1 #include "simint/boys/boys.h"
2 #include "simint/ostei/gen/ostei_generated.h"
3 #include "simint/vectorization/vectorization.h"
4 #include <math.h>
5 #include <string.h>
6 
7 
ostei_f_s_s_s(struct simint_multi_shellpair const P,struct simint_multi_shellpair const Q,double screen_tol,double * const restrict work,double * const restrict INT__f_s_s_s)8 int ostei_f_s_s_s(struct simint_multi_shellpair const P,
9                   struct simint_multi_shellpair const Q,
10                   double screen_tol,
11                   double * const restrict work,
12                   double * const restrict INT__f_s_s_s)
13 {
14 
15     SIMINT_ASSUME_ALIGN_DBL(work);
16     SIMINT_ASSUME_ALIGN_DBL(INT__f_s_s_s);
17     memset(INT__f_s_s_s, 0, P.nshell12_clip * Q.nshell12_clip * 10 * sizeof(double));
18 
19     int ab, cd, abcd;
20     int istart, jstart;
21     int iprimcd, nprim_icd, icd;
22     const int check_screen = (screen_tol > 0.0);
23     int i, j;
24     int n;
25     int not_screened;
26 
27     // partition workspace
28     SIMINT_DBLTYPE * const primwork = (SIMINT_DBLTYPE *)(work + SIMINT_NSHELL_SIMD*0);
29     SIMINT_DBLTYPE * const restrict PRIM_INT__s_s_s_s = primwork + 0;
30     SIMINT_DBLTYPE * const restrict PRIM_INT__p_s_s_s = primwork + 4;
31     SIMINT_DBLTYPE * const restrict PRIM_INT__d_s_s_s = primwork + 13;
32     SIMINT_DBLTYPE * const restrict PRIM_INT__f_s_s_s = primwork + 25;
33     double * const hrrwork = (double *)(primwork + 35);
34 
35 
36     // Create constants
37     const SIMINT_DBLTYPE const_1 = SIMINT_DBLSET1(1);
38     const SIMINT_DBLTYPE const_2 = SIMINT_DBLSET1(2);
39     const SIMINT_DBLTYPE one_half = SIMINT_DBLSET1(0.5);
40 
41 
42     ////////////////////////////////////////
43     // Loop over shells and primitives
44     ////////////////////////////////////////
45 
46     abcd = 0;
47     istart = 0;
48     for(ab = 0; ab < P.nshell12_clip; ++ab)
49     {
50         const int iend = istart + P.nprim12[ab];
51 
52         cd = 0;
53         jstart = 0;
54 
55         for(cd = 0; cd < Q.nshell12_clip; cd += SIMINT_NSHELL_SIMD)
56         {
57             const int nshellbatch = ((cd + SIMINT_NSHELL_SIMD) > Q.nshell12_clip) ? Q.nshell12_clip - cd : SIMINT_NSHELL_SIMD;
58             int jend = jstart;
59             for(i = 0; i < nshellbatch; i++)
60                 jend += Q.nprim12[cd+i];
61 
62 
63             for(i = istart; i < iend; ++i)
64             {
65                 SIMINT_DBLTYPE bra_screen_max;  // only used if check_screen
66 
67                 if(check_screen)
68                 {
69                     // Skip this whole thing if always insignificant
70                     if((P.screen[i] * Q.screen_max) < screen_tol)
71                         continue;
72                     bra_screen_max = SIMINT_DBLSET1(P.screen[i]);
73                 }
74 
75                 icd = 0;
76                 iprimcd = 0;
77                 nprim_icd = Q.nprim12[cd];
78                 double * restrict PRIM_PTR_INT__f_s_s_s = INT__f_s_s_s + abcd * 10;
79 
80 
81 
82                 // Load these one per loop over i
83                 const SIMINT_DBLTYPE P_alpha = SIMINT_DBLSET1(P.alpha[i]);
84                 const SIMINT_DBLTYPE P_prefac = SIMINT_DBLSET1(P.prefac[i]);
85                 const SIMINT_DBLTYPE Pxyz[3] = { SIMINT_DBLSET1(P.x[i]), SIMINT_DBLSET1(P.y[i]), SIMINT_DBLSET1(P.z[i]) };
86 
87                 const SIMINT_DBLTYPE P_PA[3] = { SIMINT_DBLSET1(P.PA_x[i]), SIMINT_DBLSET1(P.PA_y[i]), SIMINT_DBLSET1(P.PA_z[i]) };
88 
89                 for(j = jstart; j < jend; j += SIMINT_SIMD_LEN)
90                 {
91                     // calculate the shell offsets
