1 #include "simint/boys/boys.h"
2 #include "simint/ostei/gen/ostei_generated.h"
3 #include "simint/vectorization/vectorization.h"
4 #include <math.h>
5 #include <string.h>
6 
7 
ostei_f_f_p_s(struct simint_multi_shellpair const P,struct simint_multi_shellpair const Q,double screen_tol,double * const restrict work,double * const restrict INT__f_f_p_s)8 int ostei_f_f_p_s(struct simint_multi_shellpair const P,
9                   struct simint_multi_shellpair const Q,
10                   double screen_tol,
11                   double * const restrict work,
12                   double * const restrict INT__f_f_p_s)
13 {
14 
15     SIMINT_ASSUME_ALIGN_DBL(work);
16     SIMINT_ASSUME_ALIGN_DBL(INT__f_f_p_s);
17     int ab, cd, abcd;
18     int istart, jstart;
19     int iprimcd, nprim_icd, icd;
20     const int check_screen = (screen_tol > 0.0);
21     int i, j;
22     int n;
23     int not_screened;
24     int real_abcd;
25     int iket;
26 
27     // partition workspace
28     double * const INT__f_s_p_s = work + (SIMINT_NSHELL_SIMD * 0);
29     double * const INT__g_s_p_s = work + (SIMINT_NSHELL_SIMD * 30);
30     double * const INT__h_s_p_s = work + (SIMINT_NSHELL_SIMD * 75);
31     double * const INT__i_s_p_s = work + (SIMINT_NSHELL_SIMD * 138);
32     SIMINT_DBLTYPE * const primwork = (SIMINT_DBLTYPE *)(work + SIMINT_NSHELL_SIMD*222);
33     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_s_s = primwork + 0;
34     SIMINT_DBLTYPE * const restrict PRIM_INT__p_s_s_s = primwork + 8;
35     SIMINT_DBLTYPE * const restrict PRIM_INT__d_s_s_s = primwork + 29;
36     SIMINT_DBLTYPE * const restrict PRIM_INT__f_s_s_s = primwork + 65;
37     SIMINT_DBLTYPE * const restrict PRIM_INT__f_s_p_s = primwork + 115;
38     SIMINT_DBLTYPE * const restrict PRIM_INT__g_s_s_s = primwork + 145;
39     SIMINT_DBLTYPE * const restrict PRIM_INT__g_s_p_s = primwork + 205;
40     SIMINT_DBLTYPE * const restrict PRIM_INT__h_s_s_s = primwork + 250;
41     SIMINT_DBLTYPE * const restrict PRIM_INT__h_s_p_s = primwork + 313;
42     SIMINT_DBLTYPE * const restrict PRIM_INT__i_s_s_s = primwork + 376;
43     SIMINT_DBLTYPE * const restrict PRIM_INT__i_s_p_s = primwork + 432;
44     double * const hrrwork = (double *)(primwork + 516);
45     double * const HRR_INT__f_p_p_s = hrrwork + 0;
46     double * const HRR_INT__f_d_p_s = hrrwork + 90;
47     double * const HRR_INT__g_p_p_s = hrrwork + 270;
48     double * const HRR_INT__g_d_p_s = hrrwork + 405;
49     double * const HRR_INT__h_p_p_s = hrrwork + 675;
50 
51 
52     // Create constants
53     const SIMINT_DBLTYPE const_1 = SIMINT_DBLSET1(1);
54     const SIMINT_DBLTYPE const_2 = SIMINT_DBLSET1(2);
55     const SIMINT_DBLTYPE const_3 = SIMINT_DBLSET1(3);
56     const SIMINT_DBLTYPE const_4 = SIMINT_DBLSET1(4);
57     const SIMINT_DBLTYPE const_5 = SIMINT_DBLSET1(5);
58     const SIMINT_DBLTYPE const_6 = SIMINT_DBLSET1(6);
59     const SIMINT_DBLTYPE one_half = SIMINT_DBLSET1(0.5);
60 
61 
62     ////////////////////////////////////////
63     // Loop over shells and primitives
64     ////////////////////////////////////////
65 
66     real_abcd = 0;
67     istart = 0;
68     for(ab = 0; ab < P.nshell12_clip; ++ab)
69     {
70         const int iend = istart + P.nprim12[ab];
71 
72         cd = 0;
73         jstart = 0;
74 
75         for(cd = 0; cd < Q.nshell12_clip; cd += SIMINT_NSHELL_SIMD)
76         {
77             const int nshellbatch = ((cd + SIMINT_NSHELL_SIMD) > Q.nshell12_clip) ? Q.nshell12_clip - cd : SIMINT_NSHELL_SIMD;
78             int jend = jstart;
79             for(i = 0; i < nshellbatch; i++)
80                 jend += Q.nprim12[cd+i];
