1 #include "simint/boys/boys.h"
2 #include "simint/ostei/gen/ostei_generated.h"
3 #include "simint/vectorization/vectorization.h"
4 #include <math.h>
5 #include <string.h>
6 
7 
ostei_d_s_p_d(struct simint_multi_shellpair const P,struct simint_multi_shellpair const Q,double screen_tol,double * const restrict work,double * const restrict INT__d_s_p_d)8 int ostei_d_s_p_d(struct simint_multi_shellpair const P,
9                   struct simint_multi_shellpair const Q,
10                   double screen_tol,
11                   double * const restrict work,
12                   double * const restrict INT__d_s_p_d)
13 {
14 
15     SIMINT_ASSUME_ALIGN_DBL(work);
16     SIMINT_ASSUME_ALIGN_DBL(INT__d_s_p_d);
17     int ab, cd, abcd;
18     int istart, jstart;
19     int iprimcd, nprim_icd, icd;
20     const int check_screen = (screen_tol > 0.0);
21     int i, j;
22     int n;
23     int not_screened;
24     int real_abcd;
25     int ibra;
26 
27     // partition workspace
28     double * const INT__d_s_s_d = work + (SIMINT_NSHELL_SIMD * 0);
29     double * const INT__d_s_s_f = work + (SIMINT_NSHELL_SIMD * 36);
30     SIMINT_DBLTYPE * const primwork = (SIMINT_DBLTYPE *)(work + SIMINT_NSHELL_SIMD*96);
31     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_s_s = primwork + 0;
32     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_s_p = primwork + 6;
33     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_s_d = primwork + 21;
34     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_s_f = primwork + 45;
35     SIMINT_DBLTYPE * const restrict PRIM_INT__p_s_s_p = primwork + 75;
36     SIMINT_DBLTYPE * const restrict PRIM_INT__p_s_s_d = primwork + 93;
37     SIMINT_DBLTYPE * const restrict PRIM_INT__p_s_s_f = primwork + 129;
38     SIMINT_DBLTYPE * const restrict PRIM_INT__d_s_s_d = primwork + 189;
39     SIMINT_DBLTYPE * const restrict PRIM_INT__d_s_s_f = primwork + 225;
40     double * const hrrwork = (double *)(primwork + 285);
41 
42 
43     // Create constants
44     const SIMINT_DBLTYPE const_1 = SIMINT_DBLSET1(1);
45     const SIMINT_DBLTYPE const_2 = SIMINT_DBLSET1(2);
46     const SIMINT_DBLTYPE const_3 = SIMINT_DBLSET1(3);
47     const SIMINT_DBLTYPE one_half = SIMINT_DBLSET1(0.5);
48 
49 
50     ////////////////////////////////////////
51     // Loop over shells and primitives
52     ////////////////////////////////////////
53 
54     real_abcd = 0;
55     istart = 0;
56     for(ab = 0; ab < P.nshell12_clip; ++ab)
57     {
58         const int iend = istart + P.nprim12[ab];
59 
60         cd = 0;
61         jstart = 0;
62 
63         for(cd = 0; cd < Q.nshell12_clip; cd += SIMINT_NSHELL_SIMD)
64         {
65             const int nshellbatch = ((cd + SIMINT_NSHELL_SIMD) > Q.nshell12_clip) ? Q.nshell12_clip - cd : SIMINT_NSHELL_SIMD;
66             int jend = jstart;
67             for(i = 0; i < nshellbatch; i++)
68                 jend += Q.nprim12[cd+i];
69 
70             // Clear the beginning of the workspace (where we are accumulating integrals)
71             memset(work, 0, SIMINT_NSHELL_SIMD * 96 * sizeof(double));
72             abcd = 0;
73 
74 
75             for(i = istart; i < iend; ++i)
76             {
77                 SIMINT_DBLTYPE bra_screen_max;  // only used if check_screen
78 
79                 if(check_screen)
80                 {
81                     // Skip this whole thing if always insignificant
82                     if((P.screen[i] * Q.screen_max) < screen_tol)
83                         continue;
84                     bra_screen_max = SIMINT_DBLSET1(P.screen[i]);
85                 }
86 
87                 icd = 0;
88                 iprimcd = 0;
89                 nprim_icd = Q.nprim12[cd];
90                 double * restrict PRIM_PTR_INT__d_s_s_d = INT__d_s_s_d + abcd * 36;
91                 double * restrict PRIM_PTR_INT__d_s_s_f = INT__d_s_s_f + abcd * 60;
92 
93 
94 
95                 // Load these one per loop over i
96                 const SIMINT_DBLTYPE P_alpha = SIMINT_DBLSET1(P.alpha[i]);
97                 const SIMINT_DBLTYPE P_prefac = SIMINT_DBLSET1(P.prefac[i]);
98                 const SIMINT_DBLTYPE Pxyz[3] = { SIMINT_DBLSET1(P.x[i]), SIMINT_DBLSET1(P.y[i]), SIMINT_DBLSET1(P.z[i]) };
99 
100                 const SIMINT_DBLTYPE P_PA[3] = { SIMINT_DBLSET1(P.PA_x[i]), SIMINT_DBLSET1(P.PA_y[i]), SIMINT_DBLSET1(P.PA_z[i]) };
101 
102                 for(j = jstart; j < jend; j += SIMINT_SIMD_LEN)
103                 {
104                     // calculate the shell offsets
105                     // these are the offset from the shell pointed to by cd
106                     // for each element
107                     int shelloffsets[SIMINT_SIMD_LEN] = {0};
108                     int lastoffset = 0;
109                     const int nlane = ( ((j + SIMINT_SIMD_LEN) < jend) ? SIMINT_SIMD_LEN : (jend - j));
110 
111                     if((iprimcd + SIMINT_SIMD_LEN) >= nprim_icd)
112                     {
113                         // Handle if the first element of the vector is a new shell
114                         if(iprimcd >= nprim_icd && ((icd+1) < nshellbatch))
115                         {
116                             nprim_icd += Q.nprim12[cd + (++icd)];
117                             PRIM_PTR_INT__d_s_s_d += 36;
118                             PRIM_PTR_INT__d_s_s_f += 60;
119                         }
120                         iprimcd++;
121                         for(n = 1; n < SIMINT_SIMD_LEN; ++n)
122                         {
123                             if(iprimcd >= nprim_icd && ((icd+1) < nshellbatch))
124                             {
125                                 shelloffsets[n] = shelloffsets[n-1] + 1;
126                                 lastoffset++;
127                                 nprim_icd += Q.nprim12[cd + (++icd)];
128                             }
129                             else
130                                 shelloffsets[n] = shelloffsets[n-1];
131                             iprimcd++;
132                         }
133                     }
134                     else
135                         iprimcd += SIMINT_SIMD_LEN;
136 
137                     // Do we have to compute this vector (or has it been screened out)?
