1 #include "simint/boys/boys.h"
2 #include "simint/ostei/gen/ostei_generated.h"
3 #include "simint/vectorization/vectorization.h"
4 #include <math.h>
5 #include <string.h>
6 
7 
ostei_d_d_s_s(struct simint_multi_shellpair const P,struct simint_multi_shellpair const Q,double screen_tol,double * const restrict work,double * const restrict INT__d_d_s_s)8 int ostei_d_d_s_s(struct simint_multi_shellpair const P,
9                   struct simint_multi_shellpair const Q,
10                   double screen_tol,
11                   double * const restrict work,
12                   double * const restrict INT__d_d_s_s)
13 {
14 
15     SIMINT_ASSUME_ALIGN_DBL(work);
16     SIMINT_ASSUME_ALIGN_DBL(INT__d_d_s_s);
17     int ab, cd, abcd;
18     int istart, jstart;
19     int iprimcd, nprim_icd, icd;
20     const int check_screen = (screen_tol > 0.0);
21     int i, j;
22     int n;
23     int not_screened;
24     int real_abcd;
25     int iket;
26 
27     // partition workspace
28     double * const INT__d_s_s_s = work + (SIMINT_NSHELL_SIMD * 0);
29     double * const INT__f_s_s_s = work + (SIMINT_NSHELL_SIMD * 6);
30     double * const INT__g_s_s_s = work + (SIMINT_NSHELL_SIMD * 16);
31     SIMINT_DBLTYPE * const primwork = (SIMINT_DBLTYPE *)(work + SIMINT_NSHELL_SIMD*31);
32     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_s_s = primwork + 0;
33     SIMINT_DBLTYPE * const restrict PRIM_INT__p_s_s_s = primwork + 5;
34     SIMINT_DBLTYPE * const restrict PRIM_INT__d_s_s_s = primwork + 17;
35     SIMINT_DBLTYPE * const restrict PRIM_INT__f_s_s_s = primwork + 35;
36     SIMINT_DBLTYPE * const restrict PRIM_INT__g_s_s_s = primwork + 55;
37     double * const hrrwork = (double *)(primwork + 70);
38     double * const HRR_INT__d_p_s_s = hrrwork + 0;
39     double * const HRR_INT__f_p_s_s = hrrwork + 18;
40 
41 
42     // Create constants
43     const SIMINT_DBLTYPE const_1 = SIMINT_DBLSET1(1);
44     const SIMINT_DBLTYPE const_2 = SIMINT_DBLSET1(2);
45     const SIMINT_DBLTYPE const_3 = SIMINT_DBLSET1(3);
46     const SIMINT_DBLTYPE one_half = SIMINT_DBLSET1(0.5);
47 
48 
49     ////////////////////////////////////////
50     // Loop over shells and primitives
51     ////////////////////////////////////////
52 
53     real_abcd = 0;
54     istart = 0;
55     for(ab = 0; ab < P.nshell12_clip; ++ab)
56     {
57         const int iend = istart + P.nprim12[ab];
58 
59         cd = 0;
60         jstart = 0;
61 
62         for(cd = 0; cd < Q.nshell12_clip; cd += SIMINT_NSHELL_SIMD)
63         {
64             const int nshellbatch = ((cd + SIMINT_NSHELL_SIMD) > Q.nshell12_clip) ? Q.nshell12_clip - cd : SIMINT_NSHELL_SIMD;
65             int jend = jstart;
66             for(i = 0; i < nshellbatch; i++)
67                 jend += Q.nprim12[cd+i];
68 
69             // Clear the beginning of the workspace (where we are accumulating integrals)
70             memset(work, 0, SIMINT_NSHELL_SIMD * 31 * sizeof(double));
71             abcd = 0;
72 
73 
74             for(i = istart; i < iend; ++i)
75             {
76                 SIMINT_DBLTYPE bra_screen_max;  // only used if check_screen
77 