81 
82             // Clear the beginning of the workspace (where we are accumulating integrals)
83             memset(work, 0, SIMINT_NSHELL_SIMD * 222 * sizeof(double));
84             abcd = 0;
85 
86 
87             for(i = istart; i < iend; ++i)
88             {
89                 SIMINT_DBLTYPE bra_screen_max;  // only used if check_screen
90 
91                 if(check_screen)
92                 {
93                     // Skip this whole thing if always insignificant
94                     if((P.screen[i] * Q.screen_max) < screen_tol)
95                         continue;
96                     bra_screen_max = SIMINT_DBLSET1(P.screen[i]);
97                 }
98 
99                 icd = 0;
100                 iprimcd = 0;
101                 nprim_icd = Q.nprim12[cd];
102                 double * restrict PRIM_PTR_INT__f_s_p_s = INT__f_s_p_s + abcd * 30;
103                 double * restrict PRIM_PTR_INT__g_s_p_s = INT__g_s_p_s + abcd * 45;
104                 double * restrict PRIM_PTR_INT__h_s_p_s = INT__h_s_p_s + abcd * 63;
105                 double * restrict PRIM_PTR_INT__i_s_p_s = INT__i_s_p_s + abcd * 84;
106 
107 
108 
109                 // Load these one per loop over i
110                 const SIMINT_DBLTYPE P_alpha = SIMINT_DBLSET1(P.alpha[i]);
111                 const SIMINT_DBLTYPE P_prefac = SIMINT_DBLSET1(P.prefac[i]);
112                 const SIMINT_DBLTYPE Pxyz[3] = { SIMINT_DBLSET1(P.x[i]), SIMINT_DBLSET1(P.y[i]), SIMINT_DBLSET1(P.z[i]) };
113 
114                 const SIMINT_DBLTYPE P_PA[3] = { SIMINT_DBLSET1(P.PA_x[i]), SIMINT_DBLSET1(P.PA_y[i]), SIMINT_DBLSET1(P.PA_z[i]) };
115 
116                 for(j = jstart; j < jend; j += SIMINT_SIMD_LEN)
117                 {
118                     // calculate the shell offsets
119                     // these are the offset from the shell pointed to by cd
120                     // for each element
121                     int shelloffsets[SIMINT_SIMD_LEN] = {0};
122                     int lastoffset = 0;
123                     const int nlane = ( ((j + SIMINT_SIMD_LEN) < jend) ? SIMINT_SIMD_LEN : (jend - j));
124 
125                     if((iprimcd + SIMINT_SIMD_LEN) >= nprim_icd)
126                     {
127                         // Handle if the first element of the vector is a new shell
128                         if(iprimcd >= nprim_icd && ((icd+1) < nshellbatch))
129                         {
130                             nprim_icd += Q.nprim12[cd + (++icd)];
131                             PRIM_PTR_INT__f_s_p_s += 30;
132                             PRIM_PTR_INT__g_s_p_s += 45;
133                             PRIM_PTR_INT__h_s_p_s += 63;
134                             PRIM_PTR_INT__i_s_p_s += 84;
135                         }
136                         iprimcd++;
137                         for(n = 1; n < SIMINT_SIMD_LEN; ++n)
138                         {
139                             if(iprimcd >= nprim_icd && ((icd+1) < nshellbatch))
140                             {
141                                 shelloffsets[n] = shelloffsets[n-1] + 1;
142                                 lastoffset++;
143                                 nprim_icd += Q.nprim12[cd + (++icd)];
144                             }
145                             else
146                                 shelloffsets[n] = shelloffsets[n-1];
147                             iprimcd++;
148                         }
149                     }
150                     else
151                         iprimcd += SIMINT_SIMD_LEN;
152 
153                     // Do we have to compute this vector (or has it been screened out)?
