1<!DOCTYPE html>
2<html>
3<head>
4<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
5<meta name="generator" content="hevea 2.18">
6<link rel="stylesheet" type="text/css" href="manual.css">
7<title>Chapter&#XA0;3&#XA0;&#XA0;Objects in OCaml</title>
8</head>
9<body>
10<a href="moduleexamples.html"><img src="previous_motif.gif" alt="Previous"></a>
11<a href="index.html"><img src="contents_motif.gif" alt="Up"></a>
12<a href="lablexamples.html"><img src="next_motif.gif" alt="Next"></a>
13<hr>
14<h1 class="chapter" id="sec23">Chapter&#XA0;3&#XA0;&#XA0;Objects in OCaml</h1>
15<ul>
16<li><a href="objectexamples.html#sec24">3.1&#XA0;&#XA0;Classes and objects</a>
17</li><li><a href="objectexamples.html#sec25">3.2&#XA0;&#XA0;Immediate objects</a>
18</li><li><a href="objectexamples.html#sec26">3.3&#XA0;&#XA0;Reference to self</a>
19</li><li><a href="objectexamples.html#sec27">3.4&#XA0;&#XA0;Initializers</a>
20</li><li><a href="objectexamples.html#sec28">3.5&#XA0;&#XA0;Virtual methods</a>
21</li><li><a href="objectexamples.html#sec29">3.6&#XA0;&#XA0;Private methods</a>
22</li><li><a href="objectexamples.html#sec30">3.7&#XA0;&#XA0;Class interfaces</a>
23</li><li><a href="objectexamples.html#sec31">3.8&#XA0;&#XA0;Inheritance</a>
24</li><li><a href="objectexamples.html#sec32">3.9&#XA0;&#XA0;Multiple inheritance</a>
25</li><li><a href="objectexamples.html#sec33">3.10&#XA0;&#XA0;Parameterized classes</a>
26</li><li><a href="objectexamples.html#sec34">3.11&#XA0;&#XA0;Polymorphic methods</a>
27</li><li><a href="objectexamples.html#sec35">3.12&#XA0;&#XA0;Using coercions</a>
28</li><li><a href="objectexamples.html#sec36">3.13&#XA0;&#XA0;Functional objects</a>
29</li><li><a href="objectexamples.html#sec37">3.14&#XA0;&#XA0;Cloning objects</a>
30</li><li><a href="objectexamples.html#sec38">3.15&#XA0;&#XA0;Recursive classes</a>
31</li><li><a href="objectexamples.html#sec39">3.16&#XA0;&#XA0;Binary methods</a>
32</li><li><a href="objectexamples.html#sec40">3.17&#XA0;&#XA0;Friends</a>
33</li></ul>
34<p>
35<a id="c:objectexamples"></a>
36
37</p><p>
38<span class="c009">(Chapter written by J&#XE9;r&#XF4;me Vouillon, Didier R&#XE9;my and Jacques Garrigue)</span></p><p><br>
39<br>
40</p><p>This chapter gives an overview of the object-oriented features of
41OCaml. Note that the relation between object, class and type
42in OCaml is very different from that in mainstream
43object-oriented languages like Java or C++, so that you should not
44assume that similar keywords mean the same thing.</p><p><a href="#ss%3Aclasses-and-objects">3.1</a> Classes and objects <br>
45<a href="#ss%3Aimmediate-objects">3.2</a> Immediate objects <br>
46<a href="#ss%3Areference-to-self">3.3</a> Reference to self <br>
47<a href="#ss%3Ainitializers">3.4</a> Initializers <br>
48<a href="#ss%3Avirtual-methods">3.5</a> Virtual methods <br>
49<a href="#ss%3Aprivate-methods">3.6</a> Private methods <br>
50<a href="#ss%3Aclass-interfaces">3.7</a> Class interfaces <br>
51<a href="#ss%3Ainheritance">3.8</a> Inheritance <br>
52<a href="#ss%3Amultiple-inheritance">3.9</a> Multiple inheritance <br>
53<a href="#ss%3Aparameterized-classes">3.10</a> Parameterized classes <br>
54<a href="#ss%3Apolymorphic-methods">3.11</a> Polymorphic methods <br>
55<a href="#ss%3Ausing-coercions">3.12</a> Using coercions <br>
56<a href="#ss%3Afunctional-objects">3.13</a> Functional objects <br>
57<a href="#ss%3Acloning-objects">3.14</a> Cloning objects <br>
58<a href="#ss%3Arecursive-classes">3.15</a> Recursive classes <br>
59<a href="#ss%3Abinary-methods">3.16</a> Binary methods <br>
60<a href="#ss%3Afriends">3.17</a> Friends <br>
61
62</p>
63<h2 class="section" id="sec24">3.1&#XA0;&#XA0;Classes and objects</h2>
64<p>
65
66<a id="ss:classes-and-objects"></a></p><p>The class <span class="c003">point</span> below defines one instance variable <span class="c003">x</span> and two methods
67<span class="c003">get_x</span> and <span class="c003">move</span>. The initial value of the instance variable is <span class="c003">0</span>.
68The variable <span class="c003">x</span> is declared mutable, so the method <span class="c003">move</span> can change
69its value.
70</p><div class="caml-example">
71<pre><div class="caml-input"> class point =
72    object
73      val mutable x = 0
74      method get_x = x
75      method move d = x &lt;- x + d
76    end;;
77</div><div class="caml-output ok">class point :
78  object val mutable x : int method get_x : int method move : int -&gt; unit end
79</div></pre>
80
81</div><p>We now create a new point <span class="c003">p</span>, instance of the <span class="c003">point</span> class.
82</p><div class="caml-example">
83<pre><div class="caml-input"> let p = new point;;
84</div><div class="caml-output ok">val p : point = &lt;obj&gt;
85</div></pre>
86
87</div><p>Note that the type of <span class="c003">p</span> is <span class="c003">point</span>. This is an abbreviation
88automatically defined by the class definition above. It stands for the
89object type <span class="c003">&lt;get_x : int; move : int -&gt; unit&gt;</span>, listing the methods
90of class <span class="c003">point</span> along with their types.</p><p>We now invoke some methods to <span class="c003">p</span>:
91</p><div class="caml-example">
92<pre><div class="caml-input"> p#get_x;;
93</div><div class="caml-output ok">- : int = 0
94</div></pre>
95
96<pre><div class="caml-input"> p#move 3;;
97</div><div class="caml-output ok">- : unit = ()
98</div></pre>
99
100<pre><div class="caml-input"> p#get_x;;
101</div><div class="caml-output ok">- : int = 3
102</div></pre>
103
104</div><p>The evaluation of the body of a class only takes place at object
105creation time. Therefore, in the following example, the instance
106variable <span class="c003">x</span> is initialized to different values for two different
107objects.
108</p><div class="caml-example">
109<pre><div class="caml-input"> let x0 = ref 0;;
110</div><div class="caml-output ok">val x0 : int ref = {contents = 0}
111</div></pre>
112
113<pre><div class="caml-input"> class point =
114    object
115      val mutable x = incr x0; !x0
116      method get_x = x
117      method move d = x &lt;- x + d
118    end;;
119</div><div class="caml-output ok">class point :
120  object val mutable x : int method get_x : int method move : int -&gt; unit end
121</div></pre>
122
123<pre><div class="caml-input"> new point#get_x;;
124</div><div class="caml-output ok">- : int = 1
125</div></pre>
126
127<pre><div class="caml-input"> new point#get_x;;
128</div><div class="caml-output ok">- : int = 2
129</div></pre>
130
131</div><p>The class <span class="c003">point</span> can also be abstracted over the initial values of
132the <span class="c003">x</span> coordinate.
133</p><div class="caml-example">
134<pre><div class="caml-input"> class point = fun x_init -&gt;
135    object
136      val mutable x = x_init
137      method get_x = x
138      method move d = x &lt;- x + d
139    end;;
140</div><div class="caml-output ok">class point :
141  int -&gt;
142  object val mutable x : int method get_x : int method move : int -&gt; unit end
143</div></pre>
144
145</div><p>Like in function definitions, the definition above can be
146abbreviated as:
147</p><div class="caml-example">
148<pre><div class="caml-input"> class point x_init =
149    object
150      val mutable x = x_init
151      method get_x = x
152      method move d = x &lt;- x + d
153    end;;
154</div><div class="caml-output ok">class point :
155  int -&gt;
156  object val mutable x : int method get_x : int method move : int -&gt; unit end
157</div></pre>
158
159</div><p>An instance of the class <span class="c003">point</span> is now a function that expects an
160initial parameter to create a point object:
161</p><div class="caml-example">
162<pre><div class="caml-input"> new point;;
163</div><div class="caml-output ok">- : int -&gt; point = &lt;fun&gt;
164</div></pre>
165
166<pre><div class="caml-input"> let p = new point 7;;
167</div><div class="caml-output ok">val p : point = &lt;obj&gt;
168</div></pre>
169
170</div><p>The parameter <span class="c003">x_init</span> is, of course, visible in the whole body of the
171definition, including methods. For instance, the method <span class="c003">get_offset</span>
172in the class below returns the position of the object relative to its
173initial position.
174</p><div class="caml-example">
175<pre><div class="caml-input"> class point x_init =
176    object
177      val mutable x = x_init
178      method get_x = x
179      method get_offset = x - x_init
180      method move d = x &lt;- x + d
181    end;;
182</div><div class="caml-output ok">class point :
183  int -&gt;
184  object
185    val mutable x : int
186    method get_offset : int
187    method get_x : int
188    method move : int -&gt; unit
189  end
190</div></pre>
191
192</div><p>Expressions can be evaluated and bound before defining the object body
193of the class. This is useful to enforce invariants. For instance,
194points can be automatically adjusted to the nearest point on a grid,
195as follows:
196</p><div class="caml-example">
197<pre><div class="caml-input"> class adjusted_point x_init =
198    let origin = (x_init / 10) * 10 in
199    object
200      val mutable x = origin
201      method get_x = x
202      method get_offset = x - origin
203      method move d = x &lt;- x + d
204    end;;
205</div><div class="caml-output ok">class adjusted_point :
206  int -&gt;
207  object
208    val mutable x : int
209    method get_offset : int
210    method get_x : int
211    method move : int -&gt; unit
212  end
213</div></pre>
214
215</div><p>(One could also raise an exception if the <span class="c003">x_init</span> coordinate is not
216on the grid.) In fact, the same effect could here be obtained by
217calling the definition of class <span class="c003">point</span> with the value of the
218<span class="c003">origin</span>.