138                     // (not_screened != 0 means we have to do this vector)
139                     if(check_screen)
140                     {
141                         const double vmax = vector_max(SIMINT_MUL(bra_screen_max, SIMINT_DBLLOAD(Q.screen, j)));
142                         if(vmax < screen_tol)
143                         {
144                             PRIM_PTR_INT__d_s_s_d += lastoffset*36;
145                             PRIM_PTR_INT__d_s_s_f += lastoffset*60;
146                             continue;
147                         }
148                     }
149 
150                     const SIMINT_DBLTYPE Q_alpha = SIMINT_DBLLOAD(Q.alpha, j);
151                     const SIMINT_DBLTYPE PQalpha_mul = SIMINT_MUL(P_alpha, Q_alpha);
152                     const SIMINT_DBLTYPE PQalpha_sum = SIMINT_ADD(P_alpha, Q_alpha);
153                     const SIMINT_DBLTYPE one_over_PQalpha_sum = SIMINT_DIV(const_1, PQalpha_sum);
154 
155 
156                     /* construct R2 = (Px - Qx)**2 + (Py - Qy)**2 + (Pz -Qz)**2 */
157                     SIMINT_DBLTYPE PQ[3];
158                     PQ[0] = SIMINT_SUB(Pxyz[0], SIMINT_DBLLOAD(Q.x, j));
159                     PQ[1] = SIMINT_SUB(Pxyz[1], SIMINT_DBLLOAD(Q.y, j));
160                     PQ[2] = SIMINT_SUB(Pxyz[2], SIMINT_DBLLOAD(Q.z, j));
161                     SIMINT_DBLTYPE R2 = SIMINT_MUL(PQ[0], PQ[0]);
162                     R2 = SIMINT_FMADD(PQ[1], PQ[1], R2);
163                     R2 = SIMINT_FMADD(PQ[2], PQ[2], R2);
164 
165                     const SIMINT_DBLTYPE alpha = SIMINT_MUL(PQalpha_mul, one_over_PQalpha_sum); // alpha from MEST
166                     const SIMINT_DBLTYPE one_over_p = SIMINT_DIV(const_1, P_alpha);
167                     const SIMINT_DBLTYPE one_over_q = SIMINT_DIV(const_1, Q_alpha);
168                     const SIMINT_DBLTYPE one_over_2p = SIMINT_MUL(one_half, one_over_p);
169                     const SIMINT_DBLTYPE one_over_2q = SIMINT_MUL(one_half, one_over_q);
170                     const SIMINT_DBLTYPE one_over_2pq = SIMINT_MUL(one_half, one_over_PQalpha_sum);
171                     const SIMINT_DBLTYPE Q_PB[3] = { SIMINT_DBLLOAD(Q.PB_x, j), SIMINT_DBLLOAD(Q.PB_y, j), SIMINT_DBLLOAD(Q.PB_z, j) };
172 
173                     // NOTE: Minus sign!