92                     // these are the offset from the shell pointed to by cd
93                     // for each element
94                     int shelloffsets[SIMINT_SIMD_LEN] = {0};
95                     int lastoffset = 0;
96                     const int nlane = ( ((j + SIMINT_SIMD_LEN) < jend) ? SIMINT_SIMD_LEN : (jend - j));
97 
98                     if((iprimcd + SIMINT_SIMD_LEN) >= nprim_icd)
99                     {
100                         // Handle if the first element of the vector is a new shell
101                         if(iprimcd >= nprim_icd && ((icd+1) < nshellbatch))
102                         {
103                             nprim_icd += Q.nprim12[cd + (++icd)];
104                             PRIM_PTR_INT__f_s_s_s += 10;
105                         }
106                         iprimcd++;
107                         for(n = 1; n < SIMINT_SIMD_LEN; ++n)
108                         {
109                             if(iprimcd >= nprim_icd && ((icd+1) < nshellbatch))
110                             {
111                                 shelloffsets[n] = shelloffsets[n-1] + 1;
112                                 lastoffset++;
113                                 nprim_icd += Q.nprim12[cd + (++icd)];
114                             }
115                             else
116                                 shelloffsets[n] = shelloffsets[n-1];
117                             iprimcd++;
118                         }
119                     }
120                     else
121                         iprimcd += SIMINT_SIMD_LEN;
122 
123                     // Do we have to compute this vector (or has it been screened out)?
124                     // (not_screened != 0 means we have to do this vector)
125                     if(check_screen)
126                     {
127                         const double vmax = vector_max(SIMINT_MUL(bra_screen_max, SIMINT_DBLLOAD(Q.screen, j)));
128                         if(vmax < screen_tol)
129                         {
130                             PRIM_PTR_INT__f_s_s_s += lastoffset*10;
131                             continue;
132                         }
133                     }
134 
135                     const SIMINT_DBLTYPE Q_alpha = SIMINT_DBLLOAD(Q.alpha, j);
136                     const SIMINT_DBLTYPE PQalpha_mul = SIMINT_MUL(P_alpha, Q_alpha);
137                     const SIMINT_DBLTYPE PQalpha_sum = SIMINT_ADD(P_alpha, Q_alpha);
138                     const SIMINT_DBLTYPE one_over_PQalpha_sum = SIMINT_DIV(const_1, PQalpha_sum);
139 
140 
141                     /* construct R2 = (Px - Qx)**2 + (Py - Qy)**2 + (Pz -Qz)**2 */
142                     SIMINT_DBLTYPE PQ[3];
143                     PQ[0] = SIMINT_SUB(Pxyz[0], SIMINT_DBLLOAD(Q.x, j));
144                     PQ[1] = SIMINT_SUB(Pxyz[1], SIMINT_DBLLOAD(Q.y, j));
145                     PQ[2] = SIMINT_SUB(Pxyz[2], SIMINT_DBLLOAD(Q.z, j));
146                     SIMINT_DBLTYPE R2 = SIMINT_MUL(PQ[0], PQ[0]);
147                     R2 = SIMINT_FMADD(PQ[1], PQ[1], R2);
148                     R2 = SIMINT_FMADD(PQ[2], PQ[2], R2);
149 
150                     const SIMINT_DBLTYPE alpha = SIMINT_MUL(PQalpha_mul, one_over_PQalpha_sum); // alpha from MEST
151                     const SIMINT_DBLTYPE one_over_p = SIMINT_DIV(const_1, P_alpha);
152                     const SIMINT_DBLTYPE one_over_q = SIMINT_DIV(const_1, Q_alpha);
153                     const SIMINT_DBLTYPE one_over_2p = SIMINT_MUL(one_half, one_over_p);
154                     const SIMINT_DBLTYPE one_over_2q = SIMINT_MUL(one_half, one_over_q);
155                     const SIMINT_DBLTYPE one_over_2pq = SIMINT_MUL(one_half, one_over_PQalpha_sum);
156 
157                     // NOTE: Minus sign!