219</p><div class="caml-example">
220<pre><div class="caml-input"> class adjusted_point x_init =  point ((x_init / 10) * 10);;
221</div><div class="caml-output ok">class adjusted_point : int -&gt; point
222</div></pre>
223
224</div><p>An alternate solution would have been to define the adjustment in
225a special allocation function:
226</p><div class="caml-example">
227<pre><div class="caml-input"> let new_adjusted_point x_init = new point ((x_init / 10) * 10);;
228</div><div class="caml-output ok">val new_adjusted_point : int -&gt; point = &lt;fun&gt;
229</div></pre>
230
231</div><p>However, the former pattern is generally more appropriate, since
232the code for adjustment is part of the definition of the class and will be
233inherited.</p><p>This ability provides class constructors as can be found in other
234languages. Several constructors can be defined this way to build objects of
235the same class but with different initialization patterns; an
236alternative is to use initializers, as described below in section
237<a href="#ss%3Ainitializers">3.4</a>.</p>
238<h2 class="section" id="sec25">3.2&#XA0;&#XA0;Immediate objects</h2>
239<p>
240
241<a id="ss:immediate-objects"></a></p><p>There is another, more direct way to create an object: create it
242without going through a class.</p><p>The syntax is exactly the same as for class expressions, but the
243result is a single object rather than a class. All the constructs
244described in the rest of this section also apply to immediate objects.
245</p><div class="caml-example">
246<pre><div class="caml-input"> let p =
247    object
248      val mutable x = 0
249      method get_x = x
250      method move d = x &lt;- x + d
251    end;;
252</div><div class="caml-output ok">val p : &lt; get_x : int; move : int -&gt; unit &gt; = &lt;obj&gt;
253</div></pre>
254
255<pre><div class="caml-input"> p#get_x;;
256</div><div class="caml-output ok">- : int = 0
257</div></pre>
258
259<pre><div class="caml-input"> p#move 3;;
260</div><div class="caml-output ok">- : unit = ()
261</div></pre>
262
263<pre><div class="caml-input"> p#get_x;;
264</div><div class="caml-output ok">- : int = 3
265</div></pre>
266
267</div><p>Unlike classes, which cannot be defined inside an expression,
268immediate objects can appear anywhere, using variables from their
269environment.
270</p><div class="caml-example">
271<pre><div class="caml-input"> let minmax x y =
272    if x &lt; y then object method min = x method max = y end
273    else object method min = y method max = x end;;
274</div><div class="caml-output ok">val minmax : 'a -&gt; 'a -&gt; &lt; max : 'a; min : 'a &gt; = &lt;fun&gt;
275</div></pre>
276
277</div><p>Immediate objects have two weaknesses compared to classes: their types
278are not abbreviated, and you cannot inherit from them. But these two
279weaknesses can be advantages in some situations, as we will see
280in sections <a href="#ss%3Areference-to-self">3.3</a> and <a href="#ss%3Aparameterized-classes">3.10</a>.</p>
281<h2 class="section" id="sec26">3.3&#XA0;&#XA0;Reference to self</h2>
282<p>
283
284<a id="ss:reference-to-self"></a></p><p>A method or an initializer can send messages to self (that is,
285the current object). For that, self must be explicitly bound, here to
286the variable <span class="c003">s</span> (<span class="c003">s</span> could be any identifier, even though we will
287often choose the name <span class="c003">self</span>.)
288</p><div class="caml-example">
289<pre><div class="caml-input"> class printable_point x_init =
290    object (s)
291      val mutable x = x_init
292      method get_x = x
293      method move d = x &lt;- x + d
294      method print = print_int s#get_x
295    end;;
296</div><div class="caml-output ok">class printable_point :
297  int -&gt;
298  object
299    val mutable x : int
300    method get_x : int
301    method move : int -&gt; unit
302    method print : unit
303  end
304</div></pre>
305
306<pre><div class="caml-input"> let p = new printable_point 7;;
307</div><div class="caml-output ok">val p : printable_point = &lt;obj&gt;
308</div></pre>
309
310<pre><div class="caml-input"> p#print;;
311</div><div class="caml-output ok">7- : unit = ()
312</div></pre>
313
314</div><p>Dynamically, the variable <span class="c003">s</span> is bound at the invocation of a method. In
315particular, when the class <span class="c003">printable_point</span> is inherited, the variable
316<span class="c003">s</span> will be correctly bound to the object of the subclass.</p><p>A common problem with self is that, as its type may be extended in
317subclasses, you cannot fix it in advance. Here is a simple example.
318</p><div class="caml-example">
319<pre><div class="caml-input"> let ints = ref [];;
320</div><div class="caml-output ok">val ints : '_a list ref = {contents = []}
321</div></pre>
322
323<pre><div class="caml-input"> class my_int =
324    object (self)
325      method n = 1
326      method register = ints := <U>self</U> :: !ints
327    end ;;
328</div><div class="caml-output error">Error: This expression has type &lt; n : int; register : 'a; .. &gt;
329       but an expression was expected of type 'b
330       Self type cannot escape its class
331</div></pre>
332
333</div><p>You can ignore the first two lines of the error message. What matters
334is the last one: putting self into an external reference would make it
335impossible to extend it through inheritance.
336We will see in section <a href="#ss%3Ausing-coercions">3.12</a> a workaround to this
337problem.
338Note however that, since immediate objects are not extensible, the
339problem does not occur with them.
340</p><div class="caml-example">
341<pre><div class="caml-input"> let my_int =
342    object (self)
343      method n = 1
344      method register = ints := self :: !ints
345    end;;
346</div><div class="caml-output ok">val my_int : &lt; n : int; register : unit &gt; = &lt;obj&gt;
347</div></pre>
348
349</div>
350<h2 class="section" id="sec27">3.4&#XA0;&#XA0;Initializers</h2>
351<p>
352
353<a id="ss:initializers"></a></p><p>Let-bindings within class definitions are evaluated before the object
354is constructed. It is also possible to evaluate an expression
355immediately after the object has been built. Such code is written as
356an anonymous hidden method called an initializer. Therefore, it can
357access self and the instance variables.
358</p><div class="caml-example">
359<pre><div class="caml-input"> class printable_point x_init =
360    let origin = (x_init / 10) * 10 in
361    object (self)
362      val mutable x = origin
363      method get_x = x
364      method move d = x &lt;- x + d
365      method print = print_int self#get_x
366      initializer print_string "new point at "; self#print; print_newline ()
367    end;;
368</div><div class="caml-output ok">class printable_point :
369  int -&gt;
370  object
371    val mutable x : int
372    method get_x : int
373    method move : int -&gt; unit
374    method print : unit
375  end
376</div></pre>
377
378<pre><div class="caml-input"> let p = new printable_point 17;;
379</div><div class="caml-output ok">new point at 10
380val p : printable_point = &lt;obj&gt;
381</div></pre>
382
383</div><p>Initializers cannot be overridden. On the contrary, all initializers are
384evaluated sequentially.
385Initializers are particularly useful to enforce invariants.
386Another example can be seen in section <a href="advexamples.html#ss%3Abank-accounts">5.1</a>.</p>
387<h2 class="section" id="sec28">3.5&#XA0;&#XA0;Virtual methods</h2>
388<p>
389
390<a id="ss:virtual-methods"></a></p><p>It is possible to declare a method without actually defining it, using
391the keyword <span class="c003">virtual</span>. This method will be provided later in
392subclasses. A class containing virtual methods must be flagged
393<span class="c003">virtual</span>, and cannot be instantiated (that is, no object of this class
394can be created). It still defines type abbreviations (treating virtual methods
395as other methods.)
396</p><div class="caml-example">
397<pre><div class="caml-input"> class virtual abstract_point x_init =
398    object (self)
399      method virtual get_x : int
400      method get_offset = self#get_x - x_init
401      method virtual move : int -&gt; unit
402    end;;
403</div><div class="caml-output ok">class virtual abstract_point :
404  int -&gt;
405  object
406    method get_offset : int
407    method virtual get_x : int
408    method virtual move : int -&gt; unit
409  end
410</div></pre>
411
412<pre><div class="caml-input"> class point x_init =
413    object
414      inherit abstract_point x_init
415      val mutable x = x_init
416      method get_x = x
417      method move d = x &lt;- x + d
418    end;;
419</div><div class="caml-output ok">class point :
420  int -&gt;
421  object
422    val mutable x : int
423    method get_offset : int
424    method get_x : int
425    method move : int -&gt; unit
426  end
427</div></pre>
428
429</div><p>Instance variables can also be declared as virtual, with the same effect
430as with methods.
431</p><div class="caml-example">
432<pre><div class="caml-input"> class virtual abstract_point2 =
433    object
434      val mutable virtual x : int
435      method move d = x &lt;- x + d
436    end;;
437</div><div class="caml-output ok">class virtual abstract_point2 :
438  object val mutable virtual x : int method move : int -&gt; unit end
439</div></pre>
440
441<pre><div class="caml-input"> class point2 x_init =
442    object
443      inherit abstract_point2
444      val mutable x = x_init
445      method get_offset = x - x_init
446    end;;
447</div><div class="caml-output ok">class point2 :
448  int -&gt;
449  object
450    val mutable x : int
451    method get_offset : int
452    method move : int -&gt; unit
453  end
454</div></pre>
455
456</div>
457<h2 class="section" id="sec29">3.6&#XA0;&#XA0;Private methods</h2>
458<p>
459
460<a id="ss:private-methods"></a></p><p>Private methods are methods that do not appear in object interfaces.
