1 #include "simint/boys/boys.h"
2 #include "simint/ostei/gen/ostei_generated.h"
3 #include "simint/vectorization/vectorization.h"
4 #include <math.h>
5 #include <string.h>
6 
7 
ostei_d_s_i_p(struct simint_multi_shellpair const P,struct simint_multi_shellpair const Q,double screen_tol,double * const restrict work,double * const restrict INT__d_s_i_p)8 int ostei_d_s_i_p(struct simint_multi_shellpair const P,
9                   struct simint_multi_shellpair const Q,
10                   double screen_tol,
11                   double * const restrict work,
12                   double * const restrict INT__d_s_i_p)
13 {
14 
15     SIMINT_ASSUME_ALIGN_DBL(work);
16     SIMINT_ASSUME_ALIGN_DBL(INT__d_s_i_p);
17     int ab, cd, abcd;
18     int istart, jstart;
19     int iprimcd, nprim_icd, icd;
20     const int check_screen = (screen_tol > 0.0);
21     int i, j;
22     int n;
23     int not_screened;
24     int real_abcd;
25     int ibra;
26 
27     // partition workspace
28     double * const INT__d_s_i_s = work + (SIMINT_NSHELL_SIMD * 0);
29     double * const INT__d_s_k_s = work + (SIMINT_NSHELL_SIMD * 168);
30     SIMINT_DBLTYPE * const primwork = (SIMINT_DBLTYPE *)(work + SIMINT_NSHELL_SIMD*384);
31     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_s_s = primwork + 0;
32     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_p_s = primwork + 10;
33     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_d_s = primwork + 37;
34     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_f_s = primwork + 85;
35     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_g_s = primwork + 155;
36     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_h_s = primwork + 245;
37     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_i_s = primwork + 350;
38     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_k_s = primwork + 462;
39     SIMINT_DBLTYPE * const restrict PRIM_INT__p_s_h_s = primwork + 570;
40     SIMINT_DBLTYPE * const restrict PRIM_INT__p_s_i_s = primwork + 696;
41     SIMINT_DBLTYPE * const restrict PRIM_INT__p_s_k_s = primwork + 864;
42     SIMINT_DBLTYPE * const restrict PRIM_INT__d_s_i_s = primwork + 1080;
43     SIMINT_DBLTYPE * const restrict PRIM_INT__d_s_k_s = primwork + 1248;
44     double * const hrrwork = (double *)(primwork + 1464);
45 
46 
47     // Create constants
48     const SIMINT_DBLTYPE const_1 = SIMINT_DBLSET1(1);
49     const SIMINT_DBLTYPE const_2 = SIMINT_DBLSET1(2);
50     const SIMINT_DBLTYPE const_3 = SIMINT_DBLSET1(3);
51     const SIMINT_DBLTYPE const_4 = SIMINT_DBLSET1(4);
52     const SIMINT_DBLTYPE const_5 = SIMINT_DBLSET1(5);
53     const SIMINT_DBLTYPE const_6 = SIMINT_DBLSET1(6);
54     const SIMINT_DBLTYPE const_7 = SIMINT_DBLSET1(7);
55     const SIMINT_DBLTYPE one_half = SIMINT_DBLSET1(0.5);
56 
57 
58     ////////////////////////////////////////
59     // Loop over shells and primitives
60     ////////////////////////////////////////
61 
62     real_abcd = 0;
63     istart = 0;
64     for(ab = 0; ab < P.nshell12_clip; ++ab)
65     {
66         const int iend = istart + P.nprim12[ab];
67 
68         cd = 0;
69         jstart = 0;
70 
71         for(cd = 0; cd < Q.nshell12_clip; cd += SIMINT_NSHELL_SIMD)
72         {
73             const int nshellbatch = ((cd + SIMINT_NSHELL_SIMD) > Q.nshell12_clip) ? Q.nshell12_clip - cd : SIMINT_NSHELL_SIMD;
74             int jend = jstart;