78                 if(check_screen)
79                 {
80                     // Skip this whole thing if always insignificant
81                     if((P.screen[i] * Q.screen_max) < screen_tol)
82                         continue;
83                     bra_screen_max = SIMINT_DBLSET1(P.screen[i]);
84                 }
85 
86                 icd = 0;
87                 iprimcd = 0;
88                 nprim_icd = Q.nprim12[cd];
89                 double * restrict PRIM_PTR_INT__d_s_s_s = INT__d_s_s_s + abcd * 6;
90                 double * restrict PRIM_PTR_INT__f_s_s_s = INT__f_s_s_s + abcd * 10;
91                 double * restrict PRIM_PTR_INT__g_s_s_s = INT__g_s_s_s + abcd * 15;
92 
93 
94 
95                 // Load these one per loop over i
96                 const SIMINT_DBLTYPE P_alpha = SIMINT_DBLSET1(P.alpha[i]);
97                 const SIMINT_DBLTYPE P_prefac = SIMINT_DBLSET1(P.prefac[i]);
98                 const SIMINT_DBLTYPE Pxyz[3] = { SIMINT_DBLSET1(P.x[i]), SIMINT_DBLSET1(P.y[i]), SIMINT_DBLSET1(P.z[i]) };
99 
100                 const SIMINT_DBLTYPE P_PA[3] = { SIMINT_DBLSET1(P.PA_x[i]), SIMINT_DBLSET1(P.PA_y[i]), SIMINT_DBLSET1(P.PA_z[i]) };
101 
102                 for(j = jstart; j < jend; j += SIMINT_SIMD_LEN)
103                 {
104                     // calculate the shell offsets
105                     // these are the offset from the shell pointed to by cd
106                     // for each element
107                     int shelloffsets[SIMINT_SIMD_LEN] = {0};
108                     int lastoffset = 0;
109                     const int nlane = ( ((j + SIMINT_SIMD_LEN) < jend) ? SIMINT_SIMD_LEN : (jend - j));
110 
111                     if((iprimcd + SIMINT_SIMD_LEN) >= nprim_icd)
112                     {
113                         // Handle if the first element of the vector is a new shell
114                         if(iprimcd >= nprim_icd && ((icd+1) < nshellbatch))
115                         {
116                             nprim_icd += Q.nprim12[cd + (++icd)];
117                             PRIM_PTR_INT__d_s_s_s += 6;
118                             PRIM_PTR_INT__f_s_s_s += 10;
119                             PRIM_PTR_INT__g_s_s_s += 15;
120                         }
121                         iprimcd++;
122                         for(n = 1; n < SIMINT_SIMD_LEN; ++n)
123                         {
124                             if(iprimcd >= nprim_icd && ((icd+1) < nshellbatch))
125                             {
126                                 shelloffsets[n] = shelloffsets[n-1] + 1;
127                                 lastoffset++;
128                                 nprim_icd += Q.nprim12[cd + (++icd)];
129                             }
130                             else
131                                 shelloffsets[n] = shelloffsets[n-1];
132                             iprimcd++;
133                         }
134                     }
135                     else
136                         iprimcd += SIMINT_SIMD_LEN;
137 
138                     // Do we have to compute this vector (or has it been screened out)?