461They can only be invoked from other methods of the same object.
462</p><div class="caml-example">
463<pre><div class="caml-input"> class restricted_point x_init =
464    object (self)
465      val mutable x = x_init
466      method get_x = x
467      method private move d = x &lt;- x + d
468      method bump = self#move 1
469    end;;
470</div><div class="caml-output ok">class restricted_point :
471  int -&gt;
472  object
473    val mutable x : int
474    method bump : unit
475    method get_x : int
476    method private move : int -&gt; unit
477  end
478</div></pre>
479
480<pre><div class="caml-input"> let p = new restricted_point 0;;
481</div><div class="caml-output ok">val p : restricted_point = &lt;obj&gt;
482</div></pre>
483
484<pre><div class="caml-input"> <U>p</U>#move 10 ;;
485</div><div class="caml-output error">Error: This expression has type restricted_point
486       It has no method move
487</div></pre>
488
489<pre><div class="caml-input"> p#bump;;
490</div><div class="caml-output ok">- : unit = ()
491</div></pre>
492
493</div><p>Note that this is not the same thing as private and protected methods
494in Java or C++, which can be called from other objects of the same
495class. This is a direct consequence of the independence between types
496and classes in OCaml: two unrelated classes may produce
497objects of the same type, and there is no way at the type level to
498ensure that an object comes from a specific class. However a possible
499encoding of friend methods is given in section <a href="#ss%3Afriends">3.17</a>.</p><p>Private methods are inherited (they are by default visible in subclasses),
500unless they are hidden by signature matching, as described below.</p><p>Private methods can be made public in a subclass.
501</p><div class="caml-example">
502<pre><div class="caml-input"> class point_again x =
503    object (self)
504      inherit restricted_point x
505      method virtual move : _
506    end;;
507</div><div class="caml-output ok">class point_again :
508  int -&gt;
509  object
510    val mutable x : int
511    method bump : unit
512    method get_x : int
513    method move : int -&gt; unit
514  end
515</div></pre>
516
517</div><p>The annotation <span class="c003">virtual</span> here is only used to mention a method without
518providing its definition. Since we didn&#X2019;t add the <span class="c003">private</span>
519annotation, this makes the method public, keeping the original
520definition.</p><p>An alternative definition is
521</p><div class="caml-example">
522<pre><div class="caml-input"> class point_again x =
523    object (self : &lt; move : _; ..&gt; )
524      inherit restricted_point x
525    end;;
526</div><div class="caml-output ok">class point_again :
527  int -&gt;
528  object
529    val mutable x : int
530    method bump : unit
531    method get_x : int
532    method move : int -&gt; unit
533  end
534</div></pre>
535
536</div><p>The constraint on self&#X2019;s type is requiring a public <span class="c003">move</span> method, and
537this is sufficient to override <span class="c003">private</span>.</p><p>One could think that a private method should remain private in a subclass.
538However, since the method is visible in a subclass, it is always possible
539to pick its code and define a method of the same name that runs that
540code, so yet another (heavier) solution would be:
541</p><div class="caml-example">
542<pre><div class="caml-input"> class point_again x =
543    object
544      inherit restricted_point x as super
545      method move = super#move
546    end;;
547</div><div class="caml-output ok">class point_again :
548  int -&gt;
549  object
550    val mutable x : int
551    method bump : unit
552    method get_x : int
553    method move : int -&gt; unit
554  end
555</div></pre>
556
557</div><p>Of course, private methods can also be virtual. Then, the keywords must
558appear in this order <span class="c003">method private virtual</span>.</p>
559<h2 class="section" id="sec30">3.7&#XA0;&#XA0;Class interfaces</h2>
560<p>
561
562<a id="ss:class-interfaces"></a></p><p>Class interfaces are inferred from class definitions. They may also
563be defined directly and used to restrict the type of a class. Like class
564declarations, they also define a new type abbreviation.
565</p><div class="caml-example">
566<pre><div class="caml-input"> class type restricted_point_type =
567    object
568      method get_x : int
569      method bump : unit
570  end;;
571</div><div class="caml-output ok">class type restricted_point_type =
572  object method bump : unit method get_x : int end
573</div></pre>
574
575<pre><div class="caml-input"> fun (x : restricted_point_type) -&gt; x;;
576</div><div class="caml-output ok">- : restricted_point_type -&gt; restricted_point_type = &lt;fun&gt;
577</div></pre>
578
579</div><p>In addition to program documentation, class interfaces can be used to
580constrain the type of a class. Both concrete instance variables and concrete
581private methods can be hidden by a class type constraint. Public
582methods and virtual members, however, cannot.
583</p><div class="caml-example">
584<pre><div class="caml-input"> class restricted_point' x = (restricted_point x : restricted_point_type);;
585</div><div class="caml-output ok">class restricted_point' : int -&gt; restricted_point_type
586</div></pre>
587
588</div><p>Or, equivalently:
589</p><div class="caml-example">
590<pre><div class="caml-input"> class restricted_point' = (restricted_point : int -&gt; restricted_point_type);;
591</div><div class="caml-output ok">class restricted_point' : int -&gt; restricted_point_type
592</div></pre>
593
594</div><p>The interface of a class can also be specified in a module
595signature, and used to restrict the inferred signature of a module.
596</p><div class="caml-example">
597<pre><div class="caml-input"> module type POINT = sig
598    class restricted_point' : int -&gt;
599      object
600        method get_x : int
601        method bump : unit
602      end
603  end;;
604</div><div class="caml-output ok">module type POINT =
605  sig
606    class restricted_point' :
607      int -&gt; object method bump : unit method get_x : int end
608  end
609</div></pre>
610
611<pre><div class="caml-input"> module Point : POINT = struct
612    class restricted_point' = restricted_point
613  end;;
614</div><div class="caml-output ok">module Point : POINT
615</div></pre>
616
617</div>
618<h2 class="section" id="sec31">3.8&#XA0;&#XA0;Inheritance</h2>
619<p>
620
621<a id="ss:inheritance"></a></p><p>We illustrate inheritance by defining a class of colored points that
622inherits from the class of points. This class has all instance
623variables and all methods of class <span class="c003">point</span>, plus a new instance
624variable <span class="c003">c</span> and a new method <span class="c003">color</span>.
625</p><div class="caml-example">
626<pre><div class="caml-input"> class colored_point x (c : string) =
627    object
628      inherit point x
629      val c = c
630      method color = c
631    end;;
632</div><div class="caml-output ok">class colored_point :
633  int -&gt;
634  string -&gt;
635  object
636    val c : string
637    val mutable x : int
638    method color : string
639    method get_offset : int
640    method get_x : int
641    method move : int -&gt; unit
642  end
643</div></pre>
644
645<pre><div class="caml-input"> let p' = new colored_point 5 "red";;
646</div><div class="caml-output ok">val p' : colored_point = &lt;obj&gt;
647</div></pre>
648
649<pre><div class="caml-input"> p'#get_x, p'#color;;
650</div><div class="caml-output ok">- : int * string = (5, "red")
651</div></pre>
652
653</div><p>A point and a colored point have incompatible types, since a point has
654no method <span class="c003">color</span>. However, the function <span class="c003">get_x</span> below is a generic
655function applying method <span class="c003">get_x</span> to any object <span class="c003">p</span> that has this
656method (and possibly some others, which are represented by an ellipsis
657in the type). Thus, it applies to both points and colored points.
658</p><div class="caml-example">
659<pre><div class="caml-input"> let get_succ_x p = p#get_x + 1;;
660</div><div class="caml-output ok">val get_succ_x : &lt; get_x : int; .. &gt; -&gt; int = &lt;fun&gt;
661</div></pre>
662
663<pre><div class="caml-input"> get_succ_x p + get_succ_x p';;
664</div><div class="caml-output ok">- : int = 8
665</div></pre>
666
667</div><p>Methods need not be declared previously, as shown by the example:
668</p><div class="caml-example">
669<pre><div class="caml-input"> let set_x p = p#set_x;;
670</div><div class="caml-output ok">val set_x : &lt; set_x : 'a; .. &gt; -&gt; 'a = &lt;fun&gt;
671</div></pre>
672
673<pre><div class="caml-input"> let incr p = set_x p (get_succ_x p);;
674</div><div class="caml-output ok">val incr : &lt; get_x : int; set_x : int -&gt; 'a; .. &gt; -&gt; 'a = &lt;fun&gt;
675</div></pre>
676
677</div>
678<h2 class="section" id="sec32">3.9&#XA0;&#XA0;Multiple inheritance</h2>
679<p>
680
681<a id="ss:multiple-inheritance"></a></p><p>Multiple inheritance is allowed. Only the last definition of a method
682is kept: the redefinition in a subclass of a method that was visible in
683the parent class overrides the definition in the parent class.
684Previous definitions of a method can be reused by binding the related
685ancestor. Below, <span class="c003">super</span> is bound to the ancestor <span class="c003">printable_point</span>.
686The name <span class="c003">super</span> is a pseudo value identifier that can only be used to
687invoke a super-class method, as in <span class="c003">super#print</span>.
688</p><div class="caml-example">
689<pre><div class="caml-input"> class printable_colored_point y c =
690    object (self)
691      val c = c
692      method color = c
693      inherit printable_point y as super
694      method print =
695        print_string "(";
696        super#print;
697        print_string ", ";
698        print_string (self#color);
699        print_string ")"
700    end;;
701</div><div class="caml-output ok">class printable_colored_point :
702  int -&gt;
703  string -&gt;
704  object
705    val c : string
706    val mutable x : int
707    method color : string
708    method get_x : int
709    method move : int -&gt; unit
710    method print : unit
711  end
712</div></pre>
713
714<pre><div class="caml-input"> let p' = new printable_colored_point 17 "red";;
715</div><div class="caml-output ok">new point at (10, red)
716val p' : printable_colored_point = &lt;obj&gt;
717</div></pre>
718
719<pre><div class="caml-input"> p'#print;;
720</div><div class="caml-output ok">(10, red)- : unit = ()
721</div></pre>
722
723</div><p>A private method that has been hidden in the parent class is no longer
724visible, and is thus not overridden. Since initializers are treated as
725private methods, all initializers along the class hierarchy are evaluated,
726in the order they are introduced.</p>
727<h2 class="section" id="sec33">3.10&#XA0;&#XA0;Parameterized classes</h2>
728<p>
729
730<a id="ss:parameterized-classes"></a></p><p>Reference cells can be implemented as objects.