154                     // (not_screened != 0 means we have to do this vector)
155                     if(check_screen)
156                     {
157                         const double vmax = vector_max(SIMINT_MUL(bra_screen_max, SIMINT_DBLLOAD(Q.screen, j)));
158                         if(vmax < screen_tol)
159                         {
160                             PRIM_PTR_INT__f_s_p_s += lastoffset*30;
161                             PRIM_PTR_INT__g_s_p_s += lastoffset*45;
162                             PRIM_PTR_INT__h_s_p_s += lastoffset*63;
163                             PRIM_PTR_INT__i_s_p_s += lastoffset*84;
164                             continue;
165                         }
166                     }
167 
168                     const SIMINT_DBLTYPE Q_alpha = SIMINT_DBLLOAD(Q.alpha, j);
169                     const SIMINT_DBLTYPE PQalpha_mul = SIMINT_MUL(P_alpha, Q_alpha);
170                     const SIMINT_DBLTYPE PQalpha_sum = SIMINT_ADD(P_alpha, Q_alpha);
171                     const SIMINT_DBLTYPE one_over_PQalpha_sum = SIMINT_DIV(const_1, PQalpha_sum);
172 
173 
174                     /* construct R2 = (Px - Qx)**2 + (Py - Qy)**2 + (Pz -Qz)**2 */
175                     SIMINT_DBLTYPE PQ[3];
176                     PQ[0] = SIMINT_SUB(Pxyz[0], SIMINT_DBLLOAD(Q.x, j));
177                     PQ[1] = SIMINT_SUB(Pxyz[1], SIMINT_DBLLOAD(Q.y, j));
178                     PQ[2] = SIMINT_SUB(Pxyz[2], SIMINT_DBLLOAD(Q.z, j));
179                     SIMINT_DBLTYPE R2 = SIMINT_MUL(PQ[0], PQ[0]);
180                     R2 = SIMINT_FMADD(PQ[1], PQ[1], R2);
181                     R2 = SIMINT_FMADD(PQ[2], PQ[2], R2);
182 
183                     const SIMINT_DBLTYPE alpha = SIMINT_MUL(PQalpha_mul, one_over_PQalpha_sum); // alpha from MEST
184                     const SIMINT_DBLTYPE one_over_p = SIMINT_DIV(const_1, P_alpha);
185                     const SIMINT_DBLTYPE one_over_q = SIMINT_DIV(const_1, Q_alpha);
186                     const SIMINT_DBLTYPE one_over_2p = SIMINT_MUL(one_half, one_over_p);
187                     const SIMINT_DBLTYPE one_over_2q = SIMINT_MUL(one_half, one_over_q);
188                     const SIMINT_DBLTYPE one_over_2pq = SIMINT_MUL(one_half, one_over_PQalpha_sum);
189                     const SIMINT_DBLTYPE Q_PA[3] = { SIMINT_DBLLOAD(Q.PA_x, j), SIMINT_DBLLOAD(Q.PA_y, j), SIMINT_DBLLOAD(Q.PA_z, j) };
190 
191                     // NOTE: Minus sign!