174                     const SIMINT_DBLTYPE a_over_p = SIMINT_MUL(SIMINT_NEG(alpha), one_over_p);
175                     SIMINT_DBLTYPE aop_PQ[3];
176                     aop_PQ[0] = SIMINT_MUL(a_over_p, PQ[0]);
177                     aop_PQ[1] = SIMINT_MUL(a_over_p, PQ[1]);
178                     aop_PQ[2] = SIMINT_MUL(a_over_p, PQ[2]);
179 
180                     SIMINT_DBLTYPE a_over_q = SIMINT_MUL(alpha, one_over_q);
181                     SIMINT_DBLTYPE aoq_PQ[3];
182                     aoq_PQ[0] = SIMINT_MUL(a_over_q, PQ[0]);
183                     aoq_PQ[1] = SIMINT_MUL(a_over_q, PQ[1]);
184                     aoq_PQ[2] = SIMINT_MUL(a_over_q, PQ[2]);
185                     // Put a minus sign here so we don't have to in RR routines
186                     a_over_q = SIMINT_NEG(a_over_q);
187 
188 
189                     //////////////////////////////////////////////
190                     // Fjt function section
191                     // Maximum v value: 5
192                     //////////////////////////////////////////////
193                     // The parameter to the Fjt function
194                     const SIMINT_DBLTYPE F_x = SIMINT_MUL(R2, alpha);
195 
196 
197                     const SIMINT_DBLTYPE Q_prefac = mask_load(nlane, Q.prefac + j);
198 
199 
200                     boys_F_split(PRIM_INT__s_s_s_s, F_x, 5);
201                     SIMINT_DBLTYPE prefac = SIMINT_SQRT(one_over_PQalpha_sum);
202                     prefac = SIMINT_MUL(SIMINT_MUL(P_prefac, Q_prefac), prefac);
203                     for(n = 0; n <= 5; n++)
204                         PRIM_INT__s_s_s_s[n] = SIMINT_MUL(PRIM_INT__s_s_s_s[n], prefac);
205 
206                     //////////////////////////////////////////////
207                     // Primitive integrals: Vertical recurrance
208                     //////////////////////////////////////////////
209 
210                     const SIMINT_DBLTYPE vrr_const_1_over_2p = one_over_2p;
211                     const SIMINT_DBLTYPE vrr_const_1_over_2q = one_over_2q;
212                     const SIMINT_DBLTYPE vrr_const_2_over_2q = SIMINT_MUL(const_2, one_over_2q);
213                     const SIMINT_DBLTYPE vrr_const_1_over_2pq = one_over_2pq;
214                     const SIMINT_DBLTYPE vrr_const_2_over_2pq = SIMINT_MUL(const_2, one_over_2pq);
215                     const SIMINT_DBLTYPE vrr_const_3_over_2pq = SIMINT_MUL(const_3, one_over_2pq);
216 
217 
218 
219                     // Forming PRIM_INT__s_s_s_p[5 * 3];
220                     for(n = 0; n < 5; ++n)  // loop over orders of auxiliary function
221                     {
222 
223                         PRIM_INT__s_s_s_p[n * 3 + 0] = SIMINT_MUL(Q_PB[0], PRIM_INT__s_s_s_s[n * 1 + 0]);
224                         PRIM_INT__s_s_s_p[n * 3 + 0] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_p[n * 3 + 0]);
225 
226                         PRIM_INT__s_s_s_p[n * 3 + 1] = SIMINT_MUL(Q_PB[1], PRIM_INT__s_s_s_s[n * 1 + 0]);
227                         PRIM_INT__s_s_s_p[n * 3 + 1] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_p[n * 3 + 1]);
228 
229                         PRIM_INT__s_s_s_p[n * 3 + 2] = SIMINT_MUL(Q_PB[2], PRIM_INT__s_s_s_s[n * 1 + 0]);
230                         PRIM_INT__s_s_s_p[n * 3 + 2] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_p[n * 3 + 2]);
231 
232                     }
233 
234 
235 
236                     // Forming PRIM_INT__s_s_s_d[4 * 6];
237                     for(n = 0; n < 4; ++n)  // loop over orders of auxiliary function
238                     {
239 
240                         PRIM_INT__s_s_s_d[n * 6 + 0] = SIMINT_MUL(Q_PB[0], PRIM_INT__s_s_s_p[n * 3 + 0]);
241                         PRIM_INT__s_s_s_d[n * 6 + 0] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_s_s_p[(n+1) * 3 + 0], PRIM_INT__s_s_s_d[n * 6 + 0]);
242                         PRIM_INT__s_s_s_d[n * 6 + 0] = SIMINT_FMADD( vrr_const_1_over_2q, SIMINT_FMADD(a_over_q, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__s_s_s_d[n * 6 + 0]);
243 
244                         PRIM_INT__s_s_s_d[n * 6 + 1] = SIMINT_MUL(Q_PB[1], PRIM_INT__s_s_s_p[n * 3 + 0]);
245                         PRIM_INT__s_s_s_d[n * 6 + 1] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_s_s_p[(n+1) * 3 + 0], PRIM_INT__s_s_s_d[n * 6 + 1]);