158                     const SIMINT_DBLTYPE a_over_p = SIMINT_MUL(SIMINT_NEG(alpha), one_over_p);
159                     SIMINT_DBLTYPE aop_PQ[3];
160                     aop_PQ[0] = SIMINT_MUL(a_over_p, PQ[0]);
161                     aop_PQ[1] = SIMINT_MUL(a_over_p, PQ[1]);
162                     aop_PQ[2] = SIMINT_MUL(a_over_p, PQ[2]);
163 
164 
165                     //////////////////////////////////////////////
166                     // Fjt function section
167                     // Maximum v value: 3
168                     //////////////////////////////////////////////
169                     // The parameter to the Fjt function
170                     const SIMINT_DBLTYPE F_x = SIMINT_MUL(R2, alpha);
171 
172 
173                     const SIMINT_DBLTYPE Q_prefac = mask_load(nlane, Q.prefac + j);
174 
175 
176                     boys_F_split(PRIM_INT__s_s_s_s, F_x, 3);
177                     SIMINT_DBLTYPE prefac = SIMINT_SQRT(one_over_PQalpha_sum);
178                     prefac = SIMINT_MUL(SIMINT_MUL(P_prefac, Q_prefac), prefac);
179                     for(n = 0; n <= 3; n++)
180                         PRIM_INT__s_s_s_s[n] = SIMINT_MUL(PRIM_INT__s_s_s_s[n], prefac);
181 
182                     //////////////////////////////////////////////
183                     // Primitive integrals: Vertical recurrance
184                     //////////////////////////////////////////////
185 
186                     const SIMINT_DBLTYPE vrr_const_1_over_2p = one_over_2p;
187                     const SIMINT_DBLTYPE vrr_const_2_over_2p = SIMINT_MUL(const_2, one_over_2p);
188 
189 
190 
191                     // Forming PRIM_INT__p_s_s_s[3 * 3];
192                     for(n = 0; n < 3; ++n)  // loop over orders of auxiliary function
193                     {
194 
195                         PRIM_INT__p_s_s_s[n * 3 + 0] = SIMINT_MUL(P_PA[0], PRIM_INT__s_s_s_s[n * 1 + 0]);
196                         PRIM_INT__p_s_s_s[n * 3 + 0] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__p_s_s_s[n * 3 + 0]);
197 
198                         PRIM_INT__p_s_s_s[n * 3 + 1] = SIMINT_MUL(P_PA[1], PRIM_INT__s_s_s_s[n * 1 + 0]);
199                         PRIM_INT__p_s_s_s[n * 3 + 1] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__p_s_s_s[n * 3 + 1]);
200 
201                         PRIM_INT__p_s_s_s[n * 3 + 2] = SIMINT_MUL(P_PA[2], PRIM_INT__s_s_s_s[n * 1 + 0]);
202                         PRIM_INT__p_s_s_s[n * 3 + 2] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__p_s_s_s[n * 3 + 2]);
203 
204                     }
205 
206 
207 
208                     // Forming PRIM_INT__d_s_s_s[2 * 6];
209                     for(n = 0; n < 2; ++n)  // loop over orders of auxiliary function
210                     {
211 
212                         PRIM_INT__d_s_s_s[n * 6 + 0] = SIMINT_MUL(P_PA[0], PRIM_INT__p_s_s_s[n * 3 + 0]);
213                         PRIM_INT__d_s_s_s[n * 6 + 0] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__p_s_s_s[(n+1) * 3 + 0], PRIM_INT__d_s_s_s[n * 6 + 0]);