192                     const SIMINT_DBLTYPE a_over_p = SIMINT_MUL(SIMINT_NEG(alpha), one_over_p);
193                     SIMINT_DBLTYPE aop_PQ[3];
194                     aop_PQ[0] = SIMINT_MUL(a_over_p, PQ[0]);
195                     aop_PQ[1] = SIMINT_MUL(a_over_p, PQ[1]);
196                     aop_PQ[2] = SIMINT_MUL(a_over_p, PQ[2]);
197 
198                     SIMINT_DBLTYPE a_over_q = SIMINT_MUL(alpha, one_over_q);
199                     SIMINT_DBLTYPE aoq_PQ[3];
200                     aoq_PQ[0] = SIMINT_MUL(a_over_q, PQ[0]);
201                     aoq_PQ[1] = SIMINT_MUL(a_over_q, PQ[1]);
202                     aoq_PQ[2] = SIMINT_MUL(a_over_q, PQ[2]);
203                     // Put a minus sign here so we don't have to in RR routines
204                     a_over_q = SIMINT_NEG(a_over_q);
205 
206 
207                     //////////////////////////////////////////////
208                     // Fjt function section
209                     // Maximum v value: 7
210                     //////////////////////////////////////////////
211                     // The parameter to the Fjt function
212                     const SIMINT_DBLTYPE F_x = SIMINT_MUL(R2, alpha);
213 
214 
215                     const SIMINT_DBLTYPE Q_prefac = mask_load(nlane, Q.prefac + j);
216 
217 
218                     boys_F_split(PRIM_INT__s_s_s_s, F_x, 7);
219                     SIMINT_DBLTYPE prefac = SIMINT_SQRT(one_over_PQalpha_sum);
220                     prefac = SIMINT_MUL(SIMINT_MUL(P_prefac, Q_prefac), prefac);
221                     for(n = 0; n <= 7; n++)
222                         PRIM_INT__s_s_s_s[n] = SIMINT_MUL(PRIM_INT__s_s_s_s[n], prefac);
223 
224                     //////////////////////////////////////////////
225                     // Primitive integrals: Vertical recurrance
226                     //////////////////////////////////////////////
227 
228                     const SIMINT_DBLTYPE vrr_const_1_over_2p = one_over_2p;
229                     const SIMINT_DBLTYPE vrr_const_2_over_2p = SIMINT_MUL(const_2, one_over_2p);
230                     const SIMINT_DBLTYPE vrr_const_3_over_2p = SIMINT_MUL(const_3, one_over_2p);
231                     const SIMINT_DBLTYPE vrr_const_4_over_2p = SIMINT_MUL(const_4, one_over_2p);
232                     const SIMINT_DBLTYPE vrr_const_5_over_2p = SIMINT_MUL(const_5, one_over_2p);
233                     const SIMINT_DBLTYPE vrr_const_1_over_2pq = one_over_2pq;
234                     const SIMINT_DBLTYPE vrr_const_2_over_2pq = SIMINT_MUL(const_2, one_over_2pq);
235                     const SIMINT_DBLTYPE vrr_const_3_over_2pq = SIMINT_MUL(const_3, one_over_2pq);
236                     const SIMINT_DBLTYPE vrr_const_4_over_2pq = SIMINT_MUL(const_4, one_over_2pq);
237                     const SIMINT_DBLTYPE vrr_const_5_over_2pq = SIMINT_MUL(const_5, one_over_2pq);
238                     const SIMINT_DBLTYPE vrr_const_6_over_2pq = SIMINT_MUL(const_6, one_over_2pq);
239 
240 
241 
242                     // Forming PRIM_INT__p_s_s_s[7 * 3];
243                     for(n = 0; n < 7; ++n)  // loop over orders of auxiliary function
244                     {
245 
246                         PRIM_INT__p_s_s_s[n * 3 + 0] = SIMINT_MUL(P_PA[0], PRIM_INT__s_s_s_s[n * 1 + 0]);
