two mullo
61   are used to obtain the final result. The more natural strategy is to
62   split in two halves, but this is far from optimal when a
63   sub-quadratic multiplication is used.
64 
65   Mulders suggests an unbalanced split in favour of the full product,
66   split n = n1 + n2, where an = n1 <= n2 = (1-a)n; i.e. 0 < a <= 1/2.
67 
68   To compute the value of a, we assume that the cost of mullo for a
69   given size ML(n) is a fraction of the cost of a full product with
70   same size M(n), and the cost M(n)=n^e for some exponent 1 < e <= 2;
71   then we can write:
72 
73   ML(n) = 2*ML(an) + M((1-a)n) => k*M(n) = 2*k*M(n)*a^e + M(n)*(1-a)^e
74 
75   Given a value for e, want to minimise the value of k, i.e. the
76   function k=(1-a)^e/(1-2*a^e).
77 
78   With e=2, the exponent for schoolbook multiplication, the minimum is
79   given by the values a=1-a=1/2.
80 
81   With e=log(3)/log(2), the exponent for Karatsuba (aka toom22),
82   Mulders compute (1-a) = 0.694... and we approximate a with 11/36.
83 
84   Other possible approximations follow:
85   e=log(5)/log(3) [Toom-3] -> a ~= 9/40
86   e=log(7)/log(4) [Toom-4] -> a ~= 7/39
87   e=log(11)/log(6) [Toom-6] -> a ~= 1/8
88   e=log(15)/log(8) [Toom-8] -> a ~= 1/10
89 
90   The values above where obtained with the following trivial commands
91   in the gp-pari shell:
92 
93 fun(e,a)=(1-a)^e/(1-2*a^e)
94 mul(a,b,c)={local(m,x,p);if(b-c<1/10000,(b+c)/2,m=1;x=b;forstep(p=c,b,(b-c)/8,if(fun(a,p)<m,m=fun(a,p);x=p));mul(a,(b+x)/2,(c+x)/2))}
95 contfracpnqn(contfrac(mul(log(2*2-1)/log(2),1/2,0),5))
96 contfracpnqn(contfrac(mul(log(3*2-1)/log(3),1/2,0),5))
97 contfracpnqn(contfrac(mul(log(4*2-1)/log(4),1/2,0),5))
98 contfracpnqn(contfrac(mul(log(6*2-1)/log(6),1/2,0),3))
99 contfracpnqn(contfrac(mul(log(8*2-1)/log(8),1/2,0),3))
100 
101   ,
102   |\
103   | \
104   +----,
105   |    |
106   |    |
107   |    |\
108   |    | \
109   +----+--`
110   ^ n2 ^n1^
111 
112   For an actual implementation, the assumption that M(n)=n^e is
113   incorrect, as a consequence also the assumption that ML(n)=k*M(n)
114   with a constant k is wrong.
115 
116   But theory suggest us two things:
117   - the best the multiplication product is (lower e), the more k
118     approaches 1, and a approaches 0.
119 
120   - A value for a smaller than optimal is probably less bad than a
121     bigger one: e.g. let e=log(3)/log(2), a=0.3058_ the optimal
122     value, and k(a)=0.808_ the mul/mullo speed ratio. We get
123     k(a+1/6)=0.929_ but k(a-1/6)=0.865_.
124 */
125 
126 static mp_size_t
mpn_mullo_n_itch(mp_size_t n)127 mpn_mullo_n_itch (mp_size_t n)
128 {
129   return 2*n;
130 }
131 
132 /*
133     mpn_dc_mullo_n requires a scratch space of 2*n limbs at tp.
134     It accepts tp == rp.
135 */
136 static void
mpn_dc_mullo_n(mp_ptr rp,mp_srcptr xp,mp_srcptr yp,mp_size_t n,mp_ptr tp)137 mpn_dc_mullo_n (mp_ptr rp, mp_srcptr xp, mp_srcptr yp, mp_size_t n, mp_ptr tp)
138 {
139   mp_size_t n2, n1;
140   ASSERT (n >= 2);
141   ASSERT (! MPN_OVERLAP_P (rp, n, xp, n));
142   ASSERT (! MPN_OVERLAP_P (rp, n, yp, n));
143   ASSERT (MPN_SAME_OR_SEPARATE2_P(rp, n, tp, 2*n));
144 
145   /* Divide-and-conquer */
146 
147   /* We need fractional approximation of the value 0 < a <= 1/2
148      giving the minimum in the function k=(1-a)^e/(1-2*a^e).