246 
247                         PRIM_INT__s_s_s_d[n * 6 + 2] = SIMINT_MUL(Q_PB[2], PRIM_INT__s_s_s_p[n * 3 + 0]);
248                         PRIM_INT__s_s_s_d[n * 6 + 2] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_s_s_p[(n+1) * 3 + 0], PRIM_INT__s_s_s_d[n * 6 + 2]);
249 
250                         PRIM_INT__s_s_s_d[n * 6 + 3] = SIMINT_MUL(Q_PB[1], PRIM_INT__s_s_s_p[n * 3 + 1]);
251                         PRIM_INT__s_s_s_d[n * 6 + 3] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_s_s_p[(n+1) * 3 + 1], PRIM_INT__s_s_s_d[n * 6 + 3]);
252                         PRIM_INT__s_s_s_d[n * 6 + 3] = SIMINT_FMADD( vrr_const_1_over_2q, SIMINT_FMADD(a_over_q, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__s_s_s_d[n * 6 + 3]);
253 
254                         PRIM_INT__s_s_s_d[n * 6 + 4] = SIMINT_MUL(Q_PB[2], PRIM_INT__s_s_s_p[n * 3 + 1]);
255                         PRIM_INT__s_s_s_d[n * 6 + 4] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_s_s_p[(n+1) * 3 + 1], PRIM_INT__s_s_s_d[n * 6 + 4]);
256 
257                         PRIM_INT__s_s_s_d[n * 6 + 5] = SIMINT_MUL(Q_PB[2], PRIM_INT__s_s_s_p[n * 3 + 2]);
258                         PRIM_INT__s_s_s_d[n * 6 + 5] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_s_s_p[(n+1) * 3 + 2], PRIM_INT__s_s_s_d[n * 6 + 5]);
259                         PRIM_INT__s_s_s_d[n * 6 + 5] = SIMINT_FMADD( vrr_const_1_over_2q, SIMINT_FMADD(a_over_q, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__s_s_s_d[n * 6 + 5]);
260 
261                     }
262 
263 
264 
265                     // Forming PRIM_INT__p_s_s_d[2 * 18];
266                     for(n = 0; n < 2; ++n)  // loop over orders of auxiliary function
267                     {
268 
269                         PRIM_INT__p_s_s_d[n * 18 + 0] = SIMINT_MUL(P_PA[0], PRIM_INT__s_s_s_d[n * 6 + 0]);
270                         PRIM_INT__p_s_s_d[n * 18 + 0] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__s_s_s_d[(n+1) * 6 + 0], PRIM_INT__p_s_s_d[n * 18 + 0]);
271                         PRIM_INT__p_s_s_d[n * 18 + 0] = SIMINT_FMADD( vrr_const_2_over_2pq, PRIM_INT__s_s_s_p[(n+1) * 3 + 0], PRIM_INT__p_s_s_d[n * 18 + 0]);
272 
273                         PRIM_INT__p_s_s_d[n * 18 + 1] = SIMINT_MUL(P_PA[0], PRIM_INT__s_s_s_d[n * 6 + 1]);
274                         PRIM_INT__p_s_s_d[n * 18 + 1] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__s_s_s_d[(n+1) * 6 + 1], PRIM_INT__p_s_s_d[n * 18 + 1]);
275                         PRIM_INT__p_s_s_d[n * 18 + 1] = SIMINT_FMADD( vrr_const_1_over_2pq, PRIM_INT__s_s_s_p[(n+1) * 3 + 1], PRIM_INT__p_s_s_d[n * 18 + 1]);
276 
277                         PRIM_INT__p_s_s_d[n * 18 + 2] = SIMINT_MUL(P_PA[0], PRIM_INT__s_s_s_d[n * 6 + 2]);
278                         PRIM_INT__p_s_s_d[n * 18 + 2] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__s_s_s_d[(n+1) * 6 + 2], PRIM_INT__p_s_s_d[n * 18 + 2]);
279                         PRIM_INT__p_s_s_d[n * 18 + 2] = SIMINT_FMADD( vrr_const_1_over_2pq, PRIM_INT__s_s_s_p[(n+1) * 3 + 2], PRIM_INT__p_s_s_d[n * 18 + 2]);
280 
281                         PRIM_INT__p_s_s_d[n * 18 + 3] = SIMINT_MUL(P_PA[0], PRIM_INT__s_s_s_d[n * 6 + 3]);
282                         PRIM_INT__p_s_s_d[n * 18 + 3] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__s_s_s_d[(n+1) * 6 + 3], PRIM_INT__p_s_s_d[n * 18 + 3]);
283 
284                         PRIM_INT__p_s_s_d[n * 18 + 4] = SIMINT_MUL(P_PA[0], PRIM_INT__s_s_s_d[n * 6 + 4]);
285                         PRIM_INT__p_s_s_d[n * 18 + 4] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__s_s_s_d[(n+1) * 6 + 4], PRIM_INT__p_s_s_d[n * 18 + 4]);
286 
287                         PRIM_INT__p_s_s_d[n * 18 + 5] = SIMINT_MUL(P_PA[0], PRIM_INT__s_s_s_d[n * 6 + 5]);
288                         PRIM_INT__p_s_s_d[n * 18 + 5] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__s_s_s_d[(n+1) * 6 + 5], PRIM_INT__p_s_s_d[n * 18 + 5]);
289 
290                         PRIM_INT__p_s_s_d[n * 18 + 6] = SIMINT_MUL(P_PA[1], PRIM_INT__s_s_s_d[n * 6 + 0]);
291                         PRIM_INT__p_s_s_d[n * 18 + 6] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__s_s_s_d[(n+1) * 6 + 0], PRIM_INT__p_s_s_d[n * 18 + 6]);
292 