247                         PRIM_INT__p_s_s_s[n * 3 + 0] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__p_s_s_s[n * 3 + 0]);
248 
249                         PRIM_INT__p_s_s_s[n * 3 + 1] = SIMINT_MUL(P_PA[1], PRIM_INT__s_s_s_s[n * 1 + 0]);
250                         PRIM_INT__p_s_s_s[n * 3 + 1] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__p_s_s_s[n * 3 + 1]);
251 
252                         PRIM_INT__p_s_s_s[n * 3 + 2] = SIMINT_MUL(P_PA[2], PRIM_INT__s_s_s_s[n * 1 + 0]);
253                         PRIM_INT__p_s_s_s[n * 3 + 2] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__p_s_s_s[n * 3 + 2]);
254 
255                     }
256 
257 
258 
259                     // Forming PRIM_INT__d_s_s_s[6 * 6];
260                     for(n = 0; n < 6; ++n)  // loop over orders of auxiliary function
261                     {
262 
263                         PRIM_INT__d_s_s_s[n * 6 + 0] = SIMINT_MUL(P_PA[0], PRIM_INT__p_s_s_s[n * 3 + 0]);
264                         PRIM_INT__d_s_s_s[n * 6 + 0] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__p_s_s_s[(n+1) * 3 + 0], PRIM_INT__d_s_s_s[n * 6 + 0]);
265                         PRIM_INT__d_s_s_s[n * 6 + 0] = SIMINT_FMADD( vrr_const_1_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__d_s_s_s[n * 6 + 0]);
266 
267                         PRIM_INT__d_s_s_s[n * 6 + 1] = SIMINT_MUL(P_PA[1], PRIM_INT__p_s_s_s[n * 3 + 0]);
268                         PRIM_INT__d_s_s_s[n * 6 + 1] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__p_s_s_s[(n+1) * 3 + 0], PRIM_INT__d_s_s_s[n * 6 + 1]);
269 
270                         PRIM_INT__d_s_s_s[n * 6 + 2] = SIMINT_MUL(P_PA[2], PRIM_INT__p_s_s_s[n * 3 + 0]);
271                         PRIM_INT__d_s_s_s[n * 6 + 2] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__p_s_s_s[(n+1) * 3 + 0], PRIM_INT__d_s_s_s[n * 6 + 2]);
272 
273                         PRIM_INT__d_s_s_s[n * 6 + 3] = SIMINT_MUL(P_PA[1], PRIM_INT__p_s_s_s[n * 3 + 1]);
274                         PRIM_INT__d_s_s_s[n * 6 + 3] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__p_s_s_s[(n+1) * 3 + 1], PRIM_INT__d_s_s_s[n * 6 + 3]);
275                         PRIM_INT__d_s_s_s[n * 6 + 3] = SIMINT_FMADD( vrr_const_1_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__d_s_s_s[n * 6 + 3]);
276 
277                         PRIM_INT__d_s_s_s[n * 6 + 4] = SIMINT_MUL(P_PA[2], PRIM_INT__p_s_s_s[n * 3 + 1]);
278                         PRIM_INT__d_s_s_s[n * 6 + 4] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__p_s_s_s[(n+1) * 3 + 1], PRIM_INT__d_s_s_s[n * 6 + 4]);
279 
280                         PRIM_INT__d_s_s_s[n * 6 + 5] = SIMINT_MUL(P_PA[2], PRIM_INT__p_s_s_s[n * 3 + 2]);
281                         PRIM_INT__d_s_s_s[n * 6 + 5] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__p_s_s_s[(n+1) * 3 + 2], PRIM_INT__d_s_s_s[n * 6 + 5]);
282                         PRIM_INT__d_s_s_s[n * 6 + 5] = SIMINT_FMADD( vrr_const_1_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__d_s_s_s[n * 6 + 5]);
283 
284                     }
285 
286 
287 
288                     // Forming PRIM_INT__f_s_s_s[5 * 10];
289                     for(n = 0; n < 5; ++n)  // loop over orders of auxiliary function