731The naive definition fails to typecheck:
732</p><div class="caml-example">
733<pre><div class="caml-input"> <U>class oref x_init =
734    object
735      val mutable x = x_init
736      method get = x
737      method set y = x &lt;- y
738    end</U>;;
739</div><div class="caml-output error">Error: Some type variables are unbound in this type:
740         class oref :
741           'a -&gt;
742           object
743             val mutable x : 'a
744             method get : 'a
745             method set : 'a -&gt; unit
746           end
747       The method get has type 'a where 'a is unbound
748</div></pre>
749
750</div><p>The reason is that at least one of the methods has a polymorphic type
751(here, the type of the value stored in the reference cell), thus
752either the class should be parametric, or the method type should be
753constrained to a monomorphic type. A monomorphic instance of the class could
754be defined by:
755</p><div class="caml-example">
756<pre><div class="caml-input"> class oref (x_init:int) =
757    object
758      val mutable x = x_init
759      method get = x
760      method set y = x &lt;- y
761    end;;
762</div><div class="caml-output ok">class oref :
763  int -&gt;
764  object val mutable x : int method get : int method set : int -&gt; unit end
765</div></pre>
766
767</div><p>Note that since immediate objects do not define a class type, they have
768no such restriction.
769</p><div class="caml-example">
770<pre><div class="caml-input"> let new_oref x_init =
771    object
772      val mutable x = x_init
773      method get = x
774      method set y = x &lt;- y
775    end;;
776</div><div class="caml-output ok">val new_oref : 'a -&gt; &lt; get : 'a; set : 'a -&gt; unit &gt; = &lt;fun&gt;
777</div></pre>
778
779</div><p>On the other hand, a class for polymorphic references must explicitly
780list the type parameters in its declaration. Class type parameters are
781listed between <span class="c003">[</span> and <span class="c003">]</span>. The type parameters must also be
782bound somewhere in the class body by a type constraint.
783</p><div class="caml-example">
784<pre><div class="caml-input"> class ['a] oref x_init =
785    object
786      val mutable x = (x_init : 'a)
787      method get = x
788      method set y = x &lt;- y
789    end;;
790</div><div class="caml-output ok">class ['a] oref :
791  'a -&gt; object val mutable x : 'a method get : 'a method set : 'a -&gt; unit end
792</div></pre>
793
794<pre><div class="caml-input"> let r = new oref 1 in r#set 2; (r#get);;
795</div><div class="caml-output ok">- : int = 2
796</div></pre>
797
798</div><p>The type parameter in the declaration may actually be constrained in the
799body of the class definition. In the class type, the actual value of
800the type parameter is displayed in the <span class="c003">constraint</span> clause.
801</p><div class="caml-example">
802<pre><div class="caml-input"> class ['a] oref_succ (x_init:'a) =
803    object
804      val mutable x = x_init + 1
805      method get = x
806      method set y = x &lt;- y
807    end;;
808</div><div class="caml-output ok">class ['a] oref_succ :
809  'a -&gt;
810  object
811    constraint 'a = int
812    val mutable x : int
813    method get : int
814    method set : int -&gt; unit
815  end
816</div></pre>
817
818</div><p>Let us consider a more complex example: define a circle, whose center
819may be any kind of point. We put an additional type
820constraint in method <span class="c003">move</span>, since no free variables must remain
821unaccounted for by the class type parameters.
822</p><div class="caml-example">
823<pre><div class="caml-input"> class ['a] circle (c : 'a) =
824    object
825      val mutable center = c
826      method center = center
827      method set_center c = center &lt;- c
828      method move = (center#move : int -&gt; unit)
829    end;;
830</div><div class="caml-output ok">class ['a] circle :
831  'a -&gt;
832  object
833    constraint 'a = &lt; move : int -&gt; unit; .. &gt;
834    val mutable center : 'a
835    method center : 'a
836    method move : int -&gt; unit
837    method set_center : 'a -&gt; unit
838  end
839</div></pre>
840
841</div><p>An alternate definition of <span class="c003">circle</span>, using a <span class="c003">constraint</span> clause in
842the class definition, is shown below. The type <span class="c003">#point</span> used below in
843the <span class="c003">constraint</span> clause is an abbreviation produced by the definition
844of class <span class="c003">point</span>. This abbreviation unifies with the type of any
845object belonging to a subclass of class <span class="c003">point</span>. It actually expands to
846<span class="c003">&lt; get_x : int; move : int -&gt; unit; .. &gt;</span>. This leads to the following
847alternate definition of <span class="c003">circle</span>, which has slightly stronger
848constraints on its argument, as we now expect <span class="c003">center</span> to have a
849method <span class="c003">get_x</span>.
850</p><div class="caml-example">
851<pre><div class="caml-input"> class ['a] circle (c : 'a) =
852    object
853      constraint 'a = #point
854      val mutable center = c
855      method center = center
856      method set_center c = center &lt;- c
857      method move = center#move
858    end;;
859</div><div class="caml-output ok">class ['a] circle :
860  'a -&gt;
861  object
862    constraint 'a = #point
863    val mutable center : 'a
864    method center : 'a
865    method move : int -&gt; unit
866    method set_center : 'a -&gt; unit
867  end
868</div></pre>
869
870</div><p>The class <span class="c003">colored_circle</span> is a specialized version of class
871<span class="c003">circle</span> that requires the type of the center to unify with
872<span class="c003">#colored_point</span>, and adds a method <span class="c003">color</span>. Note that when specializing a
873parameterized class, the instance of type parameter must always be
874explicitly given. It is again written between <span class="c003">[</span> and <span class="c003">]</span>.
875</p><div class="caml-example">
876<pre><div class="caml-input"> class ['a] colored_circle c =
877    object
878      constraint 'a = #colored_point
879      inherit ['a] circle c
880      method color = center#color
881    end;;
882</div><div class="caml-output ok">class ['a] colored_circle :
883  'a -&gt;
884  object
885    constraint 'a = #colored_point
886    val mutable center : 'a
887    method center : 'a
888    method color : string
889    method move : int -&gt; unit
890    method set_center : 'a -&gt; unit
891  end
892</div></pre>
893
894</div>
895<h2 class="section" id="sec34">3.11&#XA0;&#XA0;Polymorphic methods</h2>
896<p>
897
898<a id="ss:polymorphic-methods"></a></p><p>While parameterized classes may be polymorphic in their contents, they
899are not enough to allow polymorphism of method use.</p><p>A classical example is defining an iterator.
900</p><div class="caml-example">
901<pre><div class="caml-input"> List.fold_left;;
902</div><div class="caml-output ok">- : ('a -&gt; 'b -&gt; 'a) -&gt; 'a -&gt; 'b list -&gt; 'a = &lt;fun&gt;
903</div></pre>
904
905<pre><div class="caml-input"> class ['a] intlist (l : int list) =
906    object
907      method empty = (l = [])
908      method fold f (accu : 'a) = List.fold_left f accu l
909    end;;
910</div><div class="caml-output ok">class ['a] intlist :
911  int list -&gt;
912  object method empty : bool method fold : ('a -&gt; int -&gt; 'a) -&gt; 'a -&gt; 'a end
913</div></pre>
914
915</div><p>At first look, we seem to have a polymorphic iterator, however this
916does not work in practice.
917</p><div class="caml-example">
918<pre><div class="caml-input"> let l = new intlist [1; 2; 3];;
919</div><div class="caml-output ok">val l : '_a intlist = &lt;obj&gt;
920</div></pre>
921
922<pre><div class="caml-input"> l#fold (fun x y -&gt; x+y) 0;;
923</div><div class="caml-output ok">- : int = 6
924</div></pre>
925
926<pre><div class="caml-input"> l;;
927</div><div class="caml-output ok">- : int intlist = &lt;obj&gt;
928</div></pre>
929
930<pre><div class="caml-input"> l#fold (fun s x -&gt; <U>s</U> ^ string_of_int x ^ " ") "" ;;
931</div><div class="caml-output error">Error: This expression has type int but an expression was expected of type
932         string
933</div></pre>
934
935</div><p>Our iterator works, as shows its first use for summation. However,
936since objects themselves are not polymorphic (only their constructors
937are), using the <span class="c003">fold</span> method fixes its type for this individual object.
938Our next attempt to use it as a string iterator fails.</p><p>The problem here is that quantification was wrongly located: it is
939not the class we want to be polymorphic, but the <span class="c003">fold</span> method.
940This can be achieved by giving an explicitly polymorphic type in the
941method definition.
942</p><div class="caml-example">
943<pre><div class="caml-input"> class intlist (l : int list) =
944    object
945      method empty = (l = [])
946      method fold : 'a. ('a -&gt; int -&gt; 'a) -&gt; 'a -&gt; 'a =
947        fun f accu -&gt; List.fold_left f accu l
948    end;;
949</div><div class="caml-output ok">class intlist :
950  int list -&gt;
951  object method empty : bool method fold : ('a -&gt; int -&gt; 'a) -&gt; 'a -&gt; 'a end
952</div></pre>
953
954<pre><div class="caml-input"> let l = new intlist [1; 2; 3];;
955</div><div class="caml-output ok">val l : intlist = &lt;obj&gt;
956</div></pre>
957
958<pre><div class="caml-input"> l#fold (fun x y -&gt; x+y) 0;;
959</div><div class="caml-output ok">- : int = 6
960</div></pre>
961
962<pre><div class="caml-input"> l#fold (fun s x -&gt; s ^ string_of_int x ^ " ") "";;
963</div><div class="caml-output ok">- : string = "1 2 3 "
964</div></pre>
965
966</div><p>As you can see in the class type shown by the compiler, while
967polymorphic method types must be fully explicit in class definitions
968(appearing immediately after the method name), quantified type
969variables can be left implicit in class descriptions. Why require types
970to be explicit? The problem is that <span class="c003">(int -&gt; int -&gt; int) -&gt; int -&gt; int</span> would also be a valid type for <span class="c003">fold</span>, and it happens to be
971incompatible with the polymorphic type we gave (automatic
972instantiation only works for toplevel types variables, not for inner
973quantifiers, where it becomes an undecidable problem.) So the compiler
974cannot choose between those two types, and must be helped.</p><p>However, the type can be completely omitted in the class definition if
975it is already known, through inheritance or type constraints on self.