139                     // (not_screened != 0 means we have to do this vector)
140                     if(check_screen)
141                     {
142                         const double vmax = vector_max(SIMINT_MUL(bra_screen_max, SIMINT_DBLLOAD(Q.screen, j)));
143                         if(vmax < screen_tol)
144                         {
145                             PRIM_PTR_INT__d_s_s_s += lastoffset*6;
146                             PRIM_PTR_INT__f_s_s_s += lastoffset*10;
147                             PRIM_PTR_INT__g_s_s_s += lastoffset*15;
148                             continue;
149                         }
150                     }
151 
152                     const SIMINT_DBLTYPE Q_alpha = SIMINT_DBLLOAD(Q.alpha, j);
153                     const SIMINT_DBLTYPE PQalpha_mul = SIMINT_MUL(P_alpha, Q_alpha);
154                     const SIMINT_DBLTYPE PQalpha_sum = SIMINT_ADD(P_alpha, Q_alpha);
155                     const SIMINT_DBLTYPE one_over_PQalpha_sum = SIMINT_DIV(const_1, PQalpha_sum);
156 
157 
158                     /* construct R2 = (Px - Qx)**2 + (Py - Qy)**2 + (Pz -Qz)**2 */
159                     SIMINT_DBLTYPE PQ[3];
160                     PQ[0] = SIMINT_SUB(Pxyz[0], SIMINT_DBLLOAD(Q.x, j));
161                     PQ[1] = SIMINT_SUB(Pxyz[1], SIMINT_DBLLOAD(Q.y, j));
162                     PQ[2] = SIMINT_SUB(Pxyz[2], SIMINT_DBLLOAD(Q.z, j));
163                     SIMINT_DBLTYPE R2 = SIMINT_MUL(PQ[0], PQ[0]);
164                     R2 = SIMINT_FMADD(PQ[1], PQ[1], R2);
165                     R2 = SIMINT_FMADD(PQ[2], PQ[2], R2);
166 
167                     const SIMINT_DBLTYPE alpha = SIMINT_MUL(PQalpha_mul, one_over_PQalpha_sum); // alpha from MEST
168                     const SIMINT_DBLTYPE one_over_p = SIMINT_DIV(const_1, P_alpha);
169                     const SIMINT_DBLTYPE one_over_q = SIMINT_DIV(const_1, Q_alpha);
170                     const SIMINT_DBLTYPE one_over_2p = SIMINT_MUL(one_half, one_over_p);
171                     const SIMINT_DBLTYPE one_over_2q = SIMINT_MUL(one_half, one_over_q);
172                     const SIMINT_DBLTYPE one_over_2pq = SIMINT_MUL(one_half, one_over_PQalpha_sum);
173 
174                     // NOTE: Minus sign!
175                     const SIMINT_DBLTYPE a_over_p = SIMINT_MUL(SIMINT_NEG(alpha), one_over_p);
176                     SIMINT_DBLTYPE aop_PQ[3];
177                     aop_PQ[0] = SIMINT_MUL(a_over_p, PQ[0]);
178                     aop_PQ[1] = SIMINT_MUL(a_over_p, PQ[1]);
179                     aop_PQ[2] = SIMINT_MUL(a_over_p, PQ[2]);
180 
181 
182                     //////////////////////////////////////////////
183                     // Fjt function section
184                     // Maximum v value: 4
185                     //////////////////////////////////////////////
186                     // The parameter to the Fjt function
187                     const SIMINT_DBLTYPE F_x = SIMINT_MUL(R2, alpha);
188 
189 
190                     const SIMINT_DBLTYPE Q_prefac = mask_load(nlane, Q.prefac + j);
191 
192 
193                     boys_F_split(PRIM_INT__s_s_s_s, F_x, 4);
194                     SIMINT_DBLTYPE prefac = SIMINT_SQRT(one_over_PQalpha_sum);
195                     prefac = SIMINT_MUL(SIMINT_MUL(P_prefac, Q_prefac), prefac);
196                     for(n = 0; n <= 4; n++)