290                     {
291 
292                         PRIM_INT__f_s_s_s[n * 10 + 0] = SIMINT_MUL(P_PA[0], PRIM_INT__d_s_s_s[n * 6 + 0]);
293                         PRIM_INT__f_s_s_s[n * 10 + 0] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__d_s_s_s[(n+1) * 6 + 0], PRIM_INT__f_s_s_s[n * 10 + 0]);
294                         PRIM_INT__f_s_s_s[n * 10 + 0] = SIMINT_FMADD( vrr_const_2_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__p_s_s_s[(n+1) * 3 + 0], PRIM_INT__p_s_s_s[n * 3 + 0]), PRIM_INT__f_s_s_s[n * 10 + 0]);
295 
296                         PRIM_INT__f_s_s_s[n * 10 + 1] = SIMINT_MUL(P_PA[1], PRIM_INT__d_s_s_s[n * 6 + 0]);
297                         PRIM_INT__f_s_s_s[n * 10 + 1] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__d_s_s_s[(n+1) * 6 + 0], PRIM_INT__f_s_s_s[n * 10 + 1]);
298 
299                         PRIM_INT__f_s_s_s[n * 10 + 2] = SIMINT_MUL(P_PA[2], PRIM_INT__d_s_s_s[n * 6 + 0]);
300                         PRIM_INT__f_s_s_s[n * 10 + 2] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__d_s_s_s[(n+1) * 6 + 0], PRIM_INT__f_s_s_s[n * 10 + 2]);
301 
302                         PRIM_INT__f_s_s_s[n * 10 + 3] = SIMINT_MUL(P_PA[0], PRIM_INT__d_s_s_s[n * 6 + 3]);
303                         PRIM_INT__f_s_s_s[n * 10 + 3] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__d_s_s_s[(n+1) * 6 + 3], PRIM_INT__f_s_s_s[n * 10 + 3]);
304 
305                         PRIM_INT__f_s_s_s[n * 10 + 4] = SIMINT_MUL(P_PA[2], PRIM_INT__d_s_s_s[n * 6 + 1]);
306                         PRIM_INT__f_s_s_s[n * 10 + 4] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__d_s_s_s[(n+1) * 6 + 1], PRIM_INT__f_s_s_s[n * 10 + 4]);
307 
308                         PRIM_INT__f_s_s_s[n * 10 + 5] = SIMINT_MUL(P_PA[0], PRIM_INT__d_s_s_s[n * 6 + 5]);
309                         PRIM_INT__f_s_s_s[n * 10 + 5] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__d_s_s_s[(n+1) * 6 + 5], PRIM_INT__f_s_s_s[n * 10 + 5]);
310 
311                         PRIM_INT__f_s_s_s[n * 10 + 6] = SIMINT_MUL(P_PA[1], PRIM_INT__d_s_s_s[n * 6 + 3]);
312                         PRIM_INT__f_s_s_s[n * 10 + 6] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__d_s_s_s[(n+1) * 6 + 3], PRIM_INT__f_s_s_s[n * 10 + 6]);
313                         PRIM_INT__f_s_s_s[n * 10 + 6] = SIMINT_FMADD( vrr_const_2_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__p_s_s_s[(n+1) * 3 + 1], PRIM_INT__p_s_s_s[n * 3 + 1]), PRIM_INT__f_s_s_s[n * 10 + 6]);
314 
315                         PRIM_INT__f_s_s_s[n * 10 + 7] = SIMINT_MUL(P_PA[2], PRIM_INT__d_s_s_s[n * 6 + 3]);
316                         PRIM_INT__f_s_s_s[n * 10 + 7] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__d_s_s_s[(n+1) * 6 + 3], PRIM_INT__f_s_s_s[n * 10 + 7]);
317 
318                         PRIM_INT__f_s_s_s[n * 10 + 8] = SIMINT_MUL(P_PA[1], PRIM_INT__d_s_s_s[n * 6 + 5]);
319                         PRIM_INT__f_s_s_s[n * 10 + 8] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__d_s_s_s[(n+1) * 6 + 5], PRIM_INT__f_s_s_s[n * 10 + 8]);
320 
321                         PRIM_INT__f_s_s_s[n * 10 + 9] = SIMINT_MUL(P_PA[2], PRIM_INT__d_s_s_s[n * 6 + 5]);