976Here is an example of method overriding.
977</p><div class="caml-example">
978<pre><div class="caml-input"> class intlist_rev l =
979    object
980      inherit intlist l
981      method fold f accu = List.fold_left f accu (List.rev l)
982    end;;
983</div>
984</pre>
985
986</div><p>The following idiom separates description and definition.
987</p><div class="caml-example">
988<pre><div class="caml-input"> class type ['a] iterator =
989    object method fold : ('b -&gt; 'a -&gt; 'b) -&gt; 'b -&gt; 'b end;;
990</div>
991</pre>
992
993<pre><div class="caml-input"> class intlist l =
994    object (self : int #iterator)
995      method empty = (l = [])
996      method fold f accu = List.fold_left f accu l
997    end;;
998</div>
999</pre>
1000
1001</div><p>Note here the <span class="c003">(self : int #iterator)</span> idiom, which ensures that this
1002object implements the interface <span class="c003">iterator</span>.</p><p>Polymorphic methods are called in exactly the same way as normal
1003methods, but you should be aware of some limitations of type
1004inference. Namely, a polymorphic method can only be called if its
1005type is known at the call site. Otherwise, the method will be assumed
1006to be monomorphic, and given an incompatible type.
1007</p><div class="caml-example">
1008<pre><div class="caml-input"> let sum lst = lst#fold (fun x y -&gt; x+y) 0;;
1009</div><div class="caml-output ok">val sum : &lt; fold : (int -&gt; int -&gt; int) -&gt; int -&gt; 'a; .. &gt; -&gt; 'a = &lt;fun&gt;
1010</div></pre>
1011
1012<pre><div class="caml-input"> sum <U>l</U> ;;
1013</div><div class="caml-output error">Error: This expression has type intlist
1014       but an expression was expected of type
1015         &lt; fold : (int -&gt; int -&gt; int) -&gt; int -&gt; 'a; .. &gt;
1016       Types for method fold are incompatible
1017</div></pre>
1018
1019</div><p>The workaround is easy: you should put a type constraint on the
1020parameter.
1021</p><div class="caml-example">
1022<pre><div class="caml-input"> let sum (lst : _ #iterator) = lst#fold (fun x y -&gt; x+y) 0;;
1023</div><div class="caml-output ok">val sum : int #iterator -&gt; int = &lt;fun&gt;
1024</div></pre>
1025
1026</div><p>Of course the constraint may also be an explicit method type.
1027Only occurences of quantified variables are required.
1028</p><div class="caml-example">
1029<pre><div class="caml-input"> let sum lst =
1030    (lst : &lt; fold : 'a. ('a -&gt; _ -&gt; 'a) -&gt; 'a -&gt; 'a; .. &gt;)#fold (+) 0;;
1031</div><div class="caml-output ok">val sum : &lt; fold : 'a. ('a -&gt; int -&gt; 'a) -&gt; 'a -&gt; 'a; .. &gt; -&gt; int = &lt;fun&gt;
1032</div></pre>
1033
1034</div><p>Another use of polymorphic methods is to allow some form of implicit
1035subtyping in method arguments. We have already seen in section
1036<a href="#ss%3Ainheritance">3.8</a> how some functions may be polymorphic in the
1037class of their argument. This can be extended to methods.
1038</p><div class="caml-example">
1039<pre><div class="caml-input"> class type point0 = object method get_x : int end;;
1040</div><div class="caml-output ok">class type point0 = object method get_x : int end
1041</div></pre>
1042
1043<pre><div class="caml-input"> class distance_point x =
1044    object
1045      inherit point x
1046      method distance : 'a. (#point0 as 'a) -&gt; int =
1047        fun other -&gt; abs (other#get_x - x)
1048    end;;
1049</div><div class="caml-output ok">class distance_point :
1050  int -&gt;
1051  object
1052    val mutable x : int
1053    method distance : #point0 -&gt; int
1054    method get_offset : int
1055    method get_x : int
1056    method move : int -&gt; unit
1057  end
1058</div></pre>
1059
1060<pre><div class="caml-input"> let p = new distance_point 3 in
1061  (p#distance (new point 8), p#distance (new colored_point 1 "blue"));;
1062</div><div class="caml-output ok">- : int * int = (5, 2)
1063</div></pre>
1064
1065</div><p>Note here the special syntax <span class="c003">(#point0 as 'a)</span> we have to use to
1066quantify the extensible part of <span class="c003">#point0</span>. As for the variable binder,
1067it can be omitted in class specifications. If you want polymorphism
1068inside object field it must be quantified independently.
1069</p><div class="caml-example">
1070<pre><div class="caml-input"> class multi_poly =
1071    object
1072      method m1 : 'a. (&lt; n1 : 'b. 'b -&gt; 'b; .. &gt; as 'a) -&gt; _ =
1073        fun o -&gt; o#n1 true, o#n1 "hello"
1074      method m2 : 'a 'b. (&lt; n2 : 'b -&gt; bool; .. &gt; as 'a) -&gt; 'b -&gt; _ =
1075        fun o x -&gt; o#n2 x
1076    end;;
1077</div><div class="caml-output ok">class multi_poly :
1078  object
1079    method m1 : &lt; n1 : 'b. 'b -&gt; 'b; .. &gt; -&gt; bool * string
1080    method m2 : &lt; n2 : 'b -&gt; bool; .. &gt; -&gt; 'b -&gt; bool
1081  end
1082</div></pre>
1083
1084</div><p>In method <span class="c003">m1</span>, <span class="c003">o</span> must be an object with at least a method <span class="c003">n1</span>,
1085itself polymorphic. In method <span class="c003">m2</span>, the argument of <span class="c003">n2</span> and <span class="c003">x</span> must
1086have the same type, which is quantified at the same level as <span class="c003">'a</span>.</p>
1087<h2 class="section" id="sec35">3.12&#XA0;&#XA0;Using coercions</h2>
1088<p>
1089
1090<a id="ss:using-coercions"></a></p><p>Subtyping is never implicit. There are, however, two ways to perform
1091subtyping. The most general construction is fully explicit: both the
1092domain and the codomain of the type coercion must be given.</p><p>We have seen that points and colored points have incompatible types.
1093For instance, they cannot be mixed in the same list. However, a
1094colored point can be coerced to a point, hiding its <span class="c003">color</span> method:
1095</p><div class="caml-example">
1096<pre><div class="caml-input"> let colored_point_to_point cp = (cp : colored_point :&gt; point);;
1097</div><div class="caml-output ok">val colored_point_to_point : colored_point -&gt; point = &lt;fun&gt;
1098</div></pre>
1099
1100<pre><div class="caml-input"> let p = new point 3 and q = new colored_point 4 "blue";;
1101</div><div class="caml-output ok">val p : point = &lt;obj&gt;
1102val q : colored_point = &lt;obj&gt;
1103</div></pre>
1104
1105<pre><div class="caml-input"> let l = [p; (colored_point_to_point q)];;
1106</div><div class="caml-output ok">val l : point list = [&lt;obj&gt;; &lt;obj&gt;]
1107</div></pre>
1108
1109</div><p>An object of type <span class="c003">t</span> can be seen as an object of type <span class="c003">t'</span>
1110only if <span class="c003">t</span> is a subtype of <span class="c003">t'</span>. For instance, a point cannot be
1111seen as a colored point.
1112</p><div class="caml-example">
1113<pre><div class="caml-input"> <U>(p : point :&gt; colored_point)</U>;;
1114</div><div class="caml-output error">Error: Type point = &lt; get_offset : int; get_x : int; move : int -&gt; unit &gt;
1115       is not a subtype of
1116         colored_point =
1117           &lt; color : string; get_offset : int; get_x : int;
1118             move : int -&gt; unit &gt;
1119</div></pre>
1120
1121</div><p>Indeed, narrowing coercions without runtime checks would be unsafe.
1122Runtime type checks might raise exceptions, and they would require
1123the presence of type information at runtime, which is not the case in
1124the OCaml system.
1125For these reasons, there is no such operation available in the language.</p><p>Be aware that subtyping and inheritance are not related. Inheritance is a
1126syntactic relation between classes while subtyping is a semantic relation
1127between types. For instance, the class of colored points could have been
1128defined directly, without inheriting from the class of points; the type of
1129colored points would remain unchanged and thus still be a subtype of
1130points.
1131</p><p>The domain of a coercion can often be omitted. For instance, one can
1132define:
1133</p><div class="caml-example">
1134<pre><div class="caml-input"> let to_point cp = (cp :&gt; point);;
1135</div><div class="caml-output ok">val to_point : #point -&gt; point = &lt;fun&gt;
1136</div></pre>
1137
1138</div><p>In this case, the function <span class="c003">colored_point_to_point</span> is an instance of the
1139function <span class="c003">to_point</span>. This is not always true, however. The fully
1140explicit coercion is more precise and is sometimes unavoidable.
1141Consider, for example, the following class:
1142</p><div class="caml-example">
1143<pre><div class="caml-input"> class c0 = object method m = {&lt; &gt;} method n = 0 end;;
1144</div><div class="caml-output ok">class c0 : object ('a) method m : 'a method n : int end
1145</div></pre>
1146
1147</div><p>The object type <span class="c003">c0</span> is an abbreviation for <span class="c003">&lt;m : 'a; n : int&gt; as 'a</span>.