75             for(i = 0; i < nshellbatch; i++)
76                 jend += Q.nprim12[cd+i];
77 
78             // Clear the beginning of the workspace (where we are accumulating integrals)
79             memset(work, 0, SIMINT_NSHELL_SIMD * 384 * sizeof(double));
80             abcd = 0;
81 
82 
83             for(i = istart; i < iend; ++i)
84             {
85                 SIMINT_DBLTYPE bra_screen_max;  // only used if check_screen
86 
87                 if(check_screen)
88                 {
89                     // Skip this whole thing if always insignificant
90                     if((P.screen[i] * Q.screen_max) < screen_tol)
91                         continue;
92                     bra_screen_max = SIMINT_DBLSET1(P.screen[i]);
93                 }
94 
95                 icd = 0;
96                 iprimcd = 0;
97                 nprim_icd = Q.nprim12[cd];
98                 double * restrict PRIM_PTR_INT__d_s_i_s = INT__d_s_i_s + abcd * 168;
99                 double * restrict PRIM_PTR_INT__d_s_k_s = INT__d_s_k_s + abcd * 216;
100 
101 
102 
103                 // Load these one per loop over i
104                 const SIMINT_DBLTYPE P_alpha = SIMINT_DBLSET1(P.alpha[i]);
105                 const SIMINT_DBLTYPE P_prefac = SIMINT_DBLSET1(P.prefac[i]);
106                 const SIMINT_DBLTYPE Pxyz[3] = { SIMINT_DBLSET1(P.x[i]), SIMINT_DBLSET1(P.y[i]), SIMINT_DBLSET1(P.z[i]) };
107 
108                 const SIMINT_DBLTYPE P_PA[3] = { SIMINT_DBLSET1(P.PA_x[i]), SIMINT_DBLSET1(P.PA_y[i]), SIMINT_DBLSET1(P.PA_z[i]) };
109 
110                 for(j = jstart; j < jend; j += SIMINT_SIMD_LEN)
111                 {
112                     // calculate the shell offsets
113                     // these are the offset from the shell pointed to by cd
114                     // for each element
115                     int shelloffsets[SIMINT_SIMD_LEN] = {0};
116                     int lastoffset = 0;
117                     const int nlane = ( ((j + SIMINT_SIMD_LEN) < jend) ? SIMINT_SIMD_LEN : (jend - j));
118 
119                     if((iprimcd + SIMINT_SIMD_LEN) >= nprim_icd)
120                     {
121                         // Handle if the first element of the vector is a new shell
122                         if(iprimcd >= nprim_icd && ((icd+1) < nshellbatch))
123                         {
124                             nprim_icd += Q.nprim12[cd + (++icd)];
125                             PRIM_PTR_INT__d_s_i_s += 168;
126                             PRIM_PTR_INT__d_s_k_s += 216;
127                         }
128                         iprimcd++;
129                         for(n = 1; n < SIMINT_SIMD_LEN; ++n)
130                         {
131                             if(iprimcd >= nprim_icd && ((icd+1) < nshellbatch))
132                             {
133                                 shelloffsets[n] = shelloffsets[n-1] + 1;
134                                 lastoffset++;
135                                 nprim_icd += Q.nprim12[cd + (++icd)];
136                             }
137                             else
138                                 shelloffsets[n] = shelloffsets[n-1];
139                             iprimcd++;
140                         }
141                     }
142                     else
143                         iprimcd += SIMINT_SIMD_LEN;
144 
145                     // Do we have to compute this vector (or has it been screened out)?