149   */
150   if (MAYBE_range_basecase && BELOW_THRESHOLD (n, MUL_TOOM22_THRESHOLD*36/(36-11)))
151     n1 = n >> 1;
152   else if (MAYBE_range_toom22 && BELOW_THRESHOLD (n, MUL_TOOM33_THRESHOLD*36/(36-11)))
153     n1 = n * 11 / (size_t) 36;	/* n1 ~= n*(1-.694...) */
154   else if (BELOW_THRESHOLD (n, MUL_TOOM44_THRESHOLD*40/(40-9)))
155     n1 = n * 9 / (size_t) 40;	/* n1 ~= n*(1-.775...) */
156   else if (BELOW_THRESHOLD (n, MUL_TOOM8H_THRESHOLD*10/9))
157     n1 = n * 7 / (size_t) 39;	/* n1 ~= n*(1-.821...) */
158   /* n1 = n * 4 / (size_t) 31;	// n1 ~= n*(1-.871...) [TOOM66] */
159   else
160     n1 = n / (size_t) 10;		/* n1 ~= n*(1-.899...) [TOOM88] */
161 
162   n2 = n - n1;
163 
164   /* Split as x = x1 2^(n2 GMP_NUMB_BITS) + x0,
165 	      y = y1 2^(n2 GMP_NUMB_BITS) + y0 */
166 
167   /* x0 * y0 */
168   mpn_mul_n (tp, xp, yp, n2);
169   MPN_COPY (rp, tp, n2);
170 
171   /* x1 * y0 * 2^(n2 GMP_NUMB_BITS) */
172   if (BELOW_THRESHOLD (n1, MULLO_BASECASE_THRESHOLD))
173     mpn_mul_basecase (tp + n, xp + n2, n1, yp, n1);
174   else if (BELOW_THRESHOLD (n1, MULLO_DC_THRESHOLD))
175     mpn_mullo_basecase (tp + n, xp + n2, yp, n1);
176   else
177     mpn_dc_mullo_n (tp + n, xp + n2, yp, n1, tp + n);
178   mpn_add_n (rp + n2, tp + n2, tp + n, n1);
179 
180   /* x0 * y1 * 2^(n2 GMP_NUMB_BITS) */
181   if (BELOW_THRESHOLD (n1, MULLO_BASECASE_THRESHOLD))
182     mpn_mul_basecase (tp + n, xp, n1, yp + n2, n1);
183   else if (BELOW_THRESHOLD (n1, MULLO_DC_THRESHOLD))
184     mpn_mullo_basecase (tp + n, xp, yp + n2, n1);
185   else
186     mpn_dc_mullo_n (tp + n, xp, yp + n2, n1, tp + n);
187   mpn_add_n (rp + n2, rp + n2, tp + n, n1);
188 }
189 
190 /* Avoid zero allocations when MULLO_BASECASE_THRESHOLD is 0.  */
191 #define MUL_BASECASE_ALLOC \
192  (MULLO_BASECASE_THRESHOLD_LIMIT == 0 ? 1 : 2*MULLO_BASECASE_THRESHOLD_LIMIT)
193 
194 /* FIXME: This function should accept a temporary area; dc_mullow_n
195    accepts a pointer tp, and handle the case tp == rp, do the same here.
196    Maybe recombine the two functions.
197    THINK: If mpn_mul_basecase is always faster than mpn_mullo_basecase
198 	  (typically thanks to mpn_addmul_2) should we unconditionally use
199 	  mpn_mul_n?
200 */
201 
202 void
mpn_mullo_n(mp_ptr rp,mp_srcptr xp,mp_srcptr yp,mp_size_t n)203 mpn_mullo_n (mp_ptr rp, mp_srcptr xp, mp_srcptr yp, mp_size_t n)
204 {
205   ASSERT (n >= 1);
206   ASSERT (! MPN_OVERLAP_P (rp, n, xp, n));
207   ASSERT (! MPN_OVERLAP_P (rp, n, yp, n));
208 
209   if (BELOW_THRESHOLD (n, MULLO_BASECASE_THRESHOLD))
210     {
211       /* Allocate workspace of fixed size on stack: fast! */
212       mp_limb_t tp[MUL_BASECASE_ALLOC];
213       mpn_mul_basecase (tp, xp, n, yp, n);
214       MPN_COPY (rp, tp, n);
215     }
216   else if (BELOW_THRESHOLD (n, MULLO_DC_THRESHOLD))
217     {
218       mpn_mullo_basecase (rp, xp, yp, n);
219     }
220   else
221     {
222       mp_ptr tp;
223       TMP_DECL;
224       TMP_MARK;
225       tp = TMP_ALLOC_LIMBS (mpn_mullo_n_itch (n));
226       if (BELOW_THRESHOLD (n, MULLO_MUL_N_THRESHOLD))
227 	{
228 	  mpn_dc_mullo_n (rp, xp, yp, n, tp);
229 	}
230       else
231 	{
232 	  /* For really large operands, use plain mpn_mul_n but throw away upper n
233 	     limbs of result.  */
234 #if !TUNE_PROGRAM_BUILD && (MULLO_MUL_N_THRESHOLD > MUL_FFT_THRESHOLD)
235 	  mpn_fft_mul (tp, xp, n, yp, n);
236 #else
237 	  mpn_mul_n (tp, xp, yp, n);
238 #endif
239 	  MPN_COPY (rp, tp, n);
240 	}
241       TMP_FREE;
242     }
243 }
244