214                         PRIM_INT__d_s_s_s[n * 6 + 0] = SIMINT_FMADD( vrr_const_1_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__d_s_s_s[n * 6 + 0]);
215 
216                         PRIM_INT__d_s_s_s[n * 6 + 1] = SIMINT_MUL(P_PA[1], PRIM_INT__p_s_s_s[n * 3 + 0]);
217                         PRIM_INT__d_s_s_s[n * 6 + 1] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__p_s_s_s[(n+1) * 3 + 0], PRIM_INT__d_s_s_s[n * 6 + 1]);
218 
219                         PRIM_INT__d_s_s_s[n * 6 + 3] = SIMINT_MUL(P_PA[1], PRIM_INT__p_s_s_s[n * 3 + 1]);
220                         PRIM_INT__d_s_s_s[n * 6 + 3] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__p_s_s_s[(n+1) * 3 + 1], PRIM_INT__d_s_s_s[n * 6 + 3]);
221                         PRIM_INT__d_s_s_s[n * 6 + 3] = SIMINT_FMADD( vrr_const_1_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__d_s_s_s[n * 6 + 3]);
222 
223                         PRIM_INT__d_s_s_s[n * 6 + 5] = SIMINT_MUL(P_PA[2], PRIM_INT__p_s_s_s[n * 3 + 2]);
224                         PRIM_INT__d_s_s_s[n * 6 + 5] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__p_s_s_s[(n+1) * 3 + 2], PRIM_INT__d_s_s_s[n * 6 + 5]);
225                         PRIM_INT__d_s_s_s[n * 6 + 5] = SIMINT_FMADD( vrr_const_1_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__s_s_s_s[(n+1) * 1 + 0], PRIM_INT__s_s_s_s[n * 1 + 0]), PRIM_INT__d_s_s_s[n * 6 + 5]);
226 
227                     }
228 
229 
230 
231                     // Forming PRIM_INT__f_s_s_s[1 * 10];
232                     for(n = 0; n < 1; ++n)  // loop over orders of auxiliary function
233                     {
234 
235                         PRIM_INT__f_s_s_s[n * 10 + 0] = SIMINT_MUL(P_PA[0], PRIM_INT__d_s_s_s[n * 6 + 0]);
236                         PRIM_INT__f_s_s_s[n * 10 + 0] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__d_s_s_s[(n+1) * 6 + 0], PRIM_INT__f_s_s_s[n * 10 + 0]);
237                         PRIM_INT__f_s_s_s[n * 10 + 0] = SIMINT_FMADD( vrr_const_2_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__p_s_s_s[(n+1) * 3 + 0], PRIM_INT__p_s_s_s[n * 3 + 0]), PRIM_INT__f_s_s_s[n * 10 + 0]);
238 
239                         PRIM_INT__f_s_s_s[n * 10 + 1] = SIMINT_MUL(P_PA[1], PRIM_INT__d_s_s_s[n * 6 + 0]);
240                         PRIM_INT__f_s_s_s[n * 10 + 1] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__d_s_s_s[(n+1) * 6 + 0], PRIM_INT__f_s_s_s[n * 10 + 1]);
241 
242                         PRIM_INT__f_s_s_s[n * 10 + 2] = SIMINT_MUL(P_PA[2], PRIM_INT__d_s_s_s[n * 6 + 0]);
243                         PRIM_INT__f_s_s_s[n * 10 + 2] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__d_s_s_s[(n+1) * 6 + 0], PRIM_INT__f_s_s_s[n * 10 + 2]);
244 
245                         PRIM_INT__f_s_s_s[n * 10 + 3] = SIMINT_MUL(P_PA[0], PRIM_INT__d_s_s_s[n * 6 + 3]);
246                         PRIM_INT__f_s_s_s[n * 10 + 3] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__d_s_s_s[(n+1) * 6 + 3], PRIM_INT__f_s_s_s[n * 10 + 3]);
247 
248                         PRIM_INT__f_s_s_s[n * 10 + 4] = SIMINT_MUL(P_PA[2], PRIM_INT__d_s_s_s[n * 6 + 1]);