146                     // (not_screened != 0 means we have to do this vector)
147                     if(check_screen)
148                     {
149                         const double vmax = vector_max(SIMINT_MUL(bra_screen_max, SIMINT_DBLLOAD(Q.screen, j)));
150                         if(vmax < screen_tol)
151                         {
152                             PRIM_PTR_INT__d_s_i_s += lastoffset*168;
153                             PRIM_PTR_INT__d_s_k_s += lastoffset*216;
154                             continue;
155                         }
156                     }
157 
158                     const SIMINT_DBLTYPE Q_alpha = SIMINT_DBLLOAD(Q.alpha, j);
159                     const SIMINT_DBLTYPE PQalpha_mul = SIMINT_MUL(P_alpha, Q_alpha);
160                     const SIMINT_DBLTYPE PQalpha_sum = SIMINT_ADD(P_alpha, Q_alpha);
161                     const SIMINT_DBLTYPE one_over_PQalpha_sum = SIMINT_DIV(const_1, PQalpha_sum);
162 
163 
164                     /* construct R2 = (Px - Qx)**2 + (Py - Qy)**2 + (Pz -Qz)**2 */
165                     SIMINT_DBLTYPE PQ[3];
166                     PQ[0] = SIMINT_SUB(Pxyz[0], SIMINT_DBLLOAD(Q.x, j));
167                     PQ[1] = SIMINT_SUB(Pxyz[1], SIMINT_DBLLOAD(Q.y, j));
168                     PQ[2] = SIMINT_SUB(Pxyz[2], SIMINT_DBLLOAD(Q.z, j));
169                     SIMINT_DBLTYPE R2 = SIMINT_MUL(PQ[0], PQ[0]);
170                     R2 = SIMINT_FMADD(PQ[1], PQ[1], R2);
171                     R2 = SIMINT_FMADD(PQ[2], PQ[2], R2);
172 
173                     const SIMINT_DBLTYPE alpha = SIMINT_MUL(PQalpha_mul, one_over_PQalpha_sum); // alpha from MEST
174                     const SIMINT_DBLTYPE one_over_p = SIMINT_DIV(const_1, P_alpha);
175                     const SIMINT_DBLTYPE one_over_q = SIMINT_DIV(const_1, Q_alpha);
176                     const SIMINT_DBLTYPE one_over_2p = SIMINT_MUL(one_half, one_over_p);
177                     const SIMINT_DBLTYPE one_over_2q = SIMINT_MUL(one_half, one_over_q);
178                     const SIMINT_DBLTYPE one_over_2pq = SIMINT_MUL(one_half, one_over_PQalpha_sum);
179                     const SIMINT_DBLTYPE Q_PA[3] = { SIMINT_DBLLOAD(Q.PA_x, j), SIMINT_DBLLOAD(Q.PA_y, j), SIMINT_DBLLOAD(Q.PA_z, j) };
180 
181                     // NOTE: Minus sign!
182                     const SIMINT_DBLTYPE a_over_p = SIMINT_MUL(SIMINT_NEG(alpha), one_over_p);
183                     SIMINT_DBLTYPE aop_PQ[3];
184                     aop_PQ[0] = SIMINT_MUL(a_over_p, PQ[0]);
185                     aop_PQ[1] = SIMINT_MUL(a_over_p, PQ[1]);
186                     aop_PQ[2] = SIMINT_MUL(a_over_p, PQ[2]);
187 
188                     SIMINT_DBLTYPE a_over_q = SIMINT_MUL(alpha, one_over_q);
189                     SIMINT_DBLTYPE aoq_PQ[3];
190                     aoq_PQ[0] = SIMINT_MUL(a_over_q, PQ[0]);
191                     aoq_PQ[1] = SIMINT_MUL(a_over_q, PQ[1]);
192                     aoq_PQ[2] = SIMINT_MUL(a_over_q, PQ[2]);
193                     // Put a minus sign here so we don't have to in RR routines
194                     a_over_q = SIMINT_NEG(a_over_q);
195 
196 
197                     //////////////////////////////////////////////
198                     // Fjt function section
199                     // Maximum v value: 9
200                     //////////////////////////////////////////////
201                     // The parameter to the Fjt function
202                     const SIMINT_DBLTYPE F_x = SIMINT_MUL(R2, alpha);
203 
204 