322                         PRIM_INT__f_s_s_s[n * 10 + 9] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__d_s_s_s[(n+1) * 6 + 5], PRIM_INT__f_s_s_s[n * 10 + 9]);
323                         PRIM_INT__f_s_s_s[n * 10 + 9] = SIMINT_FMADD( vrr_const_2_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__p_s_s_s[(n+1) * 3 + 2], PRIM_INT__p_s_s_s[n * 3 + 2]), PRIM_INT__f_s_s_s[n * 10 + 9]);
324 
325                     }
326 
327 
328                     VRR_K_f_s_p_s(
329                             PRIM_INT__f_s_p_s,
330                             PRIM_INT__f_s_s_s,
331                             PRIM_INT__d_s_s_s,
332                             Q_PA,
333                             aoq_PQ,
334                             one_over_2pq,
335                             1);
336 
337 
338                     VRR_I_g_s_s_s(
339                             PRIM_INT__g_s_s_s,
340                             PRIM_INT__f_s_s_s,
341                             PRIM_INT__d_s_s_s,
342                             P_PA,
343                             a_over_p,
344                             aop_PQ,
345                             one_over_2p,
346                             4);
347 
348 
349                     VRR_K_g_s_p_s(
350                             PRIM_INT__g_s_p_s,
351                             PRIM_INT__g_s_s_s,
352                             PRIM_INT__f_s_s_s,
353                             Q_PA,
354                             aoq_PQ,
355                             one_over_2pq,
356                             1);
357 
358 
359                     VRR_I_h_s_s_s(
360                             PRIM_INT__h_s_s_s,
361                             PRIM_INT__g_s_s_s,
362                             PRIM_INT__f_s_s_s,
363                             P_PA,
364                             a_over_p,
365                             aop_PQ,
366                             one_over_2p,
367                             3);
368 
369 
370                     ostei_general_vrr_K(5, 0, 1, 0, 1,
371                             one_over_2q, a_over_q, one_over_2pq, aoq_PQ, Q_PA,
372                             PRIM_INT__h_s_s_s, NULL, NULL, PRIM_INT__g_s_s_s, NULL, PRIM_INT__h_s_p_s);
373 
374 
375                     ostei_general_vrr1_I(6, 2,
376                             one_over_2p, a_over_p, aop_PQ, P_PA,
377                             PRIM_INT__h_s_s_s, PRIM_INT__g_s_s_s, PRIM_INT__i_s_s_s);
378 
379 
380                     ostei_general_vrr_K(6, 0, 1, 0, 1,
381                             one_over_2q, a_over_q, one_over_2pq, aoq_PQ, Q_PA,
382                             PRIM_INT__i_s_s_s, NULL, NULL, PRIM_INT__h_s_s_s, NULL, PRIM_INT__i_s_p_s);
383 
384 
385 
386 
387                     ////////////////////////////////////
388                     // Accumulate contracted integrals
389                     ////////////////////////////////////
390                     if(lastoffset == 0)
391                     {
392                         contract_all(30, PRIM_INT__f_s_p_s, PRIM_PTR_INT__f_s_p_s);
393                         contract_all(45, PRIM_INT__g_s_p_s, PRIM_PTR_INT__g_s_p_s);
394                         contract_all(63, PRIM_INT__h_s_p_s, PRIM_PTR_INT__h_s_p_s);
395                         contract_all(84, PRIM_INT__i_s_p_s, PRIM_PTR_INT__i_s_p_s);