293                         PRIM_INT__p_s_s_d[n * 18 + 7] = SIMINT_MUL(P_PA[1], PRIM_INT__s_s_s_d[n * 6 + 1]);
294                         PRIM_INT__p_s_s_d[n * 18 + 7] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__s_s_s_d[(n+1) * 6 + 1], PRIM_INT__p_s_s_d[n * 18 + 7]);
295                         PRIM_INT__p_s_s_d[n * 18 + 7] = SIMINT_FMADD( vrr_const_1_over_2pq, PRIM_INT__s_s_s_p[(n+1) * 3 + 0], PRIM_INT__p_s_s_d[n * 18 + 7]);
296 
297                         PRIM_INT__p_s_s_d[n * 18 + 8] = SIMINT_MUL(P_PA[1], PRIM_INT__s_s_s_d[n * 6 + 2]);
298                         PRIM_INT__p_s_s_d[n * 18 + 8] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__s_s_s_d[(n+1) * 6 + 2], PRIM_INT__p_s_s_d[n * 18 + 8]);
299 
300                         PRIM_INT__p_s_s_d[n * 18 + 9] = SIMINT_MUL(P_PA[1], PRIM_INT__s_s_s_d[n * 6 + 3]);
301                         PRIM_INT__p_s_s_d[n * 18 + 9] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__s_s_s_d[(n+1) * 6 + 3], PRIM_INT__p_s_s_d[n * 18 + 9]);
302                         PRIM_INT__p_s_s_d[n * 18 + 9] = SIMINT_FMADD( vrr_const_2_over_2pq, PRIM_INT__s_s_s_p[(n+1) * 3 + 1], PRIM_INT__p_s_s_d[n * 18 + 9]);
303 
304                         PRIM_INT__p_s_s_d[n * 18 + 10] = SIMINT_MUL(P_PA[1], PRIM_INT__s_s_s_d[n * 6 + 4]);
305                         PRIM_INT__p_s_s_d[n * 18 + 10] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__s_s_s_d[(n+1) * 6 + 4], PRIM_INT__p_s_s_d[n * 18 + 10]);
306                         PRIM_INT__p_s_s_d[n * 18 + 10] = SIMINT_FMADD( vrr_const_1_over_2pq, PRIM_INT__s_s_s_p[(n+1) * 3 + 2], PRIM_INT__p_s_s_d[n * 18 + 10]);
307 
308                         PRIM_INT__p_s_s_d[n * 18 + 11] = SIMINT_MUL(P_PA[1], PRIM_INT__s_s_s_d[n * 6 + 5]);
309                         PRIM_INT__p_s_s_d[n * 18 + 11] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__s_s_s_d[(n+1) * 6 + 5], PRIM_INT__p_s_s_d[n * 18 + 11]);
310 
311                         PRIM_INT__p_s_s_d[n * 18 + 12] = SIMINT_MUL(P_PA[2], PRIM_INT__s_s_s_d[n * 6 + 0]);
312                         PRIM_INT__p_s_s_d[n * 18 + 12] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_s_s_d[(n+1) * 6 + 0], PRIM_INT__p_s_s_d[n * 18 + 12]);
313 
314                         PRIM_INT__p_s_s_d[n * 18 + 13] = SIMINT_MUL(P_PA[2], PRIM_INT__s_s_s_d[n * 6 + 1]);
315                         PRIM_INT__p_s_s_d[n * 18 + 13] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_s_s_d[(n+1) * 6 + 1], PRIM_INT__p_s_s_d[n * 18 + 13]);
316 
317                         PRIM_INT__p_s_s_d[n * 18 + 14] = SIMINT_MUL(P_PA[2], PRIM_INT__s_s_s_d[n * 6 + 2]);
318                         PRIM_INT__p_s_s_d[n * 18 + 14] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_s_s_d[(n+1) * 6 + 2], PRIM_INT__p_s_s_d[n * 18 + 14]);
319                         PRIM_INT__p_s_s_d[n * 18 + 14] = SIMINT_FMADD( vrr_const_1_over_2pq, PRIM_INT__s_s_s_p[(n+1) * 3 + 0], PRIM_INT__p_s_s_d[n * 18 + 14]);
320 
321                         PRIM_INT__p_s_s_d[n * 18 + 15] = SIMINT_MUL(P_PA[2], PRIM_INT__s_s_s_d[n * 6 + 3]);
322                         PRIM_INT__p_s_s_d[n * 18 + 15] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_s_s_d[(n+1) * 6 + 3], PRIM_INT__p_s_s_d[n * 18 + 15]);
323 
324                         PRIM_INT__p_s_s_d[n * 18 + 16] = SIMINT_MUL(P_PA[2], PRIM_INT__s_s_s_d[n * 6 + 4]);
325                         PRIM_INT__p_s_s_d[n * 18 + 16] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_s_s_d[(n+1) * 6 + 4], PRIM_INT__p_s_s_d[n * 18 + 16]);
326                         PRIM_INT__p_s_s_d[n * 18 + 16] = SIMINT_FMADD( vrr_const_1_over_2pq, PRIM_INT__s_s_s_p[(n+1) * 3 + 1], PRIM_INT__p_s_s_d[n * 18 + 16]);
327 
328                         PRIM_INT__p_s_s_d[n * 18 + 17] = SIMINT_MUL(P_PA[2], PRIM_INT__s_s_s_d[n * 6 + 5]);
329                         PRIM_INT__p_s_s_d[n * 18 + 17] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_s_s_d[(n+1) * 6 + 5], PRIM_INT__p_s_s_d[n * 18 + 17]);
330                         PRIM_INT__p_s_s_d[n * 18 + 17] = SIMINT_FMADD( vrr_const_2_over_2pq, PRIM_INT__s_s_s_p[(n+1) * 3 + 2], PRIM_INT__p_s_s_d[n * 18 + 17]);
331 
332                     }
333 
334 
335 
336                     // Forming PRIM_INT__p_s_s_p[2 * 9];
337                     for(n = 0; n < 2; ++n)  // loop over orders of auxiliary function