205                     const SIMINT_DBLTYPE Q_prefac = mask_load(nlane, Q.prefac + j);
206 
207 
208                     boys_F_split(PRIM_INT__s_s_s_s, F_x, 9);
209                     SIMINT_DBLTYPE prefac = SIMINT_SQRT(one_over_PQalpha_sum);
210                     prefac = SIMINT_MUL(SIMINT_MUL(P_prefac, Q_prefac), prefac);
211                     for(n = 0; n <= 9; n++)
212                         PRIM_INT__s_s_s_s[n] = SIMINT_MUL(PRIM_INT__s_s_s_s[n], prefac);
213 
214                     //////////////////////////////////////////////
215                     // Primitive integrals: Vertical recurrance
216                     //////////////////////////////////////////////
217 
218                     const SIMINT_DBLTYPE vrr_const_1_over_2p = one_over_2p;
219                     const SIMINT_DBLTYPE vrr_const_1_over_2q = one_over_2q;
220                     const SIMINT_DBLTYPE vrr_const_2_over_2q = SIMINT_MUL(const_2, one_over_2q);
221                     const SIMINT_DBLTYPE vrr_const_3_over_2q = SIMINT_MUL(const_3, one_over_2q);
222                     const SIMINT_DBLTYPE vrr_const_4_over_2q = SIMINT_MUL(const_4, one_over_2q);
223                     const SIMINT_DBLTYPE vrr_const_5_over_2q = SIMINT_MUL(const_5, one_over_2q);
224                     const SIMINT_DBLTYPE vrr_const_6_over_2q = SIMINT_MUL(const_6, one_over_2q);
225                     const SIMINT_DBLTYPE vrr_const_1_over_2pq = one_over_2pq;
226                     const SIMINT_DBLTYPE vrr_const_2_over_2pq = SIMINT_MUL(const_2, one_over_2pq);
227                     const SIMINT_DBLTYPE vrr_const_3_over_2pq = SIMINT_MUL(const_3, one_over_2pq);
228                     const SIMINT_DBLTYPE vrr_const_4_over_2pq = SIMINT_MUL(const_4, one_over_2pq);
229                     const SIMINT_DBLTYPE vrr_const_5_over_2pq = SIMINT_MUL(const_5, one_over_2pq);
230                     const SIMINT_DBLTYPE vrr_const_6_over_2pq = SIMINT_MUL(const_6, one_over_2pq);
231                     const SIMINT_DBLTYPE vrr_const_7_over_2pq = SIMINT_MUL(const_7, one_over_2pq);
232 
233 
234 
235                     // Forming PRIM_INT__s_s_p_s[9 * 3];
236                     for(n = 0; n < 9; ++n)  // loop over orders of auxiliary function
237                     {
238 
239                         PRIM_INT__s_s_p_s[n * 3 + 0] = SIMINT_MUL(Q_PA[0], PRIM_INT__s_s_s_s[n * 1 + 0]);
240                         PRIM_INT__s_s_p_s[n * 3 + 0] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_p_s[n * 3 + 0]);
241 
242                         PRIM_INT__s_s_p_s[n * 3 + 1] = SIMINT_MUL(Q_PA[1], PRIM_INT__s_s_s_s[n * 1 + 0]);
243                         PRIM_INT__s_s_p_s[n * 3 + 1] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_p_s[n * 3 + 1]);
244 
245                         PRIM_INT__s_s_p_s[n * 3 + 2] = SIMINT_MUL(Q_PA[2], PRIM_INT__s_s_s_s[n * 1 + 0]);
246                         PRIM_INT__s_s_p_s[n * 3 + 2] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_p_s[n * 3 + 2]);
247 
248                     }
249 
250 
251 
252                     // Forming PRIM_INT__s_s_d_s[8 * 6];
253                     for(n = 0; n < 8; ++n)  // loop over orders of auxiliary function
254                     {
255 
256                         PRIM_INT__s_s_d_s[n * 6 + 0] = SIMINT_MUL(Q_PA[0], PRIM_INT__s_s_p_s[n * 3 + 0]);
257                         PRIM_INT__s_s_d_s[n * 6 + 0] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_s_p_s[(n+1) * 3 + 0], PRIM_INT__s_s_d_s[n * 6 + 0]);