1148Consider now the type declaration:
1149</p><div class="caml-example">
1150<pre><div class="caml-input"> class type c1 =  object method m : c1 end;;
1151</div><div class="caml-output ok">class type c1 = object method m : c1 end
1152</div></pre>
1153
1154</div><p>The object type <span class="c003">c1</span> is an abbreviation for the type <span class="c003">&lt;m : 'a&gt; as 'a</span>.
1155The coercion from an object of type <span class="c003">c0</span> to an object of type <span class="c003">c1</span> is
1156correct:
1157</p><div class="caml-example">
1158<pre><div class="caml-input"> fun (x:c0) -&gt; (x : c0 :&gt; c1);;
1159</div><div class="caml-output ok">- : c0 -&gt; c1 = &lt;fun&gt;
1160</div></pre>
1161
1162</div><p>However, the domain of the coercion cannot always be omitted.
1163In that case, the solution is to use the explicit form.
1164Sometimes, a change in the class-type definition can also solve the problem
1165</p><div class="caml-example">
1166<pre><div class="caml-input"> class type c2 = object ('a) method m : 'a end;;
1167</div><div class="caml-output ok">class type c2 = object ('a) method m : 'a end
1168</div></pre>
1169
1170<pre><div class="caml-input"> fun (x:c0) -&gt; (x :&gt; c2);;
1171</div><div class="caml-output ok">- : c0 -&gt; c2 = &lt;fun&gt;
1172</div></pre>
1173
1174</div><p>While class types <span class="c003">c1</span> and <span class="c003">c2</span> are different, both object types
1175<span class="c003">c1</span> and <span class="c003">c2</span> expand to the same object type (same method names and types).
1176Yet, when the domain of a coercion is left implicit and its co-domain
1177is an abbreviation of a known class type, then the class type, rather
1178than the object type, is used to derive the coercion function. This
1179allows leaving the domain implicit in most cases when coercing form a
1180subclass to its superclass.
1181The type of a coercion can always be seen as below:
1182</p><div class="caml-example">
1183<pre><div class="caml-input"> let to_c1 x = (x :&gt; c1);;
1184</div><div class="caml-output ok">val to_c1 : &lt; m : #c1; .. &gt; -&gt; c1 = &lt;fun&gt;
1185</div></pre>
1186
1187<pre><div class="caml-input"> let to_c2 x = (x :&gt; c2);;
1188</div><div class="caml-output ok">val to_c2 : #c2 -&gt; c2 = &lt;fun&gt;
1189</div></pre>
1190
1191</div><p>Note the difference between these two coercions: in the case of <span class="c003">to_c2</span>,
1192the type
1193<span class="c003">#c2 = &lt; m : 'a; .. &gt; as 'a</span> is polymorphically recursive (according
1194to the explicit recursion in the class type of <span class="c003">c2</span>); hence the
1195success of applying this coercion to an object of class <span class="c003">c0</span>.
1196On the other hand, in the first case, <span class="c003">c1</span> was only expanded and
1197unrolled twice to obtain <span class="c003">&lt; m : &lt; m : c1; .. &gt;; .. &gt;</span> (remember <span class="c003">#c1 = &lt; m : c1; .. &gt;</span>), without introducing recursion.
1198You may also note that the type of <span class="c003">to_c2</span> is <span class="c003">#c2 -&gt; c2</span> while
1199the type of <span class="c003">to_c1</span> is more general than <span class="c003">#c1 -&gt; c1</span>. This is not always true,
1200since there are class types for which some instances of <span class="c003">#c</span> are not subtypes
1201of <span class="c003">c</span>, as explained in section&#XA0;<a href="#ss%3Abinary-methods">3.16</a>. Yet, for
1202parameterless classes the coercion <span class="c003">(_ :&gt; c)</span> is always more general than
1203<span class="c003">(_ : #c :&gt; c)</span>.
1204</p><p>A common problem may occur when one tries to define a coercion to a
1205class <span class="c003">c</span> while defining class <span class="c003">c</span>. The problem is due to the type
1206abbreviation not being completely defined yet, and so its subtypes are not
1207clearly known. Then, a coercion <span class="c003">(_ :&gt; c)</span> or <span class="c003">(_ : #c :&gt; c)</span> is taken to be
1208the identity function, as in
1209</p><div class="caml-example">
1210<pre><div class="caml-input"> function x -&gt; (x :&gt; 'a);;
1211</div><div class="caml-output ok">- : 'a -&gt; 'a = &lt;fun&gt;
1212</div></pre>
1213
1214</div><p>As a consequence, if the coercion is applied to <span class="c003">self</span>, as in the
1215following example, the type of <span class="c003">self</span> is unified with the closed type
1216<span class="c003">c</span> (a closed object type is an object type without ellipsis). This
1217would constrain the type of self be closed and is thus rejected.
1218Indeed, the type of self cannot be closed: this would prevent any
1219further extension of the class. Therefore, a type error is generated
1220when the unification of this type with another type would result in a
1221closed object type.
1222</p><div class="caml-example">
1223<pre><div class="caml-input"> class c = object method m = 1 end
1224  and d = object (self)
1225    inherit c
1226    method n = 2
1227    method as_c = (<U>self</U> :&gt; c)
1228  end;;
1229</div><div class="caml-output error">Error: This expression cannot be coerced to type c = &lt; m : int &gt;; it has type
1230         &lt; as_c : c; m : int; n : int; .. &gt;
1231       but is here used with type c
1232       Self type cannot escape its class
1233</div></pre>
1234
1235</div><p>However, the most common instance of this problem, coercing self to
1236its current class, is detected as a special case by the type checker,
1237and properly typed.
1238</p><div class="caml-example">
1239<pre><div class="caml-input"> class c = object (self) method m = (self :&gt; c) end;;
1240</div><div class="caml-output ok">class c : object method m : c end
1241</div></pre>
1242
1243</div><p>This allows the following idiom, keeping a list of all objects
1244belonging to a class or its subclasses:
1245</p><div class="caml-example">
1246<pre><div class="caml-input"> let all_c = ref [];;
1247</div><div class="caml-output ok">val all_c : '_a list ref = {contents = []}
1248</div></pre>
1249
1250<pre><div class="caml-input"> class c (m : int) =
1251    object (self)
1252      method m = m
1253      initializer all_c := (self :&gt; c) :: !all_c
1254    end;;
1255</div><div class="caml-output ok">class c : int -&gt; object method m : int end
1256</div></pre>
1257
1258</div><p>This idiom can in turn be used to retrieve an object whose type has
1259been weakened:
1260</p><div class="caml-example">
1261<pre><div class="caml-input"> let rec lookup_obj obj = function [] -&gt; raise Not_found
1262    | obj' :: l -&gt;
1263       if (obj :&gt; &lt; &gt;) = (obj' :&gt; &lt; &gt;) then obj' else lookup_obj obj l ;;
1264</div><div class="caml-output ok">val lookup_obj : &lt; .. &gt; -&gt; (&lt; .. &gt; as 'a) list -&gt; 'a = &lt;fun&gt;
1265</div></pre>
1266
1267<pre><div class="caml-input"> let lookup_c obj = lookup_obj obj !all_c;;
1268</div><div class="caml-output ok">val lookup_c : &lt; .. &gt; -&gt; &lt; m : int &gt; = &lt;fun&gt;
1269</div></pre>
1270
1271</div><p>The type <span class="c003">&lt; m : int &gt;</span> we see here is just the expansion of <span class="c003">c</span>, due
1272to the use of a reference; we have succeeded in getting back an object
1273of type <span class="c003">c</span>.</p><p><br>
1274The previous coercion problem can often be avoided by first
1275defining the abbreviation, using a class type:
1276</p><div class="caml-example">
1277<pre><div class="caml-input"> class type c' = object method m : int end;;
1278</div><div class="caml-output ok">class type c' = object method m : int end
1279</div></pre>
1280
1281<pre><div class="caml-input"> class c : c' = object method m = 1 end
1282  and d = object (self)
1283    inherit c
1284    method n = 2
1285    method as_c = (self :&gt; c')
1286  end;;
1287</div><div class="caml-output ok">class c : c'
1288and d : object method as_c : c' method m : int method n : int end
1289</div></pre>
1290
1291</div><p>It is also possible to use a virtual class. Inheriting from this class
1292simultaneously forces all methods of <span class="c003">c</span> to have the same
1293type as the methods of <span class="c003">c'</span>.
1294</p><div class="caml-example">
1295<pre><div class="caml-input"> class virtual c' = object method virtual m : int end;;
1296</div><div class="caml-output ok">class virtual c' : object method virtual m : int end
1297</div></pre>
1298
1299<pre><div class="caml-input"> class c = object (self) inherit c' method m = 1 end;;
1300</div><div class="caml-output ok">class c : object method m : int end
1301</div></pre>
1302
1303</div><p>One could think of defining the type abbreviation directly:
1304</p><div class="caml-example">
1305<pre><div class="caml-input"> type c' = &lt;m : int&gt;;;
1306</div>
1307</pre>
1308
1309</div><p>However, the abbreviation <span class="c003">#c'</span> cannot be defined directly in a similar way.
1310It can only be defined by a class or a class-type definition.
1311This is because a <span class="c003">#</span>-abbreviation carries an implicit anonymous
1312variable <span class="c003">..</span> that cannot be explicitly named.
1313The closer you get to it is:
1314</p><div class="caml-example">
1315<pre><div class="caml-input"> type 'a c'_class = 'a constraint 'a = &lt; m : int; .. &gt;;;
1316</div>
1317</pre>
1318
1319</div><p>with an extra type variable capturing the open object type.</p>
1320<h2 class="section" id="sec36">3.13&#XA0;&#XA0;Functional objects</h2>
1321<p>
1322
1323<a id="ss:functional-objects"></a></p><p>It is possible to write a version of class <span class="c003">point</span> without assignments
1324on the instance variables. The override construct <span class="c003">{&lt; ... &gt;}</span> returns a copy of
1325&#X201C;self&#X201D; (that is, the current object), possibly changing the value of
1326some instance variables.