197                         PRIM_INT__s_s_s_s[n] = SIMINT_MUL(PRIM_INT__s_s_s_s[n], prefac);
198 
199                     //////////////////////////////////////////////
200                     // Primitive integrals: Vertical recurrance
201                     //////////////////////////////////////////////
202 
203                     const SIMINT_DBLTYPE vrr_const_1_over_2p = one_over_2p;
204                     const SIMINT_DBLTYPE vrr_const_2_over_2p = SIMINT_MUL(const_2, one_over_2p);
205                     const SIMINT_DBLTYPE vrr_const_3_over_2p = SIMINT_MUL(const_3, one_over_2p);
206 
207 
208 
209                     // Forming PRIM_INT__p_s_s_s[4 * 3];
210                     for(n = 0; n < 4; ++n)  // loop over orders of auxiliary function
211                     {
212 
213                         PRIM_INT__p_s_s_s[n * 3 + 0] = SIMINT_MUL(P_PA[0], PRIM_INT__s_s_s_s[n * 1 + 0]);
214                         PRIM_INT__p_s_s_s[n * 3 + 0] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__p_s_s_s[n * 3 + 0]);
215 
216                         PRIM_INT__p_s_s_s[n * 3 + 1] = SIMINT_MUL(P_PA[1], PRIM_INT__s_s_s_s[n * 1 + 0]);
217                         PRIM_INT__p_s_s_s[n * 3 + 1] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__p_s_s_s[n * 3 + 1]);
218 
219                         PRIM_INT__p_s_s_s[n * 3 + 2] = SIMINT_MUL(P_PA[2], PRIM_INT__s_s_s_s[n * 1 + 0]);
220                         PRIM_INT__p_s_s_s[n * 3 + 2] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__p_s_s_s[n * 3 + 2]);
221 
222                     }
223 
224 
225 
226                     // Forming PRIM_INT__d_s_s_s[3 * 6];
227                     for(n = 0; n < 3; ++n)  // loop over orders of auxiliary function
228                     {
229 
230                         PRIM_INT__d_s_s_s[n * 6 + 0] = SIMINT_MUL(P_PA[0], PRIM_INT__p_s_s_s[n * 3 + 0]);
231                         PRIM_INT__d_s_s_s[n * 6 + 0] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__p_s_s_s[(n+1) * 3 + 0], PRIM_INT__d_s_s_s[n * 6 + 0]);
232                         PRIM_INT__d_s_s_s[n * 6 + 0] = SIMINT_FMADD( vrr_const_1_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__d_s_s_s[n * 6 + 0]);
233 
234                         PRIM_INT__d_s_s_s[n * 6 + 1] = SIMINT_MUL(P_PA[1], PRIM_INT__p_s_s_s[n * 3 + 0]);
235                         PRIM_INT__d_s_s_s[n * 6 + 1] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__p_s_s_s[(n+1) * 3 + 0], PRIM_INT__d_s_s_s[n * 6 + 1]);
236 
237                         PRIM_INT__d_s_s_s[n * 6 + 2] = SIMINT_MUL(P_PA[2], PRIM_INT__p_s_s_s[n * 3 + 0]);
238                         PRIM_INT__d_s_s_s[n * 6 + 2] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__p_s_s_s[(n+1) * 3 + 0], PRIM_INT__d_s_s_s[n * 6 + 2]);
239 
240                         PRIM_INT__d_s_s_s[n * 6 + 3] = SIMINT_MUL(P_PA[1], PRIM_INT__p_s_s_s[n * 3 + 1]);
241                         PRIM_INT__d_s_s_s[n * 6 + 3] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__p_s_s_s[(n+1) * 3 + 1], PRIM_INT__d_s_s_s[n * 6 + 3]);
242                         PRIM_INT__d_s_s_s[n * 6 + 3] = SIMINT_FMADD( vrr_const_1_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__d_s_s_s[n * 6 + 3]);
243 
244                         PRIM_INT__d_s_s_s[n * 6 + 4] = SIMINT_MUL(P_PA[2], PRIM_INT__p_s_s_s[n * 3 + 1]);
245                         PRIM_INT__d_s_s_s[n * 6 + 4] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__p_s_s_s[(n+1) * 3 + 1], PRIM_INT__d_s_s_s[n * 6 + 4]);