338                     {
339 
340                         PRIM_INT__p_s_s_p[n * 9 + 0] = SIMINT_MUL(P_PA[0], PRIM_INT__s_s_s_p[n * 3 + 0]);
341                         PRIM_INT__p_s_s_p[n * 9 + 0] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__s_s_s_p[(n+1) * 3 + 0], PRIM_INT__p_s_s_p[n * 9 + 0]);
342                         PRIM_INT__p_s_s_p[n * 9 + 0] = SIMINT_FMADD( vrr_const_1_over_2pq, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__p_s_s_p[n * 9 + 0]);
343 
344                         PRIM_INT__p_s_s_p[n * 9 + 1] = SIMINT_MUL(P_PA[0], PRIM_INT__s_s_s_p[n * 3 + 1]);
345                         PRIM_INT__p_s_s_p[n * 9 + 1] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__s_s_s_p[(n+1) * 3 + 1], PRIM_INT__p_s_s_p[n * 9 + 1]);
346 
347                         PRIM_INT__p_s_s_p[n * 9 + 2] = SIMINT_MUL(P_PA[0], PRIM_INT__s_s_s_p[n * 3 + 2]);
348                         PRIM_INT__p_s_s_p[n * 9 + 2] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__s_s_s_p[(n+1) * 3 + 2], PRIM_INT__p_s_s_p[n * 9 + 2]);
349 
350                         PRIM_INT__p_s_s_p[n * 9 + 3] = SIMINT_MUL(P_PA[1], PRIM_INT__s_s_s_p[n * 3 + 0]);
351                         PRIM_INT__p_s_s_p[n * 9 + 3] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__s_s_s_p[(n+1) * 3 + 0], PRIM_INT__p_s_s_p[n * 9 + 3]);
352 
353                         PRIM_INT__p_s_s_p[n * 9 + 4] = SIMINT_MUL(P_PA[1], PRIM_INT__s_s_s_p[n * 3 + 1]);
354                         PRIM_INT__p_s_s_p[n * 9 + 4] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__s_s_s_p[(n+1) * 3 + 1], PRIM_INT__p_s_s_p[n * 9 + 4]);
355                         PRIM_INT__p_s_s_p[n * 9 + 4] = SIMINT_FMADD( vrr_const_1_over_2pq, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__p_s_s_p[n * 9 + 4]);
356 
357                         PRIM_INT__p_s_s_p[n * 9 + 5] = SIMINT_MUL(P_PA[1], PRIM_INT__s_s_s_p[n * 3 + 2]);
358                         PRIM_INT__p_s_s_p[n * 9 + 5] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__s_s_s_p[(n+1) * 3 + 2], PRIM_INT__p_s_s_p[n * 9 + 5]);
359 
360                         PRIM_INT__p_s_s_p[n * 9 + 6] = SIMINT_MUL(P_PA[2], PRIM_INT__s_s_s_p[n * 3 + 0]);
361                         PRIM_INT__p_s_s_p[n * 9 + 6] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_s_s_p[(n+1) * 3 + 0], PRIM_INT__p_s_s_p[n * 9 + 6]);
362 
363                         PRIM_INT__p_s_s_p[n * 9 + 7] = SIMINT_MUL(P_PA[2], PRIM_INT__s_s_s_p[n * 3 + 1]);
364                         PRIM_INT__p_s_s_p[n * 9 + 7] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_s_s_p[(n+1) * 3 + 1], PRIM_INT__p_s_s_p[n * 9 + 7]);
365 
366                         PRIM_INT__p_s_s_p[n * 9 + 8] = SIMINT_MUL(P_PA[2], PRIM_INT__s_s_s_p[n * 3 + 2]);
367                         PRIM_INT__p_s_s_p[n * 9 + 8] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_s_s_p[(n+1) * 3 + 2], PRIM_INT__p_s_s_p[n * 9 + 8]);
368                         PRIM_INT__p_s_s_p[n * 9 + 8] = SIMINT_FMADD( vrr_const_1_over_2pq, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__p_s_s_p[n * 9 + 8]);
369 
370                     }
371 
372 
373                     VRR_I_d_s_s_d(
374                             PRIM_INT__d_s_s_d,
375                             PRIM_INT__p_s_s_d,
376                             PRIM_INT__s_s_s_d,
377                             PRIM_INT__p_s_s_p,
378                             P_PA,
379                             a_over_p,
380                             aop_PQ,
381                             one_over_2p,
382                             one_over_2pq,
383                             1);
384 
385 
386 
387                     // Forming PRIM_INT__s_s_s_f[3 * 10];
388                     for(n = 0; n < 3; ++n)  // loop over orders of auxiliary function
389                     {
390 
391                         PRIM_INT__s_s_s_f[n * 10 + 0] = SIMINT_MUL(Q_PB[0], PRIM_INT__s_s_s_d[n * 6 + 0]);
392                         PRIM_INT__s_s_s_f[n * 10 + 0] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_s_s_d[(n+1) * 6 + 0], PRIM_INT__s_s_s_f[n * 10 + 0]);
393                         PRIM_INT__s_s_s_f[n * 10 + 0] = SIMINT_FMADD( vrr_const_2_over_2q, SIMINT_FMADD(a_over_q, PRIM_INT__s_s_s_p[(n+1) * 3 + 0], PRIM_INT__s_s_s_p[n * 3 + 0]), PRIM_INT__s_s_s_f[n * 10 + 0]);