258                         PRIM_INT__s_s_d_s[n * 6 + 0] = SIMINT_FMADD( vrr_const_1_over_2q, SIMINT_FMADD(a_over_q, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__s_s_d_s[n * 6 + 0]);
259 
260                         PRIM_INT__s_s_d_s[n * 6 + 3] = SIMINT_MUL(Q_PA[1], PRIM_INT__s_s_p_s[n * 3 + 1]);
261                         PRIM_INT__s_s_d_s[n * 6 + 3] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_s_p_s[(n+1) * 3 + 1], PRIM_INT__s_s_d_s[n * 6 + 3]);
262                         PRIM_INT__s_s_d_s[n * 6 + 3] = SIMINT_FMADD( vrr_const_1_over_2q, SIMINT_FMADD(a_over_q, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__s_s_d_s[n * 6 + 3]);
263 
264                         PRIM_INT__s_s_d_s[n * 6 + 5] = SIMINT_MUL(Q_PA[2], PRIM_INT__s_s_p_s[n * 3 + 2]);
265                         PRIM_INT__s_s_d_s[n * 6 + 5] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_s_p_s[(n+1) * 3 + 2], PRIM_INT__s_s_d_s[n * 6 + 5]);
266                         PRIM_INT__s_s_d_s[n * 6 + 5] = SIMINT_FMADD( vrr_const_1_over_2q, SIMINT_FMADD(a_over_q, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__s_s_d_s[n * 6 + 5]);
267 
268                     }
269 
270 
271 
272                     // Forming PRIM_INT__s_s_f_s[7 * 10];
273                     for(n = 0; n < 7; ++n)  // loop over orders of auxiliary function
274                     {
275 
276                         PRIM_INT__s_s_f_s[n * 10 + 0] = SIMINT_MUL(Q_PA[0], PRIM_INT__s_s_d_s[n * 6 + 0]);
277                         PRIM_INT__s_s_f_s[n * 10 + 0] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_s_d_s[(n+1) * 6 + 0], PRIM_INT__s_s_f_s[n * 10 + 0]);
278                         PRIM_INT__s_s_f_s[n * 10 + 0] = SIMINT_FMADD( vrr_const_2_over_2q, SIMINT_FMADD(a_over_q, PRIM_INT__s_s_p_s[(n+1) * 3 + 0], PRIM_INT__s_s_p_s[n * 3 + 0]), PRIM_INT__s_s_f_s[n * 10 + 0]);
279 
280                         PRIM_INT__s_s_f_s[n * 10 + 1] = SIMINT_MUL(Q_PA[1], PRIM_INT__s_s_d_s[n * 6 + 0]);
281                         PRIM_INT__s_s_f_s[n * 10 + 1] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_s_d_s[(n+1) * 6 + 0], PRIM_INT__s_s_f_s[n * 10 + 1]);
282 
283                         PRIM_INT__s_s_f_s[n * 10 + 2] = SIMINT_MUL(Q_PA[2], PRIM_INT__s_s_d_s[n * 6 + 0]);
284                         PRIM_INT__s_s_f_s[n * 10 + 2] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_s_d_s[(n+1) * 6 + 0], PRIM_INT__s_s_f_s[n * 10 + 2]);
285 
286                         PRIM_INT__s_s_f_s[n * 10 + 3] = SIMINT_MUL(Q_PA[0], PRIM_INT__s_s_d_s[n * 6 + 3]);
287                         PRIM_INT__s_s_f_s[n * 10 + 3] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_s_d_s[(n+1) * 6 + 3], PRIM_INT__s_s_f_s[n * 10 + 3]);
288 
289                         PRIM_INT__s_s_f_s[n * 10 + 5] = SIMINT_MUL(Q_PA[0], PRIM_INT__s_s_d_s[n * 6 + 5]);
290                         PRIM_INT__s_s_f_s[n * 10 + 5] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_s_d_s[(n+1) * 6 + 5], PRIM_INT__s_s_f_s[n * 10 + 5]);
291 
292                         PRIM_INT__s_s_f_s[n * 10 + 6] = SIMINT_MUL(Q_PA[1], PRIM_INT__s_s_d_s[n * 6 + 3]);
293                         PRIM_INT__s_s_f_s[n * 10 + 6] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_s_d_s[(n+1) * 6 + 3], PRIM_INT__s_s_f_s[n * 10 + 6]);
294                         PRIM_INT__s_s_f_s[n * 10 + 6] = SIMINT_FMADD( vrr_const_2_over_2q, SIMINT_FMADD(a_over_q, PRIM_INT__s_s_p_s[(n+1) * 3 + 1], PRIM_INT__s_s_p_s[n * 3 + 1]), PRIM_INT__s_s_f_s[n * 10 + 6]);
295 
296                         PRIM_INT__s_s_f_s[n * 10 + 7] = SIMINT_MUL(Q_PA[2], PRIM_INT__s_s_d_s[n * 6 + 3]);