1327</p><div class="caml-example">
1328<pre><div class="caml-input"> class functional_point y =
1329    object
1330      val x = y
1331      method get_x = x
1332      method move d = {&lt; x = x + d &gt;}
1333    end;;
1334</div><div class="caml-output ok">class functional_point :
1335  int -&gt;
1336  object ('a) val x : int method get_x : int method move : int -&gt; 'a end
1337</div></pre>
1338
1339<pre><div class="caml-input"> let p = new functional_point 7;;
1340</div><div class="caml-output ok">val p : functional_point = &lt;obj&gt;
1341</div></pre>
1342
1343<pre><div class="caml-input"> p#get_x;;
1344</div><div class="caml-output ok">- : int = 7
1345</div></pre>
1346
1347<pre><div class="caml-input"> (p#move 3)#get_x;;
1348</div><div class="caml-output ok">- : int = 10
1349</div></pre>
1350
1351<pre><div class="caml-input"> p#get_x;;
1352</div><div class="caml-output ok">- : int = 7
1353</div></pre>
1354
1355</div><p>Note that the type abbreviation <span class="c003">functional_point</span> is recursive, which can
1356be seen in the class type of <span class="c003">functional_point</span>: the type of self is <span class="c003">'a</span>
1357and <span class="c003">'a</span> appears inside the type of the method <span class="c003">move</span>.</p><p>The above definition of <span class="c003">functional_point</span> is not equivalent
1358to the following:
1359</p><div class="caml-example">
1360<pre><div class="caml-input"> class bad_functional_point y =
1361    object
1362      val x = y
1363      method get_x = x
1364      method move d = new bad_functional_point (x+d)
1365    end;;
1366</div><div class="caml-output ok">class bad_functional_point :
1367  int -&gt;
1368  object
1369    val x : int
1370    method get_x : int
1371    method move : int -&gt; bad_functional_point
1372  end
1373</div></pre>
1374
1375</div><p>While objects of either class will behave the same, objects of their
1376subclasses will be different. In a subclass of <span class="c003">bad_functional_point</span>,
1377the method <span class="c003">move</span> will
1378keep returning an object of the parent class. On the contrary, in a
1379subclass of <span class="c003">functional_point</span>, the method <span class="c003">move</span> will return an
1380object of the subclass.</p><p>Functional update is often used in conjunction with binary methods
1381as illustrated in section <a href="advexamples.html#module%3Astring">5.2.1</a>.</p>
1382<h2 class="section" id="sec37">3.14&#XA0;&#XA0;Cloning objects</h2>
1383<p>
1384
1385<a id="ss:cloning-objects"></a></p><p>Objects can also be cloned, whether they are functional or imperative.
1386The library function <span class="c003">Oo.copy</span> makes a shallow copy of an object. That is,
1387it returns a new object that has the same methods and instance
1388variables as its argument. The
1389instance variables are copied but their contents are shared.
1390Assigning a new value to an instance variable of the copy (using a method
1391call) will not affect instance variables of the original, and conversely.
1392A deeper assignment (for example if the instance variable is a reference cell)
1393will of course affect both the original and the copy.</p><p>The type of <span class="c003">Oo.copy</span> is the following:
1394</p><div class="caml-example">
1395<pre><div class="caml-input"> Oo.copy;;
1396</div><div class="caml-output ok">- : (&lt; .. &gt; as 'a) -&gt; 'a = &lt;fun&gt;
1397</div></pre>
1398
1399</div><p>The keyword <span class="c003">as</span> in that type binds the type variable <span class="c003">'a</span> to
1400the object type <span class="c003">&lt; .. &gt;</span>. Therefore, <span class="c003">Oo.copy</span> takes an object with
1401any methods (represented by the ellipsis), and returns an object of
1402the same type. The type of <span class="c003">Oo.copy</span> is different from type <span class="c003">&lt; .. &gt; -&gt; &lt; .. &gt;</span> as each ellipsis represents a different set of methods.
1403Ellipsis actually behaves as a type variable.
1404</p><div class="caml-example">
1405<pre><div class="caml-input"> let p = new point 5;;
1406</div><div class="caml-output ok">val p : point = &lt;obj&gt;
1407</div></pre>
1408
1409<pre><div class="caml-input"> let q = Oo.copy p;;
1410</div><div class="caml-output ok">val q : point = &lt;obj&gt;
1411</div></pre>
1412
1413<pre><div class="caml-input"> q#move 7; (p#get_x, q#get_x);;
1414</div><div class="caml-output ok">- : int * int = (5, 12)
1415</div></pre>
1416
1417</div><p>In fact, <span class="c003">Oo.copy p</span> will behave as <span class="c003">p#copy</span> assuming that a public
1418method <span class="c003">copy</span> with body <span class="c003">{&lt; &gt;}</span> has been defined in the class of <span class="c003">p</span>.</p><p>Objects can be compared using the generic comparison functions <span class="c003">=</span> and <span class="c003">&lt;&gt;</span>.
1419Two objects are equal if and only if they are physically equal. In
1420particular, an object and its copy are not equal.
1421</p><div class="caml-example">
1422<pre><div class="caml-input"> let q = Oo.copy p;;
1423</div><div class="caml-output ok">val q : point = &lt;obj&gt;
1424</div></pre>
1425
1426<pre><div class="caml-input"> p = q, p = p;;
1427</div><div class="caml-output ok">- : bool * bool = (false, true)
1428</div></pre>
1429
1430</div><p>Other generic comparisons such as (<span class="c003">&lt;</span>, <span class="c003">&lt;=</span>, ...) can also be used on
1431objects. The
1432relation <span class="c003">&lt;</span> defines an unspecified but strict ordering on objects. The
1433ordering relationship between two objects is fixed once for all after the
1434two objects have been created and it is not affected by mutation of fields.</p><p>Cloning and override have a non empty intersection.
1435They are interchangeable when used within an object and without
1436overriding any field:
1437</p><div class="caml-example">
1438<pre><div class="caml-input"> class copy =
1439    object
1440      method copy = {&lt; &gt;}
1441    end;;
1442</div><div class="caml-output ok">class copy : object ('a) method copy : 'a end
1443</div></pre>
1444
1445<pre><div class="caml-input"> class copy =
1446    object (self)
1447      method copy = Oo.copy self
1448    end;;
1449</div><div class="caml-output ok">class copy : object ('a) method copy : 'a end
1450</div></pre>
1451
1452</div><p>Only the override can be used to actually override fields, and
1453only the <span class="c003">Oo.copy</span> primitive can be used externally.</p><p>Cloning can also be used to provide facilities for saving and
1454restoring the state of objects.
1455</p><div class="caml-example">
1456<pre><div class="caml-input"> class backup =
1457    object (self : 'mytype)
1458      val mutable copy = None
1459      method save = copy &lt;- Some {&lt; copy = None &gt;}
1460      method restore = match copy with Some x -&gt; x | None -&gt; self
1461    end;;
1462</div><div class="caml-output ok">class backup :
1463  object ('a)
1464    val mutable copy : 'a option
1465    method restore : 'a
1466    method save : unit
1467  end
1468</div></pre>
1469
1470</div><p>The above definition will only backup one level.
1471The backup facility can be added to any class by using multiple inheritance.
1472</p><div class="caml-example">
1473<pre><div class="caml-input"> class ['a] backup_ref x = object inherit ['a] oref x inherit backup end;;
1474</div><div class="caml-output ok">class ['a] backup_ref :
1475  'a -&gt;
1476  object ('b)
1477    val mutable copy : 'b option
1478    val mutable x : 'a
1479    method get : 'a
1480    method restore : 'b
1481    method save : unit
1482    method set : 'a -&gt; unit
1483  end
1484</div></pre>
1485
1486<pre><div class="caml-input"> let rec get p n = if n = 0 then p # get else get (p # restore) (n-1);;
1487</div><div class="caml-output ok">val get : (&lt; get : 'b; restore : 'a; .. &gt; as 'a) -&gt; int -&gt; 'b = &lt;fun&gt;
1488</div></pre>
1489
1490<pre><div class="caml-input"> let p = new backup_ref 0  in
1491  p # save; p # set 1; p # save; p # set 2;
1492  [get p 0; get p 1; get p 2; get p 3; get p 4];;
1493</div><div class="caml-output ok">- : int list = [2; 1; 1; 1; 1]
1494</div></pre>
1495
1496</div><p>We can define a variant of backup that retains all copies. (We also
1497add a method <span class="c003">clear</span> to manually erase all copies.)
1498</p><div class="caml-example">
1499<pre><div class="caml-input"> class backup =
1500    object (self : 'mytype)
1501      val mutable copy = None
1502      method save = copy &lt;- Some {&lt; &gt;}
1503      method restore = match copy with Some x -&gt; x | None -&gt; self
1504      method clear = copy &lt;- None
1505    end;;
1506</div><div class="caml-output ok">class backup :
1507  object ('a)
1508    val mutable copy : 'a option
1509    method clear : unit
1510    method restore : 'a
1511    method save : unit
1512  end
1513</div></pre>
1514
1515</div><div class="caml-example">
1516<pre><div class="caml-input"> class ['a] backup_ref x = object inherit ['a] oref x inherit backup end;;
1517</div><div class="caml-output ok">class ['a] backup_ref :
1518  'a -&gt;
1519  object ('b)
1520    val mutable copy : 'b option
1521    val mutable x : 'a
1522    method clear : unit
1523    method get : 'a
1524    method restore : 'b
1525    method save : unit
1526    method set : 'a -&gt; unit
1527  end
1528</div></pre>
1529
1530<pre><div class="caml-input"> let p = new backup_ref 0  in
1531  p # save; p # set 1; p # save; p # set 2;
1532  [get p 0; get p 1; get p 2; get p 3; get p 4];;
1533</div><div class="caml-output ok">- : int list = [2; 1; 0; 0; 0]
1534</div></pre>
1535
1536</div>
1537<h2 class="section" id="sec38">3.15&#XA0;&#XA0;Recursive classes</h2>
1538<p>
1539
1540<a id="ss:recursive-classes"></a></p><p>Recursive classes can be used to define objects whose types are
1541mutually recursive.