246 
247                         PRIM_INT__d_s_s_s[n * 6 + 5] = SIMINT_MUL(P_PA[2], PRIM_INT__p_s_s_s[n * 3 + 2]);
248                         PRIM_INT__d_s_s_s[n * 6 + 5] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__p_s_s_s[(n+1) * 3 + 2], PRIM_INT__d_s_s_s[n * 6 + 5]);
249                         PRIM_INT__d_s_s_s[n * 6 + 5] = SIMINT_FMADD( vrr_const_1_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__d_s_s_s[n * 6 + 5]);
250 
251                     }
252 
253 
254 
255                     // Forming PRIM_INT__f_s_s_s[2 * 10];
256                     for(n = 0; n < 2; ++n)  // loop over orders of auxiliary function
257                     {
258 
259                         PRIM_INT__f_s_s_s[n * 10 + 0] = SIMINT_MUL(P_PA[0], PRIM_INT__d_s_s_s[n * 6 + 0]);
260                         PRIM_INT__f_s_s_s[n * 10 + 0] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__d_s_s_s[(n+1) * 6 + 0], PRIM_INT__f_s_s_s[n * 10 + 0]);
261                         PRIM_INT__f_s_s_s[n * 10 + 0] = SIMINT_FMADD( vrr_const_2_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__p_s_s_s[(n+1) * 3 + 0], PRIM_INT__p_s_s_s[n * 3 + 0]), PRIM_INT__f_s_s_s[n * 10 + 0]);
262 
263                         PRIM_INT__f_s_s_s[n * 10 + 1] = SIMINT_MUL(P_PA[1], PRIM_INT__d_s_s_s[n * 6 + 0]);
264                         PRIM_INT__f_s_s_s[n * 10 + 1] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__d_s_s_s[(n+1) * 6 + 0], PRIM_INT__f_s_s_s[n * 10 + 1]);
265 
266                         PRIM_INT__f_s_s_s[n * 10 + 2] = SIMINT_MUL(P_PA[2], PRIM_INT__d_s_s_s[n * 6 + 0]);
267                         PRIM_INT__f_s_s_s[n * 10 + 2] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__d_s_s_s[(n+1) * 6 + 0], PRIM_INT__f_s_s_s[n * 10 + 2]);
268 
269                         PRIM_INT__f_s_s_s[n * 10 + 3] = SIMINT_MUL(P_PA[0], PRIM_INT__d_s_s_s[n * 6 + 3]);
270                         PRIM_INT__f_s_s_s[n * 10 + 3] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__d_s_s_s[(n+1) * 6 + 3], PRIM_INT__f_s_s_s[n * 10 + 3]);
271 
272                         PRIM_INT__f_s_s_s[n * 10 + 4] = SIMINT_MUL(P_PA[2], PRIM_INT__d_s_s_s[n * 6 + 1]);
273                         PRIM_INT__f_s_s_s[n * 10 + 4] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__d_s_s_s[(n+1) * 6 + 1], PRIM_INT__f_s_s_s[n * 10 + 4]);
274 
275                         PRIM_INT__f_s_s_s[n * 10 + 5] = SIMINT_MUL(P_PA[0], PRIM_INT__d_s_s_s[n * 6 + 5]);
276                         PRIM_INT__f_s_s_s[n * 10 + 5] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__d_s_s_s[(n+1) * 6 + 5], PRIM_INT__f_s_s_s[n * 10 + 5]);
277 
278                         PRIM_INT__f_s_s_s[n * 10 + 6] = SIMINT_MUL(P_PA[1], PRIM_INT__d_s_s_s[n * 6 + 3]);
279                         PRIM_INT__f_s_s_s[n * 10 + 6] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__d_s_s_s[(n+1) * 6 + 3], PRIM_INT__f_s_s_s[n * 10 + 6]);
280                         PRIM_INT__f_s_s_s[n * 10 + 6] = SIMINT_FMADD( vrr_const_2_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__p_s_s_s[(n+1) * 3 + 1], PRIM_INT__p_s_s_s[n * 3 + 1]), PRIM_INT__f_s_s_s[n * 10 + 6]);
281 
282                         PRIM_INT__f_s_s_s[n * 10 + 7] = SIMINT_MUL(P_PA[2], PRIM_INT__d_s_s_s[n * 6 + 3]);
283                         PRIM_INT__f_s_s_s[n * 10 + 7] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__d_s_s_s[(n+1) * 6 + 3], PRIM_INT__f_s_s_s[n * 10 + 7]);