297                         PRIM_INT__s_s_f_s[n * 10 + 7] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_s_d_s[(n+1) * 6 + 3], PRIM_INT__s_s_f_s[n * 10 + 7]);
298 
299                         PRIM_INT__s_s_f_s[n * 10 + 9] = SIMINT_MUL(Q_PA[2], PRIM_INT__s_s_d_s[n * 6 + 5]);
300                         PRIM_INT__s_s_f_s[n * 10 + 9] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_s_d_s[(n+1) * 6 + 5], PRIM_INT__s_s_f_s[n * 10 + 9]);
301                         PRIM_INT__s_s_f_s[n * 10 + 9] = SIMINT_FMADD( vrr_const_2_over_2q, SIMINT_FMADD(a_over_q, PRIM_INT__s_s_p_s[(n+1) * 3 + 2], PRIM_INT__s_s_p_s[n * 3 + 2]), PRIM_INT__s_s_f_s[n * 10 + 9]);
302 
303                     }
304 
305 
306                     VRR_K_s_s_g_s(
307                             PRIM_INT__s_s_g_s,
308                             PRIM_INT__s_s_f_s,
309                             PRIM_INT__s_s_d_s,
310                             Q_PA,
311                             a_over_q,
312                             aoq_PQ,
313                             one_over_2q,
314                             6);
315 
316 
317                     VRR_K_s_s_h_s(
318                             PRIM_INT__s_s_h_s,
319                             PRIM_INT__s_s_g_s,
320                             PRIM_INT__s_s_f_s,
321                             Q_PA,
322                             a_over_q,
323                             aoq_PQ,
324                             one_over_2q,
325                             5);
326 
327 
328                     ostei_general_vrr1_K(6, 4,
329                             one_over_2q, a_over_q, aoq_PQ, Q_PA,
330                             PRIM_INT__s_s_h_s, PRIM_INT__s_s_g_s, PRIM_INT__s_s_i_s);
331 
332 
333                     ostei_general_vrr_I(1, 0, 6, 0, 2,
334                             one_over_2p, a_over_p, one_over_2pq, aop_PQ, P_PA,
335                             PRIM_INT__s_s_i_s, NULL, NULL, PRIM_INT__s_s_h_s, NULL, PRIM_INT__p_s_i_s);
336 
337 
338                     ostei_general_vrr_I(1, 0, 5, 0, 2,
339                             one_over_2p, a_over_p, one_over_2pq, aop_PQ, P_PA,
340                             PRIM_INT__s_s_h_s, NULL, NULL, PRIM_INT__s_s_g_s, NULL, PRIM_INT__p_s_h_s);
341 
342 
343                     ostei_general_vrr_I(2, 0, 6, 0, 1,
344                             one_over_2p, a_over_p, one_over_2pq, aop_PQ, P_PA,
345                             PRIM_INT__p_s_i_s, PRIM_INT__s_s_i_s, NULL, PRIM_INT__p_s_h_s, NULL, PRIM_INT__d_s_i_s);
346 
347 
348                     ostei_general_vrr1_K(7, 3,
349                             one_over_2q, a_over_q, aoq_PQ, Q_PA,
350                             PRIM_INT__s_s_i_s, PRIM_INT__s_s_h_s, PRIM_INT__s_s_k_s);
351 
352 
353                     ostei_general_vrr_I(1, 0, 7, 0, 2,
354                             one_over_2p, a_over_p, one_over_2pq, aop_PQ, P_PA,
355                             PRIM_INT__s_s_k_s, NULL, NULL, PRIM_INT__s_s_i_s, NULL, PRIM_INT__p_s_k_s);
356 
357 
358                     ostei_general_vrr_I(2, 0, 7, 0, 1,
359                             one_over_2p, a_over_p, one_over_2pq, aop_PQ, P_PA,
360                             PRIM_INT__p_s_k_s, PRIM_INT__s_s_k_s, NULL, PRIM_INT__p_s_i_s, NULL, PRIM_INT__d_s_k_s);
361 
362 
363 
364 
365                     ////////////////////////////////////
366                     // Accumulate contracted integrals
367                     ////////////////////////////////////
368                     if(lastoffset == 0)
369                     {