394 
395                         PRIM_INT__s_s_s_f[n * 10 + 1] = SIMINT_MUL(Q_PB[1], PRIM_INT__s_s_s_d[n * 6 + 0]);
396                         PRIM_INT__s_s_s_f[n * 10 + 1] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_s_s_d[(n+1) * 6 + 0], PRIM_INT__s_s_s_f[n * 10 + 1]);
397 
398                         PRIM_INT__s_s_s_f[n * 10 + 2] = SIMINT_MUL(Q_PB[2], PRIM_INT__s_s_s_d[n * 6 + 0]);
399                         PRIM_INT__s_s_s_f[n * 10 + 2] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_s_s_d[(n+1) * 6 + 0], PRIM_INT__s_s_s_f[n * 10 + 2]);
400 
401                         PRIM_INT__s_s_s_f[n * 10 + 3] = SIMINT_MUL(Q_PB[0], PRIM_INT__s_s_s_d[n * 6 + 3]);
402                         PRIM_INT__s_s_s_f[n * 10 + 3] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_s_s_d[(n+1) * 6 + 3], PRIM_INT__s_s_s_f[n * 10 + 3]);
403 
404                         PRIM_INT__s_s_s_f[n * 10 + 4] = SIMINT_MUL(Q_PB[2], PRIM_INT__s_s_s_d[n * 6 + 1]);
405                         PRIM_INT__s_s_s_f[n * 10 + 4] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_s_s_d[(n+1) * 6 + 1], PRIM_INT__s_s_s_f[n * 10 + 4]);
406 
407                         PRIM_INT__s_s_s_f[n * 10 + 5] = SIMINT_MUL(Q_PB[0], PRIM_INT__s_s_s_d[n * 6 + 5]);
408                         PRIM_INT__s_s_s_f[n * 10 + 5] = SIMINT_FMADD( aoq_PQ[0], PRIM_INT__s_s_s_d[(n+1) * 6 + 5], PRIM_INT__s_s_s_f[n * 10 + 5]);
409 
410                         PRIM_INT__s_s_s_f[n * 10 + 6] = SIMINT_MUL(Q_PB[1], PRIM_INT__s_s_s_d[n * 6 + 3]);
411                         PRIM_INT__s_s_s_f[n * 10 + 6] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_s_s_d[(n+1) * 6 + 3], PRIM_INT__s_s_s_f[n * 10 + 6]);
412                         PRIM_INT__s_s_s_f[n * 10 + 6] = SIMINT_FMADD( vrr_const_2_over_2q, SIMINT_FMADD(a_over_q, PRIM_INT__s_s_s_p[(n+1) * 3 + 1], PRIM_INT__s_s_s_p[n * 3 + 1]), PRIM_INT__s_s_s_f[n * 10 + 6]);
413 
414                         PRIM_INT__s_s_s_f[n * 10 + 7] = SIMINT_MUL(Q_PB[2], PRIM_INT__s_s_s_d[n * 6 + 3]);
415                         PRIM_INT__s_s_s_f[n * 10 + 7] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_s_s_d[(n+1) * 6 + 3], PRIM_INT__s_s_s_f[n * 10 + 7]);
416 
417                         PRIM_INT__s_s_s_f[n * 10 + 8] = SIMINT_MUL(Q_PB[1], PRIM_INT__s_s_s_d[n * 6 + 5]);
418                         PRIM_INT__s_s_s_f[n * 10 + 8] = SIMINT_FMADD( aoq_PQ[1], PRIM_INT__s_s_s_d[(n+1) * 6 + 5], PRIM_INT__s_s_s_f[n * 10 + 8]);
419 
420                         PRIM_INT__s_s_s_f[n * 10 + 9] = SIMINT_MUL(Q_PB[2], PRIM_INT__s_s_s_d[n * 6 + 5]);
421                         PRIM_INT__s_s_s_f[n * 10 + 9] = SIMINT_FMADD( aoq_PQ[2], PRIM_INT__s_s_s_d[(n+1) * 6 + 5], PRIM_INT__s_s_s_f[n * 10 + 9]);
422                         PRIM_INT__s_s_s_f[n * 10 + 9] = SIMINT_FMADD( vrr_const_2_over_2q, SIMINT_FMADD(a_over_q, PRIM_INT__s_s_s_p[(n+1) * 3 + 2], PRIM_INT__s_s_s_p[n * 3 + 2]), PRIM_INT__s_s_s_f[n * 10 + 9]);
423 
424                     }
425 
426 
427                     VRR_I_p_s_s_f(
428                             PRIM_INT__p_s_s_f,
429                             PRIM_INT__s_s_s_f,
430                             PRIM_INT__s_s_s_d,
431                             P_PA,
432                             aop_PQ,
433                             one_over_2pq,
434                             2);
435 
436 
437                     VRR_I_d_s_s_f(
438                             PRIM_INT__d_s_s_f,
439                             PRIM_INT__p_s_s_f,
440                             PRIM_INT__s_s_s_f,
441                             PRIM_INT__p_s_s_d,
442                             P_PA,
443                             a_over_p,
444                             aop_PQ,
445                             one_over_2p,
446                             one_over_2pq,
447                             1);
448 
449 
450 
451 
452                     ////////////////////////////////////
453                     // Accumulate contracted integrals
454                     ////////////////////////////////////
455                     if(lastoffset == 0)
456                     {
457                         contract_all(36, PRIM_INT__d_s_s_d, PRIM_PTR_INT__d_s_s_d);
458                         contract_all(60, PRIM_INT__d_s_s_f, PRIM_PTR_INT__d_s_s_f);