249                         PRIM_INT__f_s_s_s[n * 10 + 4] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__d_s_s_s[(n+1) * 6 + 1], PRIM_INT__f_s_s_s[n * 10 + 4]);
250 
251                         PRIM_INT__f_s_s_s[n * 10 + 5] = SIMINT_MUL(P_PA[0], PRIM_INT__d_s_s_s[n * 6 + 5]);
252                         PRIM_INT__f_s_s_s[n * 10 + 5] = SIMINT_FMADD( aop_PQ[0], PRIM_INT__d_s_s_s[(n+1) * 6 + 5], PRIM_INT__f_s_s_s[n * 10 + 5]);
253 
254                         PRIM_INT__f_s_s_s[n * 10 + 6] = SIMINT_MUL(P_PA[1], PRIM_INT__d_s_s_s[n * 6 + 3]);
255                         PRIM_INT__f_s_s_s[n * 10 + 6] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__d_s_s_s[(n+1) * 6 + 3], PRIM_INT__f_s_s_s[n * 10 + 6]);
256                         PRIM_INT__f_s_s_s[n * 10 + 6] = SIMINT_FMADD( vrr_const_2_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__p_s_s_s[(n+1) * 3 + 1], PRIM_INT__p_s_s_s[n * 3 + 1]), PRIM_INT__f_s_s_s[n * 10 + 6]);
257 
258                         PRIM_INT__f_s_s_s[n * 10 + 7] = SIMINT_MUL(P_PA[2], PRIM_INT__d_s_s_s[n * 6 + 3]);
259                         PRIM_INT__f_s_s_s[n * 10 + 7] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__d_s_s_s[(n+1) * 6 + 3], PRIM_INT__f_s_s_s[n * 10 + 7]);
260 
261                         PRIM_INT__f_s_s_s[n * 10 + 8] = SIMINT_MUL(P_PA[1], PRIM_INT__d_s_s_s[n * 6 + 5]);
262                         PRIM_INT__f_s_s_s[n * 10 + 8] = SIMINT_FMADD( aop_PQ[1], PRIM_INT__d_s_s_s[(n+1) * 6 + 5], PRIM_INT__f_s_s_s[n * 10 + 8]);
263 
264                         PRIM_INT__f_s_s_s[n * 10 + 9] = SIMINT_MUL(P_PA[2], PRIM_INT__d_s_s_s[n * 6 + 5]);
265                         PRIM_INT__f_s_s_s[n * 10 + 9] = SIMINT_FMADD( aop_PQ[2], PRIM_INT__d_s_s_s[(n+1) * 6 + 5], PRIM_INT__f_s_s_s[n * 10 + 9]);
266                         PRIM_INT__f_s_s_s[n * 10 + 9] = SIMINT_FMADD( vrr_const_2_over_2p, SIMINT_FMADD(a_over_p, PRIM_INT__p_s_s_s[(n+1) * 3 + 2], PRIM_INT__p_s_s_s[n * 3 + 2]), PRIM_INT__f_s_s_s[n * 10 + 9]);
267 
268                     }
269 
270 
271 
272 
273                     ////////////////////////////////////
274                     // Accumulate contracted integrals
275                     ////////////////////////////////////
276                     if(lastoffset == 0)
277                     {
278                         contract_all(10, PRIM_INT__f_s_s_s, PRIM_PTR_INT__f_s_s_s);
279                     }
280                     else
281                     {
282                         contract(10, shelloffsets, PRIM_INT__f_s_s_s, PRIM_PTR_INT__f_s_s_s);
283                         PRIM_PTR_INT__f_s_s_s += lastoffset*10;
284                     }
285 
286                 }  // close loop over j
287             }  // close loop over i
288 
289             //Advance to the next batch
290             jstart = SIMINT_SIMD_ROUND(jend);
291             abcd += nshellbatch;
292 
293         }   // close loop cdbatch
294 
295         istart = iend;
296     }  // close loop over ab
297 
298     return P.nshell12_clip * Q.nshell12_clip;
299 }
300 
301