370                         contract_all(168, PRIM_INT__d_s_i_s, PRIM_PTR_INT__d_s_i_s);
371                         contract_all(216, PRIM_INT__d_s_k_s, PRIM_PTR_INT__d_s_k_s);
372                     }
373                     else
374                     {
375                         contract(168, shelloffsets, PRIM_INT__d_s_i_s, PRIM_PTR_INT__d_s_i_s);
376                         contract(216, shelloffsets, PRIM_INT__d_s_k_s, PRIM_PTR_INT__d_s_k_s);
377                         PRIM_PTR_INT__d_s_i_s += lastoffset*168;
378                         PRIM_PTR_INT__d_s_k_s += lastoffset*216;
379                     }
380 
381                 }  // close loop over j
382             }  // close loop over i
383 
384             //Advance to the next batch
385             jstart = SIMINT_SIMD_ROUND(jend);
386 
387             //////////////////////////////////////////////
388             // Contracted integrals: Horizontal recurrance
389             //////////////////////////////////////////////
390 
391 
392 
393 
394             for(abcd = 0; abcd < nshellbatch; ++abcd, ++real_abcd)
395             {
396                 const double hCD[3] = { Q.AB_x[cd+abcd], Q.AB_y[cd+abcd], Q.AB_z[cd+abcd] };
397 
398                 // set up HRR pointers
399                 double const * restrict HRR_INT__d_s_i_s = INT__d_s_i_s + abcd * 168;
400                 double const * restrict HRR_INT__d_s_k_s = INT__d_s_k_s + abcd * 216;
401                 double * restrict HRR_INT__d_s_i_p = INT__d_s_i_p + real_abcd * 504;
402 
403                 // form INT__d_s_i_p
404                 ostei_general_hrr_L(2, 0, 6, 1, hCD, HRR_INT__d_s_k_s, HRR_INT__d_s_i_s, HRR_INT__d_s_i_p);
405 
406 
407             }  // close HRR loop
408 
409 
410         }   // close loop cdbatch
411 
412         istart = iend;
413     }  // close loop over ab
414 
415     return P.nshell12_clip * Q.nshell12_clip;
416 }
417 
ostei_s_d_i_p(struct simint_multi_shellpair const P,struct simint_multi_shellpair const Q,double screen_tol,double * const restrict work,double * const restrict INT__s_d_i_p)418 int ostei_s_d_i_p(struct simint_multi_shellpair const P,
419                   struct simint_multi_shellpair const Q,
420                   double screen_tol,
421                   double * const restrict work,
422                   double * const restrict INT__s_d_i_p)
423 {
424     double P_AB[3*P.nshell12];
425     struct simint_multi_shellpair P_tmp = P;
426     P_tmp.PA_x = P.PB_x;  P_tmp.PA_y = P.PB_y;  P_tmp.PA_z = P.PB_z;
427     P_tmp.PB_x = P.PA_x;  P_tmp.PB_y = P.PA_y;  P_tmp.PB_z = P.PA_z;
428     P_tmp.AB_x = P_AB;
429     P_tmp.AB_y = P_AB + P.nshell12;
430     P_tmp.AB_z = P_AB + 2*P.nshell12;
431 
432     for(int i = 0; i < P.nshell12; i++)
433     {
434         P_tmp.AB_x[i] = -P.AB_x[i];
435         P_tmp.AB_y[i] = -P.AB_y[i];
436         P_tmp.AB_z[i] = -P.AB_z[i];
437     }
438 
439     int ret = ostei_d_s_i_p(P_tmp, Q, screen_tol, work, INT__s_d_i_p);
440     double buffer[504] SIMINT_ALIGN_ARRAY_DBL;
441 
442     for(int q = 0; q < ret; q++)
443     {
444         int idx = 0;
445         for(int a = 0; a < 1; ++a)
446         for(int b = 0; b < 6; ++b)
447         for(int c = 0; c < 28; ++c)
448         for(int d = 0; d < 3; ++d)
449             buffer[idx++] = INT__s_d_i_p[q*504+b*84+a*84+c*3+d];
450 
451         memcpy(INT__s_d_i_p+q*504, buffer, 504*sizeof(double));
452     }
453 
454     return ret;
455 }
456 