284 
285                         PRIM_INT__f_s_s_s[n * 10 + 8] = SIMINT_MUL(P_PA[1], PRIM_INT__d_s_s_s[n * 6 + 5]);
286                         PRIM_INT__f_s_s_s[n * 10 + 8] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__d_s_s_s[(n+1) * 6 + 5], PRIM_INT__f_s_s_s[n * 10 + 8]);
287 
288                         PRIM_INT__f_s_s_s[n * 10 + 9] = SIMINT_MUL(P_PA[2], PRIM_INT__d_s_s_s[n * 6 + 5]);
289                         PRIM_INT__f_s_s_s[n * 10 + 9] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__d_s_s_s[(n+1) * 6 + 5], PRIM_INT__f_s_s_s[n * 10 + 9]);
290                         PRIM_INT__f_s_s_s[n * 10 + 9] = SIMINT_FMADD( vrr_const_2_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__p_s_s_s[(n+1) * 3 + 2], PRIM_INT__p_s_s_s[n * 3 + 2]), PRIM_INT__f_s_s_s[n * 10 + 9]);
291 
292                     }
293 
294 
295                     VRR_I_g_s_s_s(
296                             PRIM_INT__g_s_s_s,
297                             PRIM_INT__f_s_s_s,
298                             PRIM_INT__d_s_s_s,
299                             P_PA,
300                             a_over_p,
301                             aop_PQ,
302                             one_over_2p,
303                             1);
304 
305 
306 
307 
308                     ////////////////////////////////////
309                     // Accumulate contracted integrals
310                     ////////////////////////////////////
311                     if(lastoffset == 0)
312                     {
313                         contract_all(6, PRIM_INT__d_s_s_s, PRIM_PTR_INT__d_s_s_s);
314                         contract_all(10, PRIM_INT__f_s_s_s, PRIM_PTR_INT__f_s_s_s);
315                         contract_all(15, PRIM_INT__g_s_s_s, PRIM_PTR_INT__g_s_s_s);
316                     }
317                     else
318                     {
319                         contract(6, shelloffsets, PRIM_INT__d_s_s_s, PRIM_PTR_INT__d_s_s_s);
320                         contract(10, shelloffsets, PRIM_INT__f_s_s_s, PRIM_PTR_INT__f_s_s_s);
321                         contract(15, shelloffsets, PRIM_INT__g_s_s_s, PRIM_PTR_INT__g_s_s_s);
322                         PRIM_PTR_INT__d_s_s_s += lastoffset*6;
323                         PRIM_PTR_INT__f_s_s_s += lastoffset*10;
324                         PRIM_PTR_INT__g_s_s_s += lastoffset*15;
325                     }
326 
327                 }  // close loop over j
328             }  // close loop over i
329 
330             //Advance to the next batch
331             jstart = SIMINT_SIMD_ROUND(jend);
332 
333             //////////////////////////////////////////////
334             // Contracted integrals: Horizontal recurrance
335             //////////////////////////////////////////////
336 
337 
338             const double hAB[3] = { P.AB_x[ab], P.AB_y[ab], P.AB_z[ab] };
339 
340 
341             for(abcd = 0; abcd < nshellbatch; ++abcd, ++real_abcd)
342             {
343 
344                 // set up HRR pointers
345                 double const * restrict HRR_INT__d_s_s_s = INT__d_s_s_s + abcd * 6;
346                 double const * restrict HRR_INT__f_s_s_s = INT__f_s_s_s + abcd * 10;
347                 double const * restrict HRR_INT__g_s_s_s = INT__g_s_s_s + abcd * 15;
348                 double * restrict HRR_INT__d_d_s_s = INT__d_d_s_s + real_abcd * 36;