459                     }
460                     else
461                     {
462                         contract(36, shelloffsets, PRIM_INT__d_s_s_d, PRIM_PTR_INT__d_s_s_d);
463                         contract(60, shelloffsets, PRIM_INT__d_s_s_f, PRIM_PTR_INT__d_s_s_f);
464                         PRIM_PTR_INT__d_s_s_d += lastoffset*36;
465                         PRIM_PTR_INT__d_s_s_f += lastoffset*60;
466                     }
467 
468                 }  // close loop over j
469             }  // close loop over i
470 
471             //Advance to the next batch
472             jstart = SIMINT_SIMD_ROUND(jend);
473 
474             //////////////////////////////////////////////
475             // Contracted integrals: Horizontal recurrance
476             //////////////////////////////////////////////
477 
478 
479 
480 
481             for(abcd = 0; abcd < nshellbatch; ++abcd, ++real_abcd)
482             {
483                 const double hCD[3] = { Q.AB_x[cd+abcd], Q.AB_y[cd+abcd], Q.AB_z[cd+abcd] };
484 
485                 // set up HRR pointers
486                 double const * restrict HRR_INT__d_s_s_d = INT__d_s_s_d + abcd * 36;
487                 double const * restrict HRR_INT__d_s_s_f = INT__d_s_s_f + abcd * 60;
488                 double * restrict HRR_INT__d_s_p_d = INT__d_s_p_d + real_abcd * 108;
489 
490                 // form INT__d_s_p_d
491                 for(ibra = 0; ibra < 6; ++ibra)
492                 {
493                     HRR_INT__d_s_p_d[ibra * 18 + 0] = HRR_INT__d_s_s_f[ibra * 10 + 0] - ( hCD[0] * HRR_INT__d_s_s_d[ibra * 6 + 0] );
494 
495                     HRR_INT__d_s_p_d[ibra * 18 + 1] = HRR_INT__d_s_s_f[ibra * 10 + 1] - ( hCD[0] * HRR_INT__d_s_s_d[ibra * 6 + 1] );
496 
497                     HRR_INT__d_s_p_d[ibra * 18 + 2] = HRR_INT__d_s_s_f[ibra * 10 + 2] - ( hCD[0] * HRR_INT__d_s_s_d[ibra * 6 + 2] );
498 
499                     HRR_INT__d_s_p_d[ibra * 18 + 3] = HRR_INT__d_s_s_f[ibra * 10 + 3] - ( hCD[0] * HRR_INT__d_s_s_d[ibra * 6 + 3] );
500 
501                     HRR_INT__d_s_p_d[ibra * 18 + 4] = HRR_INT__d_s_s_f[ibra * 10 + 4] - ( hCD[0] * HRR_INT__d_s_s_d[ibra * 6 + 4] );
502 
503                     HRR_INT__d_s_p_d[ibra * 18 + 5] = HRR_INT__d_s_s_f[ibra * 10 + 5] - ( hCD[0] * HRR_INT__d_s_s_d[ibra * 6 + 5] );
504 
505                     HRR_INT__d_s_p_d[ibra * 18 + 6] = HRR_INT__d_s_s_f[ibra * 10 + 1] - ( hCD[1] * HRR_INT__d_s_s_d[ibra * 6 + 0] );
506 
507                     HRR_INT__d_s_p_d[ibra * 18 + 7] = HRR_INT__d_s_s_f[ibra * 10 + 3] - ( hCD[1] * HRR_INT__d_s_s_d[ibra * 6 + 1] );
508 
509                     HRR_INT__d_s_p_d[ibra * 18 + 8] = HRR_INT__d_s_s_f[ibra * 10 + 4] - ( hCD[1] * HRR_INT__d_s_s_d[ibra * 6 + 2] );
510 
511                     HRR_INT__d_s_p_d[ibra * 18 + 9] = HRR_INT__d_s_s_f[ibra * 10 + 6] - ( hCD[1] * HRR_INT__d_s_s_d[ibra * 6 + 3] );
512 
513                     HRR_INT__d_s_p_d[ibra * 18 + 10] = HRR_INT__d_s_s_f[ibra * 10 + 7] - ( hCD[1] * HRR_INT__d_s_s_d[ibra * 6 + 4] );
514 
515                     HRR_INT__d_s_p_d[ibra * 18 + 11] = HRR_INT__d_s_s_f[ibra * 10 + 8] - ( hCD[1] * HRR_INT__d_s_s_d[ibra * 6 + 5] );
516 
517                     HRR_INT__d_s_p_d[ibra * 18 + 12] = HRR_INT__d_s_s_f[ibra * 10 + 2] - ( hCD[2] * HRR_INT__d_s_s_d[ibra * 6 + 0] );
518 
519                     HRR_INT__d_s_p_d[ibra * 18 + 13] = HRR_INT__d_s_s_f[ibra * 10 + 4] - ( hCD[2] * HRR_INT__d_s_s_d[ibra * 6 + 1] );
520 
521                     HRR_INT__d_s_p_d[ibra * 18 + 14] = HRR_INT__d_s_s_f[ibra * 10 + 5] - ( hCD[2] * HRR_INT__d_s_s_d[ibra * 6 + 2] );
522 
523                     HRR_INT__d_s_p_d[ibra * 18 + 15] = HRR_INT__d_s_s_f[ibra * 10 + 7] - ( hCD[2] * HRR_INT__d_s_s_d[ibra * 6 + 3] );
524 
525                     HRR_INT__d_s_p_d[ibra * 18 + 16] = HRR_INT__d_s_s_f[ibra * 10 + 8] - ( hCD[2] * HRR_INT__d_s_s_d[ibra * 6 + 4] );
526 
527                     HRR_INT__d_s_p_d[ibra * 18 + 17] = HRR_INT__d_s_s_f[ibra * 10 + 9] - ( hCD[2] * HRR_INT__d_s_s_d[ibra * 6 + 5] );
528 
529                 }
530 
531 
532             }  // close HRR loop
533 
534 
535         }   // close loop cdbatch
536 
537         istart = iend;
538     }  // close loop over ab
539 
540     return P.nshell12_clip * Q.nshell12_clip;
541 }
542 
543