ostei_d_s_p_i(struct simint_multi_shellpair const P,struct simint_multi_shellpair const Q,double screen_tol,double * const restrict work,double * const restrict INT__d_s_p_i)457 int ostei_d_s_p_i(struct simint_multi_shellpair const P,
458                   struct simint_multi_shellpair const Q,
459                   double screen_tol,
460                   double * const restrict work,
461                   double * const restrict INT__d_s_p_i)
462 {
463     double Q_AB[3*Q.nshell12];
464     struct simint_multi_shellpair Q_tmp = Q;
465     Q_tmp.PA_x = Q.PB_x;  Q_tmp.PA_y = Q.PB_y;  Q_tmp.PA_z = Q.PB_z;
466     Q_tmp.PB_x = Q.PA_x;  Q_tmp.PB_y = Q.PA_y;  Q_tmp.PB_z = Q.PA_z;
467     Q_tmp.AB_x = Q_AB;
468     Q_tmp.AB_y = Q_AB + Q.nshell12;
469     Q_tmp.AB_z = Q_AB + 2*Q.nshell12;
470 
471     for(int i = 0; i < Q.nshell12; i++)
472     {
473         Q_tmp.AB_x[i] = -Q.AB_x[i];
474         Q_tmp.AB_y[i] = -Q.AB_y[i];
475         Q_tmp.AB_z[i] = -Q.AB_z[i];
476     }
477 
478     int ret = ostei_d_s_i_p(P, Q_tmp, screen_tol, work, INT__d_s_p_i);
479     double buffer[504] SIMINT_ALIGN_ARRAY_DBL;
480 
481     for(int q = 0; q < ret; q++)
482     {
483         int idx = 0;
484         for(int a = 0; a < 6; ++a)
485         for(int b = 0; b < 1; ++b)
486         for(int c = 0; c < 3; ++c)
487         for(int d = 0; d < 28; ++d)
488             buffer[idx++] = INT__d_s_p_i[q*504+a*84+b*84+d*3+c];
489 
490         memcpy(INT__d_s_p_i+q*504, buffer, 504*sizeof(double));
491     }
492 
493     return ret;
494 }
495 
ostei_s_d_p_i(struct simint_multi_shellpair const P,struct simint_multi_shellpair const Q,double screen_tol,double * const restrict work,double * const restrict INT__s_d_p_i)496 int ostei_s_d_p_i(struct simint_multi_shellpair const P,
497                   struct simint_multi_shellpair const Q,
498                   double screen_tol,
499                   double * const restrict work,
500                   double * const restrict INT__s_d_p_i)
501 {
502     double P_AB[3*P.nshell12];
503     struct simint_multi_shellpair P_tmp = P;
504     P_tmp.PA_x = P.PB_x;  P_tmp.PA_y = P.PB_y;  P_tmp.PA_z = P.PB_z;
505     P_tmp.PB_x = P.PA_x;  P_tmp.PB_y = P.PA_y;  P_tmp.PB_z = P.PA_z;
506     P_tmp.AB_x = P_AB;
507     P_tmp.AB_y = P_AB + P.nshell12;
508     P_tmp.AB_z = P_AB + 2*P.nshell12;
509 
510     for(int i = 0; i < P.nshell12; i++)
511     {
512         P_tmp.AB_x[i] = -P.AB_x[i];
513         P_tmp.AB_y[i] = -P.AB_y[i];
514         P_tmp.AB_z[i] = -P.AB_z[i];
515     }
516 
517     double Q_AB[3*Q.nshell12];
518     struct simint_multi_shellpair Q_tmp = Q;
519     Q_tmp.PA_x = Q.PB_x;  Q_tmp.PA_y = Q.PB_y;  Q_tmp.PA_z = Q.PB_z;
520     Q_tmp.PB_x = Q.PA_x;  Q_tmp.PB_y = Q.PA_y;  Q_tmp.PB_z = Q.PA_z;
521     Q_tmp.AB_x = Q_AB;
522     Q_tmp.AB_y = Q_AB + Q.nshell12;
523     Q_tmp.AB_z = Q_AB + 2*Q.nshell12;
524 
525     for(int i = 0; i < Q.nshell12; i++)
526     {
527         Q_tmp.AB_x[i] = -Q.AB_x[i];
528         Q_tmp.AB_y[i] = -Q.AB_y[i];
529         Q_tmp.AB_z[i] = -Q.AB_z[i];
530     }
531 
532     int ret = ostei_d_s_i_p(P_tmp, Q_tmp, screen_tol, work, INT__s_d_p_i);
533     double buffer[504] SIMINT_ALIGN_ARRAY_DBL;
534 
535     for(int q = 0; q < ret; q++)
536     {
537         int idx = 0;
538         for(int a = 0; a < 1; ++a)
539         for(int b = 0; b < 6; ++b)
540         for(int c = 0; c < 3; ++c)
541         for(int d = 0; d < 28; ++d)
542             buffer[idx++] = INT__s_d_p_i[q*504+b*84+a*84+d*3+c];
543 
544         memcpy(INT__s_d_p_i+q*504, buffer, 504*sizeof(double));
545     }
546 
547     return ret;
548 }
549 
550