349 
350                 // form INT__d_p_s_s
351                 for(iket = 0; iket < 1; ++iket)
352                 {
353                     HRR_INT__d_p_s_s[0 * 1 + iket] = HRR_INT__f_s_s_s[0 * 1 + iket] + ( hAB[0] * HRR_INT__d_s_s_s[0 * 1 + iket] );
354 
355                     HRR_INT__d_p_s_s[1 * 1 + iket] = HRR_INT__f_s_s_s[1 * 1 + iket] + ( hAB[1] * HRR_INT__d_s_s_s[0 * 1 + iket] );
356 
357                     HRR_INT__d_p_s_s[2 * 1 + iket] = HRR_INT__f_s_s_s[2 * 1 + iket] + ( hAB[2] * HRR_INT__d_s_s_s[0 * 1 + iket] );
358 
359                     HRR_INT__d_p_s_s[3 * 1 + iket] = HRR_INT__f_s_s_s[1 * 1 + iket] + ( hAB[0] * HRR_INT__d_s_s_s[1 * 1 + iket] );
360 
361                     HRR_INT__d_p_s_s[4 * 1 + iket] = HRR_INT__f_s_s_s[3 * 1 + iket] + ( hAB[1] * HRR_INT__d_s_s_s[1 * 1 + iket] );
362 
363                     HRR_INT__d_p_s_s[5 * 1 + iket] = HRR_INT__f_s_s_s[4 * 1 + iket] + ( hAB[2] * HRR_INT__d_s_s_s[1 * 1 + iket] );
364 
365                     HRR_INT__d_p_s_s[6 * 1 + iket] = HRR_INT__f_s_s_s[2 * 1 + iket] + ( hAB[0] * HRR_INT__d_s_s_s[2 * 1 + iket] );
366 
367                     HRR_INT__d_p_s_s[7 * 1 + iket] = HRR_INT__f_s_s_s[4 * 1 + iket] + ( hAB[1] * HRR_INT__d_s_s_s[2 * 1 + iket] );
368 
369                     HRR_INT__d_p_s_s[8 * 1 + iket] = HRR_INT__f_s_s_s[5 * 1 + iket] + ( hAB[2] * HRR_INT__d_s_s_s[2 * 1 + iket] );
370 
371                     HRR_INT__d_p_s_s[9 * 1 + iket] = HRR_INT__f_s_s_s[3 * 1 + iket] + ( hAB[0] * HRR_INT__d_s_s_s[3 * 1 + iket] );
372 
373                     HRR_INT__d_p_s_s[10 * 1 + iket] = HRR_INT__f_s_s_s[6 * 1 + iket] + ( hAB[1] * HRR_INT__d_s_s_s[3 * 1 + iket] );
374 
375                     HRR_INT__d_p_s_s[11 * 1 + iket] = HRR_INT__f_s_s_s[7 * 1 + iket] + ( hAB[2] * HRR_INT__d_s_s_s[3 * 1 + iket] );
376 
377                     HRR_INT__d_p_s_s[12 * 1 + iket] = HRR_INT__f_s_s_s[4 * 1 + iket] + ( hAB[0] * HRR_INT__d_s_s_s[4 * 1 + iket] );
378 
379                     HRR_INT__d_p_s_s[13 * 1 + iket] = HRR_INT__f_s_s_s[7 * 1 + iket] + ( hAB[1] * HRR_INT__d_s_s_s[4 * 1 + iket] );
380 
381                     HRR_INT__d_p_s_s[14 * 1 + iket] = HRR_INT__f_s_s_s[8 * 1 + iket] + ( hAB[2] * HRR_INT__d_s_s_s[4 * 1 + iket] );
382 
383                     HRR_INT__d_p_s_s[15 * 1 + iket] = HRR_INT__f_s_s_s[5 * 1 + iket] + ( hAB[0] * HRR_INT__d_s_s_s[5 * 1 + iket] );
384 
385                     HRR_INT__d_p_s_s[16 * 1 + iket] = HRR_INT__f_s_s_s[8 * 1 + iket] + ( hAB[1] * HRR_INT__d_s_s_s[5 * 1 + iket] );
386 
387                     HRR_INT__d_p_s_s[17 * 1 + iket] = HRR_INT__f_s_s_s[9 * 1 + iket] + ( hAB[2] * HRR_INT__d_s_s_s[5 * 1 + iket] );
388 
389                 }
390 
391 
392                 // form INT__f_p_s_s
393                 HRR_J_f_p(
394                     HRR_INT__f_p_s_s,
395                     HRR_INT__f_s_s_s,
396                     HRR_INT__g_s_s_s,
397                     hAB, 1);
398 
399                 // form INT__d_d_s_s
400                 HRR_J_d_d(
401                     HRR_INT__d_d_s_s,
402                     HRR_INT__d_p_s_s,
403                     HRR_INT__f_p_s_s,
404                     hAB, 1);
405 
406 
407             }  // close HRR loop
408 
409 
410         }   // close loop cdbatch
411 
412         istart = iend;
413     }  // close loop over ab
414 
415     return P.nshell12_clip * Q.nshell12_clip;
416 }
417 
418