1542</p><div class="caml-example">
1543<pre><div class="caml-input"> class window =
1544    object
1545      val mutable top_widget = (None : widget option)
1546      method top_widget = top_widget
1547    end
1548  and widget (w : window) =
1549    object
1550      val window = w
1551      method window = window
1552    end;;
1553</div><div class="caml-output ok">class window :
1554  object
1555    val mutable top_widget : widget option
1556    method top_widget : widget option
1557  end
1558and widget : window -&gt; object val window : window method window : window end
1559</div></pre>
1560
1561</div><p>Although their types are mutually recursive, the classes <span class="c003">widget</span> and
1562<span class="c003">window</span> are themselves independent.</p>
1563<h2 class="section" id="sec39">3.16&#XA0;&#XA0;Binary methods</h2>
1564<p>
1565
1566<a id="ss:binary-methods"></a></p><p>A binary method is a method which takes an argument of the same type
1567as self. The class <span class="c003">comparable</span> below is a template for classes with a
1568binary method <span class="c003">leq</span> of type <span class="c003">'a -&gt; bool</span> where the type variable <span class="c003">'a</span>
1569is bound to the type of self. Therefore, <span class="c003">#comparable</span> expands to <span class="c003">&lt; leq : 'a -&gt; bool; .. &gt; as 'a</span>. We see here that the binder <span class="c003">as</span> also
1570allows writing recursive types.
1571</p><div class="caml-example">
1572<pre><div class="caml-input"> class virtual comparable =
1573    object (_ : 'a)
1574      method virtual leq : 'a -&gt; bool
1575    end;;
1576</div><div class="caml-output ok">class virtual comparable : object ('a) method virtual leq : 'a -&gt; bool end
1577</div></pre>
1578
1579</div><p>We then define a subclass <span class="c003">money</span> of <span class="c003">comparable</span>. The class <span class="c003">money</span>
1580simply wraps floats as comparable objects. We will extend it below with
1581more operations. We have to use a type constraint on the class parameter <span class="c003">x</span>
1582because the primitive <span class="c003">&lt;=</span> is a polymorphic function in
1583OCaml. The <span class="c003">inherit</span> clause ensures that the type of objects
1584of this class is an instance of <span class="c003">#comparable</span>.
1585</p><div class="caml-example">
1586<pre><div class="caml-input"> class money (x : float) =
1587    object
1588      inherit comparable
1589      val repr = x
1590      method value = repr
1591      method leq p = repr &lt;= p#value
1592    end;;
1593</div><div class="caml-output ok">class money :
1594  float -&gt;
1595  object ('a)
1596    val repr : float
1597    method leq : 'a -&gt; bool
1598    method value : float
1599  end
1600</div></pre>
1601
1602</div><p>Note that the type <span class="c003">money</span> is not a subtype of type
1603<span class="c003">comparable</span>, as the self type appears in contravariant position
1604in the type of method <span class="c003">leq</span>.
1605Indeed, an object <span class="c003">m</span> of class <span class="c003">money</span> has a method <span class="c003">leq</span>
1606that expects an argument of type <span class="c003">money</span> since it accesses
1607its <span class="c003">value</span> method. Considering <span class="c003">m</span> of type <span class="c003">comparable</span> would allow a
1608call to method <span class="c003">leq</span> on <span class="c003">m</span> with an argument that does not have a method
1609<span class="c003">value</span>, which would be an error.</p><p>Similarly, the type <span class="c003">money2</span> below is not a subtype of type <span class="c003">money</span>.
1610</p><div class="caml-example">
1611<pre><div class="caml-input"> class money2 x =
1612    object
1613      inherit money x
1614      method times k = {&lt; repr = k *. repr &gt;}
1615    end;;
1616</div><div class="caml-output ok">class money2 :
1617  float -&gt;
1618  object ('a)
1619    val repr : float
1620    method leq : 'a -&gt; bool
1621    method times : float -&gt; 'a
1622    method value : float
1623  end
1624</div></pre>
1625
1626</div><p>It is however possible to define functions that manipulate objects of
1627type either <span class="c003">money</span> or <span class="c003">money2</span>: the function <span class="c003">min</span>
1628will return the minimum of any two objects whose type unifies with
1629<span class="c003">#comparable</span>. The type of <span class="c003">min</span> is not the same as <span class="c003">#comparable -&gt; #comparable -&gt; #comparable</span>, as the abbreviation <span class="c003">#comparable</span> hides a
1630type variable (an ellipsis). Each occurrence of this abbreviation
1631generates a new variable.
1632</p><div class="caml-example">
1633<pre><div class="caml-input"> let min (x : #comparable) y =
1634    if x#leq y then x else y;;
1635</div><div class="caml-output ok">val min : (#comparable as 'a) -&gt; 'a -&gt; 'a = &lt;fun&gt;
1636</div></pre>
1637
1638</div><p>This function can be applied to objects of type <span class="c003">money</span>
1639or <span class="c003">money2</span>.
1640</p><div class="caml-example">
1641<pre><div class="caml-input"> (min (new money  1.3) (new money 3.1))#value;;
1642</div><div class="caml-output ok">- : float = 1.3
1643</div></pre>
1644
1645<pre><div class="caml-input"> (min (new money2 5.0) (new money2 3.14))#value;;
1646</div><div class="caml-output ok">- : float = 3.14
1647</div></pre>
1648
1649</div><p>More examples of binary methods can be found in sections
1650<a href="advexamples.html#module%3Astring">5.2.1</a> and <a href="advexamples.html#module%3Aset">5.2.3</a>.</p><p>Note the use of override for method <span class="c003">times</span>.
1651Writing <span class="c003">new money2 (k *. repr)</span> instead of <span class="c003">{&lt; repr = k *. repr &gt;}</span>
1652would not behave well with inheritance: in a subclass <span class="c003">money3</span> of <span class="c003">money2</span>
1653the <span class="c003">times</span> method would return an object of class <span class="c003">money2</span> but not of class
1654<span class="c003">money3</span> as would be expected.</p><p>The class <span class="c003">money</span> could naturally carry another binary method. Here is a
1655direct definition:
1656</p><div class="caml-example">
1657<pre><div class="caml-input"> class money x =
1658    object (self : 'a)
1659      val repr = x
1660      method value = repr
1661      method print = print_float repr
1662      method times k = {&lt; repr = k *. x &gt;}
1663      method leq (p : 'a) = repr &lt;= p#value
1664      method plus (p : 'a) = {&lt; repr = x +. p#value &gt;}
1665    end;;
1666</div><div class="caml-output ok">class money :
1667  float -&gt;
1668  object ('a)
1669    val repr : float
1670    method leq : 'a -&gt; bool
1671    method plus : 'a -&gt; 'a
1672    method print : unit
1673    method times : float -&gt; 'a
1674    method value : float
1675  end
1676</div></pre>
1677
1678</div>
1679<h2 class="section" id="sec40">3.17&#XA0;&#XA0;Friends</h2>
1680<p>
1681
1682<a id="ss:friends"></a></p><p>The above class <span class="c003">money</span> reveals a problem that often occurs with binary
1683methods. In order to interact with other objects of the same class, the
1684representation of <span class="c003">money</span> objects must be revealed, using a method such as
1685<span class="c003">value</span>. If we remove all binary methods (here <span class="c003">plus</span> and <span class="c003">leq</span>),
1686the representation can easily be hidden inside objects by removing the method
1687<span class="c003">value</span> as well. However, this is not possible as soon as some binary
1688method requires access to the representation of objects of the same
1689class (other than self).
1690</p><div class="caml-example">
1691<pre><div class="caml-input"> class safe_money x =
1692    object (self : 'a)
1693      val repr = x
1694      method print = print_float repr
1695      method times k = {&lt; repr = k *. x &gt;}
1696    end;;
1697</div><div class="caml-output ok">class safe_money :
1698  float -&gt;
1699  object ('a)
1700    val repr : float
1701    method print : unit
1702    method times : float -&gt; 'a
1703  end
1704</div></pre>
1705
1706</div><p>Here, the representation of the object is known only to a particular object.
1707To make it available to other objects of the same class, we are forced to
1708make it available to the whole world. However we can easily restrict the
1709visibility of the representation using the module system.
1710</p><div class="caml-example">
1711<pre><div class="caml-input"> module type MONEY =
1712    sig
1713      type t
1714      class c : float -&gt;
1715        object ('a)
1716          val repr : t
1717          method value : t
1718          method print : unit
1719          method times : float -&gt; 'a
1720          method leq : 'a -&gt; bool
1721          method plus : 'a -&gt; 'a
1722        end
1723    end;;
1724</div>
1725</pre>
1726
1727<pre><div class="caml-input"> module Euro : MONEY =
1728    struct
1729      type t = float
1730      class c x =
1731        object (self : 'a)
1732          val repr = x
1733          method value = repr
1734          method print = print_float repr
1735          method times k = {&lt; repr = k *. x &gt;}
1736          method leq (p : 'a) = repr &lt;= p#value
1737          method plus (p : 'a) = {&lt; repr = x +. p#value &gt;}
1738        end
1739    end;;
1740</div>
1741</pre>
1742
1743</div><p>Another example of friend functions may be found in section
1744<a href="advexamples.html#module%3Aset">5.2.3</a>. These examples occur when a group of objects (here
1745objects of the same class) and functions should see each others internal
1746representation, while their representation should be hidden from the
1747outside. The solution is always to define all friends in the same module,
1748give access to the representation and use a signature constraint to make the
1749representation abstract outside the module.</p>
1750<hr>
1751<a href="moduleexamples.html"><img src="previous_motif.gif" alt="Previous"></a>
1752<a href="index.html"><img src="contents_motif.gif" alt="Up"></a>
1753<a href="lablexamples.html"><img src="next_motif.gif" alt="Next"></a>
1754</body>
1755</html>
1756