396                     }
397                     else
398                     {
399                         contract(30, shelloffsets, PRIM_INT__f_s_p_s, PRIM_PTR_INT__f_s_p_s);
400                         contract(45, shelloffsets, PRIM_INT__g_s_p_s, PRIM_PTR_INT__g_s_p_s);
401                         contract(63, shelloffsets, PRIM_INT__h_s_p_s, PRIM_PTR_INT__h_s_p_s);
402                         contract(84, shelloffsets, PRIM_INT__i_s_p_s, PRIM_PTR_INT__i_s_p_s);
403                         PRIM_PTR_INT__f_s_p_s += lastoffset*30;
404                         PRIM_PTR_INT__g_s_p_s += lastoffset*45;
405                         PRIM_PTR_INT__h_s_p_s += lastoffset*63;
406                         PRIM_PTR_INT__i_s_p_s += lastoffset*84;
407                     }
408 
409                 }  // close loop over j
410             }  // close loop over i
411 
412             //Advance to the next batch
413             jstart = SIMINT_SIMD_ROUND(jend);
414 
415             //////////////////////////////////////////////
416             // Contracted integrals: Horizontal recurrance
417             //////////////////////////////////////////////
418 
419 
420             const double hAB[3] = { P.AB_x[ab], P.AB_y[ab], P.AB_z[ab] };
421 
422 
423             for(abcd = 0; abcd < nshellbatch; ++abcd, ++real_abcd)
424             {
425 
426                 // set up HRR pointers
427                 double const * restrict HRR_INT__f_s_p_s = INT__f_s_p_s + abcd * 30;
428                 double const * restrict HRR_INT__g_s_p_s = INT__g_s_p_s + abcd * 45;
429                 double const * restrict HRR_INT__h_s_p_s = INT__h_s_p_s + abcd * 63;
430                 double const * restrict HRR_INT__i_s_p_s = INT__i_s_p_s + abcd * 84;
431                 double * restrict HRR_INT__f_f_p_s = INT__f_f_p_s + real_abcd * 300;
432 
433                 // form INT__f_p_p_s
434                 HRR_J_f_p(
435                     HRR_INT__f_p_p_s,
436                     HRR_INT__f_s_p_s,
437                     HRR_INT__g_s_p_s,
438                     hAB, 3);
439 
440                 // form INT__g_p_p_s
441                 HRR_J_g_p(
442                     HRR_INT__g_p_p_s,
443                     HRR_INT__g_s_p_s,
444                     HRR_INT__h_s_p_s,
445                     hAB, 3);
446 
447                 // form INT__h_p_p_s
448                 ostei_general_hrr_J(5, 1, 1, 0, hAB, HRR_INT__i_s_p_s, HRR_INT__h_s_p_s, HRR_INT__h_p_p_s);
449 
450                 // form INT__f_d_p_s
451                 HRR_J_f_d(
452                     HRR_INT__f_d_p_s,
453                     HRR_INT__f_p_p_s,
454                     HRR_INT__g_p_p_s,
455                     hAB, 3);
456 
457                 // form INT__g_d_p_s
458                 ostei_general_hrr_J(4, 2, 1, 0, hAB, HRR_INT__h_p_p_s, HRR_INT__g_p_p_s, HRR_INT__g_d_p_s);
459 
460                 // form INT__f_f_p_s
461                 ostei_general_hrr_J(3, 3, 1, 0, hAB, HRR_INT__g_d_p_s, HRR_INT__f_d_p_s, HRR_INT__f_f_p_s);
462 
463 
464             }  // close HRR loop
465 
466 
467         }   // close loop cdbatch
468 
469         istart = iend;
470     }  // close loop over ab
471 
472     return P.nshell12_clip * Q.nshell12_clip;
473 }
474 
475